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Abstract 

Pentachlorophenol (PCP) has been used worldwide as a wood preservative and 

pesticide. PCP toxicity and extensive use has placed it among the worst environmental 

pollutants, and therefore its microbiological degradation to develop bioremediation 

techniques has been intensively studied. 

The current study, part of a wider bioremediation project, is a long-term evaluation of 

the remediation ability of naturally selected microorganisms versus PCP in laboratory-

scale experiments. The main aims of this thesis were: i) to define PCP sensitivity, 

adsorption and degradation of Byssochlamys nivea (Westling 1909), Scopulariopsis 

brumptii (Samson and Klopotek 1972) and Anthracophyllum discolor (Mont. Singer 

1951) in microbiological culture media; ii) to test B. nivea and S. brumptii as 

antagonists against two Oomycetes: Phytophthora cinnamomi and Phytophthora 

cambivora; iii) to evaluate the response of an agricultural soil to PCP, with or without 

compost (biostimulation) and B. nivea and S. brumptii (bioaugmentation), in terms of 

effects of the contaminants on the main chemical, biochemical and biological soil 

properties. 

B. nivea and S. brumptii showed a good PCP tolerance (12.5 and 25 mg PCP L
-1

) 

although hyphal size, biomass, patulin and spore production decreased for increasing 

concentrations of PCP. It was shown that these two fungi can completely deplete 12.5 

and 25 mg PCP L
-1

 in a submerged culture after 28 days of incubation at 28 °C. 

Electrolyte Leakage Assays showed that the fungi have a good tolerance at 25 mg PCP 

L
-1

. B. nivea and S. brumptii were able to inhibit the growth of P. cinnamomi and P. 

cambivora on solid media and in liquid culture. Volatile organic compounds (VOCs) 

did not produce growth reduction of oomycetes strains.  

The PCP that was adsorbed by A. discolor pellets  was >80% compared to pH values of 

5 and 5.5, which were the two concentrations being analyzed. PCP adsorption 

significantly decreased in a medium of pH > 6.0. The Infrared Spectroscopy (FTIR) 



results showed that amides, alkanes, carboxylates, carboxyl and hydroxyl groups may 

possibly be important to the PCP adsorption for pellets of A. discolor .  

In microcosm soil experiment, the addition of PCP severely depressed some of the 

tested biochemical properties (i.e. microbial biomass, soil respiration, dehydrogenase 

activity and fluorescein diacetate hydrolysis) suggesting an inhibitory effect on 

microbial activity. The compost had a buffer effect against the PCP, limiting the 

decrease of soil biochemical activity vs. of the control. After 28 day of incubations the 

compost and the fungal strains reduced of 95% the extractable PCP. The natural fresh 

soil showed a good capacity of reduction of extractable PCP (88%). The main soil 

processes (i.e. microbial degradation, biostimulation by compost and sorption to 

organic matter) were likely occurred in the contaminated soil when was added PCP and 

are involved in PCP depletion. 

Our results indicate that B. nivea and S. brumptii have an interesting potential for 

bioremediation and biocontrol strategy. A. discolor  may be used as a natural biosorbent 

for liquid solutions which are contaminated by PCP. 

Key words: PCP, Biological control, Soil biochemistry, Biostimulation, 

Bioaugmentation. 
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1. General introduction and research objectives 

 

1.1.  Pentachlorophenol: chemical identification 

Over the last fifty years the environmental pollutants have been a significant problem 

worldwide because represent a hazard for the health and survival of all organisms 

(Kimani 2007). Many organic pollutants are chemical substances of anthropogenic 

origin that are hard to eliminate in the environment and resistant to biodegradation 

processes found in naturally occurring microorganisms (Jones and de Voogt 1999).  

Pentachlorophenol (PCP) is an artificial semivolatile organochlorine compound that is 

not generated naturally in the environment (Rappe et al. 1979). It is a white crystalline 

solid with phenolic odour, soluble in organic solvents but with low water solubility (14 

mg L
-1

) and with a density greater than water (1.98 g cm
3 -1

) (Shiu et al. 1994). It melts 

at 190 °C and boils at 300.6 C° (Table 1 and 2). It is easily subjected to 

photodegradation above all by ultraviolet radiation (Suegara et. al 2005).  

 

1.2.  Use and production of PCP and derivates 

Biocide low cost, the PCP has been added to adhesives, paints, food cans, storage 

containers, resine, lubrificants, photographic solutions, (EPA 1984; Carrizo et al. 

2008), detergent, supplement in medical soap (Abramovitch and Capracotta 2003), 

herbicides, algaecides, molluscicides, bactericides and fungicides (Routt Reigart and 

Roberts 1999; Hong et al. 2010; Huang et al. 2011). A greater use was also made in 

leather, pulp, paper and wood industry for preservation of the timber and bleaching of 

paper or tissues (Gadd 2001; Singh 2006; Rubilar et al. 2008; Ruder and Yiin 2011). 

This substance, abundantly used in agricultural and industrial purposes, since its 

introduction in 1936 by Dow Chemical Company and Monsanto Chemical Company 

(Cedar, 1984). Still today is used and produced in some countries (Pointing 2001), it is 
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marketed under many trade names as Santophen, Penchlorol, Chlorophen, Pentacon, 

Penwar, Sinituho and Penta (Morgan 1989). It can be found essentially in two forms: 

PCP and as the sodium salt of PCP. In 1985, the world wide production of PCP was 

100.000 tons (Wild et al. 1993) while actually no are available recent data on the 

amount of PCP produced globally (Van der Zande 2010).  

Table 1. Chemical identity of PCP *. 

Characteristic Pentachlorophenol 

Synonym(s) PCP; penchlorol; penta; 

pentachlorophenate; 

2,3,4,5,6-pentachlorophenol 

Chemical formula C6HCl5O 

 

Chemical structure 

 
 

Registered trade name(s) Chlon; Dowicide 7; Dowicide; EC-

7; Dura Treet II; EP 30; Fungifen; 

Woodtreat; Permasan; Liroprem; 

Penta Concentrate; Penta Ready; 

Penta WR 

Identification numbers: 

EPA Hazardous Waste 

 

U242; FO27 

  

* This informations were obtained from Hazardous Substances Data Bank 

Available data:  http://toxnet.nlm.nih.gov/cgi-bin/sis/search/f?./temp/~7gat8x:1 

 

http://toxnet.nlm.nih.gov/cgi-bin/sis/search/f?./temp/~7gat8x:1
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It is likely that the trend of use and production world level has decreased, because the 

PCP-demand has declined and for the stringent limiting actions taken in many countries 

over the years. In United States of America (USA) has been classified as a priority 

pollutant by the US Environmental Protection Agency and its use was restricted to 

certified applicators (EPA 1988). In 1975 the USA produced 23.600 tons of PCP while 

the recorded production in 2002 is about 4500 tons. Its use was 19.000 tons in 1984; 

17.300 in 1985; 14.515 in 1986; 8.300 tons in 1996 and 5.000 tons  in 2002 (WHO 

2003; Van der Zande 2010). In Canada all product containing PCP were voluntarily 

withdraw in the 1990, remaining PCP uses only for heavy duty wood preservation and 

ground line remedial treatments of utility poles. In the 1992 the use of PCP was subject 

to regulation (CCME 1997). In China the annual production of PCP fell of the 70% the 

in twenty years among 1980-2000 (Tan and Zhang 2008). In Japan, from 1962 to 1970, 

was produced approximately 15.000 tons/year, but in the 1971 the PCP was banned due 

to its enormous danger (Crosby 1981). India is one of the few remaining countries still 

abundantly engaged in the large scale manufacture, use and export PCP (Abhilash and 

Singh 2009). In Australia, although in the last century PCP has been extensively used 

for timber preservation, now there are no longer any pesticides utilizing PCP registered 

for use (APVMA 2006). In New Zealand an estimated of 5000 tonnes of sodium 

pentachlorophenol (Na-PCP) was used over a period of forty years. The use of PCP in 

the timber industry ceased in 1988, and it was withdrawn from sale in 1991. Perhaps 

40% of the PCP used in New Zealand was used at Weipa, amounting to an estimated of 

2,000 tonnes of PCP and Na-PCP between the 1950's and 1988. There are several 

hundred sawmill and treatment sites where PCP was used in both the North and South 

Islands of New Zealand (Yu and Shepherd, 1997). In Europe the production of PCP 

ceased in 1992. Before that time, it was produced in many countries as Poland, 

Germany, Netherlands, Denmark, Switzerland, United Kingdom, Spain and France 

(Van der Zande 2010).  
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Table 2. Physical and Chemical Properties of PCP *. 

Property Pentachlorophenol 

Molecular weight 266.35 

Color Colorless or white (pure); dark 

gray to brown (crude product) 

Physical state Crystalline solid (pure); pellets or 

powder (crude product) 

Melting point 190 °C 

Boiling point 309 – 310 °C 

Density 1.978 g mL
-1

 at 22 EC 

Solubility: 

Water 

Organic solvent(s) 

 

14 mg L
-1

 at 20 °C 

Very soluble in alcohol and ether; 

soluble in benzene; slightly soluble 

in cold petroleum ether 

Partition coefficients: 

Log Kow 

Log Koc 

 

5.01 

4.5 

Vapor pressure at 25 °C 0.00011 mmHg 

Photolysis t1/2 = 48 h 

Henry's law constant at 25 °C 3.4x10
-6

 atm-m
3 
mol

-1 

 

* This informations were obtained from Hazardous Substances Data Bank 

Available data:  http://toxnet.nlm.nih.gov/cgi-bin/sis/search/f?./temp/~7gat8x:1 
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After PCP production was stopped, it has been imported to the European market from 

the USA and southeast Asia. However in Europe the total consumption decreased of 

the 82% in ten years among 1985-1995 (Muir and Eduljee 1999). There are no 

complete data available of PCP use and production for South America and Africa. 

 

1.3.  Toxicity of PCP 

PCP is a xenobiotic compound that in the animals is capable to generate inhibition of 

oxidative phosphorylation (Montiel et al. 2004), loss of cellular lytic function (Taylor 

et al. 2005), alter cell membrane functionality (McAllister et al. 1996), fetotoxicity, 

embrotoxicity, to bind to various hormone reception, endocrinopathy (Hong et al. 

2010), DNA damage (Witte et al. 1985; Sai-Kato et al. 1995; Ma et al. 2010), disorders 

to cardiovascular system, blood, liver, kidney, immune system, central nervous system 

(ATSDR 2001), carcinogenicity, teratogenicity and eventually death may occur 

(Crosby 1981). Specifically in mammals PCP generates high body temperature, 

sweating, dehydration, rapid pulse, early coma, visceral hemorrhage, inactivation of 

respiratory enzymes, inhibition of glycolytic pathways and damage to mitochondrial 

structure (Gautam et al. 2003). 

In plant it generate an inhibitory influence on seed germination and plant growth 

(Marihal et al. 2009), decrease in levels of biosynthesis of photosynthetic pigments, 

soluble protein (Hong et al. 2010), produce an inhibition of the formation of ATP by 

uncoupling oxidative phosphorylation, an variation in the speed of the propagation of 

electrical pulses (Volkov et al. 2000), can cause alterations in the pollen tube 

ultrastructure (Kandasamy and Kristen 1987), an change in the activity of antioxidative 

system and lipid peroxidation in leaves (Michałowicz et al. 2010).  

Finally even on microorganisms the PCP expresses its toxicity (Watanabe 1978; 

Pignatello et al. 1983). PCP can influences not only in general microorganisms 
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community but also more specifically cellular process, cyclic changes in morphology, 

lipid membrane components, biomass growth, enzymatic activity, sporulation and 

reproduction capacity (Watanabe 1978; Bajpaia and Banerjib 1992). It is important to 

remember that was used just for to protect wood and tissues from attack by fungi and 

bacteria (Gadd 2001). 

 

1.4.  Environmental contamination by PCP 

At any rate high PCP levels concentration were found near the contamination source 

(Bajpaia and Banerjib 1992; McAllister et al. 1996) but also a long distance (ATSDR 

2001). In many cases the concentration levels were found of several thousand mg PCP 

kg
-1

 (Bajpaia and Banerjib 1992). 

The disposal of product containing PCP requires special actions. Many countries may 

have specific regulations, guidelines or recommendations for the management and 

disposal in discarded PCP but the most common disposal processes provide is reuse.  

High PCP use has produced high levels of contamination and the compound was found 

in all environmental compartments (Field and Sierra-Alvarez 2008; Hong et al. 2010) 

and bioaccumulated within all trophic levels (Singh 2006). In fact its presence has been 

detected in air, soil, lakes, rivers, basins, snow, sediments, rainwater, drinking water, 

aquatic organisms, plants, fungi, bacteria, eggs, in mammals milk, blood, adipose tissue 

and urine (ATSDR 2001; Singh 2006). In atmosphere the PCP is released by 

volatilization and its transformation can be obtained by photolysis for slow free radical 

oxidation in an estimated mean period of approximately 2 months (ATSDR 2001). 

Instead in water PCP is subject to biotransformation and photodecomposition above all 

on the surface (Castillo and Bárcenas 1998). Finally in soil, the two main processes for 

the PCP removal are adsorption and degradation. They are dependent from all physical, 

chemical and biological soil properties (McAllister et al. 1996). Volatilization and 
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photolysis do not appear to be important processes in the transport and transformation 

of PCP in soil. In water and soil PCP is released for spillage or by leaching of 

contaminated material and its residual mean life is respectively of six and seven months 

(Buyuksonmez et al. 1999).  

When the product is no longer suitable for reuse due to it‟s size or condition, the 

remediation methods by PCP most commonly used are: adsorption with activated 

carbon, burned in an approved secure area (chemical landfill), treated in air stripping 

(based on the phase transfer and non-degradation of the compound) or with 

electrokinetic technology (limited by the solubility and desorption of organic pollutants 

in soil) and closed in sealed containers (ATSDR 2001; EPA 2008). Washed out with 

chemical products or incineration at high temperatures for a long time (EPA 2008). 

Especially the latter is not widely accepted due to the toxicity of the ash and for 

emissions of other substances very dangerous (Zhang and Qiao 2002). Depletion of 

PCP from can occur by evaporation, photochemical decomposition, water or oil 

leaching (McAllister et al. 1996) and finally for biological degradation (Bajpaia and 

Banerjib 1992; McAllister et al. 1996; Field and Sierra-Alvarez 2008; Rubilar et al. 

2008). 

 

1.5.  Biological remediation methods 

Biological remediation, or bioremediation, is an expanding area of environmental 

biotechnology and may simply be considered to be the application of biological process 

to treatment of pollution. The metabolic versatility of some organisms underpins 

practically all bioremediation applications and most work to date has concentrated on 

organic pollutants, although the range of substances which can be transformed or 

detoxified by some organism includes solid and liquid wastes, natural materials and 

inorganic pollutants such as toxic metals and metalloids. 
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Bioremediation include the use of microorganisms, for instance fungi, bacteria or other 

microbes, or in some cases also plants (phytoremediation), for to degrade, adsorpt and 

mineralize the contaminants found in soil and water, converting them to other 

intermediate or final products. Though it usually uses bacteria and fungi to degrade or 

detoxify substances hazardous to human health and/or the environment. The 

microorganisms may be indigenous to a contaminated area or they may be isolated 

from elsewhere and brought to the contaminated site. Contaminant compounds are 

transformed by living organisms through reactions that take place as a part of their 

aerobic or anaerobic metabolism. Usually, aerobic biodegradation is much more 

efficient than the anaerobic process and it is widely used in relation to the chemical 

nature of the contaminant. Both processes can be applied in series to reduce the 

complexity and toxicity of the contaminant. Biodegradation of a compound is often a 

result of the actions of multiple organisms. For bioremediation to be effective, 

microorganisms must enzymatically attack the pollutants and convert them to harmless 

products. The control and optimization of bioremediation processes is a complex 

system of many factors. These factors include: the existence of a microbial population 

capable of degrading the pollutants; the availability of contaminants to the microbial 

population; the environment factors (type of soil, temperature, pH, the presence of 

oxygen or other electron acceptors, and nutrients) (Vidali 2001). Bioremediation 

technologies can be broadly classified as in situ (bioventing, biosparging, 

bioaugmentation and biostimulation) and ex situ (landfarming, biopiles and 

bioreactors). In situ techniques involve treatment of the contaminated material in place. 

By contrast, ex situ techniques are those treatments which involve the physical removal 

of the contaminated material for treatment (Vidali 2001). 
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1.6.  Microbial degradation of PCP 

One area that has potential for removal of PCP is microbial degradation. 

Microorganisms play an important role in the field of environmental science by 

degrading and transforming PCP into non-toxic or less toxic forms. Naturally how 

completely and efficiently PCP degradation occurs depends by microorganisms and the 

environmental conditions.  

Aerobic microorganisms able to PCP biodegradation have been isolated in a variety of 

environments: industrial sewage, activated sewage sludge, soils and freshwater 

sediments (McAllister et al. 1996; Gadd 2001; Sigh 2006). Aerobic PCP degradation 

by mixed microbial cultures is important since most PCP contaminated sites are surface 

soil or sediments which may support growth and activity of aerobic consortia. PCP 

degradation can occur by the combined efforts of microorganisms in these consortia. 

Some pure cultures of bacteria and fungi isolated from PCP contaminated sites are 

capable to mineralize high concentration of PCP (>200 mg L-1) as evidenced in 

McAllister et al. (1996) and Field and Sierra-Alvarez (2008). 

Anaerobic microorganisms capable to degrade PCP are involved in numerous 

researches of critical importance. Contaminated area with PCP include anoxic 

environments as such as soils, water, sediments and industrial sludge (McAllister et al. 

1996; Field and Sierra-Alvarez 2008). Anaerobic environments contain microbial 

consortia involved in methanogenesis and sulphate reduction are important to evaluate 

the effect of PCP on these anaerobic process.  

In general, aerobic microorganisms have a greater ability to mineralize higher PCP 

concentrations than do anaerobic microorganisms. In addition, more efficient 

mineralization of PCP occurs by axenic cultures of bacteria than by fungi (McAllister 

et al. 1996; Field and Sierra-Alvarez 2008).   
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There are numerous studies that focus research efforts on degradation of PCP by pure 

and mixed cultures of aerobic and anaerobic microorganisms. Conditions that inhibit 

and enhance degradation, and pathways, intermediates and enzyme systems implicated 

essentially in PCP degradation especially by bacteria and fungi  (Bajpaia and Banerjib 

1992; McAllister et al. 1996; Gadd 2001; Field and Sierra-Alvarez 2008; Rubilar et al. 

2008). 

 

1.7.  Research objectives 

The current study, part of a wider bioremediation project, is a long-term evaluation of 

the remediation ability of naturally selected microorganisms versus PCP in laboratory-

scale experiments. The main aims of this thesis were: 

1. to define PCP sensitivity, adsorption and degradation of Byssochlamys nivea 

(Westling 1909), Scopulariopsis brumptii (Samson and Klopotek 1972) and 

Anthracophyllum discolor (Mont. Singer 1951) in microbiological culture media; 

2. to test B. nivea and S. brumptii as antagonist against two Oomycetes: Phytophthora 

cinnamomi and Phytophthora cambivora; 

3. to evaluate the response of an agricultural soil to PCP, with or without compost 

(biostimulation) and B. nivea and S. brumptii (bioaugmentation), in terms of effects 

of the contaminants on the main chemical, biochemical and biological soil 

properties. 

 

 

 

 

http://www.ctu.edu.vn/guidelines/scientific/thesis/part1/1.4%20research%20objectives.htm
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2. A comprehensive overview of bacteria and fungi used for 

pentachlorophenol biodegradation  

 

2.1.  Abstract 

Pentachlorophenol (PCP) has been a pollutant worldwide and extremely dangerous due 

to the high toxicity towards all organisms. It has been introduced into the environment 

mainly as a wood preservative, biocides and for the bleaching of paper or tissues. The 

use of PCP indiscriminate has led to the contamination of water and soil systems. Many 

countries have specific regulations, guidelines or procedures for the management and 

disposal of PCP but the most common methods are: adsorption with activated carbon, 

incineration in an approved and secure area, closed in sealed containers and biological 

degradation. PCP depletion can occur by abiotic processes such as: absorption, 

volatilization and photo degradation. In biotic degradation, one of the main studies 

focused on remediation utilizing the plants, animals and microbial community‟s. 

Aerobic and anaerobic microorganisms can degrade PCP under a variety of conditions 

and at different PCP concentrations. Bacterial strains as Pseudomonas sp., 

Sphingomonas sp., Arthrobacter sp., Mycobacterium sp., Flavobacterium sp., Serratia 

sp. and Bacillus sp., and fungal cultures as Trametes sp., Phanerochaete sp., 

Anthracophyllum sp., Armillaria sp., Bjerkandera sp., Ganoderma sp., Lentinula sp., 

Penicillium sp, Trichoderma sp., Rhizopus sp. and Plerotus sp. showed various rates 

and extent of PCP degradation. This review focuses on PCP degradation by various 

aerobic and anaerobic microorganisms with emphases on the biological and chemical 

aspects. Furthermore we will analyze intermediate products, processes and enzyme 

tools involved in the degradation of PCP in different environmental conditions and at 

various PCP concentrations. 
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2.2.  Abbreviations 

Pentachlorophenol PCP 

Pentachloronanisole PCA 

Phenol PH 

Chlorophenol CP 

Dichlorophenol DCP 

Trichlorophenol TCP 

Tetrachlorophenol TeCP 

6-chlorohydroxyquinol CHYQ 

Chlorohydroquinone CHQ 

Dichlorohydroquinone DCHQ 

Trichlorohydroquinone TriCHQ 

Tetrachlorohydroquinone TCHQ 

2-chloro-1,4-benzenediol  DECB 

2,6-dichloro-1,4-benzoquinone  DCBQ 

Tetrachloro-1,4-benzoquinone TeCBQ 

Tetrachlorocatechol TCC 

 

2.3. Introduction 

Pentachlorophenol (PCP) is an artificial semivolatile organochlorine compound 

abundantly used in as biocide low cost in agricultural and industrial purposes. High 

PCP use has produced high levels of environmental contamination. In fact its presence 

has been detected in air, soil, lakes, rivers, basins, snow, sediments, rainwater, drinking 

water, aquatic organisms, plants, fungi, bacteria, eggs, in mammals milk, blood, 

adipose tissue and urine (ATSDR 2001; EPA 2008). 

To remove PCP from environment, several commonly methods are used: adsorption 

with activated carbon, burned in an approved secure area (chemical landfill), treated in 

air stripping (based on the phase transfer and non-degradation of the compound) or 

with electrokinetic technology (limited by the solubility and desorption of organic 

pollutants in soil) and closed in sealed containers (ATSDR 2001; EPA 2008). Washed 

out with chemical products or incineration at high temperatures for a long time (EPA 
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2008). Especially the latter is not widely accepted due to the toxicity of the ash and for 

emissions of other substances very dangerous (Zhang and Qiao 2002). A further low-

cost methods to removal PCP is biological depletion such as microbial degradation 

(McAllister et al. 1996; Gadd 2001; Singh 2006; Rubilar et al. 2008; Field and Sierra-

Alvarez, 2008; Juwarkar et al. 2010). 

PCP degradation is a process that can be completed through three ways: oxygenolysis, 

hydroxylation or reductive dehalogenation (McAllister et al. 1996 ; Field and Sierra-

Alvarez 2008). PCP depletion can occur by abiotic processes such as: absorption (Cea 

et al. 2005), volatilization (Crosby 1981) and photo degradation (Malato et al. 1998; 

Czaplicka 2006). In biotic degradation, the main studies focused on remediation by 

plant (Mills et al. 2006; Eapen et al. 2007), animal (Crosby 1981) and the microbial 

community (McAllister et al. 1996; Gadd 2001; Pointing 2001; Crawford et al. 2007; 

Field and Sierra-Alvarez 2008; Rubilar et al. 2008; Juwarkar et al. 2010).  

Several microorganisms showed excellent ability at tolerating and removing PCP, a 

few examples are as follow: to avoid the toxicity of PCP by excluding it from the cell, 

by converting it to a non-toxic compound or by using PCP as the sole source of carbon 

(McAllister 1996). The capacity of PCP to transform into less toxic products, depends 

on environmental conditions including, water content (Seech et al. 1991), temperature 

(Valo et al. 1985), pH level and the organic matter (Cea et al. 2005), humic substances 

(Rüttimann-Johnson and Lamar 1997), oxygen and electron acceptors (D'Angelo and 

Reddy 2000). 

Under anaerobic conditions, bacteria can transform PCP with reductive dehalogenation, 

where the chlorine atoms are sequentially replaced by hydrogen atoms until it is 

completely transformed into phenol (PH), benzoate, acetate, carbon dioxide and 

methane (Mohn and Tiedje 1992). Reducative dechlorination has been observed in 

many soils, sediments and sewage sludge (D'Angelo and Reddy 2000). Mikesell and 
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Boyd (1986) showed the complete reductive dechlorination of PCP by combined 

activities of indigenous bacteria. Fungi and bacteria can transform PCP by 

incorporating one or two oxygen atoms from the diatomic O2 using the structure of the 

contaminant in an aerobic condition through the process of oxygenase. This process 

allows the destruction of the aromatic ring and the subsequent formation of CO2 though 

a slow aerobic transformation; especially for the highly chlorinated compounds such as 

PCP (Reddy and Gold 2000). This is due to the fact that  the aromatic ring is deficient 

in electrons and less susceptible to electrophilic attack by O2 (Sahm et al. 1986). On the 

other hand, this may also be done by means of hydroxylation reactions which convert 

PCP into other compounds such as tetrachlorohydroquinone (TCHQ) (Xun and Orser 

1991; Crawford et al. 2007; Xun et al. 2010) by replacing the chlorine atom with a 

hydroxide, converting the PCP into intermediate products (Vijay et al. 2000; Crawford 

et al. 2007; Xun et al. 2010). Other processes for the degradation of PCP, using either 

fungus or bacteria, can be achieved through methylation (McAllister et al. 1996; Gadd 

2001). It occurs mainly for co-metabolism which is the particular reaction where 

specific enzymatic reactions are involved but not precisely targeted for this function. In 

fact many fungi have been shown to detoxify PCP by methylation using a specific 

lignin-degrading system, existing to serve other functions such as degradation of wood 

components such as lignin and cellulose (McAllister et al. 1996; Gadd 2001; Rubilar et 

al. 2008). Using reactions catalyzed by PH-oxidases such as laccases and peroxidases, 

fungi are able to make the primary PCP transformation into pentachloroanisole (PCA) 

(McAllister et al. 1996; Gadd 2001; Singh 2006; Rubilar et al. 2008). PCA is a less 

toxic form of PCP and because it is a compound with a more lipophilic composition it 

may be quickly bio accumulated (McAllister et al. 1996). The last process to remove 

PCP exploit the adsorption to biomass of fungi and bacteria (living or death). It has 

been found that some microbial cultures have a particular affinity for binding to PCP 

(Ahmaruzzam 2008; Rubilar et al. 2012) i.e. the adsorbing take advantage of the 
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attraction charge between PCP and microorganisms biomass. The principal degradation 

pathways, genes and associated enzymes involved in the detoxification mechanism 

against recalcitrant organic compounds like PCP for bacteria and fungi, have been 

widely studied especially in recent original paper and historical review (Crawford et al. 

2007; Rubilar et al. 2008; Xun et al. 2010; Carvalho et al. 2011; Yadid et al. 2013; 

Copley et al. 2013).  

However, numerous studies have demonstrated that under aerobic conditions, PCP can 

be efficiently reduced until a complete mineralization (Reddy and Gold 2000; Pointing 

2001; Leontievsky et al. 2002; Walter et al. 2004; Crawfor et al. 2007; Field and Sierra-

Alvarez 2008; Rubilar et al. 2008; Xun et al. 2010).  

In this paper we will focus our attention on the degradation of PCP by bacteria and 

fungi, analyzing primarily the species for a biological and chemical profile. In a second 

moment we exploring intermediate products, processes and enzyme tools involved in 

PCP degradation in microbiological culture media, soils, sludge and sediments in 

different environment conditions following the extensive review of McAllister et al. 

(1996). 

