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Abstract

The argument of this thesis is the ultraviolet Spectral Regularization of Quan-
tum Field Theory (QFT). We describe its genesis, its definition and apply it to
physically interesting models. One of the main applications of the Spectral Regu-
larization is its application to the Bosonic Spectral Action (BSA), appearing in the
noncommutative geometry approach to the Standard Model. Conformal anomaly,
appearing in QFT of fermions, moving in a fixed bosonic background under Spec-
tral Regularization is expressed in terms of the BSA. Generalizing this formalism
to bosonic degrees of freedom, the phenomena of induced Sakharov gravity and
trace anomaly induced inflation are described on an equal footing. The second part
of the thesis is devoted to some models, naturally exhibiting the ultraviolet cutoff

scale: we compute high momenta asymptotic of BSA, and find that it possesses
a phase transition in the ultraviolet, and only at low momenta BSA reproduces
the conventional QFT. Afterwards we consider the strong unification generaliza-
tion of the Standard Model, based on a presence of the Universal Landau Pole
for all gauge couplings at the Planck scale. Introducing the physical ultraviolet
cutoff scale, such a model naturally resolves the instability problem of the Higgs
potential.
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Chapter 1

Introduction

In this thesis we discuss some applications of the ultraviolet spectral regularization
in Quantum Field Theory (QFT) and some QFT’s naturally possessing a physical
ultraviolet cutoff.

In QFT in the background field formalism [1] one has to study a classical
background field Φ surrounded by a quantized field ψ. The latter might be a
field of quantum fluctuations of Φ itself, however that is not necessary. There are
situations, when the field Φ is classical by its nature, like a gravitational field1 gµν,
while all other fields (fermions, gauge fields, Higgs scalars) fluctuating around
their vacuum expectation values are ψ [2]. What we want to study is a dynamics
of Φ taking into account quantum effects.

Such systems are typically described by the classical action S [Φ, ψ] and ne-
glecting by quantum effects i.e setting ψ = 0 the dynamics of Φ derives from the
classical equations of motion:

δS [Φ, 0]
δΦ

= 0

In order to take into account quantum effects i.e. take average over quantum
fluctuations one should perform the functional integration over ψ:〈

δS
[
Φ, ψ

]
δΦ

〉
ψ

= Z−1
∫

[dψ]
(
δS

[
Φ, ψ

]
δΦ

)
e−S [Φ,ψ], Z ≡

∫
[dψ]e−S [Φ,ψ]

Equations of motion for Φ that take into account quantum corrections read:

δW
δΦ

= 0, W ≡ − log Z.

1We emphasize, that no self consistent theory of quantum gravity is known.
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where W is a quantum effective action.
Troubles appear when one tries to compute the quantum effective action, be-

cause in many physically relevant models, the path integral∫
[dψ]e−S [Φ,ψ]

is not well defined, in particular frequently oscillating configurations of ψ give
divergent contribution; that is called ultraviolet or UV divergence [1]. Therefore
the functional integral must be regularized in order to get rid of such a problem.

A quantum theory may be either effective or fundamental. In the former case
we are in the presence of the energy scale Λ which defines its region of appli-
cability: the theory is valid at energies below Λ thereby exhibiting an intrinsic
UV regulator. The UV cutoff scale Λ has a physical meaning of a transition scale
to new physics thus coefficients of the corresponding low energy effective QFT
should depend on this cutoff scale. In the latter case one may introduce a for-
mal UV cutoff Λ and then subtract the UV divergent part considering the limit
Λ→ ∞, or to use a regularization which does not exploit the UV cutoff at all e.g.
dimensional [3, 4] or ζ functional ones [5, 6]. In any case the final result must
be independent on any UV regulator. We emphasize, that in the present study we
consider QFT in the first sense i.e. Λ is a physical parameter.

There are different techniques of regularization based on different assumptions
and we will focus our attention on the special one, that introduces the UV cutoff

scale Λ. Another important issue, one should care about is a symmetry. Standard
truncation of momenta in loop diagrams is not a gauge invariant procedure [1]. It
is more preferable to have such a regularization, that

* respects gauge invariance and general covariance (when one works in curved
spacetime) and

* in the meantime introduces the ultraviolet cutoff scale Λ.

One regularization which is very interesting from mathematical and physical points
of view and satisfies both requirements is the Spectral Regularization.

