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INTRODUCTION 1
Qualitative data are more and more present in any field of research. For

example, in medicine one can be interested in predicting an illness based

on some symptoms, e.g. presence/absence of physical characteristics, (see

JAMA Internal medicine, www.archinte.jamanetwork.com) , in psychology one

can be interested in classifying mental status based on human behaviors, (e.g.

Spinhoven et all., 2012, May 7), or in economy firms are interested in split-

ting customers into different groups based on their purchasing preferences

to address marketing researches (e.g. Day et all., 1979). Many techniques are

developed to handle these type of data. Qualitative data can be organized in

contingency table, where each entry contains the joint frequency of subjects

that have category g of one variable and category k of the other one. If more

predictor variables are available, row or column categories can be define as a

combination of categories of more than one variable.

Suppose that we are interested in the question whether predictors dis-

criminate among response groups. One can chose a parametric analysis to

test which main effect of and/or interactions between predictor variables are

statistically significant in discriminating between the groups. But with this

parametric approach it is difficult to understand the relations between the

predictor patterns and group criteria due to the fact that there can be many

predictors and combinations of them, so it is difficult to figure out all combi-

nations and patterns related to all group criteria. On the other hand, one can

apply multidimensional procedures, like multidimensional scaling or corre-

spondence analysis, to obtain a graphical representation of the relations be-

tween predictor pattern and group criteria. In the latter case, we do not have

a detailed model evaluation. Ideal Point Discriminant Analysis, proposed by

1



2 Chapter 1. Introduction

Takane (Takane et all., 1987), allows both a detailed model evaluation and a

graphical representation of the data. It is a technique to classify subjects ac-

cording to some criteria. This method has a lot of advantages. First, it allows

a mixture of continuous and categorical predictor variables; second, it can

be applied in conditional, joint and separate sampling procedures; third, it is

justified under a wide class of distributional assumptions on predictor vari-

ables. Fourth, it maps together subject points and class points in the same

Euclidean space and the probability of a subject to belong to class g is a de-

creasing function of the relative Euclidean distance between that subject and

that class, compared to the distances towards the other classes. In maximum

dimensionality, IPDA is equal to Multinomial Logistic Regression, but it also

allows dimension reduction such as in Canonical Discriminant Analysis but

without any assumptions on predictors. In the paper of 1998 about IPDA vi-

sualization (Takane, 1998), however, Takane highlighted that IPDA has some

weaknesses in the visualization aspects. Mark de Rooij in the paper about

the visualization problem of IPDA (De Rooij, 2009), proposed a modifica-

tion of the model that overcomes those weaknesses. We chose to name this

model Multinomial Distance Model. Nevertheless this model presents itself

as a simple and good tool in discrimination problems, it suffers the lack of

diagnostic statistics to evaluate not only the goodness of fit, but also the in-

fluential and leverage points.

The aim of this work has been to find tools to evaluate the Multinomial

Distance Model, so that it can be come more popular and comparable with

more famous models like the baseline category logit model. To understand

the Multinomial Distance Model, the next section is devoted to explain Ideal

Point Discriminant Analysis. Chapter 2 presents the Multinomial Distance

Model in more details and gives a general overview on others models de-

signed for categorical response variables. Chapter 3 is about diagnostics

of generalized linear models and, in particular, it focuses on diagnostics of

multinomial baseline category logit model. Chapter 4 presents diagnostic

tools for Multinomial Distance Model while chapter 5 is about some applica-

tions on both simulated and real datasets. Finally, in chapter 6 there are some
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discussions about our findings.

1.1 Background: Ideal Point Discriminant Analysis.

Ideal Point Discriminant Analysis is based on three assumptions:

1. Subjects are mapped in a multidimensional Euclidean space and their

coordinates are given by a linear combination of predictors;

2. Groups are represented by points and they are mapped together with

subjects in the multidimensional Euclidean space;

3. The probability of a subject to belong to a response group is a decreas-

ing function of the distance between the corresponding points and an

increasing function of the prior probability of that criterion group.

Let N be the number of subjects and G the number of response categories

(or groups). Let A denote the dimensionality of the representation space. Ac-

cording to Takane’s model, the conditional probability that subject k belongs

to group g, given the set of observations on the predictor variables is given

by

pg(xk) =
wg exp(−δ2kg)∑G

h=1wh exp(−δ2kh)
, (1.1)

where wg is the bias parameter for group g and δ is the Euclidean distance

between subject k and category g:

δkg =

{ A∑
a=1

(ηka − zga)
2

} 1
2

, (1.2)

where ηka = x⊤k ba is the coordinate of subject k on dimension a and zga is

the coordinate of response category g on dimension a. These latter coordi-

nates, can either be free, then we need to estimate them, or one can chose to

apply centroid restriction, that means that zga is in the centroid of all subjects

belonging to group g. In this way, zga (g = 1, . . . , G) are a function of the pa-

rameters ba. The bias parameter wg of the model is a sort of prior probability

to belong to category g. To remove scale indeterminancy in wg the restriction
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∑
g wg = 1 is imposed. So, in the model (1.1) the probability is proportional

to wg for fixed δkg and proportional to exp(−δ2kg) for a fixed wg. Model (1.1)

is a special form of Coombs’(1964) unfolding model combined with Luce’s

(1959) individual choice model (Takane et all., 1987). The special feature is

that the coordinates of subjects are contrained to be a linear function of the

predictor variables.

The (conditional) likelihood of the model defined so far is

L =
∏
k=1

N∏
g=1

G
(pg(xk))ykg , (1.3)

where ykg = 1 if the subject belongs to category g, ykg = 0 otherwise. Fisher’s

scoring algorithm is applied to maximize the likelihood with respect to all

parameters.

Model (1.1) can also be justified in other sampling situations, like joint

sampling or separate sampling procedures, as long as the distribution of the

predictor variables belong to the exponential family. In the same way, the

likelihood is still valid if the distribution of the predictior variables leads to

the conditional probability stated in equation (1.1).

1.2 Notation.

For further reference we supply some notational rules that we will follow.

Bold uppercase symbols indicate matrices: Y is the response matrix, X is the

predictor matrix. With B we indicate the coefficient matrix while b is the coef-

ficient vector and Z indicates the class coordinate matrix. P is the probability

matrix and p is a single probability. H is the generalized hat matrix while

M = I − H, where I is the Identity matrix. Bold lowercase symbols indicate

vectors. Indices are denoted by lowercases: k is the subject index that goes

from 1 to N , thus N is the sample size; a = 1, . . . , A indicates the number of

dimensions, q = 1, . . . , Q is the number of predictors while g = 1, . . . , G is

the number of response categories. Greek cases indicate single coefficients.

δ is the Euclidean distance. All other used symbols will be explained from

time to time. Table 1.1 is a list of the main symbols used.
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symbols
Y response variable
X predictor variable
k subject index
g category index
a dimension index
q predictor index
N sample size
G number of response categories
A number of dimensions
Q number of predictors
v number of parameters
z class coordinate
α intercept
β coefficient
p probability
δ Euclidean distance
h leverage value
r standardized Pearson residual
e studentized Pearson residual
rd deviance residual
d individual deviance
∆ dfbeta
∆∗ dfbetas
c approximation to Cook’s distance
c change in confidence interval measure
∆D goodness of fit sensitivity measure
∆d neighboring effect measure
∆∗d one step approximation of neighboring effect measure
α̃ pseudo-intercept
β̃ pseudo-coefficient
y response vector
x predictor vector
b coefficient vector
z class coordinate vector
p probability vector
r standardized Pearson residual vector
e studentized Pearson residual vector
Y response matrix
X predictor matrix
B coefficient matrix
Z class coordinate matrix
P probability matrix
H hat matrix
I identity matrix
M influence matrix
S̃ Pseudo-coefficient matrix
X̃ pseudo-design matrix
L(.) likelihood function

Table 1.1: Table of symbols
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2.1 Categorical Data

Categorical variables are omnipresent in social sciences and biomedical sci-

ences. A categorical variable is a measurement which consisting in a set of

categories. For example, they arise in education, e.g. student responses to an

exam, in marketing, e.g. consumer preferences among brands, in behavioral

sciences, e.g. types of mental illness, and so on. In statistical science we dis-

tinguish between response categorical variable and explanatory categorical

variable. The former is the output of an experiment measured on subjects of a

sample while the latter is a feature of those subjects and we would predict, for

example, the output based on some categorical and/or numerical features.

Moreover, we distinguish between nominal categorical variables and ordinal

categorical variables. An example of nominal variable is mental illness where

there is no order between categories (e.g. depressed, schizophrenic and so

on). On the other hand, an example of an ordinal variable is the number of

mental disorders of a subjects, e.g. one disorder, two disorders, ..., that is, a

variable where for each category it is possible to estabilish wheter it is greater

or smaller than the others. In statistics there are models that handle nominal

response variables such as the baseline category logit model, and other meth-

ods which handle ordinal response variables such as the proportional odds

model. Historically, there are more methods that handle numerical variables

because they are easier to manage than qualitative data. In fact, relatively lit-

tle development of models for categorical response variables occurred until

1960 (Agresti, 2002).

The main distributions to describe categorical response variables are the

7



8 Chapter 2. Multinomial Distance Model

Binomial distribution, the Multinomial distribution and the Poisson distribution.

Let y1, y2, . . . , yN be responses for N independent and identical trials where

the probability that yk = 1 is p and the probability that yk = 0 is 1 − p.

Trials are identical due to the fact that the probability p is the same at each

trial. Furthermore, trials are independent because yk are indipendent ran-

dom variables. Each trial is a Bernoulli variable which is a special case of

Binomial distribution when the number of trials is 1 (n = 1). Let y+ =
∑

k yk

be the number of successes in N trials. Its probability mass function is

p(y+) =

(
N

y+

)
py+(1− p)N−y+ ,

with expected value equals to Np and variance equals to Np(1 − p). The

likelihood function can be easly computed, using the product over subjects

of the probability mass function. This distribution describes binary response

variable, that is, variables that have as outcome 0 or 1.

When the response variable is multicategorical, that is, it has G > 2 cat-

egories, its distribtuion is approximated by the multinomial function. Then,

ykg = 1 if subject k belongs to category g and ykg = 0 otherwise. The sum

over single trial (subject) is equal to 1. Let ng be the number of outcomes

in category g,with
∑

g ng = N . The counts n1, n2, . . . , nG have multinomial

distribution. Its probability mass function is

p(n1, n2, . . . , nG−1) =

(
N

n1!n2! . . . nG!

)
pn1
1 pn2

2 . . . pnG
G .

We do not put nG in the left part of the formula due to the fact that ykG

is redundant, being linearly dependent on the others. The expected value

E(pg) = Npg and the variance Npg(1−pg). Note that the binomial distribution

is a special case of the multinomial distribution with G = 2.

When there is not a fixed upper limit N for y, the categorical response

variable is approximated by the Poisson distribution. An example is the num-

ber of calls per minute in a call center. Its probability mass function is

p(y) =
e−µµy

y!
, with y = 1, 2, . . .

The expected value and variance are the same and equal to µ.
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In the next chapters we will work with multicategorical response vari-

ables, then the distribution that we will use is the multinomial distribution.

The likelihood function of a multinomial distribution is

L(p) =
∏
g

p
ng
g , with g = 1, . . . , G and

G∑
g=1

pg = 1.

In most cases it is easier to work with the log−likelihood, which is

logL(p) =
G∑

g=1

ng log(pg).

The maximum likelihood estimate of p̂g is the sample proportion ng/N , where∑
g ng = N .

Starting from multicategorical response variables, the next sections intro-

duce some methods to model nominal or ordinal response variables. Section

2.2 introduces the Multinomial Distance Model while section 2.3 is about the

Multinomial Logit Models.

2.2 Multinomial Distance Model

Starting from IPDA model, many modifications are allowed to generalize it

and make it to be versatile. Among the possible choices, it is possible to

modify

1. the bias parameters wg (e.g. wg = 1);

2. the group coordinates zga (e.g. zga can be set to be free);

3. the distance δ2kg (e.g. the squared Euclidean distance in the exponential

may be replaced by the simple Euclidean distance or a Mahalanobis

distance).

In the paper of Mark De Rooij about the visualization problem of IPDA

(De Rooij, 2009), it is shown that when the dimensionality is A = G − 1, the

prior probability (the bias parameter wg) can be incorporated in the distance

part of the model. In this way, the model has a much clearer interpretation

because the decision boundaries are solely based on distance, thus they are
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orthogonal to the line joining two class points and through their centroid.

In the simplest case, with binary response variable Y and one predictor X ,

a distance model can be built in one dimensional Euclidean space (A = 1).

Let z0 and z1 be the coordinates of response categories. Let ηk = α + xkβ be

the coordinate of subject k. Now we can define two distances: one between

subject k and category 1, and another one between subjct k and category 0.

The corresponding squared Euclidean distances are

δ2k1 = (ηk − z1)
2 ,

δ2k0 = (ηk − z0)
2 . (2.1)

For subject k, we can write down the probability to belong to category 1

p1(xk) =
exp(−δ2k1)

exp(−δ2k1) + exp(−δ2k0)
,

and the probability to belong to category 0

p0(xk) =
exp(−δ2k0)

exp(−δ2k1) + exp(−δ2k0)
. (2.2)

These probabilities are decreasing functions of the relative squared Euclidean

distances. This is, the probability of subject k to belong to category 1 is in-

versely related to the distance between subject k and category 1. So, if the

distance towards category 1 is greater than the distance towards category 0,

a subject with observed value xk has larger probability to belong to category

0 rather than to belong to category 1. As any distance model, also multino-

mial distance model has the idetification problem. To fix it, in one dimen-

sional Euclidean space two restrictions on the group points are needed and

we can chose z1 = 1 and z0 = 0. In general, multinomial distance model, in

more than one dimensions, could also have others problems like translation

indeterminacy that can be solved putting a specific class in the origin of the

space, fixing z1a = 0. There is a rotation indeterminacy. Rotation keeps the

distances the same, thus the probabilities and the likelihood should be the

same. This problem can be fixed setting the upper triangular part of the class

coordinate matrix equals to 0. To see if restrictions are needed, an empiri-

cal approach could be used. One can fit the model without restrictions and
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storing log-likelihoood and parameter estimates. Fitting again the model but

from different starting point. If the log-likelihood and parameter estimates

are the same, the model does not need identifications. Otherwise, we have to

use an identification restriction.