 

2.4. PCP degradation by bacteria  

In recent years, many bacterial strains isolated from every medium (soil, water, plant 

and animal) have been found useful in playing an important role in the tolerance, 

degradation and mineralization of PCP (McAllister et al. 1996; Field and Sierra-

Alvarez 2008). While tolerance to PCP is a one of the main variables and can be a good 

starting point in the process of selecting useful strains for PCP degradation, the more 

interesting and, albeit, important aspect is the capacity of the microorganisms to 

degrade and mineralize PCP to CO2, Cl
-1 

and H2O (Crawfor et al. 2007; Xun et al. 

2010). When considering all bacteria, the genus most recently studied that may have 
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the best possible potential in regards to bioremediation works are: Pseudomonas sp., 

Flavobacterium sp., Nocardioides sp., Novosphingobium sp., Desulfitobacterium sp., 

Mycobacterium sp., Sphingomonas sp., Kokuria sp., Bacillus sp., Serratia sp. and 

Acinetobacter sp. (Table 3). All these bacteria may be isolated from different substrate. 

 

2.4.1. The genus Acinetobacter 

Acinetobacter is a genus of Gram-negative bacteria. Within this genus there are a 

diverse group of organism that range from human pathogens to environment. This 

bacterium is non-motile, containing multiple compounds that exhibit an oxidative 

capacity to arrive at final mineralization (e.g. CPs) (see McAllister et al. 1996). These 

characteristics are used in various biotechnological applications, including 

bioremediation.  

Acinetobacter sp. ISTPCP-3, was isolated by Sharma et al. (2009), was capable of 

degrading PCP. An optimum growth condition for the bacterial strains in the presence 

of PCP was investigated with varying pH levels, initial PCP concentrations and 

temperatures. The results indicated elevated PCP degradation between pH levels of 6.5 

and 7.5. The optimum condition for the maximum degradation of PCP was at pH level 

7.0 degrading 95% of 50 mg L
-1 

PCP. The bacterial strains were able to completely 

degrade PCP at all concentrations lower than 100 mg L
-1

 within 48 h. At 200 mg L
-1

 

PCP, the degradation was incomplete. The optimum growth temperature for the strain 

was at 30°C. It degraded 50 mg L
-1

 PCP after only 24 h. Acinetobacter sp. ISTPCP-3 

was able to utilize PCP through an oxidative process with ortho ring-cleavage 

producing the formation of 2,3,5,6-TCHQ and 2-chloro-1,4-benzenediol (DCBE). 

Sharma and Thakur (2008) isolated two bacterial strains identified as Escherichia coli 

PCP1 and Acinetobacter sp. PCP3. The ability of these two bacterial strains to 

effectively degrade PCP was observed with an emphasis on the growth and utilization 
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of PCP. During the experiment the parameters were 96 h at 30°C, with pH levels 

between 7.2-7.4, all being in a mineral medium supplemented with 100 mg L
-1

 PCP. 

Utilization of PCP was higher in Acinetobacter sp. PCP3 which exemplified the 

capacity to utilize PCP, more than 20% within 6 h, while E. coli PCP1 utilized only 

10%. However, the most significant result observed in this study was the utilization of 

more than 80% of PCP by Acinetobacter sp. PCP3. After 96 h followed only by E. coli 

PCP1 that utilized almost 60%. The release of intermediate products such as TCHQ, 2, 

3, 4, 6-TeCP and DCBE were most present in Acinetobacter sp. PCP3 rather than E. 

coli. 

  

2.4.2. The genus Bacillus 

Bacillus is another genus capable of PCP degradation under aerobic conditions (Field 

and Sierra-Alvarez 2008). Bacteria belonging to Bacillus sp. have great skills in 

metabolizing various industrial pollutants, many of which are complex organic 

compounds. It is a model organism for laboratory and field studies ad is one of the best 

understood bacteria in terms of ecology and biology. Bacillus strains can make a 

pivotal impact on residual life of PCP.  

Karn et al (2010b) isolated by secondary pulp and paper industry sludge, Bacillus sp. 

Strains were capable of PCP bioremediation. The strains were isolated and identified 

as: Bacillus megaterium CL3, Bacillus pumilus CL5 and Bacillus thuringensis CL11. 

The microorganisms were used in PCP degradation in a mineral medium where the 

initial PCP concentration was 100 mg L
-1

. The effect of PCP on the growth and 

degrading ability of B. megaterium CL3, B. pumilus CL5 and B. thuringensis CL11 

were also examined at different concentrations: 50, 100, 200, 400, and 600 mg L
-1

 PCP. 

The degradation capability test was executed with varying parameters such as pH level 

and temperature. In mineral mediums all three isolates were able to grow and utilize 
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PCP. Degradation of PCP increased with time for all of the isolates. The strains were 

able to completely remove PCP from the medium within 168 h. All these isolates were 

able to degrade more than 90% of PCP at 400 mg L
-1

. Strains B. megaterium CL3 and 

B. thuringensis CL11 were able to remove up to 80% when grown at 600 mg L
-1 

PCP, 

compared to that of strain B. pumilus CL5, which was able to remove 91% of PCP at 

the same concentration. These results show that all Bacillus isolates have the ability to 

degrade PCP at high concentrations. All the isolates removed 90% of PCP between pH 

levels of 7.5 and 8.5 while PCP removal efficiency  significantly decreased when the 

initial pH level of the medium was 9.5. When testing diverse temperatures the removal 

of PCP was less efficient at 25 °C than at 30 °C or 37 °C for the three bacteria species. 

Tripathi et al. (2011) collected 42 isolates from treated tannery effluent in India, one 

being, identified as Bacillus sp. was tolerant at 500 µg ml
-1

 PCP. The results clearly 

indicate that there was a concomitant increase in bacterial growth during 0–48 h with as 

much as 56% of PCP was simultaneously biodegraded after 48 h of incubation. Singh 

et al. (2009) isolated and studied Bacillus cereus DQ002384 in regards to PCP 

degradation, individually and in mixed cultures with two Serratia marcescens strains, 

AY927692 and DQ002385. In an optimized growth condition, mixed cultures were 

found to be able to degrade up to 93% of PCP at concentrations of 300 mg L
-1

, on the 

other hand, when used individually B. cereus DQ002384 only degraded 62.75% of 

PCP. Many intermediate products of PCP degradation were detected, such as TCHQ. 

Chandra et al. (2006) isolated a PCP degrading bacterial strain known as B. cereus 

ITRC S6. The degradation and bacterial growth were performed in flasks containing 

300 mg L
-1

PCP and 1% glucose. The bacteria showed good tolerance and growth with 

PCP reaching the stationary phase after only 144 h of incubation. But, it showed no 

growth in absence of glucose; thus, indicating that PCP degradation was the resultant of 

co-metabolism. Bacillus cereus ITRC S6 degraded about 62.75% of PCP during 168 h 

of incubation. In any case B. cereus ITRC S6, alone or in mixed cultures was used by 
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Chandra et al. (2009) for the treatment of pulp and paper mill effluent with 

contaminated levels of 50.3 ±1 mg L
-1

 PCP, with all studies being conducted within 

168 h. The PCP reductions from the pulp and paper mill effluent using the bacterial 

stains were quite impressive, emphasizing their ability to synergic interaction. In fact, 

B. cereus ITRC S6 when used in mixed cultures degraded 90 and 100%. In both cases 

the capacity to degrade PCP was very high. Only when there was a synergic interaction 

was the PCP completely degraded. When using the effluent samples to confirm the 

ability to degrade PCP by the varied bacteria strains the products 2, 4, 6- TCP, TCHQ, 

ChLO and TriCH were found. 

 

2.4.3. The genus Desulfitobacterium 

Desulfitobacterium genus was discovered in the last decade and can dehalogenate 

organic compounds through mechanisms of reductive dehalogenation. They are 

versatile microorganisms, strictly anaerobic bacteria, that can be used with a wide 

variety of electron acceptors, such as nitrate, sulfite, metals, humic acids, and man-

made or naturally occurring halogenated organic compounds (van Elsas et al. 1997). 

Tartakovsky et al. (1999) studied the PCP degradation capacity of Desulfitobacterium 

frappieri PCP-1, adding it to a mixed bacteria community in an anaerobic bioreactor. 

There were two initial concentrations used: 1 mg L
-1

 and 100 mg L
-1

 PCP. While the 

incubation time was: 30 and 60 days.  PCP removal efficiency was 99% and the 

dechlorination efficiency was 90.5%. PH and TCP were observed as dechlorination 

intermediate products. D. frappieri PCP-1 transformed PCP to TCP, and TCP to PH 

followed by PH-mineralization, which was caused most likely by indigenous 

microorganisms. Lanthier et al. (2005) developed a PCP-degrading, methanogenic 

fixed-film reactor, by using broken granular sludge. This consortium acclimated to 

increasing concentrations of PCP. After 225 days of acclimation, the reactor was 
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performing at a very high level. They reached a PCP-degrading rate of 1.173 µM day
-1

, 

with a PCP degradation efficiency of approximately 60%. Only TCP was observed as 

an intermediate product. PCR species-specific primers highlighted a significant 

presence of Desulfitobacterium hafniense in the biofilm test during the reactor 

acclimation phase. D. hafniense cells were scattered in the biofilm and they accounted 

for 19% of the community. These results suggest that the presence of PCP-

dehalogenating D. hafniense in the biofilm was crucial for the performance of the 

reactor.  

 

2.4.4. The genus Flavobacterium 

Flavobacterium sp. are generally communal bacteria rod-shaped Gram-negative that 

live in soil and water (van Elsas et al. 1997). This genus include economically 

disastrous animal pathogens (especially  in freshwater fish) and environmental bacteria. 

Some species of Flavobacterium are capable of degrading PCP and other similar 

compounds (McAllister et al. 1996). 

Pfender et al. (1997) used Flavobacterium sp. ATCC53874 in a laboratory-scale 

bioremediation in a soil microcosm amended with 125 ppm PCP. Over 50% of the 

available PCP was quickly mineralized from soil by Flavobacterium sp. ATCC53874 

within 4 days. While after 42 days of incubation, about 65% of PCP was mineralized. 

Flavobacterium sp. ATCC 21918 in a mixed culture (in combination with Arthrobacter 

sp. ATCC 33790) was used by Pu and Cutright (2007) to evaluate the PCP 

biodegradation in two different field soils, from Columbia (CO) and New Mexico 

(NM). The soils were incubated for 56 days. In the CO soil, with the presence of 

Flavobacterium sp. ATCC 21918 as well as the mixed culture, the initial 

concentrations were at 539 mg PCP kg
-1 

soil. After 56 days in CO soil the 

biodegradation efficiencies were 12% and 25% for Flavobacterium sp. ATCC 21918 
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and the mixed culture. In NM soil, the initial concentration was 262.26 mg PCP kg
-1

 

soil for Flavobacterium sp. ATCC 21918 also in the mixed culture. The biodegradation 

in soil was 79.2% and 98.2% for Flavobacterium sp. ATCC 21918 and the mixed 

culture. Finally in the NM soil a bio stimulation experiment was carried out using a 

nutrient solution but in every case PCP degradation was 60%.  

 

2.4.5. The genus Kocuria 

Kocuria, previously classified into the genus Micrococcus (which are closely related 

phylogenetically but differ in some chemotaxonomic properties) is a common bacteria 

which is widespread. This organism is an strictly aerobic, Gram-positive coccus 

occurring in tetrads with a majority of strains being non-pathogenic (van Elsas et al. 

1997). 

Karn et al. (2011) used Kokuria sp. CL2 in the PCP degradation in a mineral medium 

batch culture at 100 mg L
-1

 PCP. During the 168 h. Kokuria sp. CL2 utilized 55%, 95% 

and 100% after 24, 96 and 168 h of incubation. During the course of the bacterial 

treatment, PCP was mineralized and the liberation of an inorganic chloride ion into the 

culture medium was observed.  The concentration of the chloride ion increased as the 

degradation of PCP continued. This study showed that the removal efficiency of PCP 

by Kokuria sp. CL2 to be very effective and can be used in the degradation of PCP 

which is contained in pulp and paper mill waste often times found in the environment. 

In the same work Kokuria sp. CL2 was used also in the PCP degradation in sludge. 

Flasks were incubated for 336 h. Tolerance and degradation tests was carried out at 100 

mg L-1 PCP. The Kokuria sp. CL2 strain was capable of mineralizing PCP. It was able 

to remove up to 58.64% PCP from the sludge. 

 



Chapter II 

 

 

29 

2.4.6. The genus Mycobacterium 

The bacteria belonging to this genus are aerobic, non-motile (except for only one 

species which has been shown to be motile) and Gram-positive microorganisms that 

includes pathogens known to cause serious diseases in mammals. The mycobacteria 

have been observed to grow in a fungsu-like when cultured in liquid medium i.e. this 

alludes the suffix myco. Thaks to enzymatic tools, this genera is widely used also in 

bioremediation studies.  

A strain widely used in PCP degradation, mostly in soil, is Mycobacterium 

chlorophenolicum (Rhodococcus chlorophenolicus). It is a Gram-positive bacterium 

non-motile well-performing at biodegrading (van Elsas et al. 1997). Furthermore M. 

chlorophenolicum in some cases can exhibit cyclic change in morphology from coccus 

to rod in the presence of a contaminant like PCP (Häggblom et al. 1998). Miethling and 

Karlson (1996) studied mineralization of 30 and 100 mg PCP Kg
-1

 soil using also 

Mycobacterium chlorophenolicum PCP1. They compared the activity of  soil without 

inoculation, determining its natural capacity of PCP mineralization. Non inoculated soil 

completely mineralized 30 mg PCP Kg
-1

 soil within 7 months, but showed little to no 

degradation activity at 100 mg PCP Kg
-1

 soil in the same time period (less than 2%). At 

30 mg PCP Kg
-1

 soil, inoculated with M. chlorophenolicum PCP1 increased the 

mineralization slightly over what the indigenous bacterial activity produced. At 100 mg 

PCP Kg
-1

 soil only 27% was mineralized within 7 and a half months. The 

mineralization of PCP in sterile and non-sterile soil microcosm with or without the 

addition of M. chlorophenolicum PCP-1 was examined by Combrisson and Jocteur 

Monrozier (1999). In this case the soil used in the study, never had a contamination of 

PCP. The soil microcosms were incubated with 22 mg PCP Kg
-1

 soil for 60 days. Only 

5% of the PCP was mineralized in the sterile soil with or without M. chlorophenolicum 

PCP-1. About 50% of PCP was mineralized in a non-sterile soil with or without the 

bacterium strains. These results suggest that the PCP was not easily accessible to M. 
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chlorophenolicura PCP-1 and that PCP mineralization could only occur if the operation 

was in a microbial consortium. 

 

2.4.7. The genus Pseudomonas 

Microorganisms widely studied are Pseudomonas sp., ubiquitous bacteria with good 

potential in bioremediation. There are many species of the genus Pseudomonas with the 

capability to use many chlorophenols i.e. Chlorophenol (CP), Dichlorophenol (DCP) 

and Trichlorophenol (TCP) as carbon and energy sources under aerobic conditions 

including PCP (McAllister et al. 1996; Field and Sierra-Alvarez 2008). Almost all 

strains of this genus that are analyzed in the following studies were isolated from PCP 

contaminated sites (soil, secondary sludge of pulp and paper mill, aquifer sediments, 

tannery effluent, groundwater) showing a good capacity of PCP tolerance and 

degradation at very high concentrations of contaminant. The most efficient strain of 

Pseudomonas sp. that was able to remove PCP was isolated by Lee et al. (1998) in 

Korea. The isolate Pseudomonas sp. Bu34 degraded almost 75% of 4000 mg L
-1 

PCP 

after 57 days and about 90% of 1000 and 2000 mg L
-1

 PCP during 30 days of 

incubation. Toxicity test (comparing acclimated and non-acclimated cells, where 

acclimated insinuates previous contact with PCP) showed in non-acclimated, the cell 

number of strain Bu34 decreased although within 24h increasing culture amount of 

PCP from 75 to 4000 mg L
-1

. In the acclimated strain the toxic effect did not appear 

until concentrations of 1000 - 4000 mg L
-1

 PCP. In fact, in acclimated experiments the 

number of cells of Pseudomonas sp. Bu34 considerably increased, achieving stationary 

phase within 10 days. Karn et al. (2010a) isolated Pseudomonas stutzeri CL7 that was 

able to utilize 90% of PCP at concentrations between 50 - 600 mg L
-1

 PCP. More than 

95% PCP degradation was recorded exceeding at 200 mg L
-1 

PCP. The isolate 

completely mineralized PCP after 120 h of incubation showing good growth in relation 

to simultaneous liberation of chloride ions. The initial concentration of the chloride ion 
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was 200 mg L
-1 

but during 160 h it reached values of 500 mg L
-1

. Furthermore radial 

and biomass growth of P. stutzeri CL7 was significantly reduced increasing the 

concentration of PCP. Kao et al. (2005) isolated Pseudomonas mendocina NSYSU by 

analyzing its capacity to degrade PCP, changing pH levels and temperature. The results 

showed that PCP was rapidly removed after only 12 days at any of the following PCP 

concentrations: 20, 40, 80 and 100 mg L
-1 

PCP. The concentration of 150 mg L
-1

 PCP, 

demonstrated a complete depletion after 18 days. No PCP removal was detected at 

concentrations of 320 mg L
-1

 PCP within the 20 days of incubation. The analysis 

indicated that the optimal capacity of degradation for P. mendocina NSYSU include the 

following conditions: slightly acidic (6 < pH< 7), aerobic and relatively moderate 

ambient temperature (20 °C< temperature < 30 °C). Finally, in microcosm experiments 

the following PCP degradation products were recovered: 2, 4, 6-TCP; 2, 4-DCP; 4-CP 

and 2-CP. Shah and Thakur (2002) tested Pseudomonas fluorescens TE3 in degradation 

test at a concentration of 100 mg L
-1

 PCP. Bacterial strains grew in the PCP within the 

first 72 h, while later declined and degraded 72% of PCP after 96 h which resulted in 

the highest release of chloride. The degradation of PCP P. fluorescens TE3 was 

conducted by using the oxidative process as indicated by the accumulation of 

degradation products such as chlorohydroquinone (CHQ), dichlorohydroquinone 

(DCHQ) and TCHQ. All which are intermediary metabolites used by the bacterial 

strain. Finally P. fluorescens TE3 showed a greater capability to degrade all the 

intermediate compounds, but the maximum utilization was only 70% of TCHQ. 

Sharma and Thakur (2008) used Pseudomonas aeruginosa PCP2 in degradation of PCP 

monitoring growth and utilization of 100 mg L
-1 

PCP. The isolate used more than 15% 

within 6 h and 65% in 96 h. Gautam et al. (2003) used Pseudomonas sp. IST103 in 

PCP degradation at 0.1 g L
-1

. It utilized PCP continuously until a maximum of 70% 

after 96 h. The PCP utilization was also supported by chloride release and ring 

cleavage. Bacterial strains Gram-negative, identified as Pseudomonas sp. were used 
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from Yu and Ward (1996) in which degradation was monitored at 100 ppm PCP, 

individually and in mixed cultures with other bacteria (Flavobacterium gleum and 

Agrobacterium radiobacter). PCP degradation using  only Pseudomonas sp. was 20%, 

while in the mixed culture was 80%. Nam et al. (2003), in Korea, isolated a new strain 

for PCP degradation in the family of Pseudomonas. It was identified as Pseudomonas 

veronii PH-05. The amount of PCP decreased in time, with a gradual increase in cell 

density. PCP‟s initial concentration of 0.3 mM decreased to 0.21 mM. About 30% of 

PCP was bio-transformed to metabolic intermediates such as tetrachlorocatechol 

(TCC). After 72 h of incubation, about 12% of PCP had been converted into TCC. A 

strain of P. fluorescens was found in South Africa by Lin et al. (2008) and was found to 

be able to degrade 200 µM PCP after only 4 days. Optimal PCP degradation conditions 

of P. fluorescens were at a pH level of 7 and a temperature of 30°C. The 

supplementation of 1% glucose stimulated the growth of the microorganism and 

enhanced the ability to utilize PCP from the effluent sample. The authors did not show 

values or percentages of the PCP that was degraded. In Finland, a contaminated site 

was found with 1 mg L
-1

 PCP, Männistö et al. (1999) isolated and tested seventeen 

bacteria strains for PCP degradation. From these bacteria, the authors isolated 

Pseudomonas amygdali K104. They evaluated the PCP degradation when the 

compound was alone or in a mixed solution which contained: 80% 2, 3, 4, 6-

tetrachlorophenol (2, 3, 4, 6-TeCP) and approximately 20% PCP. The initial 

concentration of PCP was 2 mg L
-1

, while the 2,3,4,6-TeCP was: in the first test 0.2 mg 

L
-1 

PCP. In second test only 1 mg L
-1 

PCP was used. About 60% of PCP was degraded 

while in mixed a compound with 2, 3, 4, 6-TeCP at both concentrations. When PCP 

was alone, P. amygdali K104 did not degrade the contaminate. Nakamura et al. (2004) 

used a particular genes encoding system to contrive PCP-degrading enzymes from 

Sphingomonas chlorophenolicum (Dai and Copley 2004). They introduced this gene 

into the chromosome of Pseudomonas gladioli M-2196, which achieved the 
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transformation of a strain with the ability to degrade PCP to a maximum concentration 

of 3 µl PCP. This strain degraded more than 80% PCP within 4 days. TCC was the 

metabolite in PCP degradation. 

Using indigenous microorganisms, specifically Pseudomonas sp., and nutrient 

amendments (essentially N and P), Schmidt et al. (1999) evaluated the PCP degradation 

in four batch reactor test‟s. The study had the objectives of determining the rate and 

extent of PCP removal in conditions with unamended or amended mediums with N and 

P. The first phase of the experiment was conducted during 28 days of incubation with a 

PCP initial concentration of 0.405 mg L
-1

. In the second phase, PCP degradation was 

evaluated after 32 days of incubation with a PCP initial concentration at 0.474 mg L
-1

. 

In all cases, PCP decreased from the initial concentration up to <0.002 mg L
-1

 PCP with 

the exception of the abiotic control. The results that the test showed exhibited that fact 

that PCP removal it positively affected by the presence of N and P. 

Gautam et al. (2003) isolated Pseudomonas sp. IST103 from the effluent sediment of 

paper mill in India. The strain was tested in two sets of soil microcosms containing 20 

and 40% moisture, each having the following PCP concentrations: 0, 10, 100, 500, and 

1000 mg L
-1

. Pseudomonas sp. showed significant utilization of PCP, about 80%, with 

higher cell growth after 45 days, the highest being when PCP was applied up to levels 

of  100 mg L
-1

 and a concentration of 20% moisture. At 40% moisture about 70% of 

PCP was used. Inhibitory effects on the growth of the bacterial strain and PCP 

utilization were seen at 500 and 1000 mg L
-1

 PCP concentrations for both moistures. 

Finally, a qualitative analysis with HPLC showed that TCHQ was the metabolite of 

PCP degradation in soil microcosms Pseudomonas sp. SR3 was used by Pfender et al. 

(1997) in a laboratory-scale bioremediation of soil microcosm in a bottle amended with 

175 ppm PCP. Over 50% of the available PCP was quickly mineralized from the soil 

within 4 days. After 42 days of incubation, about 65% of PCP was mineralized. 
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Nakamura et al. (2004) modified a chromosome of Pseudomonas gladioli M-2196 

using a particular genes encoding system for PCP-degrading enzymes from 

Sphingomonas chlorophenolicum described by Dai and Copley (2004) transforming 

bacterium into a strain with the ability to degrade PCP in a soil microcosm. In the soil, 

the degradation capacity of PCP was much lower. In fact, in soil after 28 days of 

incubation the degradation was of only 10% with an initial concentration of 2.5 µl. 

Sejáková et al. (2009) studied PCP contaminated soils ability to degrade autochthonous 

microorganisms and the effects of bioaugmentation brought about by the bacterial 

strain Pseudomonas testosteroni CCM 7530. The biodegradation of PCP was 

performed in soil (Fluvisol, Chernozem, and Regosol) with the presence of P. 

testosteroni CCM 7530 as well as sans additional bioaugmentation. The biodegradation 

of PCP in soil was carried out under laboratory conditions in the real soil the initial 

PCP concentration was 10 and 100 mg PCP kg
-1

 soil. For each experiment, three sets of 

soil samples were used and analyzed after 7, 17 and 24 days. The soil samples with 

concentrations of 10 mg PCP kg
-1

 soil revealed higher degradation in comparison to the 

soil with 100 PCP mg kg
-1

 soil where the degradation was already observed within 7 

days. The biodegradation of PCP in the bioaugmented soils evaluated after 24 days 

depended on other factors such as the addition of sorbent, initial PCP concentration, 

and above all the soil type. In bioaugmented Regosol and Fluvisol with a concentration 

of 10 mg PCP kg
-1

 soil, about 72–74% degradation was noted, while with Chernozem 

only 57%. Biodegradation of PCP in soils with 100 mg PCP kg
-1

 soil was remarkably 

lower (49% Regosol, 39% Chernozem and 34% Fluvisol). These PCP degradation 

values although interesting, were significantly lower in comparison to the same soils 

which were not inoculated with P. testosteroni CCM 7530 but amended with an 

organo-mineral complex or lignite. Bioaugmentation of the soil by external 

microorganisms with a PCP degradation capability did not ensure higher levels of 

pollutant being degraded. The success of decontamination and detoxification depends 
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on the soil type and more importantly on the amount of the organic soil matter. Vítková 

et al. (2011) studied the degradation capacity of autochthonous microorganisms and the 

effect on bioaugmentation by the bacterial strain Pseudomonas testosteroni CCM 7530 

and the biostimulation with lignite in a PCP contaminated soil. The biodegradation 

experiments with PCP were performed in soils (Fluvisol, Chernozem, and Arenosol) 

with the presence of an inoculum of P. testosterone CCM 7530 also without additional 

bioaugmentation. The biodegradation of PCP in soil was carried out under laboratory 

conditions at concentrations of 10 and 100 mg PCP kg
-1

 soil. For each experiment, 

three sets of soil samples were used and analyzed after 7, 14, and 21 days of incubation. 

The soil samples with concentrations of 10 mg PCP kg
-1

 soil revealed higher 

degradation in comparison to soils with concentrations of 100 mg PCP kg
-1

 soil, 

especially chernozem where the highest degradation was 78% in non-amended soil and 

55% in lignite-amended soil. Biodegradation of PCP in bioaugmented soils were 

evaluated after 21 days. It depended on the soil type and the presence of lignite. The 

lignite exhibited significant improvement of degradation, about 20% in each soil type, 

except for chernozem and aerosol at 10 mg kg
−1

 PCP, where the degradation was 29% 

and 55%. In general, the degradation of PCP was higher with the bioaugmentation 

conditions, mainly in chernozem and in lignite-amended soil. The degradation 

efficiency order is as follows: chernozem, fluvisol and arenosol. It can be concluded 

that lignite proved its protective effects, but for the most part only for the non-

degrading autochthonous micro flora. 

 

2.4.8. The genus Serratia 

Serratia is a common genus of aerobic rod-shaped bacterium (optionally anaerobic) 

that has provided possible biotechnological approaches to clean up polluted 

environments contaminated by PCP in axenic condition (Abo-Amer 2011). The most 
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common species in the genus is Serratia marcescens, an human pathogens that may 

causes nosocomial infections. 