Spectral regularization was first introduced by Andrianov, Bonora and Gamboa-
Saravi for gauge invariant description of fermionic determinants [7–9]. It was
applied for chiral and scale anomalies in Quantum Chromo Dynamics (QCD) in
order to derive low energy effective theory of mesons in [10–12], the spacetime
was considered to be flat. Later this approach was generalized for curved space-
time in the context of induced gravity [13, 14].
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In the present study, the result of [13, 14] is extended up to quadratic order in
curvature in order to describe the relation with the bosonic spectral action [15–18].
The bosonic spectral action is interesting itself, because based on the spectrum of
the Dirac operator, it recovers the bosonic Lagrangian of the Standard Model, cou-
pled with gravity in the noncommutative geometry approach to particles physics
[19–22]. In this thesis we show, that this object is nothing but the Weyl anomaly in
a fermonic theory on bosonic background upon the spectral regularization. From
another side the bosonic spectral action is a perfect example of a theory, leading
to an effective QFT at low energies, however qualitatively different at high energy
scale, thus exhibiting the physical cutoff scale Λ in the sense discussed above
[23]. We also generalize the spectral regularization for all quantized fields, in or-
der to study in a systematic way the influence of quantum vacuum fluctuations on
the gravitational dynamics [24].

Independently on the context of BSA there are indications that at very high
energy, of the order of Planck mass MPl = 1019 GeV, the behavior of particles
is profoundly altered by the onset of gravitational effects. The first to notice this
has been Bronstein [25] in 1936 and since then there have been several attempts
to describe the quantum field theory at high energy or small distances. Also in
string theory the very high energy behavior in the scattering of particles [26, 27]
shows the existence of some sort of generalized uncertainty, whose Hilbert space
representation [28] leads to a position operator which has self-adjoint extensions
defined on a set of continuous lattices, so that nearby points cannot be described
by the same operator. In loop quantum gravity it is the area operator which is
quantized [29], while an operatorial analysis of spacetime non commutativity in
quantum field theory is in [30].

Since for all this project, the bosonic spectral action is of special importance,
the second chapter is devoted to a brief introduction to the Spectral action princi-
ple.

In third chapter we show how the bosonic spectral action emerges from the
Weyl anomaly in a theory of fermions, moving in a fixed gauge and gravity back-
ground. The Weyl anomaly generating functional is obtained in terms of slightly
modified bosonic spectral action, coupled to the dilaton. Then the full Higgs-
Dilaton action, describing Weyl anomaly is computed.

In the fourth chapter, generalizing the spectral regularization also on bosonic
degrees of freedom, we compute the Weyl anomaly and express the anomaly gen-
erating functional through a collective scalar degree of freedom of all quantum
vacuum fluctuations. Such a formulation allows us to describe induced gravity on
an equal footing with the anomaly-induced effective action, in a self-consistent
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way. We then show that requiring stability of the cosmological constant under
loop quantum corrections, Sakharov’s induced gravity and Starobinsky’s anomaly-
induced inflation are either both present or both absent, depending on the particle
content of the theory.

The fifth and sixth chapters are devoted to models, naturally possessing the
ultraviolet cutoff. In fifth chapter we discuss the propagation of bosons (scalars,
gauge fields and gravitons) at high momenta in the context of the bosonic spectral
action. Using heat kernel techniques, we find that in the high-momentum limit the
quadratic part of the action does not contain positive powers of the derivatives.
We interpret this as the fact that the two point Green functions vanish for nearby
points, where the proximity scale is given by the inverse of the cutoff.

The sixth chapter describes some natural generalization of the Standard Model
of elementary particles, also exhibiting the cutoff in ultraviolet. Indeed, our under-
standing of quantum gravity suggests that at the Planck scale the usual geometry
loses its meaning. If so, the quest for grand unification in a large non-abelian
group naturally endowed with the property of asymptotic freedom may also lose
its motivation. Instead we propose an unification of all fundamental interactions
at the Planck scale in the form of a Universal Landau Pole (ULP), at which all
gauge couplings diverge [31,32]. The Higgs quartic coupling also diverges while
the Yukawa couplings vanish. The unification is achieved with the addition of
fermions with vector gauge couplings coming in multiplets and with hypercharges
identical to those of the Standard Model. The presence of these particles also
prevents the Higgs quartic coupling from becoming negative, thus avoiding the
instability (or metastability) of the Standard Model vacuum.
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Chapter 2

The Spectral Action Principle

In this chapter we give an introduction to the relevant aspects of the spectral ac-
tion principle. The reader conversant with the topic may skip this part. A more
thorough introduction can be found in [33].