To make the interpretation easier, we can explicit the model in terms of log

odds instead of probabilities. Under the distance model with binary response

variable and one predictor variable X , for subject k we have

log

(
p1(xk)

p0(xk)

)
= δ2k0 − δ2k1

= 2ηk(z1 − z0) + z20 − z21

= 2(α+ xkβ)(z1 − z0) + z20 − z21

= 2α(z1 − z0) + 2xkβ(z1 − z0) + z20 − z21 .

(2.3)

This formulation highlights the role of the group point coordinates. In

fact, the term 2xkβ(z1 − z0) indicates the change of log odds for one unit

increasing in X . If the the distance between two group points is large, then

the change in log odds is large.

Distance model as defined so far, can be easly generalized to polytomous

response variables. Let Y be a polytomous response variable with G response

categories. The probability to belong to one of the G categories, given the

predictor X , is given by

pg(xk) =
exp(−δ2kg)∑G
h=1 exp(−δ2kh)

, with g = 1, . . . , G, (2.4)

where δkg
2 is the squared Euclidean distance between the subject coordinate

k and the class point g. In terms of log odds and assuming an unidimensional

solution we have

log

(
pg(xk)

pG(xk)

)
= δ2kg − δ2kG

= 2α(zg − zG) + 2xkβ(zg − zG) + z2G − z2g ,

(2.5)

Again, zg represents the coordinate for category g in a one-dimensional Eu-

clidean space, with g = 1, . . . , G. For identification one restriction zG = 0 is

needed.
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The probabilities can also be expressed in an alternative form

pg(xk) =
exp (2η(zg)− z2g)

1 +
∑G−1

g=1 exp(2η(zg)− z2g)
,

=
exp(ug)

1 +
∑G−1

h=1 exp(uh)
, with g = 1, . . . , G

(2.6)

where:

ug = 2η(zg)− z2g ,

that is different from Euclidean distance defined before in (2.1). If we con-

sider the last category as reference category on which we put the restriction,

consequently the formula (2.6) is simplified, too.

This model deals with ordinal response variable too, but there is no con-

strain to ensure the ordinality of the response categories. In Proportional

Odds Model the latent variable justification and the fixed effect β give or-

dered categories, but this model uses the cumulative probabilities that are

more difficult to interpret than the single probabilities. Adjacent category

logit model in its proportional odds form, ensures that the model accounts

for the ordinality, but the proportional assumption does not often hold in real

situations.

Similar to the contrain on ϕ parameters in the Stereotype model, to ensure

the ordinality of the response categories in the Multinomial Distance model,

we introduce the same contrain on the group point coordinates

z1 ≤ z2 ≤ ... ≤ zG = 0. (2.7)

If some z are equal it means that the correspondent categories are not dis-

tinguishable by the predictors, so it is better to collapse them into one single

category.

2.2.1 Likelihood, Estimation Parameters and Model Assessment

It is assumed that the responses of subjects are independent multinomial dis-

tributed, so that the log-likelihood is:

log−L =
∑
k

∑
g

ykg log pg(xk). (2.8)
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Equation (2.8) is maximized with respect to model parameters (α, β, z), sub-

ject to the identification constraints, using a Quasi-Newton algorithm. Once

we have parameter estimates, the probability to belong to each of the re-

sponse categories can be computed for a new subject k∗ with observed pre-

dictor value xk∗. Finally, subject k∗ can be assigned to the group with highest

probability, i.e. ŷk∗g = maxgpg(xk). In the Appendix all R-code to estimate

the model described so far are supplied.

Once the likelihood and parameters are estimated, the general goodness

of fit of the model needs to be evaluated. Therefore information criteria,

like Akaike Information Criterion (AIC) and Bayesian Information Criterion

(BIC) can be computed to assess the goodness of fit with respect to the com-

plexity of the model. Phenomena are complex, and a statistical model is

a general representation of them. Obviously, the more complex the model

is, the better the model represents phenomena but it is more complicated

to find and to explain the relationships between the components of such a

phenomenon. This problem is called curse of dimensionality, that is a good

model should find the best trade off between the model complexity and the

model power to explain phenomena.

AIC and BIC give a relative assessment about how good the model is

based on its complexity in terms of the number of parameters to be estimated,

with respect to others models. Both statistics are likelihood based. AIC is

given by

AIC = −2LL+ 2v,

this is, minus two times the log-likelihood plus two times the number of

parameters v. We choose the model with smallest AIC value.

Bayesian Information Criterion is given by

BIC = −2LL+ log(N)v,

where v is the number of parameters and N is the number of observations.

BIC has a larger complexity penalty than AIC, due to the fact that it uses the

logarithm of N multiplied by the number of parameters. Again, the model

with the smallest BIC value is preferred.
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When a model fits poorly it is useful to look at residuals and the config-

uration of the points in the space spanned by predictors to find where the fit

is poor. As we have said,for the Multinomial Distance model there is no lit-

erature about diagnostic statistics. In chapter 4 we provide some diagnostic

tools suitable for the Multinomial Distance model to assess residuals as well

as influential and leverage points.

2.3 Multinomial Logit Models

Classification problems can be conceived as regression problems where the

response variable is categorical. Thus, we can fit Logistic Regression for bi-

nary categorical response variable or Multinomial Logistic Regression for

multi-categorical response variable. In many real problems, especially in so-

cial science, response variable can be ordered and one can also be interested

in the order of the response groups. In this section we describe both nominal

and ordinal regression models.

2.3.1 Baseline Category Logit Model

Let Y a nominal response variable with G categories. Let pg = P (Y = g|X)

be the probability to belong to category g given fixed predictor variable X .

From p = (p1, . . . , pG) we can form G(G− 1)/2 set of odds which are

P (Y = g)

P (Y = h)
=

pg(xk)

ph(xk)
, with h ̸= g = 1, . . . , G

Choosing G−1 odds the others are redundant because they can be computed

from the formers (Agresti, 2002). The baseline category logit model compares

each category with a baseline category, usually the last one. Then, the model

is

log

(
pg(xk)

pG(xk)

)
= αg + βgxk, (2.9)

From equation (2.9) probabilities are

pg(xk) =
exp(αg + βgxk)

1 +
∑G−1

h=1 exp(αg + βgxk)
. (2.10)

The denominator of equation (2.10) is the same for each probability and the

numerators for all G−1 sum up to the denominator, therefore
∑

g pg(xk) = 1.
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To estimate those probabilities we use maximum likelihood theory. From

equation (2.9) we obtain G− 1 regression equations to solve simultaneously.

For a sample of size N , let yk = (yk1, yk2, . . . , ykG) be the multinomial trial for

subject k. Let ykg = 1 if subject k belongs to category g and ykg = 0 otherwise.

Thus,
∑

g ykg = 1. The log−likelihood of the data are

log
N∏
k=1

 G∏
g=1

pg(xk)
ykg

 =

N∑
k=1

G−1∑
g=1

ykg(αg + βgxk)− log

1 +

G−1∑
g=1

exp (αg + βgxk)

 . (2.11)

Using iterative procedures (like Newton-Raphson method) we obtain es-

timates of αg and βg which maximize the log−likelihood.

2.3.2 Proportional Odds Model

Suppose we have a multi-categorical ordinal response variable Y . We may

be interested in modeling Y as a function of a predictor variable X . Further-

more, the observed scale scores on Y are assumed to be discretized measure-

ments on an continuous latent response variable Y ∗. Suppose that −∞ =

α0 < α1 < α2 < ... < αG = ∞ are cutpoints of the continuous scale such that

the observed response Y satisfies

Y = g if αg−1 < Y ∗ < αg.

Thus, Y falls in category g when the latent variable assumes values in the

interval defined by αg−1 and αg. The general form of the probability model

is

P (Y ≤ g|x) = P (Y ∗ ≤ αg|x) = Φ(αg − β′x), (2.12)

where Φ is some invertible function. If we assume that

Y ∗ = βx+ ϵ

and we specify Φ as standard logistic function for ϵ, and apply its inverse

function, that is logit link, to the probability, then we obtain the Proportional
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Odds Model (McCullagh, 1980)

logit[P (Y ≤ g|x)] = αg + β′x, with g = 1, ...G− 1, (2.13)

that is the logit of the probability to belong to one of the categories less or

equal to g. The complement of the latter probability is the probability to

belong to a category greater than category g. Each of cumulative logits has its

own intercept, that is the estimated cutpoint. Given its formulation, the logit

is an increasing function of the probability to belong to one of the categories

less or equal to g. The reason is that αg increases in g due to the fact that the

latter probability increases in g for fixed x. All logits share the same effect β

and then the response curves have the same shape, but they are shifted by

(αh − αg)/β in the x direction, for categories g < h. In terms of odds ratios,

for fixed category g and two different values of a predictor variable x1 and x2

we have

logit[P (Y ≤ g|x1)]− logit[P (Y ≤ g|x2)] = log
P (Y ≤ g|x1)/P (Y > g|x1)
P (Y ≤ g|x2)/P (Y > g|x2)

= β(x1 − x2).

(2.14)

The odds of making response ≤ g at x = x1 is exp[β(x1 − x2)] times the odds

at x = x2. Because the β parameter is invariant to the cutpoints, the odds

ratios are the same over the g − 1 cumulative probabilities. Equation (2.14)

shows that odds ratios are proportional to the distance between the values

of x, i.e., the same proportionality constant applies to each logit (Agresti,

2002). The proportional odds model assumes that the covariate effects are

invariant to the cutpoints, thus impying proportionality in the odds ratios.

Often this assumption does not hold in real problems, that means this kind

of model does not suit them. Many alternatives have been proposed such as

Unconstrained Partial Proportional Odds Model (Peterson and Herrell, 1980)

which estimates two set of parameters, one for proportional odds, and the

other one for non-proportional odds.
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2.3.3 Adjacent Category Logits Model

An alternative way to overcome the proportionality assumption is to fit the

adjacent categories logit model (Simon, 1974; Goodman, 1983). Let pg (g =

1, . . . , G) be the probability to belong to response category g with multino-

mial distribution, the adjacent categories logits are

logit[P (Y = g|Y = g or Y = g + 1)] = log
pg(xk)

pg+1(xk)
, g = 1...G− 1.

Let x be a predictor variable, the general adjacent categories logit model is

log
pg(xk)

pg+1(xk)
= αg + βgxk. (2.15)

Equation (2.15) can also be viewed as a different parametrization of baseline

category logit model. Consider the baseline category logits

log
p1(xk)

pG(xk)
, log

p2(xk)

pG(xk)
, ..., log

pG−1(xk)

pG(xk)
,

each baseline category logit can be expressed in terms of adjacent categories

logits

log
pg(xk)

pG(xk)
= log

pg(xk)

pG+1(xk)
+ log

pg+1(xk)

pg+2(xk)
+ ...+ log

pG−1(xk)

pG(xk)
.

Thus, the baseline category logit model can be expressed in terms of model

(2.15) as

log
pg(xk)

pG(xk)
=

G−1∑
h=g

αh +

G−1∑
h=g

βg

xk

= αg
∗ + βg

∗xk,

(2.16)

with g = 1...G− 1. In this case, no common effect is assumed for each g, thus

the model does not utilize the ordinality of Y.

One could also assume that a predictor variable has the same effects over

response categories. Thus, we obtain a model similar to (2.15), but with fixed

β, that is β1 = β2... = βg = β. The model will be

log
pg(xk)

pg+1(x)
= αg + βxk. (2.17)



18 Chapter 2. Multinomial Distance Model

This model has proportional odds like Proportional Odds Model and both

models fit well in similar situations due to the fact that they assume stochas-

tically ordered distributions of Y at different predictor values (Agresti, 2010,

p.89). In fact, the odds ratios are the same for each pair of adjacent categories,

thus they do not depend on g.

About the interpretation, for a fixed predictor X , the estimated odds of

the lower instead of the higher of two adjacent categories pg(xk)/pg+1(xk)

multiplies by exp(β) for every one unit increase in X . If we consider the ad-

jacent categories logit model with common effects β, the equivalent baseline

category logit model is

log
pg(xk)

pG(xk)
=

G−1∑
h=g

αh + (G− g)βxk

= αg
∗ + βug,

(2.18)

where ug = (G − g)xk. So, the Adjacent categories logit model corresponds

to a baseline category model with an adjusted model matrix. This model

takes into account the ordinality of Y , using a single common parameter β for

each predictor variable and letting the predictor variable itself incorporates a

distance measure G− g between each category g and the baseline category G

(Agresti, 2010). This connection is important for ML estimate of parameters

in adjacent categories logit model. In fact, the parameter estimates of the

adjancent category logit model can be obtained from the estimate parameters

of baseline category logit model. It can be shown that

β̂g = β̂∗
g − β̂∗

g+1 ,

where β̂∗
g are the estimated parameters of baseline category logit model.

2.3.4 Continuation-Ratio Model

Another alternative logit model is the continuation-ratio logit model. Con-

sider the continuation-ratio log odds for each category relative to the higher

categories

log
pg(xk)

pg+1(xk) + · · ·+ pG(xk)
, with g = 1, . . . , G− 1, (2.19)
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or the log odds for each category relative to the lower categories

log
pg+1(xk)

p1(xk) + · · ·+ pg(xk)
. (2.20)

Equation (2.19) is the ordinary logit of the probabilities

ωg = P (Y = g|Y ≥ g) =
pg

pg + · · ·+ pG
, with g = 1, . . . , G− 1.