Singh et al. (2009) confronted the synergistic PCP biodegradation of a microbial 

consortium composed by Serratia marcescens AY927692, Serratia marcescens 

DQ002385 and Bacillus cereus DQ002384 against the effectiveness of this bacterium 

alone. All experiments were carried out after 168 h in an optimized condition for 

growth of bacteria (at 30 ± 1 °C, pH 7.0 ± 0.2, 120 r.p.m.) and at different 

environmental conditions, i.e., temperature (20, 30 and 37 °C), pH (6.0, 7.0 and 9.0) 

and aeration rate (50, 120 and 200 r.p.m.). The Initial concentration was 300 mg L
-1

 

PCP. In an optimized condition for growth, the mixed culture was found to be able to 

degrade up to 93% of PCP, compared to a single S. marcescens strain AY927692 as 

well as DQ002385 which degraded PCP at percentages of 85.50% and 90.33%. Mixed 

cultures degraded 62.75% of PCP at 20 °C and 83.33% at 37°C; 70%  at pH 6 and 

75.16% at pH 9; 73.33% at 50 rpm and 91.63% at 200 rpm. However S. marcescens 

AY927692 was more skilled in PCP degradation in mixed cultures at following 

conditions: 50 rpm, 20 and 37°C, pH 6 and 9. Many intermediate products of PCP 

degradation were analyzed. The identification of TCHQ, CHYQ and 2,3,4,6-TeCP 

suggested that the degradation occurred through reductive dechlorination. The 

consortia showed better overall removal efficiencies than the single strains that used 

PCP as a carbon and energy source. Another strain of Serratia marcescens ITRC S7 

(Singh et al. 2007) was used in PCP tolerance and degradation experiments. It was 

found to be able to degrade up to 90.33% at 300 mg L
-1

 PCP with a simultaneous 

release of a chloride ion. Bacterial dechlorination occurred in mineral mediums when in 

the presence of glucose as an additional carbon and energy source, within 168 h of 

incubation. In absence of glucose the bacterium was unable to utilize PCP, indicating 

the process of co-metabolism. Finally the metabolites obtained for degradation of PCP 

were TCHQ and 6-chlorohydroquinol. Serratia marcescens ITRC S9 and a mixed 

http://en.wikipedia.org/wiki/Nosocomial_infection
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culture with Bacillus sp. ITRC S8 were used by Singh et al. (2008) in experiments 

dealing with PCP degradation of pulp paper mill effluent collected in India containing 

50.31 mg L
-1

 PCP. The degradation studies were performed in batch cultures composed 

from pulp and paper mill effluent samples, 1% glucose, 0.5% peptone and bacteria 

being individual or in a combination. Mixed cultures degrade PCP up to 94% with the 

simultaneous release of a chloride ion which was limited at the level of 1200 mg L
-1

 

after 168 h, emphasizing bacterial dechlorination in the medium. In same time span as 

well as, individually, the bacteria strains released chloride ions below 800 mg L
-1

. 

Furthermore, in mixed culture the strains showed a growth and degradation of PCP at 

higher efficiencies than when alone. The final analysis with high performance liquid 

chromatography (HPLC) of pulp paper mill effluent degradation products showed the 

formation of 2-CP and TCHQ. From pulp and paper mill effluent sludge samples, 

collected in India, Chandra et al. (2006) isolated Serratia marcescens ITRC S9. PCP 

degradation and growth exams were tested at 300 mg L
-1 

PCP and 1% glucose. S. 

marcescens ITRC S9 showed tolerance and growth with PCP reaching the stationary 

phase after 144 h of incubation. In addition, the bacterium strain did not grow in the 

absence of glucose; thus, it indicated that PCP degradation is the result of co-

metabolism. S. marcescens ITRC S9 degraded 86.6% of PCP degradation after 168 h of 

incubation. The PCP-degrading bacterial strains, S. marcescens ITRC S7 and mixed 

cultures with Bacillus cereus ITRC S6 were used by Chandra et al. (2009) for the 

treatment of pulp and paper mill effluent contaminated by many substances including 

50.3 ± 1 mg L
-1

 PCP. The bacteria were incubated in flasks with: contaminated effluent 

samples, 1.0% glucose, 0.5% peptone and 1 ml of bacterial culture (individual and 

mixed). The reduction of PCP effects from pulp paper mill effluent by the bacterial 

strains was remarkable, in respects to their synergic action. S. marcenscens ITRC S7 

and mixed cultures degraded 85% and 100%. The use of effluent samples was to 

confirm the ability of bacteria strains to degrade PCP, and then evaluate the 
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intermediate metabolites. The substances in the flasks consisted of: TCHQ, 2-CP, 6-

chlorohydroxyquinol (CHYQ) and 2, 4, 6-TCP. Shah and Thakur (2002) isolated three 

different strains capable of degrading PCP. They were identified as Serratia 

marcescens (TE1, TE2 and TE4). Degradation potential at 100 mg L
-1 

PCP was 

investigated in terms of growth, ring cleavage, chloride release and PCP utilization. 

Three strains of S. marcescens TE1, TE2 and TE4, after 96 h, were able to utilize 52%, 

59% and 68%. During this utilization of carbon a source amount of chloride had 

accumulated in the culture broth. The degradation of PCP by bacterial strains 

conducted through an oxidative process as indicated by accumulation of degraded 

products such as CHQ, DCHQ and TCHQ. All intermediary metabolites were used by 

the bacterial strains. In fact after 96 h S. marcescens TE1 was able to utilize 63% of 

CHQ. However, the amount of PCP utilized by this strain was 42%. S. marcescens TE2 

was able to remove 62% of DCHQ and 43% of PCP. S. marcescens TE4 had a greater 

capability to degrade all of the compounds, but the maximum utilization of PCP was 

68%. S. marcescens T4, T1 and T2 were able to degrade 50% and, 65% of TCHQ. 

 

2.4.9. The genus Sphingomonas 

Sphingomonas genus was separated from Pseudomonas by Yabuuchi et al. (1990) and 

it is often used in a number of bioremediation experiments especially that of CPs 

(McAllister et al. 1996; Field and Sierra-Alvarez 2008). Sphingomonas sp. in some 

cases showed a rapid mineralization of PCP thanks to the remarkable ability to break 

down hydrocarbon bonds. Dai and Copley (2004) used the Gram-negative Sphingobium 

chlorophenolicum ATCC 39723, obtained from the American Type Culture Collection, 

to improve the degradation of PCP using the genome shuffling method. PCP final 

concentrations that were used in the experiment were: 0.3 and 3 mM PCP. They 

obtained several strains of S. chlorophenolicum and all microorganisms were able to 

degrade and tolerate PCP much better than that of the wild type. They tested PCP 
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degradation of the strains in different conditions of contaminant exposure and when 

bacteria cells were pre-exposed to 50 µM of PCP, both strains, including the wild type, 

ended up degrading PCP at a higher rate after genome shuffling. The Mutant and wild 

type strains at a concentration of 0.3 mM PCP, both did a very good job of degrading 

PCP, although when they added 3mM PCP to the medium only the mutant strain had 

the ability to grow and degrade PCP. During the experiments tetrachloro-1,4-

benzoquinone (TeCBQ) was found.  McCarthy et al. (1997a) isolated from highly PCP 

contaminated soil, a strain of Sphingomonas chlorophenolica RA-2. The isolate 

degraded 100% of PCP at 250 and 300 mg L
-1

 PCP. The principal products of 

degradation were TCHQ, trichlorohydroquinone (TriCHQ) and 2,6-DCHQ. The final 

pathway has yet to be defined but it is known that this bacteria can mineralized PCP to 

CO2, H2O, and Cl
-
 (McCarthy et al.,1997b). Sphingomonas sp. UG30 was used in PCP 

mineralization and degradation by Alber et al. (2000). In an vitro experiment the 

authors analyzed the mineralization capacity at 30 mg L
-1

 PCP, adding ammonium 

phosphate or ammonium nitrate as a nitrogen source. The Optimum PCP degradation of 

about 65% occurred using ammonium phosphate. Rutgers et al. (1997) showed that 

PCP affects the growth rate of Spingomonas sp. P5 This bacterium uses PCP uniquely 

as the source of carbon and energy. This experiment was conducted in a continuous 

liquid continuous culture with on-line measurement and control of the substrate 

concentration. A Specific growth rate, showed a maximum value of 0.142 ± 0.004 h
-1

 at 

a set-point of PCP concentrations between 37 and 168 μM. At PCP concentrations 

above 168 μM, the growth rate decreased by inhibition. Further studies of the 

degradation of PCP with Spingomonas chlorophenolicum ATCC 39723 were 

conducted by Huang et al. (2008). The wild type and mutant strains (PcpF) were tested 

in PCP remediation. In the PcpF strain, they added an orf19 gene which was able to 

produce great quantities of Glutathionyl-Hydroquinone Lyase, enzyme which is very 

useful in PCP degradation. The S. chlorophenolicum ATCC 39723 wild type and PcpF 
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were cultured in the mineral medium with as well as without glutamate induced with 

100 µM PCP and incubated until PCP mineralization. The wild type and PcpF 

completely degraded 100 µM PCP within 40 min in the presence of glutamate. 

Contrarily, bacteria grew without glutamate, wild type cells degraded 100 µM PCP in 1 

h while, the PcpF only needed 4 h to complete the degradation of PCP. The PcpF strain 

was more sensitive to PCP toxicity and had a significantly decreased PCP degradation 

rate, due to the accumulation of the GS-hydroquinone. Thus, PcpF played an important 

role in PCP degradation and converted the GS-hydroquinone conjugates back to the 

intermediates of PCP degradation pathways. In addition to Pseudomonas sp., Männistö 

et al. (1999) isolated three other strains that could degrade PCP from Sphingomonas sp. 

(isolates K6, K101, and K74). The PCP degradation capacity was evaluated when the 

compound was alone or in a mixed solution that contained 80% 2, 3, 4, 6-TeCP and 

20% PCP. When PCP was present in mixed solutions with 2, 3, 4, 6-TeCP, it 

completely was degraded by strain Sphingomonas sp. K101. Contritely the strain 

spingomonas sp. K74 partially degraded to about 60%. When PCP was alone at 2 mg L
-

1
 PCP, only strain Sphingomonas sp. K6 degraded completely PCP in less than 30 days. 

This indicates that the degradation of PCP in Sphingomonas sp. K101 and K74 may 

have been induced by 2, 3, 4, 6-TeCP. On the other hand, isolate K6 degraded PCP by 

itself, but not in the mixture solution with 2, 3, 4, 6-TeCP.  

Spinghomonas chlorophenolica, notoriously has been able to degrade and dechlorinate 

PCP which was used by Yang et al. 2005 in batch reactor experiments. The authors 

showed how a PCP pre exposition of S. chlorophenolica increased the ability to 

degrade the contaminant. In fact when the initial PCP concentration was at 380 mg L
-1

, 

the S. chlorophenolica completely degraded the PCP within 45.6 h, increasing the PCP 

concentration from 560 to 720 mg L
-1

, efficiently decreased PCP to 34.7% and 58.9% 

during 165 h of incubation. On the other hand, without a pre-exposition between the 

organism and PCP, the contaminant was removed completely within 89.2 h at 250 mg 
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L
-1

 PCP. However, the removal efficiency rose to 89%, after 110.8 h, at 400 mg L
-1

. If 

the initial PCP concentration was increased above 600 mg L
-1

, S. chlorophenolica 

could not degraded PCP. Strains of Sphingomonas sp. UG30 were used by Alber et al. 

(2000) in soil perfusion bioreactors in PCP degradation tests. The authors analyzed the 

PCP mineralization capacity of the bacterium in a glucose medium with ammonium 

phosphate or ammonium nitrate as a nitrogen source. In this experiment, bioreactors 

were used at three different PCP concentrations 100, 225 and 500 mg PCP Kg
-1

 soil. 

The first two concentrations obtained degradation of 80% and 99%. At 500 mg PCP 

Kg
-1

 soil there was no degradation. Another test was conducted by Yang and Lee 

(2008) using a pure PCP-degrading bacterium strain, identified as Sphingomonas 

chlorophenolica PCP-1, isolated from PCP-contaminated soils in Taiwan. This 

bacterium was tested in a batch reactors with contaminated water by 160 mg L
-1 

PCP. 

Depletion of the PCP and the chloride release were measured at different bacterial 

biomasses (0.14, 0.28, 0.42 and 0.54 g L
-1

). The results indicated that at 160 mg L
−1

 

PCP was completely degraded within 25 h under different bacterial biomass‟ (dry 

weight) in the groundwater. It was evident as they increased the biomass of the 

bacteria, caused a decrease in the degradation of PCP and ca. 110 mg L
-1

 chloride was 

released by each bacterial concentration within the same period of time. 

Alber et al. (2000) used Sphingomonas sp. UG30 in PCP mineralization and 

degradation in statically incubated soil. Sphingomonas sp. UG30 was tested at three 

different PCP concentrations (100, 225 and 500 mg PCP Kg
-1

 soil) during 22 days of 

incubation. For the first two concentrations the results showed a degradation of 25% 

and 65%. At 500 mg PCP Kg
-1 

soil there was no degradation. Sphingomonas 

chlorophenolica RA2 was used by Colores and Schmidt (2005) in a recovery treatment 

of laboratory contaminated soil with the following concentrations: 0, 10, 50, 100, or 

300 ppm PCP. S. chlorophenolica RA2 degraded only 10% in the soil contaminated 

with 10 ppm PCP, reaching 30% after three weeks of incubation. No degradation was 
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noted at any other concentrations. Miethling and Karlson (1996) studied PCP 

mineralization in a sample of soil from Denmark with levels of 30 and 100 mg PCP Kg
-

1
 soil after inoculation with S. chlorophenolica RA2. They compared the result with the 

activity of the same soil without inoculation, determining its natural capacity for PCP 

mineralization. None of the inoculated soils completely mineralized 30 mg PCP Kg
-1

 

soil within 7 months but showed little to no degradation activity at 100 mg Kg
-1

 in the 

same time period (less than 2%). In soil inoculated with 30 mg PCP Kg
-1

 soil, S. 

chlorophenolica RA2 reduced the mineralization time drastically to only 1 month. At 

100 mg Kg
-1

, mineralization was slower because of the high PCP toxicity but 

approached completion within 7 and a half months. The inhibition could have been 

overcome by addition of sawdust (1 g Kg
-1

 soil), which was shown to increase the 

mineralization rate. 

 

2.4.10. Other genera 

Other bacteria showed a good tolerance and ability to degrade PCP, even at low initial 

concentrations. They were rarely studied in the presence of PCP, although it would be 

useful to consider them for future research.  

Verma and Singh (2013) have isolated a bacteria identified as Brevibacterium casei 

(TVS-3) able to degrade 1000 mg L
-1

 PCP concentration. The bacterium degraded 72% 

PCP within 168 h at pH 7.5 and 35 °C temperature. After 168 h B. casei showed 

maximum PCP utilization of 720 mg L
-1

 and released 900 mg L
-1

 chloride ions. Finally 

B. casei to carried out the maximum depletion of PCP, about 82%, at pH 8.0 and 35 °C 

within 168 h. The predominant Gram-negative bacterial strain, identified as 

Agrobacterium radiobacter, was used by Yu and Ward (1996) in PCP degradation 

tests, individually and in a combination with Pseudomonas sp. After 4 days of 

incubation at 100 ppm PCP, the capacity of PCP degraded by individual isolates was 
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lower than observed when the strains were combined. In fact, A. radiobacter and the 

mixed culture degraded 60% and 80%, respectively. Finally, the mass spectrum 

analysis showed that a principal metabolite of PCP degradation produced by 

Pseudomonas sp. and A. radiobacter was tetrachlorophenol (TeCP). From mushroom 

compost, Webb et al. (2001) isolated a strain known as Saccharomonospora viridis 

which was tested to degrade at concentrations of 10 mg L
-1 

PCP. The experiment was 

carried out after 10 days of incubation but within only eight days all of the PCP was 

degraded. The authors highlighted that S. viridis does not possess the ability to degrade 

PCP but rather transform it into other compost. They proposed this initial pathway for 

PCP transformation: PCP → TCHQ → TeCBQ. When the PCP concentration was 

above 20 mg L
-1

 it resulted in being too toxic for S. viridis. Adrian et. al (2007) used 

PCP as electron acceptors using Dehalococcoides sp. (strains 195 and CBDB1) 

demonstrating that this bacterium could produce a reductive dechlorination of the 

compounds. Only strains Dehalococcoides sp. CBDB1 dechlorinated PCP completely 

and quite rapidly, within one week of incubation. PCP dechlorination produced a 

mixture of 3,5-DCP, 3,4-DCP, 2,4-DCP, 3-CP and 4-CP, indicating that several 

degradation pathways were catalyzed. Männistö et al. (1999) isolated and tested the 

degradation capabilities of PCP with strains Nocardioides sp. (isolates K44 and K103) 

and Candidatus comitans K112. In these experiments, Männistö et al. evaluated the 

PCP degradation capacity when the compound was independent or mixed in a solution 

which contained 80% 2, 3, 4, 6-TeCP and about 20% PCP. The mixed solution of 2, 3, 

4, 6-TeCP, PCP ended up completely degraded by strains. When PCP was independent 

at 2 mg L
-1

, the strain C. comitans K112 degraded the PCP completely within the 28 

days of incubation. Nocardioides sp. K44 and K103 did not degrade the PCP when 

alone, although they did degraded it completely when mixed with 2, 3, 4, 6-TeCP. This 

indicates that the degradation of PCP may have been induced by 2, 3, 4, 6-TeCP. 

Novosphingobium sp. MT1 is a bacteria which was isolated in contaminated water and 
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sand in Finland, presenting a mixture of CP contaminant (Tiirola et al. 2002). The 

substrate was spiked four times with a CPs mixture containing 2,4,6,TCP, 2,3,4,6-

TeCP, and PCP, which was the approximate ratios as in the influent groundwater where 

the bacterium was isolated. Novosphingobium sp. MT1 strain showed a good PCP 

degradation capacity. It completely degraded the PCP after the first spiking (about 150 

h) which continued to have a very high level of degradation even after the other three 

spikings. 

Anaerobic bacteria Actinomycetes sp., Streptacidiphilus sp., aerobic Rhodococcus 

erythropolis, Amycolatopsis sp. and Gordonia sp. were found to be tolerant and able to 

degrade PCP in contaminated effluent in a biocatode by Huang et al. (2012). These 

bacteria, in a mixed culture, were tested at different initial PCP concentrations (5, 10, 

20, 30 and 40 mg L
-1

) with the variable of time being 100 h of incubation. Under PCP 

concentrations of 20 mg L
-1

, the PCP was completely degraded within the 100 h. While 

at 30 and 40 mg L
-1

 only 15% and 50% respectively. The maximum PCP degradation 

rate in the cathode was 0.263 ± 0.05 mg/L-h (51.5 mg/g VSS-h) with 60.6% reduction 

of PCP from 31.2 ± 2.1 mg L
-1

 to 12.3 ± 2.1 mg L
-1

 after 3 days. The abiotic control 

showed a PCP loss of 10.6%, due to the chemical reduction, adsorption, measurement 

errors and diffusion through the membrane into the anode chamber. Chloride 

accumulated in the solution was in proportion to the PCP removed, demonstrating 

microbial dechlorination. At an initial PCP concentration of 30 mg L
-1

, chloride ions 

were produced after 72 h, while there was less Cl
-
 released at 40 mg L

-1
 PCP. Probably 

due to the inhibition of microorganisms at this concentration. At a high temperature of 

50 °C and pH level of 6 the PCP degradation improved. Principal PCP degradation 

product obtained by experiments were: TCHQ,  TriCHQ and 2,6- DCHQ. The specific 

role of the individual microorganism was not analyzed but in the complex they were 

able to mineralize PCP in the biocatode.  
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2.4.11. Bacteria general discussion 

The PCP biodegradability in microbiological culture media has been considered in 

many works, being the initial step for whatever bioremediation work. The majority of 

these studies are focused on metabolism of single organisms, mixed cultures and 

degradation pathways under different conditions (pollutant concentration, temperature, 

pH level and moisture). The Gram-negative Brevibacterium casei (Verma and Singh 

2012) was the most resistant bacterium able to degrade very high PCP concentration. 

This bacterium may be potentially useful in PCP bioremediation processes, but despite 

that, in bibliography there is an only one study in PCP depletion. It might be interesting 

to increase the knowledge on the interaction between this bacterium and PCP. 

Pseudomonas sp. and Sphingomonas sp. are certainly the most tolerant of PCP in 

respects to bacteria which degrades this compound in the many studies on 

bioremediation. These two genera have showed excellent capacity also in other 

pollutants degradation and several of the new genetic studies are focused on them. 

They are able to remove very high initial concentrations of PCP. A large number of 

species belonging to Pseudomonas sp. has been widely used. Pseudomonas fluorescens, 

versatile bacteria with biocontrol properties, has really paved the way for considerable 

possibilities in bioremediation strategy. To protect the roots of some plant species 

against parasitic fungi and bacteria (Haas and Défago 2005). Specific considerations 

must be thought for Pseudomonas aeruginosa. In fact, this bacterium, despite the 

ability to degrade PCP (although slowly), has some negative attributes like species that 

can cause disease in animals (including humans) and in plants (He et al. 2004). 

Decidedly the most innocuous genus listed is Pseudomonas (e.g. P. mendocina, P. 

stutzeri and P. veronii). Essentially for the second genus, Sphingomonas 

chlorophenolica RA-2 is the species that appears in most of the works. Pseudomonas 

sp. and Sphingomonas sp. are able to mineralize PCP and the intermediate products of 

the PCP biodegradation are: TCHQ (Shah and Thakur 2002; McCarthy et al. 1997a), 
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TCC (Nam et al. 2003), CPs (Kao et al. 2005) and CHQs (Shah and Thakur 2002; 

McCarthy et al. 1997a) (Table 3). This bacteria has shown excellent results which have 

been highlighted Bacillus sp. Which has the ability to degrade PCP very quickly, either 

individually or when used in mixed cultures with other Bacillus or with 

microorganisms of other genera. However, a very important point to remember is that 

in the Bacillus genus, there is Bacillus cereus which is responsible for a minority of 

food-borne illnesses, causing severe nausea, vomiting and diarrhea (Kotiranta et al. 

2000). Others strains of genus which are reported in this review appear to be extremely 

weak parasites. The intermediate products of the PCP biodegradation for Bacillus sp. 

are TCHQ (Singh et al. 2009). Serratia marcescens was often isolated from many sites 

highly contaminated with PCP showing a formidable ability in the degradation of PCP 

caused by a reductive dechlorination. The intermediate products of the PCP 

biodegradation for Serratia sp. are TCHQ and CHQs (Shah and Thakur 2002 Singh et 

al. 2008; 2009). If it is a naturally occurring reaction, it has potential to be applied to 

the treatments of PCP contaminated sites e.g. pulp, paper and mill effluent. Although a 

lower possible use in the bioagumentation processes because it is a human pathogen, 

which has been linked to infections in the urinary tract and skin (Hejazi and Falkiner 

1997). When used in a mixed culture (e.g. Bacillus sp.) showed a good synergistic 

effect, which increased the percentage of the PCP degraded. Arthobacter sp. also 

showed a high level of tolerance and degradation even though the best performance of 

PCP removal was only in mixed cultures. The genus Nocardioides was not able to 

degrade PCP when it was alone, but only in the presence of another pollutant despite 

low initial concentration. Candidatus comitans and Escherichia coli showed a slow 

capacity in degrading PCP opposed to Acinetobacter sp.,  Dehalococcoides sp., 

Kokuria sp. and Novosphingobium sp. which showed a higher capacity of tolerance and 

degradation to PCP, as well as being quicker than most other strains. 
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Saccharomonospora viridis degraded at a low PCP concentration, and was not able to 

mineralize PCP values of 20 mg L-1 are already toxic to these species. 

In engineered systems there were few studies available on the biological treatment of 

PCP. This system in a short time could result an interesting practical system for 

bioremediation of PCP-contaminated water and soil samples (Table 3); although in 

some cases they can result very expensive. Sphingomonas chlorophenolica was the best 

microorganism in dealing with PCP degradation in the batch reactor tests. It was able to 

remove very high concentrations of PCP very quickly. The threshold of tolerance to 

this pollutant appears to be around 500 mg Kg
-1

 without pre exposition to PCP. At this 

value the degradation capacity seem to be inefficient. Moreover, with a PCP pre-

contact, S. chlorophenolica can tolerate and degrade concentrations around of 750 mg 

Kg
-1

 (Yang et al. 2005; Lanthier et al. 2005). Arthrobacter sp. showed a high capacity 

in regards to PCP degradation but it was rather slow (Edgehill 1996). 

Desulfitobacterium sp., which is one of the most versatile strains, could possibly be on 

the best candidates (having analyzed both the species) for developing the 

bioremediation processes (Tartakovsky et al. 1999). This bacterium produced TCP as 

intermediate products of PCP biodegradation. Mixed cultures generally mineralized 

concentrations of PCP at values of no more than 20 mg L
-1

. This ability to completely 

mineralize the PCP and its metabolites, depends essentially on the type of microbial 

consortium and their synergistic effects. In presence of amendments such as N and P, 

the ability to degrade PCP, the bacteria strains greatly increased (e.g. S. 

chlorophenolica and Pseudomonas sp.). 

Physical, chemical, and biological studies on PCP biodegradation in contaminated soil, 

effluent and sludge‟s represent an fundamental topic on which much research has been 

focused (Table 3). Various bacteria have been employed to remove PCP, and obtain 

complete mineralization. Inoculation with PCP degraders may, in some cases, be the 
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only way for microbial cleanup of contaminated sites. However, the success of PCP 

bioremediation is affected by several factors, including the species of microorganisms 

and site properties (soil characteristics, environmental conditions, pollutants amount 

and etc). When contaminants such as PCP enter into the soil or water they are subjected 

to a high number of bio-chemicals processes (Castillo and Bárcenas 1998; McAllister 

1996; Field and Sierra-Alvarez 2008). A contaminant may be lost at different rates and 

to different phases (Stokes et al., 2006). The Remaining fraction present in the soil is 

not completely available to all organisms, because they can be sequestered by organic 

and inorganic compounds. Fluvisol, Chernozem, and Arenosol studied by Vítková et al. 

(2011) which showed a different ability in PCP bioremediation. It was widely noted 

that a good success of decontamination and detoxification depends mainly on the 

amount of organic soil matter and other parameters as seen also by Scelza et al. (2008). 

The species belonging to genus Spingomonas and Pseudomonas showed an excellent 

ability to metabolize PCP also at very high initial concentrations; even at 500 mg PCP 

Kg
-1

 soil was inhibited. Exactly as in microbiological liquid media, the genus  

Pseudomonas biodegrade PCP in TCHQ. PCP mineralization can in many cases be 

increased and accelerated (also in less time), above all when there are in the optimal 

conditions for growth. Mycobacterium chlorophenolicum and Kokuria sp. showed a 

high level of tolerance and degradation to PCP. Finally, Flavobacterium sp. had the 

ability to degrade and mineralize high PCP concentrations but this capacity was 

dependent on the type of soil in which it was tested and the presence of other 

microorganisms. In fact this genus in the interaction with other microorganisms often 

tends to have a secondary role.   
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2.5.  PCP degradation by fungi 

Only during the last forty years PCP fungal bioremediation received some 

consideration (McAllister et al. 1996; Gadd 2001; Pointing 2001; Singh 2006; Field 

and Sierra-Alvarez 2008; Rubilar et al. 2008). Currently degradation of PCP by 

Ascomycetes, Basidiomycetes, yeast, Deuteromycetes and Zygomycetes has been 

widely studied (McAllister et al. 1996; Gadd 2001; Singh 2006). Ascomycetes showed 

good results as the disappearance of PCP occurs both in PH-oxidase and oxidase ways. 

Basidiomycetes deplete PCP moderately, irrespective of high producers of PH-oxidase. 

Few studies occurs in yeast and other fungi or simil-fungi and PH-oxidase are not 

produced. Unlike bacteria, fungi do not normally use PCP as source of carbon or 

energy. PCP degradation is not the consequence of specific enzymes used for these 

functions. In fact, in fungi, this process occurs through co-metabolic reactions using 

fungal enzymes, which generally were slotted for other purposes. The biodegradation 

capacity of some fungi for PCP has shown that they can tolerant very high 

concentrations such as 500 – 1000 mg L
-1

 PCP. Even if fungi are not completely 

efficient in respect to PCP degradation in a liquid culture or soil (McAllister et al. 

1996; Gadd 2001). The Fungi groups most commonly used in experiments of PCP 

degradation are Basidiomycetes agents of White and Brown-rot. Among these, the 

genus Phanerochaete, Anthracophyllum and Trametes have received more attention 

due to their better results, even when a number of other groups of fungi were tested in 

PCP degradation: Zygomycetes, Ascomycetes and Deuteromycetes (Table 4). 

 

2.5.1. The genus Anthracophyllum 

Over the last ten years, white-rot fungi widely used in bioremediation experiments is 

Anthracophyllum discolor.  It is a Chilean fungus from Patagonia which has showed an 

excellent capacity in bioremediation versus several toxic compounds such as PCP and 
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Polycyclic aromatic hydrocarbon (PAH) (Diez et al. 2010). In this genus, which is 

widespread in tropical regions, there are only ten species until now known. 

Tortella et al. (2008) evaluated Anthracophyllum discolor Sp4 capacity in the 

biodegradation of some CP compounds which included PCP at 25 mg L
-1

. After 15 

days of incubation, A. discolor  Sp4 degraded 96% of PCP. PCP degradation by fungi 

in a liquid medium was correlated only by the ligninolytic enzyme production. 