2.1 Fields, Hilbert Spaces, Dirac Operators and the
(Non)commutative Geometry of Spacetime

The main idea of the whole programme of Connes’ noncommutative geome-
try [34] is to describe ordinary mathematics, and physics, in terms of the spectral
properties of operators.

Let us introduce a (Euclidean) space-time and thereby implicitly the algebra
A of complex valued continuous functions of this space-time. There is in fact
a one-to one correspondence between (topological Hausdorff) spaces and com-
mutative C∗-algebras, i.e. associative normed algebras with an involution and a
norm satisfying certain properties. This is the content of the Gelfand-Naimark
theorem [35, 36], which describes the topology of space in terms of the algebras.
In physicists terms we may say the the properties of a space are encoded in the
continuous fields defined on them. This concept, and its generalization to non-
commutative algebras is one of the starting points of Connes’ noncommutative
geometry programme [34]. The programme aims at the transcription of the usual
concepts of differential geometry in algebraic terms and a key role of this pro-
gramme is played by a spectral triple, which is composed by an algebraA acting
as operators on a Hilbert spaceH and a (generalized) Dirac operator /D.

The spectral triple contains the information on the geometry of space-time.
The algebra as we said is dual to the topology, and the Dirac operator enables the
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translation of the metric and differential structure of spaces in an algebraic form.
There is no room in this chapter to describe whole this programme, and we refer
to the literature for details [34, 36–38].

Within this general programme a key role is played by the approach to the
Standard Model. This is the attempt to understand which kind of (noncommuta-
tive) geometry gives rise to the standard model of elementary particles coupled
with gravity. The roots of this approach is to have the Higgs appear naturally as
the “vector” boson of the internal noncommutative degrees of freedom [39–41].
The most complete formulation of this approach is given by the spectral action,
which is presented in [20].

To obtain the standard model take as algebra the product of the algebra of
functions on spacetime times a finite dimensional matrix algebra

A = C(R4) ⊗AF (2.1)

Likewise the Hilbert space is the product of fermions times a finite dimensional
space which contains all matter degrees of freedom, and also the Dirac operator
contains a continuous part and a discrete one

H = Sp(R4) ⊗HF (2.2)

In the NCG approach to the Standard Model we have to consider instead of the
the algebra of continuous complex valued function, matrix valued functions. The
underlying space in this case is still the ordinary spacetime, technically the algebra
is “Morita equivalent” to the commutative algebra, but the formalism is built in a
general way so to be easily generalizable to the truly noncommutative case, when
the underlying space may not be an ordinary geometry.

In its most recent form due to Chamseddine, Connes and Marcolli [20] a cru-
cial role is played by the mathematical requirements that the noncommutative
algebra satisfies the conditions to be a manifold. Then under some physical re-
quirements the internal algebra is almost uniquely derived to be

AF = C ⊕ H ⊕ M3(C), (2.3)

that corresponds to the gauge group S U(3) × S U(2) × U(1). In other words from
a purely algebraic scheme the gauge group of the Standard Model is singled out.

The Hilbert spaceH is assumed to be “chiral”, i.e. split into a left and a right
spaces:

H = HL ⊕HR (2.4)
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A generic matter field will therefore be a spinor

Ψ =

(
ΨL

ΨR

)
(2.5)

and in this representation the chirality operator, which we call γ, is a two by two
block diagonal matrix with plus and minus one eigenvalues. The two components
are spinors themselves and we are not indicating the gauge indices, nor the flavor
indices.

We note, that the Bosonic Spectral action is defined for a Riemannian manifold
with Euclidean signature of metric. In contrast to the bosonic case, the “Euclidis-
ation” of fermions is not just analytical continuation but is a more delicate issue.
One way of the Euclidisation, being the most suitable for the noncommutative
geometry (see [33, 42, 43] for discussions), is based on the doubling of fermionic
degrees of freedom. The idea is the following: each two component chiral spinor
of the SM must be replaced by the four component Dirac fermion, and left and
right fermions are treated as independent degrees of freedom, in particular

ψEucl
L ,

1
2

(1 − γ5)ψEucl
L , ψEucl

R ,
1
2

(1 + γ5)ψEucl
R . (2.6)

We stress, that both ψEucl
L and ψEucl

R have four independent components each, i.e. 8
independent components totally. It is important, that when one computes the par-
tition function Z or conformal anomaly, RG equations etc. one must put by hand

a factor of 1/2, where needed, e.g. ZMink =
(
ZEucl

) 1
2 . Only when one comes back

to Minkowski signature one reduces number of fermions, imposing the projection

ψMink
L =

1
2

(1 − γ5)ψMink, ψMink
R =

1
2

(1 + γ5)ψMink. (2.7)