Thus, sequential logits ca be defined (Agresti, 2010, p.97)

log

(
ωg

1− ωg

)
,

with explanatory variables, the continuation-ratio logit model using sequen-

tial logits is

logit [ωg (xk)] = αg + βgxk. (2.21)

If we assume proportionality for odds, then we have the same model (2.21)

but with common parameter β for all response categories. This model is use-

ful when a sequential process determines the response variable. An example

is the survival of a subject after receiving a medical treatment. As in pro-

portional odds model, the continuation-ratio logit model find a motivation

in a latent variable underlying the observed ordinal response variable (Tutz,

1991). It is assumed that latent variable Y ∗ satisfies

Y ∗ = βxk + ϵ,

where ϵ that follows a cumulative distribution function Φ. For a set of thresh-

olds (αg), the observed ordinal response variable satisfies

Y = g given Y ≥ g, if Y ∗ ≤ αg.

The sequential mechanism assumes a binary decision at each step. Only the

final resulting category is observable. The general model will be:

P (Y = g|Y ≥ g) = Φ(αg − βxk). (2.22)

An important feature of this model is the multinomial factorization with se-

quential probabilites. Let xk be the value for subject k on predictor X . Let
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(ykg, g = 1, . . . , G) be the response vector of subject k, with ykg = 1 if the sub-

ject belongs to category g and 0 otherwise. Then
∑

g ykg=1. Let b(n, y;ω) be

the binomial probability of y successes in n trials with parameter ω in each

trial. The multinomial mass function of a single observation (yk1, yk2, ...ykG)

can be factorize in

b [1, yk1;ω1 (xk)] b [1− yk1, yk2;ω2 (xk)] · · ·

b [1− yk1 − · · · − yk,G−2, yk,G−1;ωG−1 (xk)] . (2.23)

The log likelihood is the sum of the logarithms of all multinomial mass func-

tions for different values of xk, such that different ωg enter into different

terms.

2.3.5 Stereotype Model

For all the models discussed so far, some problems arise. In fact, when pro-

portionality for odds does not hold, adjacent categories model, continuation-

ratio model and cumulative model assuming constant β fit poorly (Agresti,

2010, p.103). One can use adjacent categories model in its general form which

allows for different effects for each response category. But this general model

corresponds to the baseline category model which treats the response vari-

able as nominal. Furthermore, the number of parameters increases in G or

with the number of the predictors. Anderson (1984) proposed a category

logit model, called stereotype model, which is nested between the adjacent

categories logit model with the proportional odds and its general form (2.15).

The stereotype model is

log
pg(xk)

pG
(xk) = αg + ϕgβxk, with g = 1, . . . , G− 1. (2.24)

In terms of response probabilities we have

pg(xk) =
exp(αg + ϕgβxk)∑G
g=1 exp(αg + ϕgβxk)

, (2.25)

with restrictions αG = 0, ϕG = 0 and ϕ1 = 1. For a one unit increase in

predictor X , the odds of response g instead of response G is exp(ϕgβ) times
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larger. This model is more parsimonious then the models described so far.

Compared with model (2.16) Anderson’s model has less parameters to esti-

mate. In fact, here G − 1 intercepts, G − 2 ϕ parameters and one β for each

predictor variable considered in the model need to be estimate.

The model can easly be write in baseline category logit model. In fact,

setting

β∗
g = ϕgβ,

for all categories, we can write the model as

log
pg(xk)

pG(xk)
= αg + β∗

gxk

The stereotype model can model ordinal data. The parameters ϕ can be

viewed as scores for the response categories. The constraint

1 = ϕ1 ≥ ϕ2 ≥ ... ≥ ϕG = 0.

allows the model to treat Y as ordinal. The monotonicity of the ϕ parameters

also implies that the effect of a single predictor has the same direction for

each pairs of categories. Thus, a given predictor X has uniformely positive

or negative local log odds ratios with Y . Anderson noted that the higher the

value of βx the more the distribution of Y moves to the low of the response

scale. Thus, to make sure that for a positive values of β correspond to a

positive effect of the predictor, one can write the model as

log
pg(xk)

pG(xk)
= αg − ϕgβxk. (2.26)

Furthermore, this model allows to verify if response categories are distin-

guishable with respect to the predictor variables. In fact, if two ϕ parameters

are equal, the corresponding categories can be collapsed into one, and then

the model can be refitted.

So far, we decribed models to discriminate among response groups based

on a set of predictor variables. As we could see, all these models allow for

detailed effect evaluations, but they do not give a graphical representation of

the data. The Multinomial distance model deals with this weakness, provid-

ing both detailed model evaluation and a graphical representation.





DIAGNOSTICS IN GENERALIZED LINEAR

MODELS 3
3.1 Generalized Linear Models

A Generalized Linear Model (GLM) extends an ordinary regression model to

cover non normal response distributions. GLMs consist of three components

1. A random component, specifying the conditional distribution of the re-

sponse variable Y , given the values of the explanatory variables. These

distributions come from the exponential family which has density

f(yk|θk, φ) = exp

[
ykθk − b(yk)

a(φ)
+ c(yk, φ)

]
.

θk is the canonical parameter and represent the location while φ is the

dispertion parameter and represents the scale. Some important distri-

butions come from the exponential family, like the Gaussian, the Bino-

mial and the Poisson specifying functions a, b and c. GLMs are also

extended to the multivariate exponential family, like the multinomial

distribution. If φ is known, the function can be simplified to

f(yk|θk) = a(θk)b(yk) exp [ykQ(θk)] .

2. Systematic component, which is the linear predictor ηk given by

ηk =

Q∑
q=1

βqxkq, k = 1, . . . , N

with q = 1, . . . , Q predictor variables.

23
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3. Link function g(.), which transforms the expectation of the response

variable µk = E(Yk) to the linear predictor

g(µk) = ηk =

Q∑
q=1

βqxkq

The link function must be invertible, such that µk = g−1(ηk). The in-

verse link g−1(.) is also called the mean function.

When the conditional distribution of the response variable is binomial

and the link function is the logistic function then we have classical logistic

regression. When the distribution of the response is multinomial and the

link function is again logistic it is a multinomial logit model.

Maximum likelihood theory is used to estimate parameters. In general,

for a GLM we have

µk = E(Yk) = b′(θk) var(Yk) = b′′(θk)a(ϕ)

where b′(θk) is the first derivative of the function b(.) and b′′(.) is the second

derivative. In practice, several functions do not have a closed form, then

they are maximized using iterative procedures like Fisher scoring algorithm

or Newton-Raphson algorithm.

After fitting the model, we have to evaluate it. When a model fits poorly

it is useful to look at residuals to find where the fit is poor. It is important

to distinguish between outliers, leverage and influential points. An outlier is

an observation whose response value is unusual, given the value of predictor

variable. There are three different cases:

1. the outlier has predictor value in the center of the predictor distribu-

tion. In this case, deleting the outlier has low impact on regression

results, that means that this observation has low leverage and a little

influence;

2. the outlier has predictor value far from the predictor mean. This outlier

has high leverage and substantial influence on the regression results. It

is a regression outlier;
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3. the outlier has a predictor value far from the mean but it is in line with

the rest of the data. This observation has large leverage but does not

have influence on the regression analysis.

In the Generalized Linear Model framework some unusual and influen-

tial diagnostic measures have been built (Pregibon, 1981). Lesaffre and Albert

(1989) extended univariate diagnostic tools to multiple group logit models.

The next two sections propose an overview on both cases.

3.2 Diagnostics for Univariate Generalized Linear Models

For a simple logistic regression model, to evaluate the fit and to identify out-

liers and influential points, the residual vector and a projection matrix are

needed. To assess the leverage we need the so called generalized hat values.

The name is due to the fact that we can express the fitted values (ŷk) in terms

of the observed values yk. In matrix notation we have

Ŷ = HY

where H is the generalized hat matrix, or projection matrix given by

H = W1/2X(X⊤WX)−1X⊤W1/2, (3.1)

where W is a diagonal matrix with elements wkk = p̂k(1− p̂k) (for ungrouped

data). The square matrices H or M = I − H, where I is the identity matrix,

are idempotent and symmetric. Furthermore, if the Pearson residuals are

multiplied by M, the result is again Pearson residuals (Lesaffre and Albert,

1989). Taking the diagonal values of H we obtain a measure of leverage for

each subject, ranging from 0 to 1. The generalized hat values close to 1 have

high leverage, this is, they are extreme points in the design space. However,

because H depends on both the design matrix and the fit, extreme points in

design space do not necessary have high value of hkk (k = 1, . . . , N). The

same considerations are also valid for matrix M, but in this case leverage

points have values of mkk close to 0. Plots of residuals and hkk against subject

indexes are useful to detect outliers.
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Unlike linear regression model, where the residuals are uniquely defined,

in logistic regression it is possible to define different types of residuals, based

on several scales (Pregibon, 1981). The most useful residuals are the Pearson

residuals and the Deviance residuals. Let yk be the observed response vari-

able, with k = 1...N . Let p̂k be the estimate of P (Y = 1|X = xk), then p̂k is

the fitted response variable. The Standardized Pearson residuals are

rk =
yk − p̂k√
p̂k(1− p̂k)

.

The numerator of the above expression is called the raw residual. When N →
∞ the covariance of raw residuals yk − p̂k can be approximated by

cov(yk − p̂k) = p̂k(1− p̂k)(1− hkk) = p̂k(1− p̂k)mkk,

where hkk are the diagonal elements of the generalized hat matrix. Therefore,

the asymptotic covariance of Standardized Pearson residuals is 1. Dividing

the raw residuals by their asymptotic covariances, we obtain Studentized

Pearson residuals

ek =
(yk − p̂k)√

p̂k(1− p̂k)(1− hkk)
=

rk√
(1− hkk)

.

Absolute values of ek larger than 2 or 3 provide evidence of lack of fit (Agresti,

2002).

Deviance residuals measure the agreement between the observed and fit-

ted log-likelihoods of subject k. They are given by

rdk =
√

(dk)× sign(yk − p̂k),

where

dk = −2LLk = −2 (yk log p̂k + (1− yk) log (1− p̂k)) ,

that is, the deviance for subject k. A plot of residuals against predictor vari-

ables may detect lack of fit.

The residuals and the projection matrix help to identify outliers, but they

do not indicate the extent to which they affect the parameter estimates. To
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appraise the influence of outliers case deletion methods can be used. Essen-

tially, it is possible to compute some measures which evaluate the influence

of a case, by deleting that case from the analysis and comparing the estimates

of full model with the estimates of the model fitted without that case. If the

difference between the estimate of such a parameter based on full data and

the estimate after deleting observation k is large, it means that case k has in-

fluence on the estimation process. This can be done for each observation and

each parameter. However, this becomes computationally intensive. Pregibon

(1981) proposed to approximate the estimate of parameters after deleting case

k, using the so-called one step estimate. The vector of estimated parameters

after deleting the kth observation, is obtained from the estimation equation

of the iterative procedure (e.g. Newton-Raphson method), using the esti-

mated parameters based on the full data as starting point and terminating

after one step. Let b̂q be the estimated coefficient of predictor q. The change

in individual coefficients, when dropping subject k, is measured by

∆qk = b̂q − b̂q(−k) with k = 1, . . . , N and q = 1, . . . , Q,

which is called dfbeta. The larger the values are, the more influence the case

k has on the coefficients. A standardized version of ∆qk, it is obtained by

dividing it by its standard error, called dfbetas. The problem related to this

statistic is that the number of dfbetas grows with the number of subjects and

the number of predictors.

An overall discrepancy measure between b̂q and b̂q(−k) is Generalized

Cook’s distance. It is a sort of test for the hypotesis that b̂q = b̂q(−k). An

one step approximation to the Generalized Cook’s distance is given by

ck =
r2khkk

(1− hkk)2
.

There are many interpretations of ck. We prefer interpreting it as a measure

of the change of the confidence region of plausible values for parameters,

computed including subject k. Graphically, it can be represented as a circle

with radius equal to the Cook’s value. Another useful plot is the index plot

obtained by plotting subject indexes versus ck to see for what points Cook’s
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distance is larger. Note that ck is a mixture between a discrepancy measure,

the standardized Pearson residuals, and the leverage value.

A similar measure of ck can be computed which is given by

ck =
r2khkk
1− hkk

.

It express the same diagnostic of ck but it indicates how the confidence in-

terval changes including case k. Pregibon (1981) showed that the one step

approximation of ck is better than ck.

To evaluate the sensitivity of the goodness of fit, another diagnostic to

evaluate the influence of subject k on the global goodness of fit of the model

is

∆kD = d2k + ck

where d2k is the individual deviance for subject k. The interpretation of this

statistic is the change in deviance attributable to deleting subject k. If the

value of ∆kD for subject k is large it means that by deleting that case the fit

gets worse.

Finally, we can also assess the effect of each subject on the classification

of the other subjects. Pregibon (1981) proposed another tool that evaluates

the neighboring effects by measuring the difference between the probability of

subject j and the same probability computed after deleting another subject k.

Considering the individual deviances, we can write

∆kd
2
j = d2j − d2j (−k)

and its one step approximation is given by

∆∗
kd

2
j =

2rjhkjrk
1− hkk

+
r2kh

2
kj

(1− hkk)2
.

When ∆∗
kd

2
j > 0 the fit of case j gets worse if we delete case k. It it is equal to

0 the fit is the same and if it is smaller than 0 the fit of case j gets better. It is

noteworthy that ∆∗
kd

2
j ̸= ∆∗

jd
2
k. To have a summary measure of this effect, it

is possible to sum over subjects and obtain
∑

j ̸=k ∆
∗
kd

2
j . If this sum is smaller

than 0 it means that by deleting case k the fit should improve.
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3.3 Diagnostics for Multivariate Generalized Linear Models

Univariate GLMs diagnostics can be easily extended to multicategorical re-

sponse variables (Lesaffre and Albert, 1989; O’Connell and Liu, 2011). The

generalized hat matrix or projection matrix in multicategorical case, is given

by

H = W1/2X(X⊤WX)−1X⊤W1/2, (3.2)

where W is a block-diagonal matrix and each (G×G) block is given by Wkk =

pg(xk)(λgh− pg(xk)), where λgh is the Kronecker delta, with (g, h = 1, . . . , G).