Maximum production of manganese peroxidase was detected in A. discolor  Sp4 

between 3 and 6 days of incubation while lignin peroxidase was produced between 6 

and 9 days of incubation. Laccase was not detected. 

During the last few years Anthracophyllum discolor has been widely used in PCP 

degradation in soil. Rubilar et al. (2011) investigated the bioremediation capacity in 

Chilean andisol soil contaminated with 250 and 350 mg PCP Kg
-1

 soil using a strain of 

A.discolor. The fungus strain was used in experiments as free and immobilized in 

wheat grains (a lignocellulosic material). At  initial PCP concentrations of 250 and 350 

mg Kg
-1

 soil, immobilized A. discolor  removed 80% and 93.2%. In the biotic 

controlled soil only 50% and 62.6%  of PCP was removed at levels of 250 and 350 mg 

PCP Kg
-1

 soil. This difference in PCP removal could be due to the synergistic effects 

occurring between fungi and autochthonous microorganisms. In the sterile soil without 

fungus (the abiotic control), for both PCP concentrations tested the amount of pollutant 

removed was 40%, mainly due to the previously mentioned characteristics of the 

Chilean Andisols which have particularly efficient sorbents for CPs (Cea et al. 2005). 

Rubilar et al. (2007) carried out a series of laboratory-based studies to determine the 

range of PCP concentration in soils (100, 250 and 350 mg PCP Kg
-1

 of soil) which 

could be degraded in slurry soil flasks by Anthracophyllum discolor. The fungus isolate 

degraded all PCP but only at the initial concentration of 100 mg PCP Kg
-1

 soil, while 

for the other two concentrations 250 and 350 mg PCP Kg
-1

 soil around 50% of the 
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contaminant was recovered. In A. discolor , PCP degradation metabolites were 

evaluated using GC/MS analysis. The main reaction of PCP degradation was 

methylation with the production of PCA. The second reaction identified was 

hydroxylation in the form of TCHQ, which is then methylated to generate tetrachloro-

1, 4-dimethoxybenzene, followed by successive dechlorination reactions to form 2, 5-

dichloro-1, 4-dimethoxybenzene and 2-chloro-1, 4-dimethoxybenzene. A series of 

demethoxylation, carboxylation, reduction, and methylation reactions were conducted 

to form 3, 4-dimethoxybenzaldehyde and then the formation of CO2 for the complete 

mineralization. Cea et al. (2010) reported a bioaugmentation essay with 

Anthracophyllum discolor in a soil contaminated with PCP and evaluated its impact on 

the microbial soil community. In this experiment three types of microcosm soils 

(contaminated with 250 mg PCP Kg
-1

 soil) were created: fresh soil, fresh soil plus 

wheat straw and fresh soil plus wheat straw inoculated with A. discolor . Manganese 

peroxidase and laccase activity were higher in the presence of the white-rot fungus 

while the PCP that was removed after 28 day of incubation was 93.6% for the  fresh 

soil plus wheat straw and about 87% in the fresh soil plus wheat straw inoculated with 

A. discolor. 

 

2.5.2. The genus Mucor 

Members of the genus Mucor were extensively studied for interesting human and plant 

pathology. It is found commonly in soil, especially on rotten vegetable matter, and has 

showed discrete ability for direct contaminant degradation such as PCP.  

Szewczyk et al. (2003) tested the growth and degradation abilities of fifteen fungal 

strains isolated from contaminated areas, in the presence of compounds such as PCP. 

Among these strains there was Mucor ramosissimus IM 6203 that in the PCP 

degradation process released an intermediate product of  2, 3, 5, 6-TCHQ. The PCP 
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degradation by M. ramosissimus IM 6203 was improved significantly in a medium with 

overworked oil where only 8.3% of PCP and 4.3% of 2,3,5,6-TCHQ were found after 7 

days of incubation, starting from 10 mg L
-1

PCP. Szewczyk and Dlugoski (2009) 

evaluated PCP degradation and metabolites formed in cultures of Mucor ramosissimus 

IM 6203 with different optimized mediums. After 240 h, 90% of PCP was removed 

from an initial concentration of 10 mg L
-1 

and the following metabolites were 

identified: 2,3,5,6-TCHQ and some anisoles such as pentachloromethoxybenzene. 

Carvalho et al. 2011 detected the capacity of Mucor plumbeus DSM 16513 to remove 

PCP in a liquid culture and its pathway of PCP degradation using liquid 

chromatography coupled with quadruple time-of-flight mass spectrometry. In PCP 

degradation experiments the presence or absence of glucose was a very important 

variable. When glucose was added to the culture, all PCP was removed during 4 days 

of incubation. While, after 60 days without glucose only 80% was degraded. The 

pathway of PCP degradation exhibited the presence of TCHQ, TriCHQ and phase II-

conjugated metabolites. Carvalho et al. (2009) studied the co- and direct metabolism of 

PCP using Mucor plumbeus DSM 16513 in experiments of percentage of PCP decay, 

under co-metabolic conditions with PCP concentration being between 5 and 15 mg L
-1

.  

M. plumbeus DSM 16513 was able to degrade PCP while at 15 mg L
-1

 the strains failed 

biotransformation of PCP. Experiments of PCP decay in fungal cultures under 

metabolic conditions showed that M. plumbeus DSM 16513 removed 85% of PCP up 

to 5 mg L
-1

 (maximum value tested). 

 

2.5.3. The genus Penicillium  

In the genus Penicillum there are ubiquitous soil fungi widespread in all world area. It 

is commonly present wherever organic material is available. During the last thirty 

years, Penicillium spp. have demonstrated remarkable ability to degrade different 
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xenobiotic compounds and could be potentially interesting for the development of 

bioremediation processes for pollutant transformation/mineralization.  

Carvalho et al. (2009) studied the co- and direct metabolism of PCP by Penicillium 

fungal strains isolated from the cork-colonizing community. The species that were 

isolated are: P. glabrum DSM 16516, P. olsonii DSM 16515, Eupenicillium hirayamae 

(anamorph state of P. hirayamae), P. brevicompactum, P. glandicola, P. variabile, P. 

diversum, P. decumbens, P. janczewskii, P.corylophilum, P. adametzii, P.fennelliae and 

P. restrictum. In experiments of mycelium growth and PCP decay (%) under co-

metabolic conditions with PCP concentrations being between 5 and 20 mg L
-1

, all fungi 

were able to degrade PCP. But the maximum capacity to remove PCP, at 20 mg L
-1

, 

was detected only by P. brevicompactum, P. olsonii DSM 16515 and P. janczewskii, 

with PCP decay of 56% and 59%. Experiments dealing with PCP decay in fungal 

cultures under metabolic conditions showed that P. glandicola and P. janczewskii 

removed PCP until 5 mg L
-1

 (maximum value tested) for a result of 34%,67% , and 

85%. Only in co-metabolic conditions were produced and identified a PCP metabolic 

intermediate. CHQ was recovered in the cultures of P. corylophilum, P. glabrum DSM 

16516, P. glandicola, P. janczewskii and P. variabile; 2,6-dichloro-1,4-benzoquinone 

(DCBQ) in the cultures of P. decumbens; and finally TeCBQ in the cultures of P. 

adametzii. Taseli and Gokcay (2005) isolated and studied a Penicillium camemberti for 

its ability to degrade PCP as well as other chlorinated compounds. The batch 

experiments were conducted in shake flasks using PCP as a co-substrate and P. 

camemberti removed around 56% PCP. Experiments in shake flasks , produced 86% of 

the PCP removal after 21 days. 
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2.5.4. The genus Phanerochaete 

The genus Phanerochaete is a widespread group of saprophytic and wood decay fungi. 

It is a secondary decomposer of both hardwood and softwood. This ability has 

generated much interest in bioremediation process as an environmentally benign 

alternative to the chemical bleaching. 

It has been shown to detoxify PCP by the methylation process using its lignin-

degrading enzymatic tools (McAllister et al. 1996; Gadd 2001; Field and Sierra-

Alvarez 2008). This fungus has shown extensive and rapid conversion of PCP in other 

compounds. Aiken and Logan 1996 studied the degradation of 250 mg L
-1

 PCP by 

Phanerochaete chrysosporium BMK-F-1767 in a static flask culture using ammonium 

lignosulphonates (waste product of the papermill industry) as a carbon and nitrogen 

source. When ammonium lignosulphonates was used as the nitrogen source, PCP 

removal was 75%. When ammonium lignosulphonates was used as a carbon source, 

PCP removal was 72%. When P. chrysosporium BMK-F-1767 grew on a nitrogen-

limited glucose ammonia medium, it removed 95% of PCP. Ryu et al. (2000) 

investigated the roles and activity of lignin peroxidase, manganese peroxidase and 

laccase in biodegradation of 30 mg L
-1 

PCP using Phanerochaete chrysosporium IFO 

31249. After 15 days P. chrysosporium FO 31249 showed low enzymatic activity 

following a degradation of 72.6 %. Chiu et al. (1998) studied the tolerance, bio-sorption 

and biodegradation capacity (these last two activities in relation to the fungi biomass 

dry wet) in the presence of 25 mg L
-1

 PCP for Phanerochaete chrysosporium M1. The 

tolerance to PCP was very high for P. chrysosporium M1 as well as the bio-sorption 

and biodegradation capacity. Tortella et al. (2008) carried out a study on  the ability of 

Phanerochaete chrysosporium CECT-2798 in a biodegradation test with 25 mg L
-1

 

PCP. After 15 days of incubation, P. chrysosporium degraded 72% of PCP. Randy and 

Gold (2000) evaluated intermediate products involved in PCP degradation with 

Phanerochaete chrysosporium OGC101. After 30 hours of incubation, 10% of PCP 
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was degraded in a nitrogen-limited medium while 90% of PCP was degraded in 

optimum nutrient conditions. The pathways for the degradation of PCP were elucidated 

by the characterization of the fungal metabolites and oxidation products generated by 

purified lignin peroxidase and manganese peroxidase. The Oxidative dechlorination 

reaction of PCP produced TeCBQ. The quinone was subsequently reduced to 

tetrachlorodihydroxybenzene, that with another four successive reductive 

dechlorinations produced 1, 4-hydroquinone and latter formed 1, 2, 4-

trihydroxybenzene. Alternatively TeCBQ was converted to 2, 3, 5-

trichlorotrihydroxybenzene, which undergoes successive reductive dechlorinations, 

which produced 1, 2, 4-trihydroxybenzene. Finally, 1, 2, 4-trihydroxybenzene in each 

of the pathways was ring-cleaved, with subsequent degradation to CO2. 

The genus most frequently used for PCP remediation in soil, sediment and sludge has 

been Phanerochaete. Rubilar et al. (2011) investigated the bioremediation capacity in 

Chilean andisol soil contaminated with 250 and 350 mg PCP Kg
-1

 soil using 

Phanerochaete chrysosporium CECT-2798. The fungus strain was incorporated as free 

and immobilized in wheat grains, a lignocellulosic material. A PCP concentration of 

250 and 350 mg PCP Kg
-1

soil, P. chrysosporium CECT-2798 removed 65% and 79%. 

In the controlled soil with wheat grains only 50% and 62.6% were removed at 250 and 

350 mg PCP Kg
-1

 soil. In the sterile soil without fungus (the abiotic control), for both 

PCP concentrations 250 and 350 mg PCP Kg
-1

 soil the amount of pollutant removed 

was 40%, probably due to the Chilean Andisols, which are particularly efficient 

sorbents for CPs, mainly the allophane–ferrihydrite associations with organic matter 

(Cea et al. 2005). Pfender et al. (1997) used in a laboratory-scale bioremediation in a 

soil microcosm in a bottle amended with 175 ppm PCP, as well as two bacteria other 

than just Phanerochaete sordida. Over 35% of the available PCP was transformed into 

PCA after 56 days, while only 10% was mineralized. Okeke et al. (1996) determined 

the temperature, soil moisture potential and initial pH levels might influence the 
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transformation of PCP by Phanerochaete chrysosporium BKM 1767. This fungal strain 

showed the highest levels of degradation, about 75% at 25°C and with the soil pH level 

of 4.0. On the other hand, the extent of PCP degradation related to soil moisture content 

was higher for P. chrysosporium BKM 1767, about 85%. Jiang et al. (2006) 

investigated the reduction of PCP in contaminated soil inoculating it with free and 

immobilized Phanerochaete chrysosporium BKM-F-1767. Parallel beakers were 

adopted with the same components of soil, yard waste, straw, bran for aerated 

composting and 100 mg PCP Kg
-1

 soil. In the soil inoculated with P. chrysosporium 

BKM-F-1767 (free and immobilized), 90% of the PCP was removed during the 60 days 

of incubation, while in the same time span the controlled soil which was without 

inoculation only degraded 50% of PCP. Leštan and Lamar (1996) evaluated the PCP 

degradation in a soil microcosm of Phanerochaete chrysosporium ATCC 42725 and 

Phanerochaete sordida HHB-8922-Sp. After 4 weeks of incubation in a soil artificially 

contaminated with 100 µg g
-1

 PCP and inoculated with a 3% pelleted fungal inoculums, 

both fungi showed a good capacity to convert PCP to PCA. P. sordida HHB-8922-Sp 

removed 92% of the PCP at initial concentrations. PCP methylation was reported for P. 

chrysosporium ATCC 42725 and P. sordida HHB-8922-Sp, which transformed PCP to 

PCA.  

 

2.5.5. The genus Pleurotus 

Pleurotus is a genus that includes some eaten mushrooms that are found in both 

tropical and temperate climates throughout the world. It has been used widely 

in mycoremediation of pollutants such as petroleum, PAH and CPs.  

Law et al. (2003) used a spent compost of oyster mushroom Pleurotus pulmonarius in 

PCP degradation and analysis of the processes of biodegradation of a xenobiotic 

compound. With only 5% of spent compost mushroom of P. pulmonarius removed 

http://en.wikipedia.org/wiki/Mycoremediation
http://en.wikipedia.org/wiki/Petroleum
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88.9% (18.8% biosorption and 70.1% biodegradation) of 2 mg L
-1 

PCP. Further 

increases in the amount of fungi showed no improvement in the total removal 

efficiency. For concentrations ranging from 10 to 100 mg L
-1

 PCP, the trends of P. 

pulmonarius to remove PCP efficiently was between 60% and 80%. Degradation of 

PCP with P. pulmonarius involves dechlorination, methylation, carboxylation and ring 

cleavage with abundant release especially of TCHQ and TCP. Ryu et al. (2000) 

investigated the roles and trend of lignin peroxidase, manganese peroxidase and laccase 

in the biodegradation of 30 mg L
-1

 PCP using Pleurotus sp. KFCC 10943. After 15 

days of incubation Pleurotus sp. KFCC 10943 showed  low enzymatic activity but 

degraded 70.33% of PCP. Chiu et al. (1998) detected biodegradation capacity in the 

presence of 25 mg L
-1 

PCP for Pleurotus pulmonarius PL-27. The strain M51 and P. 

pulmonarius PL-27 showed the highest degradative capacity, it being 13 and 10 mg 

PCP for a gram of mycelium dry wet. Chloroanisols were PCP breakdown 

intermediates (Table 4). de Souza et al. (2011) investigated PCP removal and 

adsorption by Pleurotus pulmonarius CCB19 in submerged cultures, formed with basal 

or corn cob medium, in the presence and absence of laccase. When PCP was added at a 

final concentration of 25 mg L
-1

, the laccase production considerably increased and 

70% of PCP was removed after 96 h. Instead with low laccase activity the removal of 

PCP was less than 20%. The amount of PCP adsorbed in the mycelial mass was about 

10% whether it was obtained in the corn cob medium with laccase or in the basal 

cultures without laccase.  Ramesh and Pattar (2009) tested the biodegradation ability of 

PCP by Pleurotus ostreatus. The fungal strain showed a peak in laccase activity after 

30 days of incubation which produced the highest amount of PCP removed. In a static 

culture P. ostreatus degraded 100% of 50ppm PCP during 30 days of incubation.  
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2.5.6. The genus Rhizopus 

Rhizopus is a common saprophytic fungi on plants and specialized as animal parasites. 

A few species of Rhizopus are known to cause disease in humans as well as Rhizopus 

oryzae. It is the principal cause of zygomycosis. They are found on a wide variety of 

organic substrates. 

Cortés et al. (2001) that studied PCP degradation in a solid-state culture with a strain of 

Rhizopus nigricans. This fungus displayed high tolerance to growth in the presence of 

PCP (up to 100 mg L
-1

) and degraded 60% within 24 h and 100% after 120 h of 12.5 

mg L
-1

PCP. Tomasini et al. (2001) found a strain of R. nigricans able to adsorb and 

degrade PCP in a submerged culture. They found that R. nigricans adsorbed PCP and 

that its adsorption capacity was higher when they increased the PCP concentration in a 

liquid medium. The biomass of R. nigricans adsorbed between 0.004 and 0.15 mg PCP 

mg mycelium 
-1

. Moreover the fungus completely removed 12.5 mg L
-1 

of PCP within 6 

and 8 days with a mycelium age of 48 and 96 h.  León-Santiestebán et al. (2011) 

described PCP absorption in a nylon fiber in which Rhizopus oryzae ENHE was 

immobilized. Various immobilization techniques were evaluated but, those that 

produced more biomasses were: cultures with nylon cubes that contained PCP at an 

equilibrium concentration and nylon at an equilibrium concentration amended with 14 

mg PCP g
−1

 nylon. Two initial PCP concentrations of 12.5 and 25 mg L
−1

 were tested. 

In both cultures, PCP removal was similar: after 48h in the cultures with 12.5 mg L
-1 

PCP 88.6% of contaminate was removed and in cultures with 25mg L
−1

 PCP, 85.7% 

was removed. In 72 h for both concentrations the fungus immobilized in nylon 

absorbed 100% of PCP. 
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2.5.7. The genus Trametes 

Members of the genus Trametes were extensively studied for interesting activity in 

medicine and plant pathology. The Aggressive white rot fungi which is world spread, 

thanks to its enzymes which could be an excellent candidate for direct PCP degradation 

(McAllister et al. 1996; Gadd 2001; Field and Sierra-Alvarez 2008).  

Ullah and Evans (1999) analyzed the ability of Coriolus versicolor to deplete PCP 

comparing inoculated and un-inoculated wheat husk incubated with 200 ppm PCP. In a 

second experiment they detected PCP degradation by wheat husk inoculated with C. 

versicolor  increasing concentrations from 50 to 200 ppm PCP. When wheat husk was 

inoculated, the PCP was completely removed at any concentration after 72 h. While 

when the authors used un-inoculated wheat husk only 70% of 200 ppm PCP was 

depleted. Walter et al. (2003) evaluated nine Trametes sp. strains with the potential for 

bioremediation of 50mg L
-1

 PCP. The fungi were identified as: Trametes sp. HR192, 

Trametes sp. HR196, Trametes sp. HR197, Trametes versicolor HR131, Trametes 

versicolor HR154, Trametes versicolor HR160, Trametes versicolor HR275, Trametes 

versicolor HR277 and Trametes versicolor HR445. The PCP remaining in the liquid 

fraction after 42 days of stationary incubation was evaluated and the highest 

degradation capacity was found to be in Trametes versicolor HR275 where 100% of 

PCP was removed. In correlation to PCP degradation there was also detected the 

presence and production of laccase. For the genera T. versicolor the laccase activity 

was high and the enzyme production varied with time. Ullah et al. (2000) used a system 

of different solid substrates to grow Coriolus versicolor FPRL-28A. They evaluated 

laccase activity and the removal of PCP from aqueous effluent. Substrates included 

wood chips, cereal grain, wheat husk and wheat bran. Higher activity of laccase 

occurred with wheat husk and wheat bran. Laccase in wheat husk and wheat bran 

cultures removed 75% – 80% of 50 ppm PCP within 24 h, all the way to  100% after 

120 h. in a 5-1 stirred tank reactor with wheat pellets uninoculated and inoculated with 
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C. versicolor FPRL-28A after 30 days of incubation detected the removal capacity of 

100 ppm PCP. The inoculated pellet removed 90% PCP during 100 minutes while 

uninoculated, during the same period of time removed only 50%. González et al. 2010 

tested the white-rot fungi Trametes pubescens CBS 696.94 in CPs bioremediation and 

between various compounds used PCP. The experiments were carried out with an 

initial PCP concentration of 30 mg L
-1 

and in the absence or presence of supplemented 

glucose to obtain a final concentration of 1.75 g L
-1

. After 13 days of incubation there 

were no differences in PCP degradation with or without glucose and chloride. In both 

cases 77% of PCP was degraded. Ryu et al. (2000) used lignin peroxidase, manganese 

peroxidase and laccase by Trametes sp. KFCC 10941 in the biodegradation of 30 mg L
-

1 
PCP. After 15 days of incubation Trametes sp. KFCC 10941 showed higher 

enzymatic production, above all with that, of laccase and manganese peroxidase but, on 

other hand, only 64% of PCP was degraded. Tortella et al. (2008) used Tramtes hirsuta 

Ru-008, Trametes versicolor Ru-107 and Trametes versicolor Ru-0030 in a 

biodegradation test with PCP at an initial concentration of 25 mg L
-1

. All other fungi 

degraded the PCP under 50%, while for three strains, T. versicolor (Ru-0030 and Ru-

008) and T. hirsuta Ru-008, PCP caused an inhibitory effect on growth and enzymatic 

production. Gaitan et al. (2011) using laccase produced by white-rot fungus T. 

pubescens CBS 696.94 evaluated the PCP degradation capacity in a shake flask. Two 

laccase iso enzymes with different molecular weights were isolated and identified. 

After 8 hours of reaction, 41% of 15 mg L
-1 

PCP was removed in a mixture with other 

CPs. Ramesh and Pattar (2009) tested in-vitro the biodegradation capacity of PCP with 

T. versicolor. The fungus isolates showed a peak in laccase activity after 30 days of 

incubation which  resulted in the highest amount of PCP removed. In a static culture 

studies T. versicolor degraded 96.14% of PCP within 30 days of incubation.  Pallerla 

and Chambers (1999) investigated the capacity of T. versicolor to degrade 25 mg L
-1
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PCP after 12 h of incubation in continuous polyurethane immobilized fungal fluidized 

bed bioreactor. T. versicolor degraded about 99% of PCP after 12 h. 

Excellent results in PCP degradation in soil were shown by Trametes. The ability of the 

Brazilian basidiomycetes to degrade PCP in soils recovered from areas contaminated 

with organochlorine industrial residues was studied by Machado et al. (2005). Trametes 

villosa CCB176 and Trametes villosa CCB213 were tested for tolerance and 

degradation at high PCP concentrations in soil. Fungi were inoculated into the soil 

containing 1278 mg PCP Kg
-1

 soil supplemented with gypsum and sugar, which the 

authors evaluated for the PCP depletion percentages. T. villosa CCB213 reduced 58% 

the PCP present in the contaminated soil after 90 days of incubation. Both Trametes 

strains mineralized PCP with the successive production of chloride ions during growth, 

indicating dehalogenation of the molecule and the conversion of PCP to PCA. Walter et 

al. (2005) used an isolate of Tramtes versicolor HR131 in field-scale bioremediation of 

PCP. They devised an engineered soil cell to develop biopiles for fungi bioremediation 

of aged PCP-contaminated soil from a former timber treatment site. The soil cells were 

engineered to allow: forced aeration, irrigation, leachate collection, monitoring of 

temperature and soil humidity. PCP degradation and fungal survival were monitored at 

regular intervals for 2 and a half years. The PCP field remediation using T. versicolor 

HR131 declined from 1000 mg PCP Kg
-1

 soil to 100 mg PCP Kg
-1

 soil within one year. 

Decreasing at 4 mg PCP Kg
-1

 soil in two years. At the end of the experiment there was 

little PCA detected, confirming earlier findings that PCA may not be an intermediate 

metabolite of PCP transformation by T. versicolor HR131. Leštan and Lamar (1996) 

detected the fate of PCP in soil microcosm inoculated by Trametes versicolor MD-277. 

In the soil artificially contaminated with 100 µg g
-1

 of PCP and inoculated with 3% 

pelleted fungal inoculums, T. versicolor MD-277 transformed PCP to PCA after 4 

weeks degrading 86% of PCP. Tuomela et al. (1999) investigated the fate of PCP in 

autoclaved soil supplemented with straw and inoculated with the white-rot fungus 
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Trametes versicolor PRL 572. This strain during 42 days of incubation mineralized 

about 29% of the PCP and at the end of experiment only trace amounts of PCA and 

2,3,4,6-tetrachloroanisole were detected. 

 

2.5.8. The genus Trichoderma 

Trichoderma is a genus common in soil with interesting capabilities as potential 

bioremediator for environmental cleanup and as biological control agent versus 

numerous plant diseases. All these capacity are possible thank to production of 

extracellular enzymes. 

(Tripathi et al. 2013). Carvalho et al. (2009) studied the PCP degradation using 

Trichoderma longibrachiatum DSM 16517 in experiments of mycelium growth and 

percentage of PCP decay, under co-metabolic conditions with PCP concentration being 

between 5 and 15 mg L
-1

.  T. longibrachiatum DSM 16517 was able to degrade PCP 

while at 15 mg L
-1

 the strains failed biotransformation of PCP. Rigot and Matsumura 

(2002) using Trichoderma harzianum 2023 evaluated PCP degradation at 10ppm as an 

initial concentration. After 9 days of incubation PCP was entirely metabolized, which 

was quickly and stechiometrically converted to PCA.  

 

2.5.9. Other genera 

Guiraud et al. (2003) studied the bioremediation capability of PCP by Absidia fusca 

detecting the performance of two strains isolated from different environment. After 4 

days of incubation the strain1 and strain 2 degraded 41 and 33%, respectively,  of 100 

mg L
-1

 PCP.  Walter et al. (2003) evaluated a pool of 367 white-rot fungi, native to 

New Zealand, which are usable in PCP bioremediation. After several tests, some 

isolates were screened for PCP degradation (50 mg L
-1

 PCP) in-vitro. The fungi 

identified were: Abortiporus biemmis HR145, Oudemansiella australis HR345, 
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Peniophora sacrata HR226, Peniophora sacrata HR235, Peniophora sacrata HR240, 

Peniophora sacrata HR241, Rigidoporus catervatus HR316 and Stereum fasciatum 

HR348. PCP remaining in the liquid fraction after 42 days of stationary incubation was 

evaluated and had a high degradation capacity for all strains of Peniophora sacrata 

(100% PCP removed). The correlation to PCP degradation was detected also in the 

presence and production of laccase. The genera P. sacrata laccase activity was high at 

different points in the experiments. Chiu et al. (1998) detected the tolerance, bio-

sorption and biodegradation capacity (these last two activities were in relation to fungi 

biomass‟ dry wet) in the presence of 25 mg L
-1 

PCP for various fungi as Armillaria 

gallica 1039, Armillaria gallica 1057, Armillaria mellea M51, Ganoderma lucidum 

HK-1, Lentinula edodes L54, Lentinula edodes L67, Lentinula edodes L68, , Polyporus 

sp. Cv-1 and Volvariella volvacea V34. The tolerance was higher for A. gallica 1039, 

A. gallica 1057 and A. mellea M51 while any or all strains tolerated 100 mg L
-1

 PCP. 