The (generalized) Dirac operator /D [19] is given by a 2 × 2 matrix acting on
spinors of the kind (2.5)

/D =

(
/DG γ5 ⊗ S

γ5 ⊗ S † /DG

)
(2.8)

where /DG is a ”geometric” part of the Dirac operator,1

/DG = ieµkγ
k
(
∂µ −

i
2
ωmn
µ σmn − iAa

µT
a
)
, (2.9)

1Following a well established tradition, we use greek indexes to label coordinates, latin letters
k, l,m, n for Lorentz indexes and a, b, c for gauge indexes.
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that contains the spin connection ωmn
µ and gauge fields Aa

µ, while S contains the
information about Higgs field, Yukawa couplings, mixings i.e. all terms which
couple the left and right spinors; T a and σmn stand for generators of gauge and
Lorentz groups in spinor representation correspondingly. The gravitational back-
ground is in general nontrivial, and the metric is encoded in the anticommutator
of the γ’s: {γµ, γν} = 2gµν.

The generalized Dirac operator describes all metric aspects of the theory, and
the behavior of the fundamental matter fields, represented by vectors of the Hilbert
space, and it also contains all boson fields, including the mediators of the forces
(intermediate vector bosons), and the Higgs field. The dynamics of the fermions
is given by coupling them to a gauge and gravitational background. This coupling
is performed by a classical action, which is given by the scalar product:

S F = 〈Ψ| /D |Ψ〉

=

∫
d4x

√
|g|Ψ(x)† /DΨ(x). (2.10)

2.2 The Spectral Action and the Standard Model
coupled to Gravity

As we have seen, the fermionic action of the Standard Model naturally appears in
the NCG formalism based on the spectral properties of the Dirac operator /D. The
bosonic action, however is still missing. The spirit of NCG prescribes to define
the bosonic action, based on the spectrum of the Dirac operator /D as well. The
bosonic part of the spectral action reads [19]

S B = Tr χ
(
/D
Λ

)
, (2.11)

where χ is an even cutoff function, which can be e.g. the sharp cutoff,

χ(x) =


0 x < −1
1 x ∈ [−1, 1]
0 x > 1

(2.12)

and in that case it counts eigenvalues smaller than the cutoff scale Λ.

(S B)sharp cutoff = number of eigenvalues of /D2 smaller than Λ2 (2.13)
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Sometimes it is more convenient to use C∞ cutoff function and for simplicity one
can use the exponential cutoff χ(z) = exp

(
−z2

)
: in this case (2.11) is nothing but

a heat kernel trace. The bosonic spectral action so introduced is always finite by
its nature, it is purely spectral and it depends on the cutoff Λ.

Then the bosonic spectral action can be evaluated in low energy limit using
standard heat kernel techniques [44] and the final result gives the full action of
the standard model coupled with gravity. We restrain from writing it since it takes
more than one page, see [20].

Technically the canonical bosonic spectral action is a sum of residues, and can
be expanded in a power series in terms of Λ−1 as

S B(Λ) =
∑

n

fn an( /D2/Λ2) (2.14)

where the fn are the momenta of χ

f0 =

∫ ∞

0
dx x3 χ(x)

f2 =

∫ ∞

0
dx x χ(x)

f2n+4 = (−1)n n!
(2n)!

∂2n
x χ(x)

∣∣∣∣∣
x=0

n ≥ 0 (2.15)

the an are the Seeley-de Witt coefficients which vanish for n odd. For /D2 of the
form

/D2
= −(gµν∂µ∂ν1l + αµ∂µ + β) (2.16)

defining

ωµ =
1
2

gµν
(
αν + gσρΓνσρ1l

)
Ωµν = ∂µων − ∂νωµ + [ωµ, ων]

E = β − gµν
(
∂µων + ωµων − Γρµνωρ

)
(2.17)

then

a0 =
Λ4

16π2

∫
dx4√gtr1lF

a2 =
Λ2

16π2

∫
dx4√gtr

(
−

R
6

+ E
)

a4 =
1

16π2

1
360

∫
dx4√gtr(−12∇µ∇µR + 5R2 − 2RµνRµν

+2RµνσρRµνσρ − 60RE + 180E2 + 60∇µ∇µE + 30ΩµνΩ
µν) (2.18)
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tr is the trace over the inner indices of the finite algebraAF and in Ω and E contain
the gauge degrees of freedom including the gauge stress energy tensors and the
Higgs scalar.