The matrix H (NG×NG) is a multiblock matrix, with N the number of sub-

ject and G the number of response categories and where Hkk is the (G × G)

diagonal block. The det |Hkk| or tr(Hkk) of these submatrices can be used as

a measure of leverage for subject k. Also in the multicategorical case, high

values of det |Hkk| indicate leverage points. The same considerations are also

valid for matrix M, but in this case leverage points have values of det |Mkk|
close to 0.

If we have grouped data and a multicategorical response variable Y , the

Standardized Pearson residuals are given by

rk = Ŵ
−1/2

k ôk

where Wk is a diagonal matrix of p̂g(xk) and ôk is the raw residual vector of

length G given by yk − pk. Also in this case, large value of the above statistic

indicates poor fit for that subject.

By analogy with the binary case, the covariance matrix of raw residuals

is M = I − H, where H is the generalized hat matrix and I is the identity ma-

trix. Thus, raw residuals are divided by this covariance obtaining Studentized

Pearson Residuals

ek = M−1/2
kk rk.

Multiplying ek by itself, that is, e⊤k ek we obtain a score statistic but differently

from results of Pregibon (1982), is not a χ2.
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The deviance in the multinomial logit model is

dk = −2LLk = −2

G∑
g=1

ykg log pg(xk),

which measures the agreement between the observed and fitted log-likelihoods

of subject at xk. This statistic can also be used to detect outliers. Large values

of the individual deviance indicate that the model does not fit well for that

subject. Summing over subjects the deviance of the model is obtained, that

measure the difference between the log-likelihood of the fitted model, and

the log-likelihood of the saturated model that fit the data perfectly (Nelder

and Wedderburn, 1972). .

Finally, the case deletion methods can be extended to multicategory logit

models. Let ∆qk the impact on each coefficient of deleting each observation

in turn

∆qk = bq − bq(−k),

where bq is the vector of coefficients of predictor q with legnth G − 1, and

bq(−k) is the same coefficient vector computed after that observation k is

deleted. ∆qk is the multicategorical version of the dfbeta. To standardize ∆qk

it is useful to divide it by the deleted coefficient standard errors SE−k(bk),

obtaining the multicategorical version of the so-called dfbetas. If these values

are large it indicates that those observations affect the coefficient estimates.

Assuming a quadratic approximation of the log-likelihood around b̂q yields

an approximate generalized Cook’s distance for multicategorical case given

by

ck = rk⊤Mkk
−1HkkMkk

−1rk

Removing case k also affects the interval estimates. As in the univariate case,

we can compute a similar measure of ck which is

ck = r⊤k M−1
kk Hkkrk,

that indicates the contribution of case k to the confidence region of b̂(k).

From ck we can construct a tool to assess the sensitivity of the goodness

of fit. We have

∆kD = d(b̂)− bk[b̂(k)] = d2k + ck
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which is the approximation to the change in goodness of fit deleting subject k.

Clearly, if the magnitude of ∆kD is large the corresponding case is influential

for the global goodness of fit.

Finally, also in multicategorical case, we can assess neighboring effects.

On the logarithmic scale we have

∆kd
2
j = 2 log

{
p̂gj

p̂gj(−k)

}
, k ̸= j = 1, . . . , N

where p̂gj is the estimated probability of class g and subject j including sub-

ject k and the denominator is the same estimated probability without case k.

Lesaffre and Albert 1989 proposed the following one-step approximation

∆∗
kd

2
j = 2r⊤j HjkM−1

kk rk + r⊤k M−1
kk HkjHjkM−1

kk rk.

The interpretation of this diagnostic is the same as in univariate case. Also

in this case, it is useful to sum over j to obtain a summary measure which is

easier to interpret.

O’Connell and Liu in their paper about the model diagnostics for the

Proportional Odds Models and Partial Proportional Odds Models proposed

some graphical representations of the diagnostic measures described so far,

to detect faster and more easily outliers and influencial points. The general

feature is to create index plots of those diagnostics to figure out which points

are far from the rest. For more details see O’ Connell and Liu 2011.





DIAGNOSTICS FOR MULTINOMIAL DISTANCE

MODEL 4
4.1 Model implementation

In chapter 2 we presented the Multinomial Distance Model like an exten-

tion of Ideal Point Discriminant Analysis. Given G response categories, N

subjects and Q predictor variables X = (X1,X2, . . . ,XQ) the Multinomial Dis-

tance Model in one dimension is given by:

pg(xk) =
exp(−δ2kg)∑G
h=1 exp(−δ2kh)

,

for g = 1, ..., G, k = 1, ..., N and δ2kg is the squared Euclidean Distance be-

tween subject k and response category g. Equation (2.5) expresses the model

in terms of log-odds.

To implement the model we need the response matrix Y

Y =


1 0 . . . 0

0 0 . . . 1
...

...
. . .

...

0 1 . . . 0


that has N rows and G columns. In each row there is 1 if the subject k belongs

to category g and 0 otherwise. Each subject can only belong to one of the

response categories. The X matrix will be

X =


1 x11 x12 . . . x1Q

1 x21 x22 . . . x2Q
...

...
...

. . .
...

1 xN1 xN2 . . . xNQ
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where the first column is for the intercept. Once the deviance function is opti-

mized (see the R code in the Appendix), we obtain the estimated coefficients.

In particular we have

b = [α, β1, . . . , βQ]
⊤

and

z = [z1, z2, . . . , zG−1]
⊤.

Note that the coordinate of the last category is set equal to 0 for the iden-

tification of the model. We can avoid to compute the Euclidean distances

using equation (2.6) to compute the probabilities. Thus, we have to multiply

the β′s coefficients with each of the zg and subtract from the intercepts the

squared of the group coordinates. Then, we have G − 1 pseudo-intercepts α̃g

and (G− 1)Q pseudo-coefficients β̃gq

Pseudo-S̃ =


2α(z1)− z21 2α(z2)− z22 . . . 2α(zG−1)− z2G−1 0

2β1(z1) 2β1(z2) . . . 2β1(zG−1) 0

...
...

. . .
...

...

2βQ(z1) 2βQ(z2) . . . 2βQ(zG−1) 0


Each column of the above matrix contains the pseudo-coefficients for each

response category. These pseudo-coefficients are not the coefficients of the

multinomial distance model, but derived coefficients such that the multino-

mial distance model can be written as a baseline category logit model (see

later). For example, the log-odds of category 1 compared to category G is

log

(
p1(xk)
pG(xk)

)
= 2α(z1)− z21 + 2β1(z1)xk1 + · · ·+ 2βQ(z1)xkQ.

Indeed, the probability of subject k to belong to category 1 is equal to:

p1(xk) =
exp [2α(z1)− z21 + 2β1(z1)xk1 + · · ·+ 2βQ(z1)xkQ]

1 +
∑G−1

h=1 exp [2α(zh)− z2h + 2β1(zh)xk1 + · · ·+ 2βQ(zh)xkQ]

=
exp [2(x⊤k b)(z1)− z21 ]

1 +
∑G−1

h=1 exp [2(x⊤k b)(zh)− z2h]

where x⊤k is the k-th row vector of the matrix X of length Q+ 1.

Starting from equation (2.6), we also noticed that the one-dimensional

multinomial distance model can be written as a constrained baseline category
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logit model, that is

log

(
pg(xk)
pG(xk)

)
= 2α(zg) + 2x⊤k b(zg)− z2g

= α∗
g + xkβ

∗
g ,

(4.1)

where

α∗
g = 2α(zg)− z2g , β∗

gq = 2βq(zg),

are the intercept and slope of predictor Xq for category g respectively. The

model does not use the proportional assumption because each predictor vari-

able has its own effect on each category, due to the fact that we multiply the

parameters by the coordinate of each category. Here, we consider the last

category G as a baseline category and we set its coordinate equal to 0. Thus,

the log-likelihood of the model is

log−L(b;y) =
N∑
k=1

G∑
g=1

ykg log (pg(xk))

=
N∑
k=1


G−1∑
g=1

ykg log

[
pg(xk)

1−
∑G−1

g=1 pg(xk)

]
+ log

1− G−1∑
g=1

pg(xk)

 ,

(4.2)

where the log of the first term in the square brackets is the logit (α∗
g + x⊤k b∗

g)

and the second term is the probability of the last (baseline) category. We,

therefore, seek estimates b̂ such that the gradient of the function is equal

to 0. A closed form of the maximum likelihood estimate, except in trivial

cases, does not exist. Thus, some form of iterative procedure is required. The

Quasi-Newton update formula to estimate b is

b(t+1) = b(t) − α(t)H(b(t))
−1∇(b(t))

with H(b(t)) an approximation of Hessian matrix computed at b(t) and

∇(b(t)) the gradient of the function computed at b(t) and for some α that

satisfies the Wolfe conditions (Wolfe, 1969) which ensure that the objective
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function is minimized at each step. The first partial derivative of the log-

likelihood respect to βq is given by

∂L(b;y)
∂βq

=

N∑
k=1

G−1∑
g=1

ykg(2xkqzg)−

(∑G−1
g=1 (2xkqzg) exp(2x⊤k bzg − z2g)

1 +
∑G−1

g=1 exp(2x⊤k bzg − z2g)

)
and for each zg is

∂L(b;y)
∂zg

=

N∑
k=1

[
ykg(2x⊤k b − 2zg)−

(2x⊤k b − 2zg) exp(2x⊤k b − z2g)

1 +
∑G−1

g=1 exp(2x⊤k bzg − z2g)

]
.

Therefore, ∇(b(t)) has Q+G− 1 rows. We can also simplify by writing

∇(b(t)) =



∑N
k=1

∑G−1
g=1 (2xkqzg)(ykg − ŷkg)

...∑N
k=1 2(x

⊤
k b − z1)(yk1 − ŷk1)

...∑N
k=1 2(x

⊤
k b − zG−1)(yk(G−1) − ŷk(G−1))

Even if this algorithm is not necessary to estimate the one dimensional

multinomial distance model, it is faster than the algorithm that optimize

model (2.4).

If we have a multinomial distance model in more dimensions we have

to sum over the dimensions to get probabilities. Suppose we have A dimen-

sional multinomial distance model. After fitting we get:

B =



α1 . . . αA

β11 . . . β1A

β21 . . . β2A
...

...
...

βQ1 . . . βQA


Z =



z11 . . . z1A

z21 . . . z2A

z31 . . . z3A
...

...
...

zG1 . . . zGA


Setting z1a = 0 we fix translation problem and zga = 0, ∀g ≤ a we fix

rotation issue. To obtain probabilities, formula (2.4) has to be computed. Also
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for more than one dimensions, we can computed the pseudo-S̃ matrix
2α1(z11) + · · · + 2αA(z1A) − z2

11 − · · · − z2
1A . . . 2α1(zG1) + · · · + 2αA(zGA) − z2

G1 + · · · + z2
GA

2β11(z11) + · · · + 2β1A(z1A) . . . 2β11(zG1) + · · · + 2β1A(zGA)

...
. . .

...
2βQ1(z11) + · · · + 2βQA(z1A) . . . 2βQ1(zG1) + · · · + 2βQA(zGA)


Therefore, the probability of class G is given by

pG(xk) =
exp[2α1(zG1) + · · ·+ 2αA(zGA)− z2G1 − · · · − z2GA + 2β11(zG1)+∑G
h=1 exp[2α1(zh1) + · · ·+ 2αA(zhA)− z2h1 + · · ·+ z2hA + 2β11(zh1)+

· · ·+ 2β1A(zGA) + . . .+ 2βQ1(zG1) + · · ·+ 2βQA(zGA)]

· · ·+ 2β1A(zhA) + . . .+ 2βQ1(zh1) + · · ·+ 2βQA(zhA)]
.

Thus, models in more than one dimensions can be computed and for each

of them it is possible to compute the above Pseudo-S̃ coefficient matrix.

Once the model is estimated, we need to evaluate the global fit as well as

the outliers, if there are. Unfortunately, for Mutinomial Distance Model no

diagnostic statistics are available. In fact, the Multinomial Distance Model is

not a generalized linear model and therefore we can not use the well known

GLM theory. The main problem is that Multinomial Distance Model is mul-

tiplicative in the parameters. In fact, once we estimated the parameters, to

compute probabilities or log-odds, we have to multiply the β coefficients

by the estimated group coordinates z to get pseudo-coefficients and pseudo-

intercepts for each category. The number of parameters to estimate is differ-

ent from the number of parameters that we use to compute probabilities in

the final step. Therefore, the design matrix is difficult to determine. In the es-

timating process, we use the simplest design matrix X, where each row vector

is the observed predictor vector plus a 1 for the intercept. But as we could see

before, finally we have (G − 1) pseudo-intercepts α̃g and (G − 1) ×Q pseudo-

coefficients β̃gq. Then, the design matrix should contain (G−1)+(G−1)×(Q)

columns.

We showed that the Multinomial Distance Model in one-dimensional Eu-

clidean space can be regarded as a baseline category logit model. Further-

more, here we showed that we can compute the pseudo-S̃ coefficient matrix

which is equal to the coefficient matrix of a baseline category logit model. Us-

ing this assumption, here we propose to extend the diagnostics of multiple-

group logistic regression (Lesaffre and Albert, 1989) to the one-dimension
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multinomial distance model. The next section shows this extention in de-

tails.

4.2 Extending Multiple-group Diagnostics to Multinomial

Distance Model

So far, we explain how to fit the model and in the Appendix we provide R

code to estimate it. As for a baseline category logit model, we have differ-

ent intercepts and slopes for different classes. The total number of pseudo-

coefficients is (Q+ 1)× (G− 1). The pseudo-S̃ coefficient matrices computed

above for one and two dimensional multinomial distance models have the

same dimensionality as that of the baseline category logit model (one inter-

cept for each category and one slope for each category and predictor). We use

this analogy to adapt multiple group diagnostics to the multinomial distance

model.