Polyporus sp. Cv-1 possessed the greatest biosorption capacity, about 31 mg PCP for a 

gram of mycelium dry wet. Chloroanisols were PCP breakdown intermediates for 

almost all fungi.  Tortella et al. (2008) carried out the first report on the ability of 

several indigenous wood-rotting fungi from Chile to produce hydrolytic and 

ligninolytic enzymes during the biodegradation of some of the xenobiotic compounds 

like PCP. Strains were identified and used in laboratory tests on the  biodegradation 

with concentrations of 25 mg L
-1

 PCP.  The Fungi used were: Lenzites betulina Ru-30, 

Inonotus sp. Sp2, Stereum sp. Ru-24, Galerina patagònica Sp3, Stereum hirsutum Sp1 

and Stereum hirsutum Ru-104. After 15 days of incubation L. betulina Ru-30 and G. 

patagònica degraded PCP by 80% and 88%. All other fungi degraded the PCP under 

50%, while the strains S. hirsutum Ru-104 PCP caused an inhibitory effect on the 

growth and enzymatic production. PCP degradation by fungi in a liquid medium has 

been correlated with that of ligninolytic enzyme production. In fact, manganese 

peroxidase was detected in all strains tested. in L. betulina Ru-30 and G. patagònica 
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produced a maximum activity of between 3 and 6 days of incubation. Lignin 

peroxidase was produced in S. hirsutum Ru-104, and G. patagònica Sp3 between 6 and 

9 days of incubation. Laccase was never detected. Scelza et al. (2008) used 

Byssochlamys fulva in PCP removal experiments in a liquid medium with 12.5 and 25 

mg L
-1

 PCP. The isolates of B. fulva degraded 20% of both PCP concentrations during 

8 days of incubation. Montiel-González et al. (2009) used the plasmids pVELipA and 

pTAAMnP1 (Stewart et al. 1996), containing lignin peroxidase and manganese 

peroxidase cDNA, recovered by white rot fungi Phanerochaete chrysosporium, for the 

transformation of Amylomyces rouxii. Sixty-nine A. rouxi elements were obtained, but 

only two were chosen for testing PCP removal in a submerged culture because they 

showed the highest peroxidase activity: CTL4 (lignin-peroxidase) and CTM5 

(manganese-peroxidase). CTL4 and CTM5 removed 95% of 12.5 mg L
-1

 PCP, 

compared with only 55% of the A. rouxii wild type after 120 h of incubation. After 144 

h of incubation, two of the elements were able to remove 100% of the initial PCP, 

whereas the original strain removed only 49%. Carvalho et al. (2009) studied the co- 

and direct metabolism of PCP using these fungal strains: Chrysonilia sitophila DSM 

16514, and Cladosporium herbarum. In experiments of mycelium growth and 

percentage of PCP decay, under co-metabolic conditions with PCP concentration being 

between 5 and 15 mg L
-1

, both fungi were able to degrade PCP while at 15 mg L
-1

 the 

strains failed biotransformation of PCP. Finally, CHQ was recovered in the cultures of 

C. sitophila DSM 16514 and DCBQ in the cultures of C. herbarum. Ramesh and Pattar 

(2009) tested in-vitro the biodegradation capacity of PCP by five selected isolates of 

white-rot fungi: Laetiporus cincinnatus, Fomes fomentarius, Ganoderma applanatum. 

All fungi showed a peak in laccase activity after 30 days of incubation which produced 

the highest amount of 50 ppm PCP removed. In a static culture study F. fomentarius 

degraded a high amount of PCP during 30 days of incubation, about 96.14%. Fahr et al. 

(1999) evaluated brown rot fungi Gloeophyllum striatum (strains DSM 9592 - DSM 
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10335) and Gloeophyllum trabeum WP 0992 to determinate PCP degradation using 

radioactively labeled compounds ([U-
14

C] PCP). The strains G. striatum DSM 9592 

and DSM 10335 were tested in a liquid medium contaminated with 5 µM of PCP, but 

after 19 days of incubation only 10 % of 
14

CO2 were liberated showing a very slow 

degradation capacity. Forootanfar et al. (2012) studied the ability of the ascomycete 

Paraconiothyrium variabile to eliminate PCP and other CPs in submerged culture 

medium. The fungal strain was not able to remove 20 mg L
-1

 and PCP minimized the 

radial and biomass growth. 

Among other fungi used in PCP degradation in soil we mentioned Machado et al. 

(2005) who analyzed the capacity of some basidiomycetes to degrade PCP in soils 

recovered from areas contaminated with organochlorine industrial residues. Three of 

the fungi isolated from different ecosystems were tested for tolerance and degradation 

to high PCP concentrations in soil. The Fungi identified were: Agrocybe perfecta 

CCB161, Psilocybe castanella CCB444 and Peniophora cinerea CCB204. These 

species were inoculated into soil containing 1278 mg PCP Kg
-1

 soil supplemented with 

gypsum and sugar and the authors then evaluated PCP depletion percentages. P. 

cinerea CCB204, P. castanella CCB444 and A. perfecta CCB161 reduced the PCP 

present in the contaminated soil by 43, 64 and 78%. All the fungi mineralized PCP, 

although principally P. cinerea CCB204 produced chloride ions during growth in the 

soil containing PCP, indicating dehalogenation of the molecule. Conversion of PCP to 

PCA was observed after only 90 days of incubation in the soils inoculated with A. 

perfecta CCB161 and P. cinerea CCB204. Rubilar et al. (2007), using a strain of  

Bjerkandera adusta ATTC 90940, carried out a series of PCP remediation laboratory-

based studies in slurry soil flasks at initial PCP concentrations of 100, 250 and 350 mg 

PCP Kg
-1

 soil. B. adusta ATTC 90940 degraded PCP no matter the initial PCP 

concentration and in all cases only 25 mg PCP Kg
-1 

of soil remained. Okeke et al. 

(1996) determined the temperature, soil moisture potential and initial pH levels might 
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influence the transformation of PCP by Lentinula edodes LE 2. this fungus showed the 

highest levels of degradation (about 75%) at 25°C and with the soil pH level at 4.0. the 

extent of PCP degradation related to soil moisture content by L. edodes LE 2 was under 

50%. using the same strain L. edodes LE 2, Okeke et al. (1997) evaluated 

bioremediation treatment in sterilized and non-sterilized soils contaminated with PCP 

and inoculated primarily with just the fungus strain and then with L. edodes LE2 

together with a natural soil micro flora. When L. edodes LE2 was used independently, 

the rate of PCP removal was rapid for the initial 4 weeks and 99% of PCP was 

biotransformed after 10 weeks. In a mixed culture, PCP biotransformation by L. edodes 

LE2 was slower, only 79% of the PCP was depleted after 10 weeks. PCP and PCA in 

the soils after 10 weeks were completely eliminated in the sterilized soil with only L. 

edodes LE2, while PCA was still detected in the soils with the mixed micro flora and L. 

edodes LE2. Dechlorination and mineralization of the xenobiotic compound were 

detected in the presence by L. edodes LE2 but the dechlorination efficiency was greater 

with L. edodes LE2 (29.50%) than when fungi were used in a mixed culture (22.40%). 

Other products were detected from biotransformation of the PCP such as: TeCA and 

TeCP during the first 4 weeks in both sterilized and non-sterilized soils. Leštan and 

Lamar (1996) evaluated the PCP degradation in the soil microcosm of organisms such 

as Irpex lacteus ATCC 11245 and Bjerkandera adusta. After 4 weeks of incubation in a 

soil artificially contaminated with 100 µg PCP g
-1

 soil and inoculated with 3% pellet 

fungal inoculums, both fungi showed a good capacity to transform PCP to PCA. 

Besides I. lacteus ATCC 11245 and B. adusta ATCC 62023 removed 82% and 86% of 

PCP.  

 

2.5.10. Fungi general discussion 

PCP degradation by fungi in a liquid culture has been investigated in a high number of 

experiments. In these studies, PCP biodegradation focused on the capacity to deplete 
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PCP using a single fungal strain or a mixed culture. Furthermore, the degradation 

intermediates products under different conditions and concentrations were analyzed 

(Table 4). In the liquid cultures, several species of fungi were used, but the genus 

Trametes, Phanerochaete and Anthracophyllum were surely the most used in this years 

and capable to degrade PCP (Table 4). These fungi had a capability to remove PCP at 

any initial concentration (5 – 300 mg L
-1

) as it happens so does white-rot fungi (Chiu et 

al. 1998; Law et al. 2003; Tortella et al. 2008). In the presence of enzymes like laccase, 

lignin peroxidase and manganese peroxidase there were connections found to higher 

capacities for PCP degradation. Usually, when fungi increase their enzymatic activity, 

they showed a higher degradation of PCP (Ryu et al. 2000; Walter et al. 2003; Tortella 

et al. 2008). When white-rot fungi was inoculated in wood chips or in wheat i.e. 

lignocellulosic materials, there was a good performance in PCP degradation (Ullah et 

al. 2000). Lignocellulosic materials are used as vehicles of fungal inoculation in soil or 

liquid mediums (McAllister et al. 1996) as well as when fungi are used in nitrogen 

limitation (Aiken and Logan 1996). Less effective were Deuteromycetes and 

Zygomycetes fungi that only tolerated low PCP concentrations (< 20 mg L
-1

), although 

in a few cases demonstrating a good degradation capacity versus PCP (Cortés et al. 

2001; Carvalho et al. 2009). Any type of fungi class that was used in PCP degradation, 

when the pH level tended to reach acid values, the amount of PCP removed increased 

considerably (Mathialagan and Viraghavan 2009; Rubilar et al. 2012).  

Despite the great ability by some fungi to degrade PCP, there are not many studies on 

PCP degradation in soil, sediment and sludge (Table 4). In the few works that we have 

found there are the same species used in vitro and all the fungi analyzed fall within the 

white-rot fungi group. Moreover, little is actually known about the pathway of PCP 

removal in soil, while, the principal processes that have been conducted on soil 

contaminated with PCP l are known as volatilization, adsorption, leaching and 

degradation (CCME 1997). The white-rot fungi of the genus Phanerochaete, 



Chapter II 

 

 

71 

Anthracophyllum and Trametes are surely the most frequently used as well as being the 

most efficient microorganism in PCP bioremediation experiments in soil; as stated in 

the previous paragraph. The principal compounds product by PCP biodegradation for 

the three fungi was PCA (Leštan and Lamar 1996; Tuomela et al. 1999; Machado et al. 

2005; Rubilar et al. 2007). They were very adept at degrading large amounts of PCP 

(250 – 1000 mg Kg
-1 

soil) as well as Lentinula edodes LE2 (~200 mg Kg
-1

), Agrocybe 

perfecta CCB161, Psilocybe castanella CCB444 and Peniophora cinerea CCB204 

(~1278 mg Kg
-1

). The remaining fungi analyzed were able to degrade PCP only at an 

initial concentration of < 100 mg Kg
-1

 soil. All the fungi that were analyzed in these 

studies that exploited lignin peroxidase, manganese peroxidase and laccase were able to 

degrade PCP and convert it essentially into PCA or TCHQ through dehalogentaion and 

dechlorination (McAllister et al. 1996; Cea et al. 2005; Field and Sierra-Alvarez 2008; 

Rubilar et al. 2011) (Table 4). The ability for PCP degradation was increased when the 

fungi were incorporated in lignocellulosic materials such as wheat grains (Rubilar et al. 

2011), transformed into pellets (Leštan and Lamar 1996), adjusting the pH levels (4-

5.5) and temperatures (25 °C) (Okeke et al. 1996; Rubilar et al. 2011) or by inserting a 

contaminated soil gypsum and sugar (Machado et al. 2005). An important role in the 

removal of PCP is that of the indigenous microorganisms. These last, in some 

experiments have showed a natural ability to degrade or adsorb PCP in soil at high 

percentages (<50%) (Okeke et al. 1996; Cea et al. 2005; Rubilar et al. 2011). For 

example, in the Chilean andisols 40 % of was removed due to their specific 

characteristics and ability to sorbent PCP and other CPs, all thanks to their allophane–

ferrihydrite association with organic matter (Cea et al. 2005). Organic matter shows a 

very good efficiency at adsorbing PCP (Scelza et al. 2008) that in a moment can then 

be degraded by autochthonous microorganisms (Okeke et al. 1996). 
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2.6.  Concluding remarks 

How quickly, completely and efficiently PCP is degraded, depends on microorganism 

biodiversity and environmental conditions. Several bacteria and fungi have the 

capability to biodegrade PCP and they have been isolated from a variety of 

environments: industrial sewage (Szewczyk et al. 2003; Machado et al. 2005), 

contaminated soils, and effluent and fresh water sediments (Shah and Thakur 2003; 

Chandra et al. 2006; 2009; Lin et al. 2008). PCP degradation, mineralization, 

adsorption and dechlorination by microorganisms in different conditions are 

summarized in tables 3 and 4. Analyzing all the works of PCP bioremediation, we have 

found that aerobic microorganisms have been shown to be highly efficient at degrading 

and mineralizing at higher PCP concentrations, more than the anaerobic 

microorganisms. Furthermore, bacteria showed the greatest efficiency, in regards to, 

degradation of PCP, whereas the fungi demonstrated lower capability and efficiency. In 

addition, all the bacteria and fungi, in a pure or mixed culture, act much better when 

used with an amendment (wheat, wood chips, glucose). However, bacteria and fungi in 

mixed cultures have been shown to completely degrade PCP, with a pre exposition to 

PCP, the biodegradation capacity significantly increased. Pellets, immobilizing cells 

and engineered systems also were much more efficient in the degradation of PCP. 

Finally, exploiting local biodiversity with the biostimulation of the microbial 

community with compost or soil improvers, the capacity to degrade the PCP increase 

significantly in time (Schmidt et al. 1990; Alber et al. 2000; Puglisi et al. 2009)  

In this review, numerous genus of bacteria were studied that can utilize PCP as carbon 

and energy sources such as: Pseudomonas sp., Flavobacterium sp., Mycobacterium sp., 

Sphingomonas sp., Kokuria sp., Bacillus sp., Serratia sp. and Arthrobacter sp. PCP 

biodegradation by these bacteria is well established and most of the studies have 

evaluated the metabolism and co-metabolism with unsubstituted or substituted PCP as 

the primary substrate. The main strategies and processes used with bacteria in the 
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degradation of PCP released intermediate products such as TCHQ, TriCHQ, CHQ, 

DCHQ, TCC, CHYQ and 2,3,4,6-TeCP (McAllister et al 1996; Shah and Thakur, 2002;  

Sharma and Thakur 2008; Field and Sierra-Alvarez 2008; Singh et al. 2008; Singh et al. 

2009; Chandra et al. 2009). Several Gram-negative and positive bacterial strains were 

used in PCP remediation, even if, Gram-negative strains seem to be more efficient in 

the tolerance and degradation of PCP (McAllister et al 1996; Field and Sierra-Alvarez 

2008). This happens to be because these bacteria are able to exclude PCP from the cell 

and due to the presence of lipopolysaccharide in the cell wall (Izaki et al. 1981). 

Aerobic and anaerobic biodegradation of PCP by the bacterial strains has been 

demonstrated in field and laboratory works. As well as the genes that produce useful 

enzymes for PCP degradation in Flavobacterium sp. ATCC39723 which have been 

characterized and cloned in Escherichia coli, granting the latter with the ability to 

degrade PCP (McAllister et al. 1996). In fact, the characteristics of PCP degradative 

enzymes can be improved by engineering methods to move forward their potential in 

the bioremediation strategy and in industrial applications. Cloning in Pseudomonas 

gladioli genes of Sphingomonas chlorophenolicum (Dai and Copley 2004) and some 

genes of Phanerochete chryosporum in Amylomyces rouxi (Stewart et al 1996), these 

authors observed significant improvements in the rate and capacity of these organisms 

to degrade PCP. Therefore cloning the genes that useful in the degradation of PCP into 

the indigenous microorganisms that, for example, don‟t have the capacity to degrade 

contaminants could overcome some problems related to introduction into soils or other 

mediums producing new “exotic” organisms. However little is yet known on the 

potential pathogenic effect that any species can produce versus other microorganisms, 

like plants and animals. There are some species such as Pseudomonas aeruginosa and 

Bacillus cereus that for example are very dangerous for human health (He et al. 2004; 

Kotiranta et al. 2000). This fact may greatly limit their use in the bioremediation 

strategy.   
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Fungi as well are very useful as PCP degraders, especially the genus: Phanerochaete, 

Anthracophyllum, Agrocybe, Lentinula and Trametes. Different genus or families of 

fungi exhibit tolerances and degradation capacities to PCP. Furthermore, fungal strains 

are generally less efficient than bacteria in PCP degradation and only in only a few 

cases are they able to completely mineralize PCP. In addition, fungi adsorb PCP on the 

mycelium, leaving intact the contaminant. However, the fungi strains, thanks to their 

excellent enzymatic pool, can break down PCP in a molecule, making them more 

biovailable to be degraded by other microorganisms (McAllister et al. 1996; Pointing 

2001). Unlike bacteria, fungi are not capable of using PCP as a source of carbon. PCP 

degradation is not a direct consequence of fungal metabolism, but rather of a co-

metabolic process. They have enzyme systems useful in degrading wood components 

such as lignin o cellulose i.e. PH-oxidase, laccase lignin and manganese peroxidase, 

which are capable of breaking down PCP molecules (McAllister et al. 1996; Pointing 

2001). For fungi, the main strategies and processes in the degradation of PCP release 

intermediate products such as PCA, TCHQ, TCP, CHQ, DCBQ and TriCHQ (Leštan 

and Lamar 1996; Machado et al. 2005; Carvalho et al. 2009; Rubilar et al. 2009; 

Carvalho et al. 2011). While for white or brown-rot fungi, a future in bioremediation is 

defiantly possible, because they are not dangerous to humans or animals; although 

some species such as Armillaria mellea can cause serious diseases in many plants i.e. if 

there is a bioremediation intervention in an agricultural field. Therefore, it also depends 

on the context in which the fungi isolates will be used. For some deuteromycetes and 

zigomycetes species, like some bacteria, little is yet known on their potential 

pathogenic effects on other microorganisms or versus plants and animals; for example 

the species Rhizopus oryzae that can cause oral or cerebral mucormycosis. PCP toxicity 

is well known fact, especially for some organisms (Crosby 1981); the toxicity of the 

degradation intermediate products is still not well documented. In fact, microbial 
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metabolism of contaminants such as PCP may produce, in some cases, toxic 

metabolites (McAllister et al. 1996; Field and Sierra-Alvarez 2008). 

Improving the biodiversity of the microorganisms present in a medium, a pollutant 

compound can be completely and more quickly mineralize. In fact it is important to 

remember that increasing microbial biodiversity, we increase the possibility to have 

organisms capable to degrade the contaminant or its intermediates products. 

Microorganisms use essentially oxygenases and hydroxylase that insert O2 and –OH 

into the compound prior to ring cleavage or using reductive dechlorination, which 

eliminate a Cl-group at the compounds ring, which is essential to the intermediate 

metabolites in an aerobic pathway of PCP degradation (McAllister et al. 1996; Field 

and Sierra-Alvarez 2008). But in bioremediation strategy it is equally important to 

know the environmental conditions (physical and chemical properties of the sites) and 

physico-chemical characteristics of the contaminant (Providenti et al. 1993). It is 

essential to know as well the relation and interaction between microbial consortium - 

environmental conditions - toxic compounds, since this will allow the researcher to 

obtain high performances in the bioremediation process i.e. to achieve degradation, 

bioaccessibility and bioavailability of PCP, some factors such as aeration, moisture, 

content of the organic matter, microbial biodiversity, temperature and pH level, soil 

improvers and compost could be optimized PCP degradation (Providenti et al., 1993; 

McAllister et al. 1996; Scelza et al. 2008; Puglisi et al. 2009; Cea et al. 2010; Juwarkar 

et al. 2010).  

 

2.7. Future perspectives 

All the information occurs in this review can be used to push forward the recent 

bioremediation technological advances such as “omic” based technique (genomics, 

proteomics and metabolomics).  
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Understudying thoroughly as the microorganisms can tolerate, degrade and mineralize 

some pollutants as PCP, represent the first step to realize an excellent remediation 

processes/studies.  Reviewing the case studies showed in this work could be further 

increased the experiments to extend the knowledge of genes encoding of the 

metabolites useful in PCP degradation. Until now the molecular aspect of PCP 

degradation have received little attention (Orser and Lange 1994; Juwarkar et al. 2010; 

Villemur 2013; Carvalho et al. 2013; Copley et al. 2013). Moreover the genetic 

manipulation can offer a means of engineering microorganism to deal with PCP that 

may be present in a contaminated site (Villemur 2013). Other experiments should be 

carried out about how PCP effect microbial cell. It is little know how PCP can 

influences not only microorganisms community but also more specifically cellular 

process, production of toxins, cyclic changes in morphology, lipid membrane 

components, biomass growth, enzymatic activity, sporulation and reproduction 

capacity. Another interesting focal point worthwhile to examine is the microbial 

interaction in relation to the PCP. It could increase the possibility to use allochthonous 

microorganisms in bioremediation processes. This point is currently highly debated 

because many authors believe that to insert a microorganism, for example in a different 

soil, generates a turnover in microbial community. This is absolutely true, but the soil, 

like the water and air, is a dynamic system constantly changing and allochthonous 

microorganisms are continuously transported by wind, animal and rain in different 

areas even thousands of miles away.     

It is very important to know the interaction of all the factors dealing the bioremediation 

process as well as reforming and restructuring the strategy in which contaminated sites 

are processed and effectively decontaminated. In this way we can move the world 

forward to produce a safer environment for human, animal and plant communities.  
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3. Effect of pentachlorophenol concentration and pH levels 

on the adsorption capacity of Anthracophyllum discolor 

pellets 

 

3.1.  Abstract 

Pentachlorophenol (PCP) is an extremely dangerous pollutant for every ecosystem as 

well as the health of many organisms. It has been introduced into the environment, 

primarily, as a wood preservative. Even so, the indiscriminate use of PCP has led to the 

contamination of water and soil systems. In this study we have detected that the PCP 

concentration and pH levels can influence the PCP adsorption of live pellets of 

Anthracophyllum discolor for such purposes as the bioremediation of PCP 

contaminated water. PCP adsorption was evaluated after 24 hours in KCl 0.1 M 

electrolyte solution with initial PCP concentrations of 5 and 10 mg L
-1

 and with pH 

values between 4 and 9 (at intervals of 0.5). The Fourier Transform Infrared 

Spectroscopy (FTIR) was used to identify functional groups of fungal biomass that can 

interact with PCP. Fungal growth and enzyme production were examined after the 

adsorption experiment. The PCP that was adsorbed by A. discolor was >80% compared 

to pH values of 5 and 5.5, which were the two concentrations being analyzed. PCP 

adsorption significantly decreased in liquid medium of pH > 6.0. FTIR results showed 

that amides, alkanes, carboxylates, carboxyl and hydroxyl groups may possibly be 

important to the PCP adsorption for pellets of A. discolor. Contrarily, amino and 

phosphate groups potentially do not have important roles in the PCP adsorption 

process. The two PCP concentrations used in our experiments, after 24 hours, did not 

negatively affect the mycelium growth, nor did it degrade the fungi enzyme production. 

The live pellets of A. discolor may be used as a natural biosorbent for liquid solutions 

which are contaminated by PCP. 
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3.2.  Introduction 

Pentachlorophenol (PCP) is considered to be one of the most hazardous contaminants 

of soil and water. It was widely used for many years in different areas of the world as a 

low cost biocide (EPA 1984). Some of the more large scale uses of this contaminate 

was in the making of most wood products. The wood industry used PCP for the 

preservation of timber and the bleaching of paper or tissues (EPA 1984; ATSDR 2001). 

PCP is classified as a priority pollutant in the USA and Europe for its high toxicity. To 

deplete this toxic compound from environment, the most common processes used today 

are: adsorption with activated carbon, scorched in an approved secure area and closed 

in sealed containers, washed with chemical products, incineration at high temperatures 

for a long period of time (ATSDR 2001; EPA 2008). A further low-cost method to 

remove PCP is the biological treatment described as microbial degradation (McAllister 

et al. 1996; Gadd 2001; Singh 2006; Rubilar et al. 2008; Field and Sierra-Alvarez, 

2008) and adsorption (Aksu 2005; Ahmaruzzaman 2008). 

Removal of PCP by adsorption of live or dead microorganism uses the biomass 

capacity which may be used as an effective adsorbent for the particular attraction 

between the cellular component and the pollutant compound. The use of 

microorganisms for PCP adsorption is increasing because offers an economical, 

practical and efficient alternative to the commonly used methods (Ahmaruzzaman 

2008). Recent literature has shown many microorganisms that have proven to be 

performing in PCP adsorption. Mathialagan and Viraraghavan (2009) showed that the 

non-viable biomass of Aspergillus niger was pH-dependent in PCP adsorption. 

Moreover, A. niger biomasses treated with cetyltrimethylammonium showed a 100% 

removal at 1 mg PCP L-1 to all pH levels from the aqueous solutions. Brandt et al. 

(1997) detected that Mycobacterium chlorophenolicum can effectively be used in PCP 
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adsorption. Jianlong et al. (2000) obtained better results in regards to the biosorption 

ability of PCP by the microbial biomass in an aqueous solution. Fungi such as 

Phanerochaete chrysosporium, Trametes versicolor, Ganoderma lobatum, Inonotus 

dryophilu and several other species were used by Logan et al. (1994) in an experiment 

of PCP adsorption using dead biomass. All species showed a good adsorption capacity 

at acidic pH levels. Rubilar et al. (2012) also used dead biomass from the white-rot 

fungus reactor Anthracophyllum discolor in a fixed-bed column reactor for PCP 

adsorption at different concentrations and pH values. It was concluded that A. discolor 

dead biomass was an excellent adsorbent for PCP at acid pH values.  

Almost all studies in pollutant adsorption using biomass are often developed with dead 

biomass. This happens because dead microbial cells do not provide toxicity concerns 

and do not require growth media or nutrients. Moreover, this biomass can be stored for 

a long time and be used in several cycles of adsorption and desorption of the pollutant 

compound. However, live biomass have, in many cases, shown better performances in 

pollutant adsorption than dead biomass. In live microorganisms the adsorption and 

biodegradation processes can be used together to help the contaminant removal (Logan 

et al. 1994 ; Benoit et al 1998 ; Damianovic et al. 2009). Furthermore, there are few 

studies that are focused on the effect of the pH levels and the PCP concentrations on 

adsorption capacity of live fungal biomass. 

The principal objective of the present study is to evaluate the adsorption capacity of 

pellets ny A. discolor in a liquid medium which can be affected by different pH values 

and initial PCP concentrations. FTIR spectroscopy analysis was carried out on A. 

discolor biomass to find functional groups that are active during PCP adsorption. 

Finally, we evaluated if the initial PCP concentration negatively influenced the 

mycelium growth and the fungi enzyme production. 
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3.3.  Materials and Methods 

 

3.3.1. Fungal strain and cultivation conditions 

Anthracophyllum discolor is a white-rot fungus isolated from carpophores collected 

from decayed wood in the temperate forest of southern Chile (Tortella et al. 2008). The 

strain was stored on malt extract agar (MEA) (15 g L
-1 

agar; 3.5 g L
-1 

malt extract; 10 g 

L
-1 

glucose) in slant tubes at 4°C in the Environmental Biotechnology Laboratories of 

the Universidad de La Frontera (Temuco, Chile).  

 

3.3.2. Preparation of the fungal pellets 

Seven plugs (diameter 6 mm) of A. discolor mycelium cultured on MEA for 7 days in 

Petri dishes, were placed in a flask which contained 100 ml of modified Kirk medium 

(10 g  L
-1

 glucose; 2 g L
-1 

peptone; 2 g L
-1 

KH2PO4; 0.5 g L
-1

 MgSO4; 0.1 g L
-1 

CaCl2; 

3.3 g L
-1

 sodium acetate; 5 ml L
-1

 tween 80 to 10 %; 2.11 ml L
-1 

MnSO4 ) and incubated 

at 25°C for 7 days. The fungal mycelium in the culture broth was homogenized with a 

blender for 2 minutes to prepare the inoculum.  Finally, 2 ml of inocula (1.5 mg L
-1 

fungus dry weight) were placed in the flasks which contained 100 mL of modified Kirk 

medium and incubated at 25 °C on a rotating shaker incubator at 120 r.p.m. for 10 days 

in order to obtain the pellets. The formed pellets were washed with distilled water and 

stored in an empty falcon at 25 °C for 3 days. 

 

3.3.3. Surface area measurement 

The specific surface area of the lyophilized pellets of A. discolor was determined by the 

B.E.T. surface area analyzer (Nova 1000e – Surface area & Pore size analyzer). The 
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dried biomass was initially degassed by evacuation for 2 h at 80 °C, and then the 

surface area was determined by the N2 adsorption method (He and Tebo 1998). 

3.3.4. Potentiometric titration of A. discolor cell wall 

The Surface charge behavior was assessed by acid-base titration in a N2 atmosphere 

using 0.01 N NaOH and 0.01 N HCl. An amount of 20 A. discolor pellets (20 ± 0.2 mg 

fungus dry weight) were added to two teflon vessels containing 100 ml of 0.001, 0.01 

or 0.1 M KCl as a background solutions. The titrations were carried out by adding 200 

µl of titrant after 15 minutes reaction time between additions to allow stabilization of 

the pH. To measured the pH levels was used the pH meter Thermo Scientific Orion 3-

Star. This instrument accurately measure pH to 2 decimal points. Finally, the surface 

charge behavior of the fungus was evaluated in the presence of PCP at two 

concentrations (5 and 10 mg L
-1

) using KCl 0.1 M as a background electrolyte.  