Performing the heat kernel expansion for the Dirac operator /D, of the form
given by (2.8) one finds [19]

S B(Λ) '
∫

d4x
√

g
(
45Λ4

8π2 +
15Λ2

16π2

(
R − 2y2H2

)
+

1
4π2

(
3y2

(
DµHDµH −

1
6

RH2
)

+ 3z2H4 (2.19)

+Gi
µνG

µνi + Wα
µνW

µνα +
5
3

BµνBµν −
9

16
CµνρλCµνρλ

))
,

where y2 and z2 stand for correspondingly quadratic and quartic combinations of
the Yukawa couplings, whose precise definition can be found for example in [19,
Eq. 3.17]. Since the Yukawa couplings are strongly dominated by the one of the
top quark Yt, one can safely consider, that y2 ' Y2

t , z
2 ' Y4

t .
The bosonic spectral action (2.19) contains Einstein-Hilbert gravitational ac-

tion, action for the Higgs field, conformally coupled with gravity, kinetic terms for
gauge bosons. The action also contains nonstandard gravitational terms (quadratic
in the curvature), which are currently being investigated for their cosmological
consequences [45–52]. It is remarkable, that all coefficients in (2.19) are not arbi-
trary numbers, but come out from the Dirac operator /D, that contains only param-
eters, related with the fermions, and thus this construction has predictive power,
in particular it predicts the Higgs mass. Although the first version of the Spectral
Action predicts a wrong value of the Higgs mass (∼ 170 GeV instead of ∼ 125
GeV), ”nonminimal” generalizations of this idea, lead to the correct value of the
Higgs mass [53–56].

In this chapter we briefly discussed the spectral action principle, i.e. we have
shown, how the classical bosonic action of the Standard Model can be extracted
from the fermionic Dirac operator in a presence of the cutoff scale Λ. In the
next chapter we will discuss quantized fermions, moving in a fixed bosonic back-
ground under the spectral regularization, i.e. cutoff scale appears again, but this
time upon a quantization. We will establish the relation between the (generalised)
Weyl anomaly and the bosonic spectral action and in particular we will find, that
the bosonic spectral Lagrangian (i.e. integrand in (2.19)) is nothing but the in-
finitesimal Weyl anomaly.
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Chapter 3

Spectral regularization: bosonic
spectral action and generalised
Weyl anomaly.

In this chapter we will show the intimate relationships between Weyl anomaly and
the bosonic spectral action in the framework of spectral regularization following
refs. [16–18].

We start with a generic action for a chiral theory of fermions coupled to gauge
fields, Higgs and gravity. The considerations here apply to the standard model,
but we will not need the details of the particular theory under consideration. It
is known (see the previous chapter), and this is the essence of the noncommuta-
tive geometry approach to the standard model, that the theory is described by a
fermionic action and a bosonic action, both of which can be expressed in terms of
the spectrum of the Dirac operator.

In what follows we will introduce the spectral regularization, then we will dis-
cuss the (generalized) Weyl invariance of the classical fermionic action and will
compute the (generalized) Weyl anomaly. Afterwards we present Weyl anomaly
generating functional introducing the auxilary field, that as we will see can be
interpreted as a collective mode of all fermions dual to (generalised) conformal
anomaly, therefore we will call this field ”collective dilaton”. Corresponding clas-
sical Higgs-dilaton action appears to be bosonic spectral action coupled with the
dilaton in a special way.
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3.1 Spectral regularization: definition
We start from the fermionic partition function

Z( /D) =

∫
[dΨ][dΨ̄]e−S F = det

(
/D
µ

)
(3.1)

where we needed to introduce a normalization scale µ for dimensional reasons,
and the last equality is formal because the expression is divergent and needs reg-
ularizing.

In order to regularize the expression Eq. (3.1) we need to introduce a cutoff
scale, which we call Λ. This cutoff scale may have the physical meaning of an
energy in which the theory (seen as effective) has a phase transition, or at any
rate a point in which the symmetries of the theory are fundamentally different
(unification scale). Some QFT models, naturally exhibiting the ultraviolet cutoff

scale will be considered in Chapters 5 and 6.
We will regularize the theory in the ultraviolet using a procedure introduced

by Andrianov, Bonora and Gamboa-Saravi in [7–9] but leaving room for the nor-
malization scale µ. Although this procedure predates the spectral action, it is very
much in the spirit of spectral geometry, since it uses only the spectral data of the
Dirac operator. The energy cutoff is enforced by considering only the eigenvalues
of /D smaller than the scale Λ. Consider the projector

PN =

N∑
n=1

|λn〉 〈λn| ; N = max n such that λn ≤ Λ (3.2)

where λn are the eigenvalues of /D arranged in increasing order of their abso-
lute value (repeated according to possible multiplicities), |λn〉 a corresponding or-
thonormal basis, and the integer N is a maximal number of eigenvalue that is
smaller than Λ. This means that we are effectively using the N th eigenvalue as
cutoff. This number and the corresponding spectral density depends on coeffi-
cient functions of the Dirac operator, N = N( /D). We emphasize, that everything
is well defined and finite.