To construct diagnostics we need some goodness of fit measures and the

classical building blocks which are the quantities:

1. b̂, the estimated coefficient vector of length Q+ 1;

2. b̂(k), the estimated coefficient vector deleting the k-th observation;

3. rk, that is the standardized Pearson residual vector for subject k of

length G;

4. Hkj , which are the (G×G) extra diagonal blocks of the generalized hat

matrix;

5. Mkk, which are the diagonal blocks of the M=I-H matrix.

To compute all these quantities, first of all we have to redefine the design

matrix X. Because the Multinomial Distance Model can be regarded as multi-

nomial logit model, suppose that we estimated (G− 1)× (Q+1) coefficients.

The Pseudo design matrix X̃ will be N(G− 1)× (Q+1)(G− 1) matrix formed
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by N stacked blocks where each block is

X̃k =


xk 0 0 . . . 0

0 xk 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . xk


and

xk = [1, xk1, xk2, . . . , xkq]

Moreover, let Σ be the covariance matrix of Y. It is a NG×NG diagonal block

matrix and each block is given by

Σk = pg(xk)[λgh − ph(xk)], with g, h = 1,. . . , G,

where λ is the Kronecker delta which is equal to 1 if g and h are equal. Let Σ

be any generalized inverse of Σ. In the case of ungrouped data, Σ is

Σ = diag{1/p1(x1), . . . , 1/pG(x1), . . . , 1/p1(xN ), . . . , 1/pG(xN )}.

The generalized hat matrix becomes

H = Σ
1/2QX̃(X̃

⊤
VX̃)−1X̃

⊤
Q⊤Σ

1/2
,

where Q is a NG×N(G− 1) block diagonal matrix, and each block is given

by

Qk = pg(xk)[λgh − ph(xk)],

and V is a N(G− 1)×N(G− 1) block diagonal matrix, where each block Vk

is equal to

Vk = pg(xk)[λgh − ph(xk)].

Once H is computed, it is easy to compute M. The determinant of the di-

agnonal blocks of M can be used as a diagnostic to assess the leverage of

cases. If a case is a regression outlier that means that it is far from the center

of the space spanned by X̃ combined with the fact that it has an anomalous re-

sponse value. Points have large leverage, that is, they might influence regres-

sion estimates, if their response values are atypical from the others. Lesaffre
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(1989) showed that the
∑

k |Mkk| is always close to N − v, where v is the

number of parameter to estimate. Therefore, a practical rule to detect lever-

age points is |Mkk| ≤ 2v/N . We could not use this rule in the multinomial

distance model because the number of parameters to estimate is different

form the number of pseudo coefficients that we use to compute probabilities,

so we will use graphical approaches to pinpoint leverage points. Even if such

a case is a leverage point, it does not mean that it influences the regression

estimate or prediction process. Therefore, a statistician has to analyze points

with high leverage more thoroughly before to discard them. One could look

at residuals, but in the multinomial distance model like in logistic regres-

sion they can be defined on several scales. The most useful residuals are the

deviance residuals and the Pearson residuals. The standardized version of

Pearson residuals rk is given by

rk = Σ
1/2
k ok

where ok is the residual vector given by yk − pk. Here yk is the response row

vector while pk is the row vector of the estimated probabilities. It is useful

to produce an index plot of r⊤k rk to figure out which points have the largest

residuals, that is, which points are poorly fitted by the model.

Studentized Pearson residuals are given by

ek = M−1/2
kk rk

where Mkk is the diagonal block for subject k of the M = I − H matrix. The

diagnostic e⊤k ek is a useful tool to assess the sensibility of the goodness of fit.

Standardized Pearson residuals can be very useful if they are combined

with other quantities, like diagonal blocks of the M matrix (or H matrix), to

combine leverage with poor fit in order to detect influential cases.

Influential cases can be appraised by case deletion method. If the esti-

mated coefficients after deleting case k are substantially different from the

estimates obtained considering all cases, that point is influential. The one-

step approximation to obtain estimates deleting case k is given by:

b̂(k) = b̂ − (X̃
⊤

V̂X̃)−1X̃kV̂
1/2

k M−1
kk V̂

1/2

k r̂k.
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This diagnostic cannot be used in multinomial distance model due to the

fact that the number of estimated coefficients is different from the number

of pseudo-coefficients. In fact, the number of rows of the column vector b̂ is

different from the number of columns of the pseudo-design matrix X̃.

As an overall measure of the influence of subject k we can compute an

approximation to the generalized Cook’s distance:

ck = r⊤k M−1
kk HkkM−1

kk rk. (4.3)

Cook’s distance describes the boundary of an asymptotic confidence region

for the parameter β̂. The diagnostic ck is its one step approximation, which

indicates how this region change when deleting case k. To evaluate Cook’s

values, there is no well defined threshold. Some authors advise to detect

points with Cook’s distance larger than 1. Others proposed as threshold 4/N

or Ck > 4/(N−q−1). Fox (1991) is rather cautious about defining thresholds.

In fact, he advised to use graphical approaches to see which points are far

from the others and to do further analysis on those points. Points detected

by ck are influential points, that is, they influence the regression estimates.

However, if a point influences the estimation process that does not mean that

it also influences the prediction process. Further analyses need to investigate

the influential cases to see which cases influence predictions.

A similar measure to Cook’s distance can be computed as

ck = r⊤k M−1
kk Hkkrk,

which express the same diagnostic as ck, but in this case it indicates how

the confidence interval changes including the k-th case. The main difference

is that the one-step estimate of the latter is more accurate than the former

(Pregibon, 1981). Starting from ck another useful statistic to assess influential

cases is

∆kD = d2k + r⊤k M−1
kk Hkkrk = d2k + ck,

which indicates the change in goodness of fit by deleting case k and with d2k

the individual deviance. According to Williams (1987), this diagnostic should
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have better distributional properties than d2k and e⊤k ek, but sustantially they

measure the same thing.

As we pointed out before, if a point is influential it does not mean that it

also affects the prediction. To evaluate if the case distorts the prediction rule it

is possible to compute a diagnostic to assess the effect of the k-th observation

on the fit of the remaining N − 1 observations. Therefore, a diagnostic that

measures the distance between the estimated probability including the k-th

case and the estimated probability deleting the same case is needed. On the

logarithmic scale, this difference is expressed by

d1

{
pj ,pj(−k)

}
= ∆kd

2
j = 2 ∗ log

{
pg(j)/pg(j)(−k)

}
and its one-step approximation is given by

∆∗
kd

2
j = 2r⊤j HjkM−1

kk rk + r⊤k M−1
kk HkjHjkM−1

kk rk. (4.4)

Properties of this diagnostic are:

1. ∆∗
kd

2
j ̸= ∆∗

jd
2
k

2. ∆∗
kd

2
j > 0 means that the fit becomes worse;

3. ∆∗
kd

2
j < 0 means that the fit becomes better;

4. ∆∗
kd

2
j = 0 means that the fit remains the same.

This diagnostic is, however, not very useful because for each point you

have (N − 1) different ∆∗
kd

2
j . It is more useful to look at the sum over j of

∆∗
kd

2
j and when it is negative then case k influences the prediction process.

All diagnostics described so far can be computed without any compu-

tational efforts, except the last one ∆∗
kd

2
j . Many authors advice to produce

plots of the above diagnostics versus case indices (O’Connell and Liu, 2011)

to see direclty which cases are dangerous for the estimating and prediction

processes.
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4.3 Computational Intensive Diagnostics

Influential cases can also be evaluated by case deletion, that is, computing

coefficients deleting each case k in turn and assessing change in goodness

of fit measures like the deviance and in estimated values. If after deleting

case k the estimates are far from the estimates computed on complete data

and the deviance is larger than before, it indicates that such a case influences

the estimating process. For each coefficient the difference between estimated

coefficent on complete data and after deleting case k can be computed. This

diagnostic, called dfbeta, provides information concerning the effect of the kth

case on the fit and can be interpreted as an influence function. It is:

dfbeta = b̂ − b̂(−k).

It is also possible to compute the standardized version of the dfbeta, dividing

by its standard error. There is, however, no threshold to define how different

the estimate might be to define a point as influential. Pregibon (1981) and

others suggested to plot this diagnostic versus the case index and see what

points have the largest difference.

To assess the influence on the goodness of fit, we have to look at the

change in model deviance, deleting case k. Points which produce the largest

change are influential cases on the global fit of the model. However, the

change in deviance could be caused by two facts:

1. the model does not fit well case k and the change is only in the single

component d2k;

2. the point is in an extreme region of the space spanned by X̃ and then

the change in deviance is the sum of the change in all other components

(the point also affects the coefficient estimates).

However, this difference is not stressed only by the deviance, but to draw

conclusions about influential cases all diagnostics should be considered. To

evaluate this diagnostic, we should fit the model N times, deleting every

time a subject, and finally plot the model deviance versus case index. The
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case with the largest change in deviance influences the global fit. Luckily, for

this diagnostic Pregibon (1980) first and later Leaffre (1989), proposed its one

step approximation.

Finally, to evaluate neighboring effect the influence of case k on the es-

timated probabilities cab ne expressed by the distance between p̂ and p̂(−k).

That is

aj(k) = p̂j − p̂j(−k), with k ̸= j = 1, . . . , N,

where p̂j is the vector of probabilities of subject j computed considering com-

plete data and p̂j(−k) is the vector of probabilities of the same subject com-

puted after deleting case k. Therefore, for each case k, probabilities deleting

that subject and differences are computed. For each case we have (N−1)×(G)

numbers. This diagnostic, even though it is a good tool to evaluate the influ-

ence on the prediction process, it is very computer intensive and it has low

informative power due to the fact that for each subject we have to analyze

so many numbers. Therefore, it is is more useful to look at the sum over j

of these diagnostics. Again, Pregibon (1981) and Lesaffre and Albert (1989)

proposed its one step approximation (what we called before ∆∗
kd

2
j ). Table 4.1

shows a summary of all diagnostics that can be applicable to multinomial

distance model.

Diagnostic 1-step approximation Computer Intensive
Coefficient sensitivity (dfbeta) X
Cook’s Distance X
Change in deviance X X
Goodness of fit sensitivity X X
Neighboring effects X X

Table 4.1: Diagnostic Measures: Applying to Multinomial Distance Model.

In this chapter we explained how the multinomial distance model is fit-

ted and how it is possible to evaluate the fit. In these last two sections, we

claimed that multiple group diagnostics (Lesaffre and Albert, 1989) can be

extended to multinomial distance model, even though this model is not a

generalized linear model. Only for dfbeta it turned out that it was not possi-

ble to extend the one step approximation. In the next chapter we apply those
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diagnostics to several datasets to show that multiple group diagnostics also

work fine for multinomial distance model.





APPLICATIONS 5
This chapter concerns a simulation study and three applications on real datasets.

For each section a short description about the data is supplied and then

results for the multinomial distance model and the baseline category logit

model are shown. The first section concerns a simulation study. A one di-

mensional multinomial model is applied and it is shown how multiple-group

diagnostics work for that model. In the second section both an one dimen-

sional multinomial model and a baseline category logit model were fitted

on the NESDA data (Penninx et all., 2008), where the response variable is

ordinal. The third section concerns with Hepatitis data (Lessaffre and Al-

bert, 1989) which has a non-ordinal response variable and a two dimensional

distance model is fitted. Last section shows a comparison between the one

dimensional multinomial distance model and the proportional odds model

on data analyzed by O’Connell and Liu (2011).

5.1 Simulation Study

Data are simulated for an ordinal categorical response variable and a single

continuous predictor. The response variable has four categories. Data were

simulated using the R language. We sampled a predictor x from a normal

distribution with µ = 2 and σ2 = 2. Setting α = −0.6, β = 0.7, z1 = 2, z2 =

1.5, z3 = 1 and z4 = 0 we generated Euclidean distances and then computed

probabilities. We used these probabilities to get observed values by drawing

from a multinomial function. Table 5.1 shows some summary statistics for

the predictor variable.

In a second step four outliers were added to the data. Table 5.2 reports

outlier values and Figure 5.1 shows a graphical representation of the data.

47
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response categories
1 2 3 4 total

mean 3.575 2.494 2.115 0.7721 1.989
sd 0.937 0.995 0.926 0.925 1.363
max 5.560 4.688 4.513 3.470 5.560
min 1.438 -0.441 -0.090 -1.502 -1.502

Table 5.1: Simulated data: summary measures of predictor variable.

We expect that diagnostics pinpoint these cases as outliers and influential

cases.

number case y x
301 1 -2
302 2 7
303 3 8
304 4 8

Table 5.2: Simulated Data: outliers.

A one dimensional multinomial distance model was fitted. The deviance

is 655.28 and deviance divided by the sample size is 2.15. The misclassifica-

tion rate is 0.47 and Table 5.3 shows observed versus fitted values.

Observed
1 2 3 4

1 22 6 4 1
2 12 9 13 1

Fitted 3 17 33 49 18
4 2 7 29 81

Table 5.3: Simulated Data: observed versus fitted values.

Next we applied the diagnostics of chapter 4 to the model. In Figure 5.3

panel (a) leverage values versus individual deviance are plotted. As we can

see, the diagnostic detects points 301, 302, 303 and 304 as outliers. Points 302

and 303 have large leverage but small deviance values. Point 304 has both

large individual deviance and leverage. Point 301 only has a large deviance.

Panel (b) of the Figure 5.3 is the index plot of the approximation to Cook’s

distance. All four outliers are detected.
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Figure 5.1: Simulated Data: outliers.

Finally, panel (c) of the Figure 5.3 presents the index plot of Studentized

residuals which measures the change in goodness of fit. Points 301 and 304

have the largest residual values.

We also assessed the neighboring effect, computing the
∑

k ̸=j ∆kd
2
j di-

agnostic. Table 5.4 shows the results. When this diagnostic is negative it

means that the case influences the prediction process. Therefore, if you drop

the case from the analysis the misclassification rate will be smaller and the

fit will be better. For the simulated data, all four outliers influence the pre-

diction. To assess wheter the above diagnostics work well, we also applied

leave-one-out computer intensive diagnostics. The model was fitted N times

and at each time we discarded a case. Figure 5.2 shows the model deviance

for each computed model. As can be seen, discarding cases 301, 303 and 304

the deviance decreases, which indicates that the fit gets better. Deleting cases

106 and 204 the fit seems to improve. If we look at figure 5.1 case 106 has the
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Subject number
∑

k ̸=j ∆kd
2
j

301 -0.9769375
302 -2.5286733
303 -1.1098528
304 -1.6916758

Table 5.4: ∆kd
2
j diagnostic.
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Figure 5.2: Simulated Data: LOO diagnostics. Model Deviance discarding case k.

lowest value of category 2 while case 204 has the largest value of category 4.