 

3.3.5. PCP adsorption  

PCP adsorption experiments were carried out in 10 ml amber glass bottles to determine 

the adsorption capacity of pellets as a function of pH levels. In each bottle 5 mL of 0.1 

M KCl (as background electrolyte) was added with either of the two PCP 

concentrations (5 and 10 mg L
-1

) as well as 20 pellets of A. discolor. The pH levels of 

the solutions were adjusted with HCl or NaOH (0.1 M) and stabilized from a level of 4 

to a level of 9 at intervals of 0.5 unit of pH. The control was carried out in the same 

procedure described previously only without the addition of PCP. The bottles were 

incubated at 25°C on a rotating shaker incubator at 120 r.p.m. for 24 h in darkness to 

avoid PCP photodegradation. The assays were conducted in triplicate. After incubation 

the samples were analysed for pH levels. The amount of PCP adsorbed was determined 

by the difference of PCP added and the residual PCP present in the solution after 24 

hours. An aliquot (1 mL) of the liquid phase was filtered with the Syringe Filters 
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Chromotech (pore size 0.45 μm; filter size 25 mm) and analyzed by using High 

Performance Liquid Chromatography (Hitachi Lachrom Elite) by way of a Chromolith 

RP-18e, 100 mm x 4.6 mm column. The injection volume was 20 μL. The mobile 

phase consisted of acetonitrile and phosphoric acid (1% aqueous solution) 1:1 (v/v) 

with a flow rate of 1 mL min
-1

. Instrument calibration and quantifications were 

performed against the pure reference standard (5 and 10 mg L
-1

). The detector 

wavelength was set at 215 nm with a retention time of 4.5 minutes.  

 

3.3.6. Fourier transforms Infrared spectroscopy  

The analysis of the fungal pellets were performed by FTIR only after the adsorption of 

PCP. Briefly, 20 A. discolor pellets were added to a flask with 100 mL of 0.1 M KCl 

and 10 mg L
-1

 PCP. A control solution without PCP was obtained. The flasks were 

incubated at 25°C on a rotating shaker incubator at 120 r.p.m. for 24 h. The fungal 

biomass was separated from the KCl medium by using filter paper (Whatmann no.1), 

washed with distilled water and dried in an oven at 30°C for 24 h. The samples of 1 mg 

were mixed with 100 mg of KBr. The FT-IR spectrum was achieved by using a Bruker 

Tensor 27 with the following parameters: resolution 2 cm
-1

; 32 scans min
-1

; 

transmittance spectrum from 4000 cm
-1

 to 500 cm
-1

; open setting 6 mm; scanner rate 10 

KHz.  

 

3.3.7. Assessing A. discolor growth and Remazol Brilliant Blue R 

decolorization  

A. discolor pellets were recovered from the amber bottles to evaluate the alterations in 

the fungal growth and production of enzymes after the 24 hours of PCP adsorption (5 

or 10 mg L
-1

) or no-adsorption (control). The differences in the mycelium growth (cm 

day
-1

) of A. discolor pellets was measured in a culture of potato dextrose agar (PDA) 

(15 g L
-1

 agar; 20 g L
-1

 dextrose; 4 g L
-1

 potato extract) in Petri dishes. The fungal 
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pellets were incubated at 25 °C for 5 days in darkness. The peroxidase activity was 

performed in Petri dishes (80 mm diameter) according to Eichlerová et al. (2006). The 

medium contained agar (15 g L
-1

), malt extract (3.5 g L
-1

), glucose (15 g L
-1

) and 

Remazol Brilliant Blue R (0.2 g L
-1

) and was aseptically transferred in Petri dishes. 

These latter were inoculated with one A. discolor pellet and incubated at 25 °C for 7 

days in darkness. The Remazol Brilliant Blue R dye turns form blue to yellow opaque 

as it is decolorization by peroxidase of fungus. 

 

3.3.8. Statistic analysis 

Every experiment was conducted in triplicate and the mean value is represented by one 

data point in the figures. All data were subjected to ANOVA by using XLSTAT 2013.1 

for Windows. The assumptions of normality and homogeneity of the variants were 

tested by the Kolmogoroff–Smirnoff. The significant differences between means of P 

<0.05 were assessed in accordance with Tukey‟s multiple comparison test. 

 

3.4.  Results and Discussion 

 

3.4.1. Morphological characteristics of A. discolor  pellets 

PCP adsorption was evaluated using pellets of A. discolor with the following 

morphological characteristics: diameter 2.57 ± 0.47 mm, weight 1.53 ± 0.51 mg  and a 

surface area of 1.421 ± 0.6 m
2
 g

-1
. For the biotechnological industry, the fungal pellets 

may offer efficient and practical alternatives to other techniques currently used to 

remove this pollutant from soil and water. Moreover, the interest in the potential use of 

these pellets as biosorbents is favorable for their simplicity of reuse as well as being 

economically advantageous (Lin et al. 2008; Kumar et al. 2009). The fungal adsorption 

studies were almost all carried out with dead biomass (Kumar et al. 2008; Mathialagan 

and Viraraghavan 2009 ; Rubilar et al. 2012). It has been widely proven that with dead 
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biomass there are no toxicity concerns and maybe eventually reused for numerous 

cycles of adsorption. Tsezos and Bell (1989) demonstrated as PCP adsorption by dead 

biomass of Rhizopus arrhizus was six times higher than the respective live biomass. 

However, using live microorganisms, over biosorption, also the biodegradation 

processes can help resulted in a better and faster depletion of the contaminant (Logan et 

al. 1994; Benoit et al. 1998; Damianovic et al. 2009).         

 

3.4.2. Potentiometric titration 

The Potentiometric titration curve (Fig. 1) maybe observed as the pH level of the 

solution increases, the net surface charge becomes more negative as demonstrated by 

Deng et al. (2009) and Mathialagan and Viraraghavan (2009). At a pH of > 7.0, the net 

charge of the fungal wall was negative. The point where the line representing different 

ionic strengths intersect is referred to the point of zero salt effect (PZSE). The 

potentiometric titration curve of A. discolor pellets, for all KCl solutions, showed 

pronounced flexes as in Navarro et al. (2008). This allows us to locate the area of 

equivalence points indicating the neutralization of different acidic groups, since the 

acidity of the latter varies with pH. This area was very evident, contrary to what was 

observed with Penicillium chrysogenum (Skowronski et al. 2001; Deng et al. 2009), 

Trichoderma viride (Sanna et al. 2002), Spirulina platensis (Lodi et al. 2003), Rhizopus 

arrhizus (Naja et al. 2006) and in humic and fulvic acids (Stevenson, 1977). The 

potentiometric titration curves obtained in the presence of two PCP concentrations are 

shown in Fig. 2. The PZC shifted to a lower pH value with increasing PCP 

concentrations (PZC control at pH 7.0; PZC 2.5 mg PCP L
-1

 at pH 5.82; PZC 5 mg 

PCP L
-1

 at pH 5.10). This could indicate the possibility of an inner-sphere complex 

formation due to a release of H
+
 from the protonated anions when the ligand exchange 

occurs at surface level (Goldberg and Johnston 2001; Cea et al., 2005). In fact, during 

this process PCP competes with the anions for the binding sites present on the fungi 
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walls at an acidic pH level. Mathialagan and Viraraghavan (2009) demonstrated that at 

a neutral or basal pH value, the fungal biomasses present a net negative charge, 

therefore, electrostatic repulsion toward the PCP in its anionic form can occur. 

 

Fig. 1 Potentiometric titration curves of live pellets of A. discolor with three KCl electrolyte 

solutions at 25 ± 1 °C. 

 

On the other hand, at a low pH value the biomass could be protonated and the PCP 

could be adsorbed by the electrostatic process of the cell wall (Deng et al. 2009; 

Rubilar et al. 2012) i.e. reducing the pH value, the surfaces of the biomass get 

hydronium ions which may increase the interaction between PCP and the binding sites 

of the bio ab sorbent. Moreover, the pH levels of the medium influence the ionization 

state of some functional groups present on the fungal cell wall (Kumar et al. 2009). 

However, when pH values of the PCP solution are close to its pKa value (4.75), the 

adsorption increases due to hydrophobic interactions with the surface in its neutral form 

(Cea et al. 2005). 
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Fig. 2  Potentiometric titration curves of live pellets of A. discolor in a KCl 0.1M electrolyte 

solution at 25 ± 1 °C with different concentrations of  PCP. 

 

3.4.3. Effect of PCP concentration and pH levels on the adsorption 

capacity of A. discolor 

More than PCP concentrations, the pH levels were the main parameter that affected 

PCP adsorption for A. discolor. In fact PCP adsorption, like other chlorophenols, is 

strongly influenced by the pH values (Diez et al. 1999; Cea et al. 2005; Kumar et al. 

2009; Rubilar et al. 2012). Nevertheless, the pH level was stabilized before inserting 

the pellets of A. discolor into the bottles for the PCP adsorption experiment. After 24 h 

the pH value was within the range of 5.27 - 5.51 and 5.13 – 6.36 for 5 and 10 mg PCP 

L
-1

, respectively (Fig. 3a and 3b). A. discolor changed the pH of the solutions in such a 

way that it was ideal for the growth and vitality (Rubilar et al. 2007; Tortella et al. 

2008; Rubilar et al. 2012). The same result was obtained by Jacobsen et al. (1996) in 
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adsorption and desorption of PCP experiments by way of microbial biomass. After one 

hour the pH that was measured was decidedly different than that which was stabilized 

at the start. The pH value is an important parameter for the growth of fungi and our 

results indicated that the best growth was between a pH of 3.2 and 6.5, with an 

optimum range being between a pH of 4.5 and 5.5 (Hung 1983).   

PCP adsorption of A. discolor was > 80% in the pH range of 5.13 – 5.51 for both of the 

pollutant compound concentrations tested. No statistical difference was detected at 5 

mg PCP L
-1

 (Fig. 3a). While a significant decreases was observed at 10 mg PCP L
-1

 in 

the pH range of 5.81 – 6.36 (Fig. 3b). This decrease in PCP adsorption by dead biomass 

of A. discolor at a pH of > 5.5 was detected also by Rubilar et al. (2012). In fact, in 

their study, increasing the pH level from 5.0 to 6.0, the percentage of PCP adsorption 

decreased 37% to the initial PCP concentration of 20 mg L
-1

. On the other hand 

increasing the pH from 5.5 to 6.0, the percentage of PCP adsorbed decreased to only 

8% of the initial PCP concentration at 20, 30 and 50 mg L
-1

. Interesting results were 

obtained by Mathialagan and viraraghavan (2009) in the PCP adsorption/pH-dependent 

experiments. They detected PCP adsorption activity from aqueous solutions of non-

viable Aspergillus niger biomass. Various forms of A. niger biomass that were 

chemically altered were tested for their potential in the removal of PCP. It was found 

that PCP removal was pH dependent; PCP removal decreased with the increase in pH 

values for all types of biomass, except when the fungus was treated with 

cetyltrimethylammonium. In this case it showed 100% removal at 1 mg PCP L
-1

 at all 

pH levels. For the other forms of A. niger biomass that were altered, PCP adsorption 

was > 80% at a pH range between 3.0 and 5.0. 
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Fig. 3  Effect of pH levels on the adsorption capacity of A. discolor pellets (mean ± standard 

deviation) at 25 ± 1 °C  for 24 hours of (a) 5 mg PCP L
-1

 (b) 10 mg PCP L
-1

. Different small letters 

refer to significant differences (P < 0.05) among PCP sorption values. 



Chapter III 

 

 

110 

While the PCP adsorption capacity of the fungus was < 35% at alkaline pH levels. A 

strain of Phanerochaete chrysosporium, killed by heating, adsorbed the highest amount 

of PCP, about 75 %, at a pH of 6.0 in the experiment conducted by Logan et al. (1994). 

Trametes versicolor, Ganoderma lobatum and Inonotus dryophilus were able to adsorb 

70% of the 80 mg PCP L
-1

 after 48 h. Brandt et al. (1997) evaluated the influence of the 

pH levels on adsorption and desorption behavior of PCP by Mycobacterium 

chlorophenolicum. The pH values were found to be an essential parameter which 

affects the PCP adsorption. The adsorption capacity increased with the decrease of pH 

values. At a pH of 5.4 the adsorption by bacterium was completely irreversible, while 

the complete desorption was obtained at a pH of 7.0. At a pH between 6 and 8, Jianlong 

et al. (2000) obtained better results on adsorption behavior of PCP by microbial 

biomass in the aqueous solution. Moreover, they discovered that the biomass 

concentration is an important parameter which affects the PCP adsorption activity 

which increases with the decreasing biomass concentration.  PCP solubility is pH-

dependent and its adsorption by fungus or soil is more effective at a lower pH (Cea et 

al. 2005; Mathialagan and Viraraghavan 2009; Rubilar et al. 2012). Moreover, PCP 

adsorption was affected by ionic strength, essentially due to the anionic nature of the 

pollutant compound. Increasing the ionic strength, PCP adsorption increased, 

presumably thanks to the electrostatic attraction with the microorganism‟s cell wall.  

The pH level of the medium is naturally a fundamental parameter also in adsorption of 

phenols and others chlorophenols (Aksu 2005; Ahmaruzzaman 2008). In the study 

done by Rao and Viraraghavan (2002) the maximum adsorption of phenol was obtained 

at a pH of 5.1 with sulfuric acid pretreated and a non-viable A. niger biomass. At a pH 

of 5.0, Wu and Yu (2006) obtained the highest adsorption capacity, of about 8%, of the 

2, 4-dichlorophenol from the aqueous solution of P. chrysosporium non-living pellets. 

Kumar et al. (2009) evaluated the adsorption capacity by changing the pH values of 

Trametes versicolor polyporus versus phenol, 2-chlorophenol and 4- chlorophenols. 



Chapter III 

 

 

111 

The results showed that the adsorption by the fungus increased as the pH value was 

increased from 3.0 to 6.0. The same results were seen by Denizli et al. (2005), who 

used dried and dead biomass of Pleurotus sajor-caju. In fact, the fungus showed higher 

adsorption capacities dealing with the removal of phenols and chlorophenols 

compounds from water at a pH of 6.0. In a pH range of 5.0 – 6.0 the bacterium Bacillus 

subtilis adsorbed 80% of 2, 4, 6-trichlorophenol within 3 hours. When the pH solutions 

were > 7.0 the adsorption capacity lowered to 10% and when the pH level was > 9 it 

was equal to the 2, 4, 6-trichlorophenol, but adsorbed 0% (Daughney et al. 1998). The 

invasive macroalga Sargassum muticum showed a small capacity, depending on the pH 

values, to absorb 2-chlorophenol and 4-chlorophenol (Rubin et al. 2006). In the alkaline 

medium, interesting results were obtained by Navarro et al. (2008) in the adsorption of 

phenol as a function of the initial pH solution involving marine seaweeds Lessonia 

nigrescens and Macrocystis integrifolia. These two organisms showed a higher 

adsorption rate at pH levels of 8 and 10 with values between 10% and 35%, 

respectively. Similar results were obtained by Bayramoglu et al. (2009) in the 

adsorption of phenol and 2-chlorophenol in an aqueous solution while using Funalia 

trogii pellets. The fungus was able to adsorb 75% of 200 mg L
-1

 of the phenols at a pH 

of 8.0. 

 

3.4.4. FTIR analysis 

The FTIR spectrum of live pellets of A. discolor are shown in Fig. 4. This analysis 

allows us to obtain information on the types and nature of interactions between the 

fungal pellets and the PCP. As shown in Fig 4, the spectrum before and after PCP 

adsorption by the A. discolor biomass had a similar trend while observing 13 troughs. 

Therefore, the following discussion on FTIR spectrum on the before and after PCP 

adsorption by A. discolor will be suitable for both of the patterns. The troughs in  the 

FTIR spectrum for pellets before and after PCP adsorption were annotated with an 
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„„A”, „„B”, “C” , “D” and so on up to “M”. An intense and primary trough was 

observed at 3471 cm
-1

 (marked A) which could be indicative of O – H and N – H 

stretching vibrations. This trough was larger than the others displayed in the two trends. 

The second and third neighboring troughs (marked B and C) observed at 2962 and 

2862 cm
-1

 were indicative of a C – H group vibration of alkane (- CH2) and methyl (- 

CH3) groups. The fourth intense trough at 1656 cm
-1

 (marked D) was due to the C = O 

stretching vibration mode of the primary and secondary amides (NH2CO). The fifth and 

sixth troughs at 1560 and 1460 cm
-1 

(marked E and F) were indicative of the – NH 

stretching group localized in the cell wall structure of the fungi. The seventh and eighth 

troughs at 1438 and 1373 cm
-1 

(marked G and H) were due to the C – O stretching 

vibrations of carboxylic acids derivates. The ninth troughs at 1249 cm
-1 

(marked I) was 

due to the C – O stretching vibrations of ketones, aldehydes and lactones. The tenth, 

eleventh and twelfths troughs (marked J, K and L) at 1164, 1080, and 1043 cm
-1

, 

respectively, are characteristic adsorption troughs indicating the presence of phosphate 

functional groups stretching (P = O and P –O) on the fungal biomass.  The thirteenth 

trough was at 557 cm
-1 

(marked M) which could correspond to O – C – O scissoring 

and C – O bending vibrations. The analysis of the functional groups previously carried 

out suggests that amides, alkanes, carboxylates, carboxyl and hydroxyl groups could be 

active in the PCP adsorption by A. discolor pellets, as described by Rubilar et al. (2012) 

and Kumar et al. (2009). On the other hand, amino and phosphate groups, as detected 

by Mathialagan and Viraraghavan (2009), could have a secondary role or possibly not 

even play a role in PCP adsorption. The FTIR spectrum trends of before and after PCP 

adsorption by A. discolor were similar, indicating that the fungus was not influenced 

significantly by the presence of the contaminant. The same results were obtained in the 

studies produced by Rubilar et al. (2012), and Mathialagan and Viraraghavan (2009).  
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Fig. 4 Spectrum of FTIR analysis of A. discolor pellets. Solid black line indicates FTIR of only A. 

discolor biomass while, broken grey line indicates FTIR of A. discolor biomass after sorption of 10 

mg PCP L
-1

 at 25 ± 1 °C for 24 hours. Capital letter marked significative troughs of functional 

groups.  

Different results, however, were obtained for Penicillium chrysogenum (Loukidou et al. 

2003), Funalia trogii (Bayramoglu et al. 2009) and Trametes versicolor polyporus 

(Kumar et al. 2009) where the pollutant compounds changed the amount and the nature 

of the biomass functional groups. The analysis of the functional groups previously 

carried out suggests that amides, alkanes, carboxylates, carboxyl and hydroxyl groups 

could be active in the PCP adsorption by A. discolor pellets, as described by Rubilar et 

al. (2012) and Kumar et al. (2009). On the other hand, amino and phosphate groups, as 

detected by Mathialagan and Viraraghavan (2009), could have a secondary role or 

possibly not even play a role in PCP adsorption. The FTIR spectrum trends of before 

and after PCP adsorption by A. discolor were similar, indicating that the fungus was not 
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influenced significantly by the presence of the contaminant. The same results were 

obtained in the studies produced by Rubilar et al. (2012), and Mathialagan and 

Viraraghavan (2009). Different results, however, were obtained for Penicillium 

chrysogenum (Loukidou et al. 2003), Funalia trogii (Bayramoglu et al. 2009) and 

Trametes versicolor polyporus (Kumar et al. 2009) where the pollutant compounds 

changed the amount and the nature of the biomass functional groups.    

 

3.4.5. Assessing A. discolor growth and Remazol Brilliant Blue R 

decolourization 

After 5 days of incubation no significant difference was highlighted in the mycelium 

growth among the A. discolor pellets PCP adsorption (5 or 10 mg L
-1

) and without the 

PCP adsorption (control). All the fungal pellets grew 1.5 ± 0.2 cm day
-1

 showing that 

the PCP adsorption after 24 hours at 5 or 10 mg L
-1

 did not influence the hyphal growth 

in relation to the control pellet (without PCP). This effect could be due to the low PCP 

concentrations used. In this sense, Tortella et al. (2008) showed that mycelium growth 

of A. discolor was reduced by 70%, 60% and 100% at 50 mg PCP L
-1

, 2,4-

dichlorophenol and 2,4,6-Trichlorophenol, respectively, in the tolerance and 

degradation experiments.  

Further, the Remazol Brilliant Blue R was completely decolorized by live pellets of  A. 

discolor (control and PCP adsorption at 5 and 10 mg L
-1

) in only 5 days. In all cases, 

the fungal growth and decolorization were positively correlated i.e. the diameter of 85 

mm was detected for the colony size and decolorized zone. A. discolor pellets showed a 

rapid capacity of growth and to decolorize the Remazol Brilliant Blue R, obtaining a 

better performance than that of genera Agrocybe, Auricularia, Ganoderma, Phellinus, 

Pleurotus, Psilocybe, Lentinus and Tramtes which were tested by Machado et al. 
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(2005) and versus the species Dichomitus squalens (Eichlerová et al. 2006) and 

Bjerkandera adusta (Eichlerová et al. 2007).   

 

3.5.  Conclusions 

In this study the adsorption of PCP by A. discolor pellets in amber bottles was pH-

dependent and was higher at a pH of 5 – 5.5, all the while significantly decreasing by  < 

60% at 10 mg PCP L
-1

 in the pH range of  5.71 – 6.41. The fungal growth and Reason 

Brilliant Blue R decolorazation was not affected by the PCP adsorption after 24 h. The 

live pellets may also be used as a natural absorbent for PCP. The FTIR results showed 

that amides, alkanes, carboxylates, carboxyl and hydroxyl groups can be important 

functional groups to the adsorption of PCP by fungus. Finally, the live pellets of A. 

discolor may be considered a good biosorbent for liquid solutions contaminated by 

PCP. 
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4. Assessing the effectiveness of Byssochlamys nivea and 

Scopulariopsis brumptii in pentachlorophenol removal and 

biological control of plant pathogens 

 
4.1. Abstract 

Two areas in fungi research capable of producing beneficial effects on the economy 

and environment are bioremediation and biological control. Two fungal strains were 

isolated from an artificially PCP-contaminated soil during a long-term experiment and 

identified as: Byssochlamys nivea and Scopulariopsis brumptii. The fungal strains were 

tested in sensitivity and degradation to pentachlorophenol (PCP) and as antagonist 

against Oomycetes Phytophthora cinnamomi and Phytophthora cambivora. The fungal 

strains showed a good PCP tolerance (12.5 and 25 mg PCP L
-1

) although the hyphal 

size, biomass, patulin and spore production decreased with  increasing PCP. It was 

shown that these two fungi can completely deplete 12.5 and 25 mg PCP L
-1

 in 

submerged culture after 28 days of incubation at 28 °C. Electrolyte Leakage Assays 

showed that the fungi have a good tolerance at 25 mg PCP L
-1

 and do not produce toxic 

compounds for the plant. B. nivea and S. brumptii were able to inhibit the growth of P. 

cinnamomi and P. cambivora in solid and  liquid culture. Volatile organic 

compounds (VOCs) did not produce growth reduction of oomycetes strains. These 

results indicate that B. nivea and S. brumptii have an interesting potential in 

bioremediation and biocontrol strategy.    

 

4.2. Introduction 

The use of beneficial fungi and bacteria for bioremediation and biological control 

(biocontrol) of plant diseases has made tremendous strides in numerous biotechnology 

applications. In recent years the need to find a global approach to environmental and 
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agricultural issues has set out the challenge to discover microorganisms useful for both 

bioremediation and biocontrol research (Griffin 2014). In this way, the contribution to 

soil, water and crop protection will be twofold and achieved through the use of low-

cost biotechnologies promoting ecological alternatives. This approach is primarily 

focused on how to use microorganisms strains to inhibit the dangerous advance of  

plant pathogens and to deplete environmental contaminants (Sylvia et al. 2005; Singh et 

al. 2011). The fungi that play important roles in biocontrol and bioremediation strategy 

are numerous; some of these are grouped as  mycorrhizal and endophytic fungi (Jeffries 

et al. 2003; Griffin 2014). The endophytic fungus Phomopsis sp. was able to use the 4-

hydroxybenzoic acid as only carbon source (Chen et al. 2011) and to inhibit the 

cerambycidae Physocnemum brevilineum which is a vector of the elm pathogens, such 

as Ceratocystis ulmi (Webber 1981). The fungi of Glomus genus are arbuscular 

mycorrhizas used in biocontrol of soil-borne plant pathogens (Azcón-Aguilar and 

Barea 1996) and as heavy metal biosorbent in the soil (Leyval et al. 2002). Filamentous 

fungal species belonging to the genus Trichoderma are able to counteract some plant 

pathogens by means of  mycoparasitism and antibiosis (Howell 2003: Lorito et al. 

2010) and, simultaneously, to deplete pollutants including chlorophenols, heavy metals 

and polycyclic aromatic hydrocarbons (PAHs) (Tripathi et al. 2013). Aspergillus flavus 

was used as biosorbent of heavy metals (Deepa et al. 2006), phenol degraders (Ghanem 

et al. 2009) and in promoting Phytophthorae’s growth inhibition (Evidente et al. 2006). 

Penicillium spp. has demonstrated excellent ability to degrade different xenobiotic 

compounds such as phenolic compounds, PAHs and heavy metals (Leitão 2009). 

Futhermore  some strains of Penicillum genus were used as biocontrol, such as 

Penicillium funiculosum and Penicillium janthinellum that were able to limit the 

Phytophthorae root rots of azalea (Ownley and Benson 1992; Fang and Tsao 1995). 

Some species of Verticillium genus were able to remove petroleum products and PAHs 

in soil (Gadd 2001; Singh et al. 2011) and to control numerous plant pathogens such as 
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fungi, bacteria and nematodes (Mérillon and Ramawat 2012). Other interesting 

ecological groups are for example the white-rot fungi. Trametes versicolor has showed 

promising biocontrol activities against Fusarium oxysporum (Ruiz-Dueñas and 

Martínez 1996) and represents one of the most important organism used in 

bioremediation study against numerous contaminants (Gadd 2001; Singh 2006; Bosso 

et al. 2011). 

In the present study we carried out  with Byssochlamys nivea (Westling, 1909) and 

Scopulariopsis brumptii  (Salvanet-Duval, 1935)  in vitro experiments to reach the 

following goals: 

1. remove highly chlorinated compound extensively used as a biocide in wood 

industry and persistent environmental contaminant of soil and water: the 

pentachlorophenol (PCP). 

2. control Phytophthora cinnamomi (Rands, 1922) and Phytophthora cambivora 

(Buisman, 1927); two plant pathogen that cause “ink disease”, one of the most 

destructive diseases affecting European Chestnut trees (Castanea sativa Miller). 

 

4.3. Materials and Methods 

 

4.3.1.  Isolation of fungal strains 

Two fungal strains were isolated from an artificially PCP-contaminated soil during a 

long-term experiment (Scelza et al. 2008) according to a slightly modified protocol of 

Martin (1950). Briefly, 1gr of soil sample was suspended in 100ml of distilled sterile 

water to make microbial suspensions (10
-1

 to 10
-7

). Dilutions between  10
-1 

and 10
-5

 

were used to isolate fungi. An amount of 1 ml of microbial suspension of each 

concentration was added to sterile Petri dishes containing 20 ml of potato dextrose agar 
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(PDA) (5 g L
-1  

potato; 20 g L
-1 

dextrose; 15 g L
-1 

agar). One percent of streptomycin 

solution or 1 ml of lactic acid (diluted to 20%) was added to the medium to prevent 

bacterial growth. The Petri dishes were then incubated at 28 °C in the dark and were 

observed everyday up to 5 days. After isolation, the fungi were transferred into PDA  

slant cultures tubes and stored at 4 °C. 

 

4.3.2. DNA extraction, PCR amplification and analysis 

The fungi were transferred from slant cultures tubes to PDA plates and incubated at 25 

°C for 7 days. The procedure described later was carried out for each fungus. Two 

plugs were taken from fungal plates and placed in flasks with potato dextrose broth 

(PDB, SIGMA) and incubated for 30 days at 25 °C on orbital shaker (120 r.p.m.). 