Instead of this sharp cutoff, which considers totally all eigenvalues up to a cer-
tain energy, and ignores all the rest of the spectrum, it is also possible to consider
a smooth cutoff enforced by a smooth function. Choosing a function χ which is
smoothened version of the characteristic function of the interval [0, 1] one can
consider the operator

Pχ = χ

(
/D
Λ

)
=

∑
n

χ
(
λn

Λ

)
|λn〉 〈λn| . (3.3)
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This operator is not a projector anymore, and it coincides with PN for χ = Θ,
where Θ is the Heaviside step function. The use of a smooth χ can be preferable
in an expansion, such as the heat kernel expansion, nevertheless for the scopes of
the present chapter a sharp cutoff is adequate.

In the framework of noncommutative geometry this is the most natural cutoff

procedure, although as we said it was introduced before the introduction of the
standard model in noncommutative geometry. It makes no reference in principle
to the underlying structure of spacetime, and it is based purely on spectral data,
thus is perfectly adequate to Connes’ programme. This form of regularization
could be also used for field theory which cannot be described on an ordinary
space-time, as long as there is a Dirac operator, or generically a wave operator1.

We define the regularized partition function Z( /D, µ) as follows

Z( /D, µ) ≡
N∏

n=1

λn

µ
. (3.4)

If one choses µ = Λ, the regularized partition function Z( /D,Λ) has a transpar-
ent meaning. Let us express Ψ and Ψ̄ as

Ψ =

∞∑
n=1

an |λn〉 ; Ψ̄ =

∞∑
n=1

bn |λn〉 (3.5)

with an and bn anticommuting (Grassman) quantities. Then Z( /D,Λ) becomes
(performing the integration over Grassman variables for the last step)

Z( /D,Λ) =

∫ N∏
n=1

dandbn

Λ
e−

∑N
n=1 bnλnan = det

(
/DN

)
(3.6)

where we defined2

/DN = 1 − PN + PN
/D
Λ

PN . (3.7)

In the basis in which /D/Λ is diagonal it corresponds to set to Λ all eigenvalues of
/D larger than Λ. Note that /DN is dimensionless and depends on Λ both explicitly
and intrinsically via the dependence of N and PN .

1The spectrum must not be necessary descrete, see [57]
2Although PN commutes with /D we prefer to use a more symmetric notation.
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Now we see what happens if one chooses µ , Λ. In this case the partition
function reads:

Z( /D, µ) =

N∏
n=1

λn

µ
= det

(
1l − PN + PN

/D
µ

PN

)
= det

(
1l − PN + PN

/D
Λ

PN

)
det

(
1l − PN +

Λ

µ
PN

)
= Z( /D,Λ) det

(
1l − PN +

Λ

µ
PN

)
. (3.8)

The latter factor in Eq. (3.8) can be rewritten as follows

det
(
1l − PN +

Λ

µ
PN

)
=

N∏
n=1

Λ

µ
= e− log( µ

Λ )·N

= exp
{
− log

(
µ

Λ

)
· Tr χ

(
/D
Λ

)}
, χ(z) ≡ Θ

(
1 − z2

)
, (3.9)

thus we conclude that the ambiguity in choice of µ corresponds to the ambiguity of
an addition of the bosonic spectral action, defined by Eq. (2.11), to the fermionic
action S F . Or equivalently in the spectral action principle it is not necessary to put
the BSA by hand, one can consider from the very beginning quantized fermionic
theory, regularized following our natural prescription and the BSA appears auto-
matically!

3.2 Weyl invariance and the Fermionic Action
Now we demonstrate, that the fermionic action given by Eq. (2.10) is invariant
under the generalized Weyl transformation

gµν → e2φgµν, Ψ→ e−
3
2φΨ, H → e−φH. (3.10)

Note that the rescaling involves also the Higgs field. In this sense we differ form
the usual usage of Weyl (or conformal) invariance which is only valid for massless
fields. In what follows we will skip the word ”generalized” for brevity.