We also analyzed coefficient sensitivity. We compute dfbeta for all co-

efficients. Figure 5.4 shows the plots for each coefficient. Panel (a) is the

empirical influence function for the intercept. If we discard points 301, 302

and 303 the change in the estimated intecept is large which means that those

points influence its estimate. Panel (b) is the empirical influence function for

β and all four outliers greatly influence its estimate. Panel (c) is the empirical

influence function for z1. Here, cases 301 and 304 influence the estimate of β.
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Panel (d), indeed, is the empirical influence function for z2 and cases 302 and

303 are influential cases. Finally, panel (e) is the empirical influence function

for z3 and again cases 302, 303 and 304 are influential.

To confirm that cases 301, 302, 303 and 304 are outliers, we also computed

aj(k) and sum over j to see if those cases also influence prediction rule. Ta-

ble 5.5 shows the results which are the same as in Table 5.4, based on the

one-step approximation. Therefore, all four outliers influence the prediction

process, as we expected.

Subject number
∑

k ̸=j aj(k)

301 -4.6853531
302 -0.4157954
303 -1.8862226
304 -6.1184455

Table 5.5: aj(k) diagnostic.

We can claim that cases 301, 302, 303 and 304 are outliers and influence

both model fitting and the prediction rule. Therefore, the above simulated

analysis shows that even when the likelihood space of the multinomial dis-

tance model has a different dimensions from the likelihood space of the base-

line category logit model, multiple group diagnostics can be applied and

those point out the correct influential cases.
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5.2 NESDA data

To illustrate that the multiple-group diagnostics also work well for Multino-

mial Distance Model, we use the data set from NESDA study (Penninx et all.,

2008). Data are composed by a six level response variable which indicates

the number of mental disorders a participant has, ranging from 0 (no disor-

der) to 5 (five number of disorders) and two predictor variables, gender and

extraversion. The first is categorical with two categories (0 = female, 1 =

male) while the latter is numerical variable ranging from 15 to 55 which ex-

presses a personality aspect of a subject. For practical reasons, we use a ran-

dom subsample of 408 from the total available one (2938 observations). From

the 408 observations of our subsample 160 have no disorder, 116 have one

disorder, 68 have two disorders, 38 have three disorders, 20 have four dis-

orders and 6 subjects have five disorders. Figure 5.5 shows the distribution

of the data. As we can see, there are some subjects with very low values for

extraversion variable, given the categories.

We fit both Multinomial Distance model and Baseline Category Logit

model, compute for both the diagnostic measures and then compare results.

5.2.1 Multinomial Distance Model Analysis

For the Multinomial Distance model, setting the coordinate of the last cate-

gory equal to 0, we have to estimate 8 parameters: 5 category coordinates, 1

intercept and 2 predictor coefficients. The analysis is run with R using the

BFGS Quasi-Newton method (see R code in the Appendix). Estimates of

the coordinates are ẑ0 = 2.1979, ẑ1 = 1.5731, ẑ2 = 1.1365, ẑ3 = 0.8314, ẑ4 =

0.4996. Estimates of the intercept is α̂ = −0.1324 and the two regression

weights are β̂1 = −0.2308 and β̂2 = 0.0639. To applay the results of chapter

4, first we have to compute the matrix of pseudo-coefficients, that is:

Pseudo-S̃ =

2(−0.1324)(2.1979)− (2.1979)2 . . . 2(−0.1324)(0.4996)− (0.4996)2 0

2(−0.2308)(2.1979) . . . 2(−0.2308)(0.4996) 0

2(0.0639)(2.1979) . . . 2(0.0639)(0.4996) 0


where the first row contains the intercepts for each response category, the

second row indicates the effect of gender on the log-odds of each category
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Figure 5.5: Number of disorders versus Extraversion, given Gender.

compared with the last category and the last row expresses the effect of ex-

traversion on the log-odds of each category compared to the last one, for a

one unit increase in extraversion. For example, the log-odds of no disorder

compared to having five disorders decreases with 2× (−0.2308)× (2.1979) =

−1.0148 for a male subject compared to a female subject while it increases

with 2× (0.0639)× (2.1979) = 0.2812 for a one unit increase in extraversion.

The deviance is 1097.841 and the deviance divided by the sample size is 2.69.

Table 5.6 shows classification of observed and fitted number of disorders.

The misclassification rate is 0.56.

Let us go deeper in the analysis evaluating the diagnostic measures. Af-

ter the generalized hat matrix is computed (see R code in Appendix), we ob-

tain the determinants of the Mkk matrices to detect outliers. Table 5.7 shows

leverage points for our data.

Figure 5.6 (a) shows the individual deviance versus leverage value for
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Fitted
0 1 2 3 4 5

0 128 27 5 0 0 0
1 68 44 4 0 0 0
2 33 28 5 2 0 0

Observed 3 18 15 3 1 1 0
4 5 10 4 1 0 0
5 0 3 3 0 0 0

Table 5.6: Number of disorders for Multinomial Distance Model: observed versus fitted values.

Subject number Gender Extraversion Numb.of disorders
161 0 17 4
245 0 15 2
257 1 15 3
279 0 18 5

Table 5.7: Subjects with high leverage

each subject. The points on the left hand side (subjects 161, 245, 257, and 279)

have high leverage because they have values of extraversion far from the

mean. Points in the right corner of the plot are also outliers but they have

low leverage because their predictor values are not far from the mean.

Figure 5.6 panel (b) shows the quadratic approximation to Cook’s dis-

tance for each subject. Subjects 161, 245, 257, 207 and 277 have large values

for this diagnostic.

Figure 5.6 panel (c) is the index plot of studentized residuals. Points that

produce the largest residuals are 128, 137, 347 and 265. They are subjects with

the highest individual deviance, too.

Before to get to any decision about detected outliers, we have to examine

these points further. In fact, a point that influences the coefficient estimates

does not also necessarily affect the prediction. Therefore, it is important to

know whether the influential cases really affect the prediction. To see this, we

compute what Lesaffre and Albert call
∑

k ̸=j ∆kd
2
j , using the approximation

that they proposed (Lesaffre and Alber, 1989). Table 5.8 shows this diagnostic

for outliers.

Points 128, 137, 245, 257, 265, 277 and 347 all have a negative values on
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Subject number
∑

k ̸=j ∆kd
2
j

128 -0.0578
137 -0.0662
161 0.0365
207 0.1260
245 -0.4200
257 -0.6985
265 -0.0417
277 -0.5907
279 0.0578
347 -0.0004

Table 5.8: ∆kd
2
j diagnostic.

this diagnostic, indicating that these points affect the classification bound-

aries. All other points affect the estimates of the coefficients, but they do not

affect the prediction process. In fact, if we drop points from the analysis,

the misclassification rate remains the same. Looking at the deviance of the

model with points 128, 137, 245, 257, 265, 277 and 347 nd the model without

them, for the former the deviance divided by the number of subjects is 2.69

while for the latter it is 2.68. This explains well that a statistician should be

cautious about outliers and always check the change in results if points are

dropped and, last but not least, compare the benefits with the costs. For the

NESDA subsample data, we can conclude that there are some outliers, but

they do not largely affect the model.



58 Chapter 5. Applications

0.
90

0.
92

0.
94

0.
96

0.
98

02468

Le
ve

ra
ge

 v
al

ue
s

Deviance

12
8

13
7

16
1

24
5

25
7

26
5

27
9

34
7

(a
)

0
10

0
20

0
30

0
40

0

0.020.040.060.080.100.12
C

as
e 

nu
m

be
r

Approximate Cook’s Distance values

16
1

20
7

24
5 25

7

27
7

(b
)

0
10

0
20

0
30

0
40

0

020406080100120

C
as

e 
nu

m
be

r

Studentized Residuals

12
813

7

26
5

34
7

(c
)

Fi
gu

re
5.

6:
N

ES
D

A
D

at
a.

M
ul

ti
no

m
ia

l
D

is
ta

nc
e

M
od

el
:P

an
el

(a
)

pl
ot

s
le

ve
ra

ge
va

lu
es

ve
rs

us
in

di
vi

du
al

de
vi

an
ce

s.
Pa

ne
l

(b
)

is
th

e
in

de
x

pl
ot

of
th

e
ap

pr
ox

im
at

io
n

to
th

e
C

oo
k’

s
di

st
an

ce
.P

lo
t(

c)
is

th
e

in
de

x
pl

ot
of

st
ud

en
ti

ze
d

re
si

du
al

s.



5.2. NESDA data 59

5.2.2 Baseline Category Logit Model Analysis

To verify if the diagnostics extended to multinomial distance model work

well, a baseline category logit model was fitted on the same data and the

same diagnostics were applied. Also in this case we use R and the BFGS

Quasi-newton method. Table 5.9 contains the estimated the estimated coeffi-

cients.

Coefficient 0 1 2 3 4 5
α -7.6730608 -4.9037020 -4.2339597 -3.7442133 -2.4267208 0
βgender -0.6617311 -0.4900898 0.3231788 -0.1866782 -0.1316032 0
βextraversion 0.3509189 0.2670167 0.2156655 0.1953989 0.1327075 0

Table 5.9: Baseline category logit model: estimated coefficients.

Table 5.10 shows the classification table of the observed and fitted values.

As we can see, the classification is very closed to the one given by the Multi-

nomial Distance Model, with the difference that here there are some points

classified in the last category. The misclassification rate is 0.57, 0.01 greater

than the misclassification rate of the multinomial distance model.

Fitted
0 1 2 3 4 5

0 123 29 8 0 0 0
1 64 45 7 0 0 0
2 32 29 6 0 0 1

Observed 3 16 15 6 0 0 1
4 4 10 5 0 0 1
5 0 2 3 0 0 1

Table 5.10: Number of disorders for Baseline Category Logit Model: observed versus fitted values.

Diagnostics are applied for this model. Table 5.11) shows that the same

subjects are detected as outlier as in the multinomial distance model.

Figure 5.7 panel (a) shows the indivisual deviance values versus the lever-

age values. Here, again the same points are detected. Figure 5.7 panel (b) is

the index plot of approximate Cook’s distance values. Again, we detect the
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Subject number Gender Extraversion Numb.of disorders
161 0 17 4
245 0 15 2
257 1 15 3
279 0 18 5

Table 5.11: Baseline Category Logit Model: Subjects with high leverage.

same outliers as in multinomial distance model. Finally, figure 5.7 panel (c) is

the index plot of studentized residuals for the baseline category logit model.

Since the diagnostics detect the same outliers and influecial cases, we can

draw the same conclusions for the NESDA subsample data, which are that

there are some outliers, but they do not heavily affect the results. In both

cases, the misclassification rate is high, and further analysis to obtain the

reasons are needed.
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5.3 Hepatitis data

In an article of 1980 Plomteux (1980) showed that four level of hepatitis could

be defined based on three liver function tests. This data set, then, is composed

by a four cateogry response variable (1=acute viral hepatits, 2=persistent

chronic hepatitis, 3=aggressive chronic hepatitis and 4=post-necrotic cirrho-

sis) and three predictor variables (aspartate aminotransferase (AST), alanine

aminotransferase (ALT) and glutamate dehygrogenase (GIDH)). The total

sample size is 218, from which 57 are in the response category 1, 44 are in cat-

egory 2, 40 are in category 3 and 77 in category 4. For more details about the

data and the experiment see Plomteux (1980) and Albert and Harris (1987).

Because the predictor variables are largely skewed, we use their logarithm in

the analysis. Figure 5.8 shows the distributions of each log-predictor versus

the response categories.

5.3.1 Multinomial Distance Model Analysis

In this case the response variable is not ordinal and therefore we fitted the

Multinomial Distance Model in one, two and three dimensions. The main

results are reported in Table 5.12. In one dimension the model does not work

well since the information is more spread among the dimensions. The de-

viance is 291.09 and the misclassification rate is 0.28. In two dimensions, the

deviance is 203 and the misclassification rate is 0.18. In three dimensions,

which corresponds to baseline category logit model, the deviance is 192.63

and the misclassification rate is 0.16. The best model depends on a large

number of factors. In fact, if you look at the Table 5.12, we see that Akaike

Information Criterion and Bayesian Information Criterion indicate that the

two dimensional model is the best. However, if you look at misclassification

rate, the difference between the three models is not very large.

We chose the two dimensional multinomial distance model. The Multi-

nomial Distance Model in more than one dimension is affected by translation

and rotation problems. To solve these identification issues we fix some class

point coordinates. For the translation problem we set z1a = 0 , for a = 1, 2...A,
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Figure 5.8: Hepatitis data: Predictor Distributions versus response variable. Panel (a) plots all loga-
rithmic predictors verus response categories. Panel (b) plots the distribution of log(AST ) predictor.
Plot (c) is the distribution of log(ALT ) variable and panel (d) is the plot of log(GIDH) predictor
versus response variable.

1-dimension 2-dimensions 3-dimensions
Deviance 291.09 203.00 192.63
Misclassification rate 0.28 0.18 0.16
AIC 305.09 229.00 228.63
BIC 328.78 272.99 289.55
Number of parameters 7 13 18

Table 5.12: Main results of Multinomial Distance Model in different dimensions.
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and for rotation problem we set z12 = 0. The total number of parameters to

estimate are 13: (3 + 1)× 2 coefficients, and (4− 1) + (4− 2) = 5 class point

coordiantes. Table 5.13 shows the estimated values. To get fitted probabilities

Dimension
1 2

α 2.3879 -0.6666
βAST 0.0059 0.0096
βALT -0.0104 -0.0068
βGIDH -0.0084 0.1025
z1 0.0000 0.0000
z2 0.5860 0.0000
z3 0.7080 1.5262
z4 3.0010 1.3803

Table 5.13: Two dimensional Multinomial Distance Model: Estimated parameters.

we have to compute the distances between subject points (xiqβqa) and class

points (zga) (See equation 2.4). Let us analyze diagnostics for this model.