Mycelium harvested from the flasks was dried, frozen, lyophilized and stored into 

falcon tubes. DNA extraction was realized following the method of de Graaff et al. 

(1988). Genetic analysis of Ribosomal DNA was determined by PCR of the internal 

transcribed spacer (ITS) sequences. We used a PCR based approach to amplify, using 

primers ITS1 (5‟- TCCGTAGGTGAACCTGCGG -3‟) and ITS2 (5‟- 

GCTGCGTTCTTCATCGATGC -3‟), fungal DNA fragments. The following 

parameters were used in thermocycler amplification: 1 minute initial denaturation at 94 

°C, followed by 30 cycles of 1 minute denaturation at 94 °C, 1 minute primer annealing 

at 50 °C, 90 seconds for extension at 72 °C and final extension period of 7 minutes at 

72 °C. The PCR product was gel electrophoresed and quantified by Qubit® 2.0 

Fluorometer. Quantified PCR product was sent to Eurofins MWG Operon to 

sequencing. Finally, DNA sequence was aligned using Basic Local Alignment Search 

Tool (BLAST) that finds regions of local similarity between sequences 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). After molecular identification the fungi 

cultures were also observed on the basis of macroscopic and microscopic 

characteristics. 
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4.3.3. Chemicals 

PCP (>99% purity) and HPLC solvent were obtained from Sigma Aldrich (Germany). 

All other chemicals reagents were purchased by BD (United State of America). 

 

4.3.4. Sensitivity test to PCP in plate culture 

Sensitivity to PCP by fungi was evaluated in Petri dishes. The fungal strains were 

grown on PDA  at  different PCP concentration (12.5 and 25 mg L
-1

). Controls were 

cultured without PCP. All samples were incubated at 25 °C for 7 days. Tolerance to 

PCP was determined by measuring the diameter of the colony (Tomassini et al. 2001), 

hyphal size (this was easily achieved measuring with a microscope  the hyphal 

thickness in µm) and spore production (St-Arnaud et al. 1996). To determine hyphal 

thickness and spore production 100 measurements were carried out for each replicate. 

 

4.3.5. Sensitivity test to PCP and PCP removal in submerged culture 

Sensitivity to PCP by fungi was determined also in submerged culture. Two plugs of 8 

mm diameter of active mycelia taken from PDA cultures of 7 days old  were grown in 

potato dextrose broth (PDB) (5 g L
-1  

potato; 20 g L
-1 

dextrose) and PCP at 12.5 and 25 

mg L
-1

. Controls were cultured without PCP. Cultures were grown in Erlenmeyer flask 

of 250 ml containing 100 ml of medium. All samples were incubated at 28 °C and 

shaked at 125 rev min
-1

 for 28 days. Sensitivity test was evaluated measuring the dry 

weight biomass. The biomass was separated from PDB by filtration using Whatman 

Filter MN 640 d - 110 mm diameter (Macherey-Nagel). The biomass was washed with 

distilled water, dried in an oven at 50 °C for 24 h and weighed. PCP adsorption and 

degradation analysis were carried out in submerged culture using the same medium, 

PCP concentration and fungi inoculation and incubation mode as previously described. 
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The analytical methods used to determine the PCP in liquid culture and biomass were 

extensively described in Tomassini et al. (2001). 

4.3.6. Utilization of PCP as sole carbon source 

The fungal strains were tested for their ability to utilize PCP in liquid mineral medium 

with PCP as sole carbon source. The fungi were inoculated into a flask containing 12.5 

and 25 mg PCP L
-1

 in a medium with the following composition (g L
-1

): KH2PO4 (2.0); 

MgSO4 · 7H2O (0.5); CaCl2 (0.1); NH4Cl (0.12); ZnSO4 · 7H2O (0.1); MnCl2 · 4H2O 

(0.3). The control was obtained with the same mineral medium adding 10 g L
-1

 of 

glucose as carbon source. The pH of the medium was adjusted to 5.5 before 

sterilization. The flasks were inoculated with two plugs of 8 mm diameter of active 

mycelia taken from PDA cultures of 7 daysold. . This procedure was done for each 

fungi individually. The incubation was carried out at 28 °C on orbital shaker incubator 

at 120 r.p.m in the dark for 28 days. The use of PCP as sole carbon source was 

evaluated measuring the dry weight biomass as described above. The analytical 

methods used to determine  PCP in liquid mineral medium were extensively described 

in Tomassini et al. (2001). 

 

4.3.7. Influence of PCP on production of patulin in submerged culture 

From the submerged culture used for PCP removal experiment (described above) were 

collected 10 ml of sample and analyzed for patulin production. In a 50ml  falcon  were 

inserted 10 ml of sample, 15gr of Na2SO4 (Sigma-Aldrich), 2 gr of NaHCO3 (Fluka) 

and 10 ml of a mixture 60+40 [v/v] composed by C4H8O2 (Clean Consult)/ C6H14 

(Carlo Erba) and mechanically mixed for 4 minutes. After which the falcon was 

centrifuged at 2000 r.p.m. for 1 minute.  From the falcon 2.5 ml of sample was 

collected and washed in a HLPC C18 column (Phenomenex) with 3 ml  mixture of 

ethyl acetate/hexane. The eluate was collected in a little tube containing 50 µl of 
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C2H4O2 (Merck), resuspended in 1 ml of water with pH 4 and transferred into a vial. 

The determination of the patulin was carried out by HPLC (Shimadzu) equipped with 

autosampler SIL-20A, two pumps LC-20AD and a UV / VIS SPD-20A detector; 

wavelength: 276 nm. The column used was Gemini 5μ C18 110 Å (150 x 2 mm) 

(Phenomenex). Mobile phase A (95%): acetic acid with 1% of distilled  water. Phase B: 

CH4O (Carlo Erba). Flow rate: 1ml / min. Under these conditions the retention time of 

patulin was around 14 minutes and the LOD equal to 5 ppb. 

 

4.3.8. Electrolyte Leakage Assay (ELA) 

ELA was carried out on our fungi to assess: i) PCP toxic effect on mycelium; ii) the 

potential damage on plant cell wall and membrane of fungal metabolites. This second 

experiment was conducted to assess the potential use of  bioremediation strategy in 

field studying. 

For the first experiment, 6 plugs of 5 mm diameter of active mycelia were taken from 

water agar cultures of 7 days old (WA, Carlo Erba) and incubated in the dark for 24 h 

in beckers containing distilled water + 25 mg PCP L
-1

. The control was obtained 

incubating the fungus with only distilled water. After the incubation all fungi plugs 

were washed and transferred into a becker containing 15 ml of distilled water. The 

measurements were conducted  after 1, 2, 4, 7 and 8 hours except for the first and last 

analysis that were made after 0.30 and 24 hours, respectively. 

For the second experiment, 10 tomato stem pieces (5-mm long) were incubated 

overnight in culture filtrate of the fungi and only in PDB (control). Fungal culture 

filtrate was obtained from PDB medium with active mycelia cultured for 7 days. The 

culture filtrate was separated from the  mycelium byfiltration with Whatman Filter MN 

640 d - 110 mm diameter (Macherey-Nagel). After the incubation all the stem pieces 

were washed and transferred into a becker containing 15 ml of distilled water. The 
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measurements were set hourly except for the first and last analysis that were made after 

0.30 and 24 hours, respectively.  

In all the experiments the corresponding conductance was measured in microsiemens 

using a conductivity-meter with 20 electrodes (range 20–200 mS/cm; K¼1). The 

conductivity values were calculated as the difference from the reading at the beginning 

of the assay (Evidente et al. 2009). 

 

 

4.3.9. Antagonistic assays against Phytophthora spp. in vitro 

The antagonistic assays were carried out among our fungi against two plant pathogens: 

Phytophthora cambivora and Phytophthora cinnamomi. These two Chromisti are 

stored into PDA slant tubes at 18 °C in the laboratories of Forest Pathology of the 

Department of Agriculture  (University of Naples Federico II, Italy). Colony interaction 

and competition was analyzed in dual culture method (Chand and Logan 1984) in Petri 

plate (85 mm diameter) containing 20 ml of PDA. The diameter of the colony was 

measured. The volatile organic compounds (VOC) were analyzed following the method 

described by Dennis & Webster (1971) measuring the radial extension of the colonies.  

The biomass weight was detected in flasks containing 100 ml of PDB. The biomass 

was separated from the PDB by filtration using Whatman Filter MN 640 d - 110 mm 

diameter (Macherey-Nagel). After which, the mycelium was washed with distilled 

water,  dried in an oven at 50 °C for 24 h and weighed.  In all experiments an 

antagonist plug of 5mm diameter  was added 24 h before  the Phytophthora plug. The 

Petri plate and flasks were incubated at 25°C in the dark for 10 days. Controls were 

carried out placing in Petri dishes and flask a plug of pathogen and only PDA. 
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4.3.10. Statistical analysis  

All statistics analysis were carried out using XLSTAT version 2013.1. Analyses of 

variance (ANOVA) followed by a least significant difference (LSD) test at P<0.05 was 

used to determine significant differences among means. All experiments were 

performed in triplicate. 

 

4.4. Results 

 

4.4.1. Fungal strains identification 

The fungal strains were identified as: Byssochlamys nivea (Westling, 1909) (100% of 

identity - Accession code: AF360391.1) Scopulariopsis brumptii (Salvanet-Duval, 

1935) (98% of identity - Accession code: HG380457.1). These results were confirmed 

also by macroscopic and microscopic characteristics.  

 

4.4.2. Sensitivity test to PCP  

In experiments performed with  PDA Petri dishes, the fungal radial growth and hyphal 

thickness showed a significant decreased at 25 mg PCP L
-1

 only for B. nivea . The 

fungal growth rate of B. nivea considerably decreased at increasing PCP concentration. 

Instead, S. brumptii suffered  a reduction of growth rate when the PCP concentration 

was ≥ of 12.5 mg L
-1

 (Table 5). The spore production decreased when  PCP 

concentration was 25 mg L
-1

 for both fungi. The biomass production , evaluated in 

liquid culture, suffered a significant decrease when  PCP was ≥ of 12.5 mg L
-1 

for both 

fungi. The fungi did not grow when PCP was used as sole carbon source in liquid 

mineral medium (Table 5). Always determined in flasks, the patulin 

productionsignificantly decreased at increasing PCP concentration for both fungi 

(Table 5). 
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4.4.3. PCP removal capacity 

PCP removal ability of B. nivea and S. brumptii was evaluated in flask containing PDB 

after 28 days. The trend of PCP adsorption and degradation showed no significant 

difference between the fungi (Tab. 6). B. nivea was able to adsorb the 2.8 and 4.6% of 

12.5 and 25 mg PCP L
-1

. While, at the same concentrations, S. brumptii adsorbed the 

5.2 and 3.3%. The degradation of PCP was > 95% at any concentration of the 

contaminant analyzed for both fungi (Table 6). In the control, without fungal 

mycelium, the PCP removed was < 1%.  

 

4.4.4. Electrolyte Leakage Assay  

Two ELA experiments were carried out for B. nivea and S. brumptii to assess: i) PCP 

toxic effect on mycelium; ii) the effects of fungal metabolites on plants.  

In the first experiment, the incubation with PCP did not produce a significant variation 

of electrolyte leakage for B. nivea in 24 hours. Instead, at the same time, S. brumptii 

showed a decrease of 15% of electrolyte leakage respect to the control incubated only 

in distilled water (Fig. 5). The increments of conductance were stableafter 7 hours for 

all samples.   

In the second experiment, the electrolyte leakage of tomato stem pieces incubated only 

in PDB and the fungal filtrate culture showed no significant difference after 0.3 and 24 

hours. The conductance measured for B. nivea during the first eight hours highlighted 

an increase of electrolyte leakage of the tomato stem. Even in this case the increments 

of conductance were stable  after 7 hours for all samples (Fig. 6).  
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Fig. 5 Toxic effects of 25 mg PCP L
-1 

on 6 plugs of B. nivea and S. brumptii after 24 h of incubation 

using Electrolyte Leakage Assay (ELA). Results are expressed as mean ± standard deviation. 

Different small letters refer to significant differences (P < 0.05) among PCP sensitivity of: B. nivea 

incubated in distilled water (white bar); S. brumptii incubated in distilled water (light grey bar);  B. 

nivea incubated at 25 mg PCP L
-1

 (black bar); S. brumptii incubated at 25 mg PCP L
-1 

(dark grey 

bar). 

 

4.4.5. Antagonistic assays against Phytophthora spp. in vitro 

Radial mycelium extension was measured with  PDA in colony interactions and VOC 

experiments. In the first case, the growth of P. cambivora and P. cinnamomi was 

reduced to  40 and 60% when these pathogens were cultured with S. brumptii and B. 

nivea, respectively (Table 7). The radial growth of Phytophthora isolates, measured in 

VOC experiments in presence of the fungi, showed no  significant difference  respect to  

the control (Table 7). Finally, S. brumptii and B. nivea reduced to 50 and 60% the 

biomass production of P. cambivora and P. cinnamomi in flask (Table 7).  
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Fig. 6 Toxic effects of B. nivea and S. brumptii culture filtrates on 10 tomato stem pieces after 24 h 

of incubation using Electrolyte Leakage Assay (ELA). Results are expressed as mean ± standard 

deviation. Different small letters refer to significant differences (P < 0.05) among toxicity on tomato 

stem incubated in: only PDB (control) (white bar); B. nivea culture filtrates (black bar); S. brumptii 

culture filtrates  (grey bar).   

 

4.5. Discussion 

 

4.5.1. B. nivea and S. brumptii in PCP sensitivity  

The fungal strains showed a good PCP tolerance at the concentrations tested. In Petri 

dishes, B. nivea suffered a decrease of radial mycelium extension, hyphal thickness and 

daily growth rate when tested at 25 mg PCP L
-1

. Instead, S. brumptii grew without 

significant limitations due to PCP. Tomassini et al. (2001) showed that an isolate of 

Rhizopus nigricans was able to grow even at 100 mg PCP L
-1

 while, no growth was 

detected at 250 mg PCP L
-1

. Moreover R. nigricans’ daily growth rate was of 9.8 and 
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9.6 mm day
-1

 with 12.5 and 25 mg PCP L
-1

. Our fungi were slower in  growth (with an 

average of 7 mm day
-1

 for both fungi) than R. nigricans, but, after 5 days, the radial 

mycelium extension of our fungi was of 55 mm compared to 45 mm of R. nigricans. 

Bomar and Bomar (1999) have analyzed the PCP tolerance of Aspergillus niger on 

PDA. The radial growth of A. niger was completely inhibited at 40 mg PCP L
-1

, while 

at concentrations of 20 and 10 mg PCP L
-1

, the mycelium growth was reduced to  88 

and 75%, respectively. At the same concentration A. niger formed only vegetative 

structures without conidia formation . B. nivea and S. brumptii did not suffer of the 

same radial extension reduction, although, the spore production decreased at increasing 

PCP concentration. After the experiment the conidia were still able to germinate for 

both fungi. Phanerochaete chrysosporium showed  a radial growth rate of 10.3 cm day
-

1
 at 12.5 mg PCP L

-1
, but its growth rate decreased at increasing PCP concentration, 

with 8.2 cm day
-1

 at 25 mg PCP L
-1 

Tomassini et al. (1996). Tortella et al. (2008) tested 

11 white-rot Chilean isolates in resistance and mycelium radial extension at 25 mg PCP 

L
-1

 in N-limited solid media. When the fungi were exposed to PCP, only Lenzites 

betulina had a growth rate of 10 mm  day
-1

. Walter et al. (2003) reported that the most 

tolerant strains at 20 mg PCP L
-1

 was T. versicolor (HR 160) that grew 28 mm day
-1

.  

Exactly like the radial growth, also patulin and biomass production were negatively 

influenced at increasing PCP concentration. In literature there are no studies on the 

interaction between patulin and PCP. B. nivea and S. brumptii reduced to  60% the 

patulin production at 25 mg PCP L
-1

. Same results were obtained when the fungi were 

grown in PDB to evaluate the submerged biomass. In liquid batch cultures Chiu et al. 

(1998) detected that when some strain were cultured for 7 days with 25 mg PCP
-1

, this 

caused reduction in growth of the biomass by 74% in Volvariella volvacea; 77% in 

Armillaria gallica; 30% in Armillaria mellea; 28% in Ganoderma lucidum  and 17% in 

Pleurotus pulmonarius. Marcial et al. (2006) evaluated the effects of higher initial PCP 

concentrations (12.5 and 25 mg L
-1

) on Amylomyces rouxii’s biomass growth. In 
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cultures with with 25 and 12.5 mg PCP L-1, the biomass growth of A. rouxii was of 8 

mg after 96 h. When B. nivea and S. brumptii were cultured in liquid mineral medium 

with PCP as sole carbon source, the fungi showed no biomass production. Instead when 

in the flask glucose was added , fungal biomass was achieved for both fungi. This 

essentially happens because unlike bacteria, fungi do not utilize PCP as a source of 

carbon and energy. In fungi the degradation of PCP is not consequence of enzyme tools 

able to do this function but an effect of co-metabolism (McAllister et al. 1996;Field and 

Sierra-Alvarez, 2008).   

The effects of PCP on hyphal size, mycelium morphology and spore production of B. 

nivea and S. brumptii were evident at increasing PCP concentration. Although, the PCP 

never reduced to zero the fungi growth . ELA assays showed that B. nivea, after 24 h of 

incubation at 25 mg PCP L
-1

, did not suffer a decrease in  electrolyte leakage compared 

to control incubated in distilled water. On the other hand, S. brumptii reduced to  only 

15% the conductance values in 24 h. After 24 h (data not showed) there was no 

significant difference versus the control. It is widely known that  PCP can negatively 

influencefungi cellular processes, morphology, lipid membrane components, biomass 

growth, enzymatic activity, sporulation and reproduction capacity (Watanabe 1978; 

Bajpaia and Banerjib 1992) but in our case, B. nivea and S. brumptii seem to have a 

good tolerance to PCP. Tolerance to PCP is the first goal to reach if we want to select 

specific and effective microorganisms useful in PCP degradation.  

 

4.5.2. B. nivea and S. brumptii in PCP degradation  

Fresh mycelium of B. nivea and S. brumptii was found to be able to adsorb and degrade 

PCP. For both fungi the adsorption was of no relevance in relation to the PCP 

degradation (Table 3). In fact 95% of the PCP was degraded after 28 days of incubation 

by fungi B. nivea and S. brumptii are known to not produce  extracellular enzymes as 
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lignin peroxidases or laccase which are highly efficient in degrading  PCP in co-

metabolism (McAllister et al. 1996; Field and Sierra-Alvarez, 2008). However, S. 

brumptii is a non-ligninolytic fungi that thanks to the phenoloxidase enzymes (Tanaka 

et al. 2000) can be useful in PCP degradation (Tomassini et al. 2001; Gadd 2001). B. 

nivea thanks to the  pectinolytic enzymes, which are widely used in bioremediation 

strategy (Gadd 2001), was able to degrade 12.5 and 25 mg PCP L
-1 

after 28 days in 

flask. Furthermore in the Byssochlamys genus there have been detected enzymatic 

activities involved in the degradation pathway of lignin and other wood constituents 

(Chu and Chang 1973: Furukawa et al. 1999). The ability of  B. nivea and S. brumptii 

to remove PCP was excellent after 28 day of incubation. From the same soil from 

which we have isolated these fungi, Scelza et al. (2008) isolated  a  strain of 

Byssochlamys fulva that was able to remove 20% of 50 mg PCP L-1 in only 8 days. 

Excellent results in PCP depletion were also obtained by Tomassini et al. (2001) with 

an isolate of Rhizopus nigricans. In fact the strain degraded 12.5 mg PCP L
-1

 using 

phenoloxidase activity in only 8 days. Tortella et al. (2008) in N-limited liquid medium 

showed that Anthracophyllum discolor, Lenzites betulina and Galerina patagonica 

removed 25 mg PCP L
-1

 in only 15 days thanks to manganese and lignin peroxidase 

production.  Chiu et al. (1998) detected that the maximum total removal efficiency was 

obtained by Ganoderma lucidum, Phanerochaete chrysosporium and Polyporus sp. 

after 7 days of incubation in liquid batch system with 25 mp PCP L
-1 

using laccase. 

These fungi were able to remove 75-78% of the PCP initial concentration. The majority 

of fungi implicated in PCP degradation are members of the white-rot Basidiomycetes 

and are capable of degrading lignin. Almost all studies on PCP degradation were 

conducted with Phanerochaete chrysosporium, Phanerochaete sordida, Trametes 

versicolor and Trametes hirsuta  (McAllister  et al. 1996). Few studies about PCP 

degradation by Ascomycota fungi are available in literature. This justifies the 
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importance to study fungi belonging to this fungal group that may  tolerate and degrade 

high PCP concentrations. 

 

4.5.3. Biological control of P. cambivora and P. cinnamomi  

B. nivea and S. brumptii have demonstrated excellent capacity to reduce the growth of 

the pathogens in  PDA and  PDB  dual culture methods. No significant difference was 

found between the growth and biomass inhibitionof to  P. cambivora and P. 

cinnamomi.  Several antagonists and their metabolites were found useful in 

Phytophthora’s control. A Flufluran derivate extract by Asperigillus flavus has 

completely inhibited the mycelium growth of P. cinnamomi  after 7 days (Evidente et 

al. 2006). Antibiosis and mycoparasitism action by some fungi and bacteria, isolated by 

manure compost, were able to lyse Phytophthora’s mycelium with inhibition values 

between  40 – 70% (Aryantha and Guest 2006). Β-glucosidase and phosphates 

activities of a Trichoderma sp. strain reduced the development of P. cinnamomi (Kelley 

and Kabana 1976). A methanolic compound obtained from the cyanobacterium Nostoc 

was tested with good results against a variety of pathogens of agricultural importance 

among which: P. cambivora and P. cinnamomi (Biondi et al. 2004). Antibiosis  was 

detected only between fungi and Phytophthorae and, the main  compound produced by 

our fungi able to limit the pathogens growth was patulin. Patulin is a mycotoxin active 

against a wide spectrum of microorganisms. Patulin produced by Aspergillus 

clavatonaticus exhibited inhibitory activity in vitro against several plant pathogenic 

fungi i.e., Botrytis cinerea, Didymella bryoniae, Fusarium oxysporum, Rhizoctonia 

solani and Pythium ultimum (Zhang et al. 2008). This mycotoxin was able to stop the 

synthesis of rRNA, tRNA and mRNA in Saccharomyces cerevisiae (Sumbu et al. 1983) 

and to have antibacterial activities against Escherichia coli and Micrococcus luteus  

(Praveena and Padmini 2011).  
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In VOC experiments the oomycetes showed no significant decrease in radial growth 

when cultured with fungi. This happens because B. nivea and S. brumptii do not 

produce volatile compounds able to limit  pathogens‟ growth. The VOCs are often used 

to control Phytophthora species. The endophytic fungus Muscodor crispans produced 

VOCs that have inhibitory effects against P. cinnamomi, P cambivora and other 

oomycetes such as Phytophthora palmivora, Pythium ultimum (Mitchell et al. 2010). 

Nodulisporium sp., another endophytic fungus, produces VOCs inhibitors against a 

number of pathogens such as Aspergillus fumigatus and Rhizoctonia solani, 

Phytophthora cinnamomi and Sclerotinia sclerotiorum within 48 hr of exposure 

(Mends et al. 2012). 

Ink disease, caused by the oomycete pathogens P. cambivora and P. cinnamomi, is 

probably the most important Chestnut disease . It is very destructive and causes flame 

shaped dark necroses on collar rot of adult trees, shrub and seedling. Biological control 

is an excellent alternative for sustainable agriculture to avoid  problems associated with 

the  use of pesticides. Many studies have been done so far ; although almost always 

conducted  in  the laboratory. In this regard, B. nivea and S. brumptii do not produce 

toxic compounds able to damage cell wall and membrane of tomato stem cell; as is 

shown with the ELA experiment (Table 3). In contrast, the incubation of tomato stem 

in Aspergillus flavus culture filtrates produces high phytotoxicity due probably to 

hydrophilic metabolites that remain in the aqueous phase (Evidente et al. 2009). In our 

experiment no significant difference in conductance was detected between the tomato 

stem incubated in distilled water and in B. nivea or S. brumptii culture filtrates. The 

next research step is to address in a field study the results obtained in this research.  
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4.6. Conclusions 

Critical analysis reveals that there are relatively few reports on the use of 

microorganisms in the double role of bioremediation and biocontrol agent. This is the  

first paper about B. nivea and S. brumptii’s capacity to remove PCP and to control the 

pathogens agent of Ink disease caused by Phytophthora species. Furthermore, the 

excellent result showed by ELA assays on tomato stem indicate that our fungi do not 

cause significant damage to plants and that they can be used in field experiments. For 

this reason , our results indicate that B. nivea and S. brumptii have an interesting 

potential to be used in bioremediation and biocontrol strategy.    
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5. Bioaugmentation and biostimolation of an agricultural 

microcosm soil contaminated by pentachlorophenol  

 

5.1. Abstract 

Pentachlorophenol (PCP) has been used worldwide as a wood treatment agent and 

biocide. Its toxicity and extensive use has placed it among the most harzadous 

environmental pollutants. In this study we evaluated the response of an agricultural soil 

to contamination by PCP (25 mg Kg
-1

), and to the adding of solid urban waste compost 

and two exogenous ascomycota fungal strains: Byssochlamys nivea and Scopulariopsis 

brumptii. The experiments were conducted in microcosm soil incubated for 28 days at 

25 °C. The depletion of PCP and the changes in biochemical soil properties (i.e. 

microbial biomass, soil respiration, dehydrogenase activity and fluorescein 

diacetate hydrolysis) were detected. Fresh soil showed an endogenous microbial 

activity indicated by soil respiration, microbial biomass and all the enzymatic activities 

tested. The addition of PCP severely depressed some of the tested biochemical 

properties suggesting an inhibitory effect on microbial activity. On the other hand, the 

compost limited the negative effect of PCP on the soil biochemical activity. After 28 

days of incubation the compost and the fungal strains reduced to 95% the extractable 

PCP. The natural fresh soil showed a good efficiency in  reducing  extractable PCP 

(88%). Our results indicate that many processes (i.e. microbial degradation, 

biostimulation by compost and sorption to organic matter) were likely to occur in the 

contaminated soil when PCP was added and were  involved in its depletion. Finally, we 

suggest that compost, B. nivea and S. brumptii can be successfully used to  treat PCP 

polluted soils. 
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5.2. Introduction 

Pentachlorophenol (PCP) is a toxic compound widely used as a wood treatment agent 

and general biocide. PCP is persistent in the environment and has been classified as a 

priority contaminant to be reclaimed in many countries.  In fact uncontrolled PCP uses 

and releases has caused contamination of soil, water and ground water (McAllister et 

al., 1996). Although PCP is recalcitrant to biodegradation, numerous bacterial and 

fungal isolates have been reported to be able to degrade it   (McAllister et al., 1996; 

Gadd 2001; Singh 2006; Field and Sierra-Alvarez 2008). The use of microorganisms 

for the depletion of PCP in contaminated soil and water has become an important  

alternative in bioremediation strategies.   

Mycoremediation is a widely used process for this purpose and numerous fungi are 

capable to tolerate and remove PCP. White-rot and brown-rot fungi as Phanerochaete 

chrysosporium, Antracophyllum discolor, Trametes versicolor, Ganoderma lucidum, 

Armillaria mellea, Gleophyllum striatum have demonstrated to be able to degrade and 

mineralize PCP  at very high initial concentrations and in a short time (McAllister et 

al., 1996; Field and Sierra-Alvarez 2008). At present only a few reports about PCP 

degradation by using fungi different from white-rot and brown-rot fungi are available 

in literature. This justifies the importance to study fungi belonging to other ecological 

fungal groups that may  tolerate high PCP concentrations, grow faster and potentially 

increase degradation efficiency. Fungal strains belonging to the following taxonomic 

groups; Penicillium spp., Aspergillus spp., Trichoderma spp. and Verticillium spp., 

were tested in PCP tolerance and degradation in an extensive screening experiment 

(Seigle-Murandi et al. 1991;1992;1993). The ubiquitous fungus Trichoderma 

harzianum converted PCP in petachloroloanisole (Rigot and Matsumura 2002). 