Figure 5.9 panel (a) is the plot of the leverage values versus the individual

deviances. In the bottomleft part of the graph, there are points with high

leverage, while in the topright part there are points with low leverage but

large individual deviance. Figure 5.9 panel (b) shows the index plot of the

approximation to Cook’s distance. Points with high leverage values or with

low leverage but high deviance are detected. Finally, panel (c) is the index

plot of the studentized residuals.
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For subjects 18, 58, 77, 89, 93, 94 and 136 we computed
∑

k ̸=j ∆kd
2
j to see

wheter they affect the prediction process, Table 5.14 show the results.

Case number
∑

k ̸=j ∆kd
2
j

18 2.9060797
58 -2.9978030
77 2.4722745
89 3.3221793
93 -0.6618156
94 -0.4840309
136 -0.5389780

Table 5.14: Two dimensional Multinomial Distance Model:
∑

k ̸=j ∆kd
2
j diagnostic.

Deleting subjects with negative values of
∑

k ̸=j ∆kd
2
j improves the fit. In

fact, fitting the model without those four subjects the misclassification rate

becomes 0.16 and the deviance divided by the sample size is 0.79, compared

to 0.93 which was the previous estimate for the completed data.

5.3.2 Baseline Category Logit Model Analysis

Baseline Category Logit Model is fitted on Hepatitis data as well. The num-

ber of parameters to estimate is 4 ∗ 3 = 12. Table 5.15 shows parameter

estimates. Deviance is 192.63 and misclassification rate is 0.16.

Coefficients 1 2 3 4
α -11.961094 5.991828 -6.240744 0
βlog(AST ) -9.502010 -9.681154 -1.992770 0
βlog(ALT ) 13.492770 9.952411 2.722534 0
βlog(GIDH) -4.472537 -3.816352 1.139102 0

Table 5.15: Baseline category logit model: estimated coefficients.

As before, we applied diagnostics on this model. Figure 5.10 panel (a)

shows the leverage values versus the deviances. Detected points are the

same of those detected in two dimensional multinomial distance model. Fig-

ure 5.10 panel (b) shows the index plot of the approximation to Cook’s dis-

tance. Influential cases are the same of those detected in the previous model.

Panel (c) shows the index plot of the studentized residuals. Again, detected
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points are the same of those detected by two dimensional multinomial dis-

tance model.

We analyze case 58, 77, 89, 93, 94, 108, 116, 131, 136 and 176 further. Table

5.16 shows
∑

k≠j ∆kd
2
j diagnostic to investigate which points affect the pre-

diction rule.

Case number
∑

k ̸=j ∆kd
2
j

58 0.260949579
77 0.873243297
89 0.162310564
93 -0.118970295
94 5.513176780

108 0.002561748
116 0.095021850
131 0.039422361
136 -0.005191135
176 0.022836977

Table 5.16: Baseline Category Logit Model:
∑

k ̸=j ∆kd
2
j diagnostic.

According to
∑

k ̸=j ∆kd
2
j diagnostic only subjects 93 and 136 affect the

prediction. In two dimensional multinomial logit model also points 54 and

94 were detected. After deleting points 93 and 136, the fit is slightly better,

the deviance divided by the sample size is 0.82 while before was 0.88. The

misclassification rate does not change. This was predicted by the fact that the

magnitude of
∑

k ̸=j ∆kd
2
j for deleted cases are not too large. Conclusions for

this model is not the same of those for 2-dimensional multinomial distance

model. It is important to note that the two models are different and probably

they do not have exactly the same outliers.
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5.4 Early Childhood Longitudinal Study - Kindergarten Cohort

Analysis

Data set comes from a cohort study performed in U.S.A.. The goal is to as-

sess the proficiency in early reading at the end of the kindergarten year. The

response variable is the proficiency level distinguished in 6 levels. Predictor

variables are gender, minority status, whether the child attended half-day

kindergarten, number of family risks, frequency with which parents read

books to child, family socio-economic status and assessment age. For more

details see O’Connell and Liu, 2011. We fit an one dimensional multino-

mial distance model and apply diagnostics to compare detected outliers with

those detected from O’Connell and Liu in their article. They applied analy-

sis on the full sample and two subsamples. We decided to use subsample I.

Table 5.17 contains descriptive statistics for the chosen sample.

Model deviance is 708.58 and the deviance divided by the sample size is

2.9. Misclassification rate is 0.91, then the fit is very poor. Only one point,

case 124, has very low leverage value. In figure 5.11 panel (a) we can see that

there are some points with large individual deviance. Figure 5.11 panel (b)

shows the index plot of the approximation to the Cook’s distance. We can see

that there are point 8, 124 and 189 which have slightly different values of that

diagnostics from the others. Finally, panel (c) is the index plot of studentized

residuals. Detected points are 120, 213, 238 and 241.



70 Chapter 5. Applications

R
ea

di
ng

Pr
ofi

ci
en

cy
Le

ve
l

0
1

2
3

4
5

T
ot
a
l

n=
26

n=
32

n=
54

n=
10

8
n=

16
n=

8
N

=
24

4
%

m
a
le

12
(4

6%
)

21
(6

6%
)

32
(5

9
%

)
57

(5
3

%
)

6(
38

%
)

3(
38

%
)

13
1(

54
%

)
%

m
in
or
it
y

19
(7

3.
08

%
)

16
(5

0%
)

30
(5

5.
56

%
)

36
(3

3.
33

%
)

6(
37

.5
%

)
3(

37
.5

%
)

11
0(

45
.0

8
%

)
ri
sk

n
u
m
m
ea
n

1.
38

0.
75

0.
69

0.
5

0.
25

0.
25

0.
64

se
sm

ea
n

-0
.8

10
8

-0
.2

25
6

0.
00

57
0.

10
73

0.
10

19
0.

22
50

-0
.0

53
2

%
h
a
lf
d
a
y

18
(6

9.
23

%
)

15
(4

6.
88

%
)

23
(4

2.
59

%
)

53
(4

9.
07

%
)

9(
56

.2
5

%
)

4(
50

%
)

12
2(

50
%

)
%

re
a
d
bk

18
(6

9.
23

%
)

23
(7

1.
78

%
)

42
(7

7.
78

%
)

88
(8

1.
48

%
)

15
(9

3.
75

%
)

7(
87

.5
%

)
19

3(
79

.1
0

%
)

a
g
em

ea
n

75
.7

4
75

.4
4

75
.8

1
74

.5
7

74
.4

4
77

.9
5

75
.1

8

Ta
bl

e
5.

17
:S

um
m

ar
y

St
at

is
ti

cs
fo

r
K

in
de

rg
ar

te
n

da
ta

.



5.4. Early Childhood Longitudinal Study - Kindergarten Cohort Analysis 71

0.
6

0.
7

0.
8

0.
9

1.
0

2468

Le
ve

ra
ge

 v
al

ue
s

Deviance

10
2

12
4

18
3

21
3

23
8

24
1

(a
)

0
50

10
0

15
0

20
0

25
0

0.00.20.40.60.8

C
as

e 
nu

m
be

r

Approximate Cook’s Distance values

8

12
4

18
9

(b
)

0
50

10
0

15
0

20
0

25
0

01020304050

C
as

e 
nu

m
be

r

Studentized Residuals

10
2

21
3

23
8 24

1

(c
)

Fi
gu

re
5.

11
:E

ar
ly

C
hi

ld
ho

od
Lo

ng
it

ud
in

al
St

ud
y

D
at

a.
M

ul
ti

no
m

ia
lD

is
ta

nc
e

M
od

el
:P

an
el

(a
)p

lo
ts

le
ve

ra
ge

va
lu

es
ve

rs
us

in
di

vi
du

al
de

vi
an

ce
s.

Pa
ne

l(
b)

is
th

e
in

de
x

pl
ot

of
th

e
ap

pr
ox

im
at

io
n

to
th

e
C

oo
k’

s
di

st
an

ce
.P

lo
t(

c)
is

th
e

in
de

x
pl

ot
of

st
ud

en
ti

ze
d

re
si

du
al

s.



72 Chapter 5. Applications

For these points we computed the
∑

k ̸=j ∆kd
2
j diagnostic to see if they

affect prediction. Table 5.18 shows the results. Among the others, points

102, 213 and 238 also affect the prediction.

Case number
∑

k ̸=j ∆kd
2
j

8 5.54991201
102 -1.64145230
124 3.08089830
183 4.92655205
189 1.13849317
213 -1.32184322
238 -0.07999275
241 0.75579429

Table 5.18: Multinomial Distance Model:
∑

k ̸=j ∆kd
2
j diagnostic.

O’Connell and Liu, in their article, fitted five models, one for each split

based on six response variable. For each split, they applied diagnostics for

simple logistic regression and they detected 8 cases. Table 5.19 shows these

outliers.

Model Case number
(0) vs others 70, 115, 124, 207
(0+1) vs others 124
(0+1+2+3) vs others 241, 136
(0+1+2+3+4) vs 5 149, 238

Table 5.19: Detected outliers in the five simple logistic regressions.

The main outlier is point 124. It has the largest leverage value in O’Connell

and Liu’s analysis as well as in ours. Cases 124, 238 and 241 are outliers in

both analyses. We also inspected prediction influence and concluded that

cases 115, 213 and 238 affect the prediction process. There are some differ-

ences between other outliers but it depends on the fact that O’Connel and

Liu (2011) fitted 5 simple logistic regression models while we fitted a multi-

nomial model.
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The usefulness of a model is defined by its characteristics and the possibility

to evaluate it after the fit. In fact, the most important part in a statistical

analysis it is to assess wheter the model fit is good. Without this part, any

model losts the practical verve and it is not still useful.

The Multinomial Distance Model is a good tool in classification problems.

Its main weakness is the lack of diagnostics. This deficiency makes the model

less appetible than others.

To evaluate outliers and influential cases in a model, we need to define its

design matrix. In fact, starting from this, it is possible to compute diagnostic

measures to assess cases which are far from the centroid of the space spanned

by X . The Multinomial Distance model is a bilinear model, which means

that it is multiplicative in the parameters. This feature makes the assessment

process difficult.

In this work we showed that it is possible to extend the generalized linear

model diagnostics to multinomial distance model. We started from the fact

that it is possible to rewrite the one dimensional multinomial distance model

as a baseline category logit model form. This means that we can find both

coefficient and design matrices.

The main features are the pseudo − S̃ coefficient matrix and the pseudo-

design matrix X̃. In fact, we have been able to define the same matrices of

a baseline category logit models, based on the fact that also in multinomial

distance model there is one pseudo-coefficient for each category. Thus, we
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have:

Pseudo − S̃ =


α̃1 α̃2 . . . α̃G

β̃11 β̃12 . . . β̃1G
...

...
...

...

β̃q1 β̃q2 . . . β̃qG


where α̃g are the pseudo-intercepts and β̃gq the pseudo-coefficients. As we can

see, this matrix is the same as the coefficient matrix we estimate when fitting

the baseline category logit model. In the same way, we have also defined the

pseudo-design matrix X̃, which is formed by N stacked blocks:

X̃k =


xk 0 0 . . . 0

0 xk 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . xk


and each xk is the observed predictor vector of subject k. Thus, X̃ is a NG×G

matrix. Once we obtained this matrices we can apply multiple group logis-

tic regression diagnostics to multinomial distance model as it discussed in

chapter 4.

6.1 Some Extentions

The obtained results can be generalized to all models for which it is possible

to compute pseudo-S̃ matrix and pseudo-design matrix.

In chapter 2 we presented some other models for multicategorical re-

sponse variable. We saw that the adjacent category logit model is a different

parametrization of the baseline category logit model (see equation (2.15)).

Thus, for this model it is possible to apply any multiple group logistic regres-

sion diagnostics without any effort.

Continuation-ratio logit model allows to different intercepts and coeffi-

cients for each response category. Therefore, we can compute the pseudo de-

sign matrix and apply multiple group logistic regression diagnostics. For this

model it is also possible to extend one step approximation to the estimated

coefficients. The coefficient matrix and the pseudo-S̃ matirx here are the same.
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We can also compute the same matrices for Stereotype model. This model

is multiplicative in the parameters. We have to estimate G− 1 intercepts, one

β and G− 2 ϕ parameters. Then, to obtain probabilities, we have to multiply

the ϕ parameters by β, getting G− 1 pseudo-coefficients

α̃g = αg β̃g = ϕgβ.

Once we computed the pseudo-S̃ matrix and the pseudo design matrix, multi-

ple group logistic regression diagnostics cab be easily applied to Stereotype

model, too.

Finally, we can generalize the pseudo matrices to the Ideal Point Discrimi-

nant Analysis. After fitting the model, we obtain two matrices and one vector

of coefficients, that are, Z for the group coordinates, B for the predictors and

w for the bias parameters. We can compute the pseudo-S̃ matrix where

α̃g = (2α(zg)− z2g) + log(wg) β̃g = 2β(mg) + log(wg).

Thus, multiple group logistic regression diagnositics can be applied to the

Ideal Point Discriminant Analysis, too.

6.2 Conclusions

This monograph proposed a way to compensate for the lack of model evalu-

ating tools for the Multinomial Distance Model. It is shown that the pseudo-S̃

matrix and the pseudo design matrix can also be computed for all models that

allow different intercepts and coefficients for each response category. There-

fore, the obtained results are also extended to other models.

The multiple group logistic regression diagnostics can also be applied to

Multinomial Distance Model in more than one dimension. In fact, in chapter

4 we showed that it is possible to compute the pseudo coefficients for more

than one dimensional multinomial distance model.

As we explained in chapter 4, some problems arise when we try to use

one step approximation to the case deletion method to obtain estimated co-

efficients. The main problem is that the pseudo design matrix is not the same

design matrix as the one used in the estimating process and the pseudo-S̃ ma-

trix is not the matrix of the coefficient estimated.
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Furthermore, in this monograph we considered only this approximation

to assess outliers and leverage points. Further analysis and comparisons

could be done. For example, finding a way to extend one step approximation

of dfbeta or comparing with other models like categorical regression model

(CATREG). Moreover, a bayesian approach to detect outliers could be ap-

plied.
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New Algorithm to compute the Multinomial Distance Model in one dimen-

sion:

deviance.MDM <- function(pars, Y, X){

# pars is the vector of initializing values for parameters

# Y is the response matrix (N x G)

# X is the predictor matrix (N x Q) with the first column

# equals to 1 for the intercept

# extract matrix B from pars

n = nrow(Y)

J = ncol(Y)

p = ncol(X)

B = matrix(pars[1:p], p, 1)

# create Z - matrix with coordinates of class points

Z = matrix(0, J, 1)

# only one constrain

Z[1:(nrow(Z)-1)] = pars[(p+1):(p+(J-1))]

# make the matrix of coefficients

Betas = 2*B%*%t(Z)

Betas[1,] = Betas[1,]-t(Z^2)

# Make the linear predictors

U = X%*%Betas

# Compute probabilities and deviance

P = exp(U)

sp = rowSums(P)

77
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P = (1 / sp) * P

dev = -2 * sum(Y * log(P))

}

The function to compute the pseudo design matrix:

mat=function(m){

# m is the predictor matrix

m. = do.call(cbind, replicate((J-1), m, simplify=F))

ID = list((J-1))

for(i in 1:(J-1)){

ID[[i]] = matrix(rep(1,ncol(m)),1)

}

U = as.matrix(bdiag(ID))

return(m.*U)

}

##############################################################

##################### DIAGNOSTICS #####################

##############################################################

#following Lesaffre and Albert (1989):

# compute Sigma matrix (see pag. 433)

Sigma <- list(rep(0,n))

for(i in 1:n){

Sigma[[i]] <- sqrt(diag(1/P[i,]))

}

SI <- as.matrix(bdiag(Sigma))

# compute the Q.hat matrix (see pag. 433)

Q <- list(rep(0,n))



79

for(i in 1:n){

Q[[i]] <- rbind((matrix(rep.int(P[i,1:(J-1)],(J-1)),(J-1),

(J-1),byrow=T)*(diag(1,(J-1))-matrix(rep.int(P[i,1:(J-1)],

(J-1)),(J-1),(J-1)))),-P[i,J]*P[i,1:(J-1)])

}

Q.hat <- bdiag(Q)

# compute the V.hat matrix (see pag. 427)

V <- list(rep(0,n))

for(i in 1:n){

V[[i]] <- matrix(rep.int(P[i,],(J-1)),(J-1),(J-1),byrow=T)*

(diag(1,(J-1))-matrix(rep.int(P[i,],(J-1)),(J-1),(J-1)))

}

V.hat <- bdiag(V)

# compute the pseudo design matrix X

X.new <- list(rep(0,n))

for(i in 1:n){

X.new[[i]] <- mat(matrix(rep.int(X[i,],(J-1)),(J-1),ncol(X),

byrow=T))

}

X. <- do.call(rbind,X.new)

# finally compute the Generalized Hat Matrix (pag. 433)

W <- (solve(t(X.)%*%V.hat%*%X.))

H <- (SI%*%Q.hat%*%X.%*%W%*%t(X.)%*%t(Q.hat)%*%SI)

# and the generalized M matrix

M <- as.matrix(diag(nrow(H))-H)

# compute the det of the diagonal blocks of the M matrix

# to detect leverage points
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m <- list(rep(0,n))

det. <- numeric(0)

index <- seq(1,(n*J), by=J)

for(i in 1:n){

m[[i]] <- as.matrix(M[index[i]:(index[i]+(J-1)),index[i]:

(index[i]+(J-1))])

det.[i] <- det(m[[i]])

}

# compute standardized residual vector (pag. 428)

r = Y-P

chi <- matrix(0,n,J)

for (i in 1:n){

chi[i,] <- (Sigma[[i]])%*%t(t(r[i,]))

}

# compute studentized residuals

# (Thanks to Cajo Ter Braak for pow.matrix function)

m.1 <- lapply(m,solve)

chi.star <- numeric(0)

for(i in 1:n){

chis <- pow.matrix(m.1[[i]], 0.5)%*%chi[i,]

chi.star[i] <- t(chis)%*%chis

}

# compute the individual deviance

d=numeric(0)

for(i in 1:n){

d[i] <- -2*(Y[i,]%*%log(P[i,]))

}

# compute one step approximation to Cook’s distance
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h. <- list(rep(0,n))

index <- seq(1,(n*J), by=J)

for(i in 1:n){

h.[[i]] <- as.matrix(H[index[i]:(index[i]+(J-1)),index[i]:

(index[i]+(J-1))])

}

m.1 <- lapply(m,solve)

cooks <- numeric(0)

for(i in 1:n){

cooks[i] <- round(chi[i,]%*%(m.1[[i]])%*%h.[[i]]%*%

(m.1[[i]])%*%t(t(chi[i,])), digits=5)

}

# compute one step approximation to neighboring effects

# (code for simulation study)

delta.d1 <- matrix(0,n,4)

index2 = index[c(301,302, 303,304)]

index3 = c(301,302, 303, 304)

for (i in 1:ncol(delta.d1)){

for(j in 1:n){

if(index3[i]!=j){

delta.d1[j,i] <- as.matrix(2*chi[j,]%*%H[index[j]:

(index[j]+(J-1)),index2[i]:(index2[i]+(J-1))]%*%

m.1[[index3[i]]]%*%t(t(chi[index3[i],])) +

chi[index3[i],]%*%m.1[[index3[i]]]%*%

H[index2[i]:(index2[i]+(J-1)),index[j]:

(index[j]+(J-1))]%*%H[index[j]:(index[j]+(J-1)),

index2[i]:(index2[i]+(J-1))]%*%

m.1[[index3[i]]]%*%t(t(chi[index3[i],])))

}

else{

delta.d1[j,i]=0
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}

}

}

colSums(delta.d1)

##############################################################

################ GRAPHICAL DIAGNOSTICS ###############

##############################################################

# plot individual deviances versus leverage values

x11()

names = factor(1:n)

plot(det.,d, ylab="Deviance", xlab="Leverage values")

# Index plot of cook’s Distance

x11()

plot(c(1:n), cooks, xlab="Case number",

ylab="Approximate Cook’s Distance values")

# Index plot of Studentized residuals

x11()

plot(c(1:n), chi.star, xlab="Case number",

ylab="Studentized residuals")

##############################################################

################## LOO DIAGNOSTICS #################

##############################################################

# case deletion diagnostics

p <- ncol(X)

res <- matrix(0,((J-1)+p),n)
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SE <- list(rep(0,n))

DEVIANCES <- numeric(0)

for(i in 1:n){

stats <- optim(pars0, deviance.MDM, NULL, Y[-i,], X[-i,],

method ="BFGS", control = list(trace = 2, maxit = 100),

hessian = T);

res[,i] <- stats$par

SE[[i]] <- stats$hessian

DEVIANCES[i] <- stats$value

}

# plot deviances computed deleting each observation in turn

plot(c(1:n), DEVIANCES, xlab="Deleted Case Number",

ylab="Residual Deviance")

# compute dfbetas

delta.beta=matrix(0,nrow(res),ncol(res))

for(i in 1:ncol(res)){

delta.beta[,i]=coeff-res[,i]

# coeff is the vector of coefficient estimated on complete data

}

# compute standard errors SE(-k)

Stand.Err <- matrix(0,nrow(delta.beta), ncol(delta.beta))

for(i in 1:n){

Stand.Err[,i] <- sqrt(diag(solve(SE[[i]])))

}

# standardized dfbetas

influential.function <- delta.beta / Stand.Err

# plot dfbetas for each parameter (simulation study)
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x11()

plot(c(1:n),delta.beta[1,], xlab="Deleted Case Number",

ylab="Coefficient Difference" )

x11()

plot(c(1:n),delta.beta[2,],xlab="Deleted Case Number",

ylab="Coefficient Difference" )

x11()

plot(c(1:n),delta.beta[3,],xlab="Deleted Case Number",

ylab="Coefficient Difference" )

x11()

plot(c(1:n),delta.beta[4,],xlab="Deleted Case Number",

ylab="Coefficient Difference" )

x11()

plot(c(1:n),delta.beta[5,],xlab="Deleted Case Number",

ylab="Coefficient Difference")

# compute LOO neighbouring effect

Prob.casedeleting <- list(rep(0,n))

for(i in 1:n){

p <- 2

B <- matrix(res[1:p,i], p, 1)

# create Z - matrix with coordinates of class points

Z <- matrix(0, J, 1)

l <- nrow(res)

Z[1:(nrow(Z)-1)] <- res[(p+1):l,i]

Betas = 2*B%*%t(Z)

Betas[1,] = Betas[1,]-t(Z)^2

# now define "linear predictors"

U <- X%*%Betas

# compute probabilities:

p <- exp(U)
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sp <- rowSums(p)

Prob.casedeleting[[i]] <- (1 / sp) * p

}

Pr <- apply(P, 1, max)

# P is the probability matrix computed on complete data

Prob.final <- matrix(0,n,n)

for(i in 1:n){

Prob.final[,i] <- apply(Prob.casedeleting[[i]], 1, max)

}

# finally, compute a(-k)

a.minusk <- matrix(0, n , n)

for(i in 1:n){

a.minusk[,i] <- Pr-Prob.final[,i]

}





BIBLIOGRAPHY

Agresti, A., (2002). Categorical Data Ananlysis. J. Wiley. New York.

Agresti, A., (2010). Ananlysis of Ordinal Categorical Data. J. Wiley. New York.

Anderson, J. A., (1972). Separate sample logistic discrimination. Biometrika,

59, 19-35.

Anderson, J. A., (1974). Diagnosis by logistic discriminant function. Applied

Statistics,23,397-404.

Anderson, J. A., (1982). Logistic Discrimination. In P. R. Krishnaiah and L.

Kanal (Eds.), Handbook of statistics 2.Amsterdam: North Holland.

Anderson, J. A., (1984). Regression and Ordered Categorical Variables. Jour-

nal of the Royal Statistical Society, 46, 1-30.

Coombs, C. H., (1964). A theory of Data. J. Wiley. New York.

Day, G., Shocker, A., Srivastava, R., (1979). Customer-Oriented Approaches

to Identifying Product Markets. Journal of Marketing, 43, 4.

De Rooij M., (2009). Ideal Point Discriminant Analysis with a special empha-

sis on visualization. Psychometrika, 74, 317-330.

Fahrmeir L., Tutz, G., (2001). Multivariate Statistical Modelling Based on Gener-

alized Linear Model, Springer, New York.

Fox, J., (1991). Regression Diagnostics: An Introduction. Sage Publications.

Goodman, L. A., (1983). The analysis of dipendence in cross-classifications

having ordered categories, using log-linear models for frequencies and log-

linear models for odds. Biometrics, 39, 149-160.

87



88 Bibliography

Lesaffre, E., Albert A., (1989). Multiple-Group Logistic Regression Diagnos-

tics. Journal of the Royal Statistical Society, 38, 425-440.

Liu, I., Agresti, A., (2005). The Analysis of Ordered Categorical Data: An

Overview and Survey of Recent Developments. Sociedad de Estadistica e In-

vestigacion Operativa TEST, 14, 1-30.

Luce, R. D., (1959). Individual choice behaviour: A theoretical analysis. J. Wiley.

New York.

McFadden, D., (1980). Econometric models for probabilistic choice among

products. Journal of Business, 53, S13-S29.

McGullagh, P., (1980). Regression models for Ordina Data. Journal of the Royal

Statistical Society, 42, 109-142.

Nelder, J., Wedderburn, R. W. M., (1972). Generalized linear models. J. R.

Statist. Soc., 135, 370-384.

O’Connell, A. A., Liu X., (2011). Model Diagnostics for Proportional and Par-

tial Proportional Odds Models. Journal of Modern Applied Statistical Methods,

10, 139-175.

Penninx, B. W. J. H., Beekman, A. T. F., Smit, J. H., Zitman, F. G., Nolen,

W. A., Spinhoven, P., . . . Consortium, N. R. (2008). The Netherlands

Study of Depression and Anxiety (NESDA): Rationale, objectives and

methods. International Journal of Methods in Psychiatric Research, 17,121140.

doi:10.1002/mpr.256.

Peterson, Bercedis and Frank E. Harrell, Jr. (1990). Partial Proportional Odds

Models for Ordinal Response Variables. Applied Statistics, 39, 205-217.

Pregibon, D., (1981). Logistic Regression Diagnostics. Ann. Statist., 9, 705-724.

Simon, G., (1974). Alternative Analysis for the singly-ordered contingency

table. Journal of the American Statistical Association, 69, 971-976.



Bibliography 89

Spinhoven, P., de Rooij, M., Heiser, W., Smith, J.H., Penninx, B. W. J. H. (2012,

May 7). Personality and Changes in Comorbidity Patterns Among Anxiety

and Depressive Disorders. Journal of Abnormal Psychology, Advance online

publication. doi: 10.1037/a0028234.

Takane, Y., Bozdogan, H., Shibayama, T., (1987). Ideal Point Discriminant

Analysis. Psychometrika, 52, 371-392.

Takane, Y., (1987). Analysis of contingency tables by Ideal Point Discriminant

Analysis. Psychometrika, 52, 493-513.

Takane, Y., (1989). Ideal Point Discriminant Analysis and ordered response

categories. Behaviormetrika, 26, 31-46.

Takane, Y., (1998). Visualization in ideal point discriminant analysis. Psy-

chometrika, 52, 371-392.

Tutz, G. (1991). Sequential models in categorical regression. Comput. Statist.

Data Anal., 11, 275-295.

Williams, D., (1987). Generalized linear model diagnostics using the deviance

and single case deletions. Applied Statistics, 36(2), 181-91.

Wolfe, P., (1969). Convergence Conditions for Ascent Methods. SIAM Review,

11, 226-235.