Tomasini et al. (2001) showed how an isolate of Rhizopus nigricans  was resistant and 

able to degrade 12.5 mg of PCP L
-1

 in 144 h. Furthermore concerning the Rhizopus 

genus, León-Santiestebán et al. (2011) discovered  an isolate of Rhizopus oryzae that 
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was able to degrade 90% of 25 mg of PCP L
-1

. In an extensive degradation experiment 

carried out by Carvalho et al. (2009)  numerous species belonging to the Penicillium 

genus were able to degrade up to 50 mg of PCP L
-1

.  

Soil microbial degradation may be limited by several factors such as suboptimal 

nutrient levels, water content, temperature, pH level, organic matter and compost 

(McAllister el at. 1996). The use of compost material to biostimulate the microbial 

activity in PCP degradation was successfully applied in thedepletion of contaminates in 

the  soil (Semple et al. 2001; Jaspers et al. 2002; Miller et al. 2003; Jang et al. 2006; 

Scelza et al. 2008). Compost, being an excellent soil ameliorant for structure and 

composition with  diverse microorganisms populations and a nutrient source for 

indigenous degraders , can be used in contaminated soils with excellent results 

(McAllister et al., 1996; Semple et al. 2001; Gadd 2001; Singh 2006; Field and Sierra-

Alvarez 2008). The use of compost has enormous advantages over other 

bioremediation strategies; it has low operating costs and relatively high treatment 

efficiency. The compost used in these applications is commonly formed by manure, 

solid urban waste, yard wastes in which a fungi inoculation  is  often added to 

supplement the amount of nutrients and readily degradable organic contaminants in the 

soil (Barker and Bryson 2002). 

In this study we evaluated, in a long-term experiment under controlled conditions, the 

efficiency  of Byssochlamys nivea (Westling, 1909) and Scopulariopsis brumptii 

(Salvanet-Duval, 1935) (Fungi: Ascomycota) (Fungi: Ascomycota) in depleting PCP in 

an agricultural soil microcosm, with no history of PCP contamination, with and without 

solid urban compost adding. In this experiment we also analyzed soil biochemical 

properties as microbial biomass, basal respiration, dehydrogenase activity and 

fluorescein diacetate hydrolysis.       
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5.3. Materials and Methods 

 

5.3.1. Fungal strain and cultivation conditions 

B. nivea and S. brumptii were stored into slant tubes containing potato dextrose agar 

(PDA) (5 g L
-1  

potato; 20 g L
-1 

dextrose; 15 g L
-1 

agar) at 4°C in the laboratories of 

Forest Pathology of the Department of Agriculture  (University of Naples Federico II, 

Italy) .  

 

5.3.2. Chemicals 

PCP (>99% purity) and HPLC solvent were obtained from Sigma Aldrich (Germany). 

All other chemical reagents  were purchased by BD (United States of America). 

 

5.3.3. Physical and chemical properties of soil and compost 

Soil was collected (0 - 20 cm depth) from an agricultural lemon orchard land in 

southern Italy (Naples). This soil has no history of PCP contamination. The soil was 

sieved to 2 mm in field and sealed in a black box. In the laboratory the box was  stored 

at 4 °C before analysis. 

Physical and chemical soil analysis were carried out in triplicates on air-dried soil 

sample (Sparks, 1996). The texture was evaluated according to USDA Textural Soil 

Classification (Soil Survey Staff, 1975).  potentiometric measurements of the H
+
 

activity in a soil suspension in salt solution were carried out to determine the pH (Alef 

and Nannipieri 1995). Electrical conductivity (EC) was evaluated on the total 

concentration of dissolved salts (Violante 2000) while Cation Exchange Capacity 

(CEC) from the interaction between abarium chloride solution (exchanging solution) 

and triethanolamine (buffer solution) (Violante 2000). Water-holding capacity was 

determined analyzing the excess amount of water percolated through a known amount 
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of field-moist soil (Alef and Nannipieri 1995). Total nitrogen (TN) estimate was 

obtained with a sulphuric acid digestion and colorimetric analysis (Kjeldahl procedure) 

(Alef and Nannipieri 1995). Organic carbon (C) was performed by means of modified 

Walkley-Black method based on colorimetric determination after wet potassium 

dichromate digestion (Jackson 1958). Finally, Nitrate (NO3
-
) and nitrite nitrogen (NH3-

N) was detected using the procedure described in Wills et al. (1987). 

The maturated compost was obtained from solid urban waste and its composition is 

widely described in Scelza et al. (2007). 

 

5.3.4. Soil biochemical analysis 

Soil respiration (SR) was carried out after 1, 3, 7, 13, 18 and 28 days of incubation 

according to Piotrowska et al. (2006). 

Microbial biomass-C (MB-C) was estimated with a fumigation-extraction methods that 

convert the extractable C to microbial C using standard factors (Vance et al. 1987).  

Enzyme activities evaluated were: dehydrogenase (DH) and fluorescein diacetate 

(FDA). The first activity was  an estimation of tetrazolium salt's (TTS) reduction to 

triphenyl formazan (TPF) (Trevors 1984). While the second was determined  using the 

method based on the estimation of fluorescein produced in soil treated with fluorescein 

diacetate solution according to Schnüer and Rosswall 1982. MB-C, DH and FDA were 

analyzed after 1 and 28 days. 

 

5.3.5. PCP depletion in microcosm soil experiment 

PCP disappearance experiment in microcosm soil was performed in closed 1-l jars 

containing 100 g of fresh soil air-dried with  20% moisture content. The compost  

added was 7.14 g Kg
-1

 of soil corresponding to a field amount of 30 t compost ha
-1

. The 
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samples with PCP were made by  spiking the soil  with25 mg PCP Kg
-1

 soil. To obtain 

a final concentration of 25 mg PCP Kg
-1

 soil, we preparated a stock solution of PCP (5 

g L
-1

) in acetone. Approximately 10 g of soil was spiked with 7 ml of acetone and 0.5 

ml of the PCP stock solution. In the jar, containing the two fungal strains, were 

inoculated 30 plugs (5 mm of diameter) of active mycelia from 7 days cultures days  on 

PDA medium. When the fungi wereb simultaneously present 15 plugs were added for 

each isolate. The control was performed in the same experimental conditions without 

addition of inoculums, compost and PCP. All jars were incubated at 25 °C for 28 days 

in dark. For more details on microcosm soil preparation and spiked soil methods refer 

to Scelza et al. (2008). Experimental design is summarized in Table 8. 

 

5.3.6. PCP extraction and quantification 

PCP was extracted and analyzed according to protocol of Khodadoust et al. (1999). 

Briefly, 1 g of soil was extracted with 20 ml of water–ethanol 50+50 [v/v] and agitated 

of an horizontal shaker (190 rev min
-1

) for 1 h. After which the supernatant was  

separated from the residual soil by centrifugation at 3000g for 15 min and then 

concentrated by evaporation under vacuum. Finally the concentrated samples were re-

suspended in 2 ml of methyl alcohol (CH4O) for high-performance liquid 

chromatography (HPLC) analysis. The residual amount of PCP was quantified in all the 

samples by HPLC using an Agilent Technologies R1100 instrument with a pump and a 

diode-array detector. A Phenomenex 250 x 4.6 mm C-18 column with 4 mm particle 

size and a Phenomenex C-18 (4.6 x 30 mm) guard column were used. Analysis was 

conducted using 68% of acetonitrile and 32% of buffered water (1% acetic acid) as 

mobile phase and the 1.0 ml min1 flow rate. Detection was carried out at 220 nm. The 

retention time for PCP was about 10 min. PCP extraction was evaluated to 1, 7,14 and 

28 days. 
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Table 8.  Agricultural microcosm soil experimental design. The 

symbols correspond: ● 30 plug (5 mm of diameter) of active mycelia 

from 7 day old cultures on PDA medium; □ 15 plug (5 mm of 

diameter) of active mycelia from 7 day old cultures on PDA medium 

for each fungus; *  7.14 g compost Kg
-1

 soil; ▲ 25 mg PCP Kg-1 soil. 

 

Sample Composition 

S Soil 

SBN Soil + B. nivea● 

SSB Soil + S. brumptii● 

SBNSB Soil + B. nivea □ + S. brumptii □   

SC Soil + Compost* 

SBNC Soil + B. nivea ● + Compost*          

SSBC Soil + S. brumptii ● + Compost*           

SBNSBC Soil + B. nivea □ + S. brumptii □ + Compost*     

SP Soil + PCP▲ 

SBNP Soil + B. nivea ● + PCP▲ 

SSBP Soil + S. brumptii ● + PCP▲ 

SBNSBP Soil + B. nivea □ + S. brumptii □ + PCP▲ 

SCP Soil + Compost* + PCP▲       

SBNCP Soil + B. nivea ● + Compost* + PCP▲      

SSBCP Soil + S. brumptii ● + Compost* + PCP▲      

SBNSBCP Soil + B. nivea □ + S. brumptii □ + Compost* + PCP▲    

 

5.3.7. Statistical analysis  

All statistics analysis were carried out using XLSTAT version 2013.1. Analyses of 

variance followed by Tukey‟s multiple comparison test at the 0.05 level was used to 

determine significant differences means.  All experiments were performed in triplicates. 



Chapter V 

 

 

156 

5.4. Results 

 

5.4.1. Physical and chemical properties of soil 

The texture analysis showed a soil with the following composition: sand (69%); silt 

(20%); and clay (11%). These values represent a loamy sand soil according to USDA 

Textural Soil Classification.  

The principal characteristics of this volcanic soil can be summarized by highlighting 

the pH value at 7.53, 20% of moisture content, the organic matter of 34.25 g Kg
-1

 of 

soil. Others physical-chemical properties of the soil are shown in Table 9. 

Table 9. Main physical-chemical properties of the soil.  

Analysis Unit Mean SD 

Electrical conductivity µS cm-1 88.53 0.45 

Moisture  % 20.02 1.10 

pH  7.53 0.25 

NNO3- ppm 11.17 1.04 

NNH3 ppm 3.43 0.93 

Ctot g Kg-1 19.87 1.53 

Organic Matter g Kg-1 34.25 2.64 

N-kjeldhal % 0.19 0.02 

P ppm 20.28 1.88 

P2O5 ppm 46.66 4.34 

K ppm 165.33 7.57 

K2O ppm 200.05 9.16 
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5.4.2. Biochemical properties 

SR without PCP was significantly affected by each factor considered up to 13 days. 

Then, the only significant difference was shown between samples with and without 

compost until the end of the experiment (Fig. 7a). 

The increase of SR by PCP was evident after 1 day of incubation when the CO2 

produced in presence of PCP was 40 mg vs 45 mg of CO2 for 100g
-1

 of soil for the 

control (Fig. 7b). When both fungi or compost were added to the soil, the SR values 

were 2-fold higher than of the control after 13 days of incubation. After 18 days, the 

soil artificially contaminated with PCP had SR values twice as high than other samples. 

For all samples, the evolved CO2 increased significantly up to 7 days and decreased 

after 13 days of incubation, with  similar trend. At the end of the experiments all 

samples reached relatively similar values of evolved CO2 (about 30 mg of CO2 for 

100g
-1

 of soil). 

The trend of MB-C was quite similar in samples with or without PCP. The MB-C 

values suffered  a significant decrement from 1 day to 28 days of incubation for all 

samples in the controls. After 1 day of incubation the samples with compost showed 

high MB-C values (exceeding to 100 mg C 100g ss
-1

) (Fig. 8a). The presence of PCP 

significantly decreased the MB-C values (Fig. 8b). At 28 day of incubation with PCP 

the MB-C showed the lowest values compared to the other samples (> 30 mg C 100g 

ss
-1

). 

Some enzymatic activities, involved in the cycle of the main biological nutrients, were 

evaluated. FDA and DH activity had an exactly opposite trend. Moreover, no 

significant difference in enzymatic activities  was found between soil incubated with 

only B. nivea or S. brumptii. FDA values without PCP after 28 days of incubation were 

wice higher than  the samples analyzed after one day (Fig. 9a). Even in this case the  
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Fig. 7 Soil respiration of: a) control (without PCP);b) PCP contaminated sample (25 mg Kg
-1

). 
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Fig.8 Microbial biomass of: a) control (without PCP); b) PCP contaminated sample (25 mg Kg
-1

). 

Different small letters refer to significant differences (P < 0.05) among microbial biomass values of 

the different samples at the same incubation time. Different capital letters refer to significant 

differences (P < 0.05) among microbial biomass values of the same sample at different incubation 

times. Different color bar represent measurements carried out after: 24 h (white bar); 28 days of 

incubation (grey bar). Each value is the mean of three replicates. 
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Fig.9 Fluorescein diacetate hydrolysis of: a) control (without PCP); b) PCP contaminated sample 

(25 mg Kg
-1

). Different small letters refer to significant differences (P < 0.05) among microbial 

biomass values of the different samples at the same incubation time. Different capital letters refer to 

significant differences (P < 0.05) among microbial biomass values of the same sample at different 

incubation times. Different color bar represent measurements carried out after: 24 h (white bar); 28 

days of incubation (grey bar). Each value is the mean of three replicates. 
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Fig.10 Dehydrogenase activity of: a) control (without PCP); b) PCP contaminated sample (25 mg 

Kg-1). Different small letters refer to significant differences (P < 0.05) among microbial biomass 

values of the different samples at the same incubation time. Different capital letters refer to 

significant differences (P < 0.05) among microbial biomass values of the same sample at different 

incubation times. Different color bars represent measurements carried out after: 24 h (white bar); 28 

days of incubation (grey bar). Each value is the mean of three replicates. 
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samples with compost had the highest values of FDA (> 60 µg fluorescein g
-1

 h
-1

). 

When to the samples PCP was added, the FDA trend was similar to the samples 

without the contaminant (Fig. 9b). Furthermore, FDA  values  in a PCP contaminated 

soil were significantly higher than the control after 1 day of incubation, while, on the 

other hand, after 28 days of incubation, the FDA values were significantly lower than 

control. DH activity is a key enzyme in the C cycle and their values were significantly 

different in the sample with or without PCP and at different incubation times. DH 

values were higher after 28 day of incubation than after one day for all treatments. 

Moreover, when to the samples compost was added , the DH values were the highest of 

the whole experiment (> 7  µg TFA g
-1

 h
-1

) (Fig. 10a and 10b). In all cases when to the 

sample PCP was added , the DH values significantly decreased versus control without 

contaminant (Fig. 10b).    

 

5.4.3. PCP depletion  

Disappearance of PCP in soil, soil + compost, soil + compost + fungi and soil + fungi  

showed different trends. The extracted PCP amounts were significantly affected by soil 

treatment and incubation time. no significant difference was found in PCP removal 

between  soil incubated with only B. nivea or S. brumptii (Fig. 5a and 5b). After 24 h of 

incubation a 40% reduction of extractable PCP was measured in all samples although 

samples composted and inoculated with both fungi showed a significant 45% reduction. 

For all sample, at  7 and 14 days, the PCP extracted was about 70% less than initial 

PCP concentration (25 mg Kg
-1

). Even in this case the least amount the PCP recovered 

was for the soil with compost and both fungi. After 28 days of incubation almost a95% 

of significant reduction of the extractable PCP was detected in soil sample with 

compost and both fungi vs. the natural soil sample (88% reduction of extractable PCP) 

(Fig. 11a and 11b).    
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Fig. 11 Extracted PCP at different incubation times. Different small letters refer to significant 

differences (P < 0.05) among microbial biomass values of the different samples at the same 

incubation time. Different capital letters refer to significant differences (P < 0.05) among microbial 

biomass values of the same sample at different incubation times. Different color bar represent 

measurements carried out after: 24 h (white bar); 7 days (grey light bar); 14 days (black bar); 28 

days of incubation (grey bar). Each value is the mean of three replicates. 
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5.5. Discussion 

When Adding PCP to a natural fresh soil with no history of PCP contamination, several 

biochemical processes may occur in response to the contaminant. Different response  

were obtained if to the fresh soil  compost and allochthonous fungi such as B. nivea and 

S. brumptii were added. The principal process that may occur in a soil when  

contaminated with PCP are: a) modification in biochemical soil activity; b) 

sequestration of PCP in soil matrix; c) degradation of PCP by bioaugmentation and 

biostimulation.  

The investigated agricultural soil contaminated with 25 mg PCP Kg
-1

 soil showed an 

intense microbial activity; as indicated from some biochemical properties observed 

during the incubation time. The PCP increased the SR in the soil already after  1 day 

and 1 week of incubation a according to Scelza et al. (2008). In PCP contaminated soil, 

high SR activity  indicates  greater presence of fungi over bacteria, with the possibility 

of PCP degradation, resulting with the formation of its metabolites. The impact of low 

concentrations (25 – 50 mg/kg soil) of PCP seems to not negatively affect SR in soil at 

least in the initial phase of experiment. Zelles et al. (1989) detected that PCP 

concentrations of 2 and 20 mg Kg
-1

 increased the SR for 90 days and at 200 mg PCP 

Kg
-1

 there was an irreversible inhibition of SR. Instead, high concentration of 

contaminants (>100 mg PCP Kg
-1

 soil) drastically reduced microbial respiration rates 

(Zelles et al. 1986). SR reduction of 20% in PCP contaminated soil applying 

electrokinetics studies was also detected by Lear et al. (2007) as consequence of the 

significant decline in microbial counts and biomass. Salminen et al. (1995) showed 

how  SR decreased at the highest PCP concentration (500 mg PCP Kg
-1

 soil) compared 

to the uncontaminated soil and soil with lower PCP concentration (50 mg PCP Kg
-1

 

soil). PCP is a wide spectrum biocide that has a negative impact on microorganisms 

diversity and soil activity. When PCP was added to fresh soil the MB-C decreased of 

50% during all incubation times. Scelza et al. (2008) showed that the presence of PCP 
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severely and significantly depressed MB-C in soil contaminated by 50 mg PCP Kg
-1

 

soil. Many microcosms soil experiments detected a significant decreased in MB-C also 

when > 50 mg PCP Kg
-1

 soil of PCP was added to the soil (Zelles et al. 1986; Salminen 

et al. 1995; Chaundri et al. 2000). Drastic MB-C decrement (89% less than control) 

with increasing soil PCP concentration was also showed  by Megharaj et al. (1998). 

Soil enzymatic activities such as  FDA and DH had an opposite trend. Exactly as Cea et 

al. (2010), FDA showed a good response to PCP in terms of total microbial activity 

especially during the early days of incubation. Similar results have been obtained also 

in other studies with indigenous microflora. Kähkönen et al (2007) found that PCP in a 

contaminated area with aged chlorophenols do not influence FDA. On the other hand 

DH activities was negatively influenced by PCP after 1 and 28 days of incubation with 

a 50% reduction vs the control. Same results were recorded with PCP values higher 

than our experiment. In fact with 50 and 250 mg PCP Kg
-1

 soil, Scelza et al. (2008) and 

McGrath and Singleton (200), respectively, found that soil DH activity dramatically 

decreased and did not recover throughout the experiment (> 6 weeks). In contrast, 

Hechmi et al. (2014) observed that at low concentrations of PCP contamination the DH 

activity can slightly increase. Although in unplanted soils co-contaminated by Cd and 

PCP DH activity was significantly lower (64%) than the control value. Dh activity 

tended to decline with increasing PCP and Cd concentration in soil. The low values of 

all biochemical activities, indicative of microbial growth and often used as an index of 

PCP metabolite toxicity, indicate that PCP exerted a depressing effect on soil microbial 

activity although the extracted PCP decreased in  time.  

The fate of PCP can be influence by physical, chemical, and biological characteristics 

of the soil as well as the chemical properties of the contaminant. PCP Adsorption in soil 

is controlled largely 
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by its degree of substitution and the resultant hydrophobicity. At low pH values, where 

PCP exist mainly in a neutral form, the soil adsorbs much more PCP  compared to the 

adsorption at higher pH, where PCP is present as an anionic form (Cea et al. 2007). At  

pH soil values (7 – 8), like our case-study, PCP is adsorbed to a less extent to the soil, 

although it can form irreversible bonds with soil even at high pH values (Abramovitch 

and Capracotta 2003; Cea et al. 2007). In general, as the pH comes closer to the pKa, in 

this case  4.75, the adsorption increases due to the hydrophobicity of their neutral form 

(Cea et al. 2007).  

Organic matter in soil is the most important sorbent for the phenolic compounds; in fact  

its presence in soil matter may enhance PCP sorption (Cea et al. 2007; Scelza et al. 

2008). In our experiments, the soil has an organic matter value very high, about 34.25 g 

Kg
-1

 (Tab. 2) and this explains the drastic reduction (40%) of extractable PCP after 

only 24 h and  a whole week. By increasing the organic matter in soil, adding compost 

or DOM, the sorption of PCP to the soil matrix is evidently favored (Jaspers et al. 

2002; Miller et al. 2003; Scelza et al. 2008). Composts provides several microorganism 

populations and nutrients for indigenous degraders when applied to contaminated soils. 

Composting strategies have been successfully applied to PCP-contaminated soil, 

especially because the compost accelerates the PCP removal (Semple et al. 2001). With 

this aim,  compost made with wood chips, sawdust, straw, farmyard manure and urban 

solid waste has provided excellent results to deplete PCP from contaminated soil 

(Semple et al. 2001; Scelza et al. 2008). In our study, the urban solid waste compost 

plays an important role to increase the reduction of extractable PCP and to limit the 

toxic effects of the contaminant on soil biochemical activities. After 28 day of 

incubation, the fresh soil treated only with urban solid waste compost removed almost 

95% of PCP at an initial concentration of 25 mg Kg
-1

 soil. other  excellent results were 

obtained always with a urban waste compost, which reduced the levels of PCP by 82% 

after one year (Field and Sierra-Alvarez 2008). In a similar study, contaminated soil 
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from a sawmill site was mixed with farm animal manure and composted. Complete 

depletion of PCP (250 mg Kg
-1

 dwt) rapidly occured within 6 days (jasper et al. 2002). 

In relation to fungal strains used in PCP deletion, many studies have revealed that 

diverse members of Ascomycetes (Paecilomyces spp.) and Basidiomycetes 

(Phanaerochaete spp., Trametes spp. and Bjerkandera spp.) are efficient and fast 

degraders of PCP (Gadd 2001; Singh 2006; Field and Sierra-Alvarez 2008). When B. 

nivea and S. brumptii were added to fresh soil microcosm, PCP was reduced to 90 and 

92%, respectively. Higher depletion of PCP occurred when  fungal strains were 

simultaneously used. In fact the PCP reduction was 98%. B. nivea and S. brumptii do 

not produce extracellular enzymes as lignin peroxidases or laccase. It is widely known 

that these two enzymes are highly able to degrade  PCP in co-metabolism (McAllister 

et al. 1996; Field and Sierra-Alvarez, 2008). However, S. brumptii is a non-ligninolytic 

fungi that thanks itsphenoloxidase enzymes (Tanaka et al. 2000) it can degrade PCP 

(Gadd 2001). Instead, B. nivea can deplete PCP thanks to its pectinolytic enzymes, 

which are widely used in bioremediation strategies (Gadd 2001). Furthermore, in the 

Byssochlamys genus enzymatic activities involved in the degradation pathway of lignin 

and other wood constituent have been detected(Furukawa et al. 1999). Fresh soil (S), 

without compost or fungi, was already able to reduce 88% extractable PCP in 28 days 

of incubation. Although no attempts were made  to detect the presence of PCP 

degradation products in the investigated system, the presence of its metabolites may be 

hypothesized  according to Singh (2006), Field and Sierra-Alvarez (2008) and Scelza et 

al. (2008).  

 

5.6. Conclusions 

Our results showed that PCP produces a considerable reduction of the  level of some 

biochemical properties i.e. thus suggesting a depressing effect on the soil microflora. 
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On the other hand, adding solid urban waste compost and fungal strains such as B. 

nivea and S. brumptii, it can possible to obtain a PCP reduction and an increase of the 

soil biochemical activities. Contrary to other studies where well known white rot or 

brown rot fungi are used to deplete PCP i.e. Trametes versicolor, Pleurotus ostreatus 

and Phanerochaete chrysosporium, in this work, we have used ascomycota fungi novel 

in  bioremediation studies, and indigenous microorganisms. The potential of certain 

fungi in field experiments can be enhanced by a number of factors. This includes an 

increase in the inoculum biomass/soil, or supplementing the soil culture system with 

compost. The compost and fungi were used in experiments controlled  in laboratory 

conditions, further analysis may be helpful to obtain other result useful for field 

experiments close to natural situations.        
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6. Concluding remarks 

The aim of the present study, which is part of a wider bio-remediation project, was a 

long-term evaluation of the remediation ability of naturally selected fungi vs PCP, a 

biocide-chlorinated compound very toxic and dangerous for all components of the 

environment. In the first experiments were evaluated the PCP sensitivity, adsorption 

and degradation capacity of the two Ascomycota fungal strains selected, identified as 

B. nivea and S. brumptii. The second part of this project highlighted the existence of 

two strategies, biostimulation and bioaugmentation, for potential applications to 

bioremediation of PCP contaminated soils. In particular, biostimulation was explored 

by using a matured compost from solid urban wastes. Instead, B. nivea and S. brumptii 

were used in bioaugmentation experiments. The effectiveness of two bioremediation 

approaches was  also evaluated against a PCP artificially contaminated soil. 

The results “in vitro” demonstrated that B. nivea and S. brumptii were able to tolerate 

and remove PCP in liquid medium and in soil. Although B. nivea and S. brumptii do 

not produce extracellular enzymes as lignin peroxidases or laccase, that represent 

important tools to degrade the PCP in co-metabolism. These two fungal strain have 

other enzymes useful in PCP degradation i.e. phenoloxidase and pectinolytic enzymes.  

Soil showed an intrinsic capability for PCP degradation, thus confirming that natural 

attenuation processes actually occurred. The presence of a high content of soil organic 

carbon, or the addition of organic matter to the soil as compost increase PCP depletion 

and mitigate the adverse effects that the contaminant may have on the biochemical soil 

processes. On the other hand, the addition of B. nivea and S. brumptii strongly 

stimulated and enhanced the attenuation process towards PCP detoxification in the 

freshly contaminated soil. Furthermore, several soil properties showed differentiated 

responses to the presence of PCP, compost, and/or exogenous fungi. In fact, when PCP 
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was added to the soil, the levels of some biochemical properties diminished over time, 

suggesting the occurrence of a depressing effect on the soil microflora which failed to 

recover from its initial toxic response to PCP. Conversely, compost and fungi, possibly 

contributing to PCP degradation and subsequent production of its metabolites, 

generally regarded as more toxic than the parent compound, developed in the PCP-

contaminated soils. The temporary and permanent changes observed in several of the 

tested biochemical properties, in response to the presence of PCP, provide further 

support to the paradygm that soil biological investigations (such as those on soil 

respiration, biomass and enzyme activities) can give useful information on the status of 

soil quality. 

In this thesis was also evaluated the adsorption capacity of the Chilean white rot fungus 

Anthracophyllum discolor in a liquid medium subjected to different pH values and 

initial PCP concentrations (5 and 10 mg Kg
-1

). The experiment was carried out with 

live pellets of A. discolor pellets. The adsorption capacity of Chilean fungus was pH-

dependent and was higher at a pH range of 5 – 5.5, while for other pH values it 

decreased significantly by  < 60% at 10 mg PCP L-1 in the pH range of  5.71 – 6.41. 

The FTIR analysis highlighted that amides, alkanes, carboxylates, carboxyl and 

hydroxyl groups can be important functional groups for the fungal adsorption of PCP. 

As previously shown for dead A. discolor pellets, live ones may be considered a good 

bio absorbent for liquid solutions contaminated by PCP. 

Fungi and bacteria have been used by humans in many applications and play a role as 

natural environmental remediators. Microorganisms treatment of waste in nature has 

been known for centuries but most of our knowledge of the interaction between 

microorganisms and waste is based on studies performed in the laboratory. For the 

development of commercially viable bioremedial processes it is essential to link 

different disciplines such as microbial ecology, biochemistry, physiology and soil 
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science. During the last decade, fungi and bacteria  have been used in the treatment of a 

wide variety of hazardous and toxic compounds in soil and sediments. Bioremediation 

has become an environmentally sustainable, attractive and promising alternative to 

traditional techniques for the remediation of persistent organic pollutants POPs 

contaminated sites. The key to successful bioremediation will be the implementation of 

the scientific and engineering work needed to provide sound basis for a correct and 

effective application to different research areas and real cases of environmental 

pollution.   

 

 

 

 

 