It is sufficient to show, that under the Weyl transformation Eq. (3.10) of gµν and
H, the Dirac operator /D given by Eq. (2.8) transforms in a homogeneous way:

/D→ e−
5
2φ(x) /De

3
2φ(x) (3.11)
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The law of transformation of the Higgs field H is in agreement with Eq. (3.11).
To prove the equation of Eq. (3.11) finally, we notice, that, under3 Eq. (3.10), the
geometric part of the Dirac operator /DG given by Eq. (2.9) transforms as follows:

/DG → e−
5φ(x)

2 /DGe
3φ(x)

2 . (3.12)

The mentioned result is present in [58], however here we present a more detailed
proof. The Weyl transformation of the metric tensor in terms of vierbeins is given
by:

eµk → eφ(x)eµk, eµk → e−φ(x)eµk. (3.13)

The spin connection ωmn
µ has the following expression via vierbeins (see [58]):

ωmn
µ =

1
2

emλenρ
(
Cλρµ −Cρλµ −Cµλρ

)
, (3.14)

where
Cλρµ = ek

λ(∂ρekµ − ∂µekρ). (3.15)

Substituting the transformation Eq. (3.13) in Eq. (3.15) and Eq. (3.14) we find the
spin connection transformation law under Eq. (3.13):

ωmn
µ → ωmn

µ + em
µ enρ∂ρφ − en

µe
mλ∂λφ. (3.16)

The generators of the representation of Lorentz group σmn for spin 1/2 have the
following form in terms of the Dirac matrixes:

σmn =
i
4

[
γm, γn

]
. (3.17)

Therefore the transformation of the combination i
2ω

mn
µ σmn reads: (this formula

is presented in [58]4):

i
2
ωmn
µ σmn →

i
2
ωmn
µ σmn −

1
2
γµγ

α∂αφ +
1
2
∂µφ. (3.18)

So we have:
−γµ

i
2
ωmn
µ σmn → −γ

mu i
2
ωmn
µ σmn +

3
2
γµ∂µφ. (3.19)

3More carefully one should write the corresponding transformation of vierbeins instead of the
transformation of a metric tensor.

4Comparing our and [58, Eq. (B.24)] formulas: note that Fujikawa and Suzuki use α(x) = -φ(x)
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Finally, using Eq. (3.19) and Eq. (3.13) we obtain:

/DG ≡ ieµkγ
k
(
∂µ −

i
2
ωmn
µ σmn − iAa

µT
a
)
→

→ ieµkγ
ke−φ

(
∂µ −

i
2
ωmn
µ σmn − iAa

µT
a +

3
2
∂µφ

)
=

= ieµkγ
ke−

5φ
2

(
∂µ −

i
2
ωmn
µ σmn − iAa

µT
a
)

e+
3φ
2 = e−

5
2φ(x) /DGe+ 3

2φ(x). (3.20)

We also remark that we do not transform the gauge fields Aa
µ: they appear in

/DG multiplied by eµk , so the correct transformation of the ”gauge term” of /DG is
automatically provided by the transformation of the vierbeins.

We now proceed to quantize the theory. It can be proven [59] that although
the classical theory is invariant, the measure in the quantum path integral is not.
We have an anomaly: in contrast to a classical case, the quantum theory is not
invariant against this symmetry transformation anymore. A textbook introduction
to anomalies can be found in [58].

3.3 Generalized Weyl anomaly
Although, as we said before, the classical fermionic action is (generalized) Weyl
invariant, the quantum effective action W ≡ − log Z is not. Now we would
like to compute the difference between the initial quantum effective action W ≡

W[gµν,H] and the transformed one Wφ ≡ W[gµνe2φ,He−φ].

W −Wφ = log
(
Zφ
Z

)
=

∫ 1

0
dt ∂t log

(
Zφ·t

)
(3.21)

The nontrivial step is to compute ∂t log
(
Zφ·t

)
In what follows we will use the

notations
/D→ /Dφ ≡ e−

5φ
2 /De

3φ
2 , PΛ

[
/D
]

= Θ
(
Λ2 − /D2

)
, (3.22)

Using the standard relation ”log det = Tr log” one has:

∂tZφ·t = ∂t exp Tr log
(
/Dφ·t

µ
PΛ

[
/Dφ·t

])
= Zφ·t · ∂t Tr log

(
/Dφ·t

µ
PΛ

[
/Dφ·t

])
. (3.23)
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Since the operator PΛ is a projector i.e. P2
Λ

= 1 one can write it outside of the sign
of log:

Zφ·t · ∂t Tr log
(
/Dφ·t

µ
PΛ

[
/Dφ·t

])
= Zφ·t · ∂t Tr

{
log

(
/Dφ·t

µ

)
PΛ

[
/Dφ·t

]}
= Zφ·t · ∂t Tr

{
log

(
/Dφ·t

Λ

)
PΛ

[
/Dφ·t

]
+ log

(
Λ

µ

)
· PΛ

[
/Dφ·t

]}
. (3.24)

Let us compute the first term in Eq. (3.24):

∂t Tr
{

log
(
/Dφ·t

Λ

)
PΛ

[
/Dφ·t

]}
= Tr

{
∂t

(
log

(
/Dφ·t

Λ

))
PΛ

[
/Dφ·t

]
+ log

(
/Dφ·t

Λ

)
∂tPΛ

[
/Dφ·t

]}
= Tr

( /Dφ·t

)−1
∂t

(
/Dφ·t

)
· PΛ

[
/Dφ·t

]
−

1
2

log

 /D2
φ·t

Λ2

δ (Λ2 − /D2
φ·t

)
∂t

(
/D2
φ·t

)
= Tr

{(
/Dφ·t

)−1
(
−

5φ
2
/Dφ·t + /Dφ·t

3φ
2

)
· PΛ

[
/Dφ·t

]

−
1
2

log
(
Λ2

Λ2

)
︸    ︷︷    ︸

0

δ
(
Λ2 − /D2

φ·t

)
∂t

(
/D2
φ·t

)
= − Tr

{
φ · PΛ

[
/Dφ·t

]}
, (3.25)

where we used the definition Eq. (3.22) of projector PΛ and performed a cyclic
permutation of terms under the sign of trace where it was needed.

Now we work on the second term in Eq. (3.24).

∂t Tr
{
PΛ

[
/Dφ·t

]}
= − Tr

{
δ
(
Λ2 − /D2

φ·t

)
∂t

(
/D2
φ·t

)}
= −2 Tr

{
δ
(
Λ2 − /D2

φ·t

) (
/Dφ·t

)
·

(
−

5φ
2
/Dφ·t + /Dφ·t

3φ
2

)}
= 2 Tr

{
φ · /D2

φ·t · δ
(
Λ2 − /D2

φ·t

)}
= 2 Tr

{
φ · Λ2 · δ

(
Λ2 − /D2

φ·t

)}
= 2 Tr

{
φ · Λ2 · ∂Λ2Θ

(
Λ2 − /D2

φ·t

)}
= 2Λ2∂Λ2 Tr

{
φ · PΛ

[
/Dφ·t

]}
. (3.26)

Using the formulas Eq. (3.25) and Eq. (3.26) we obtain:

∂t log Zφ·t = −

(
1 − Λ2 log

Λ2

µ2 ∂Λ2

)
Tr

{
φ · PΛ

[
/Dφ·t

]}
. (3.27)
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Substituting the result Eq. (3.27) in Eq. (3.21) we arrive to the answer:

W −Wφ = −

(
1 − Λ2 log

Λ2

µ2 ∂Λ2

) ∫ 1

0
dt Tr

{
φ χ

(
/Dφ·t

Λ

)}
, (3.28)

where χ(z) ≡ Θ
(
1 − z2

)
As one can easily see, the structure∫ 1

0
dt Tr

{
φ χ

(
/Dφ·t

Λ

)}
is very similar to the bosonic spectral action with the sharp cutoff, c.f. Eq. (2.11).
It is possible to give an explicit functional expression to the projector in terms of
the cutoff:

PΛ

[
/D
]

= Θ

1 − /D2

Λ2

 = lim
ε→+0

∞∫
−∞

dα
1

2πi(α − iε)
eiα

(
1− /D2

Λ2

)
(3.29)

This integral is well defined for a compactified space volume. Using the repre-
sentation of the projector Eq. (3.29) and the heat kernel expansion one can show,
that5

Tr
{
φχ

(
/D
Λ

)}
=

∫
d4x
√

gφ
(
45Λ4

8π2 +
15Λ2

16π2

(
R −

8
5

y2H2
)

+
1

4π2

(
3
8

R µ
;µ +

11
32

GB − y2H2 µ
;µ + 3y2

(
∇µH∇µH −

1
6

RH2
)

+3z2H4 + Gi
µνG

µνi + Wα
µνW

µνα +
5
3

BµνBµν −
9

16
CµνρλCµνρλ

))
, (3.30)

where GB denotes the Gauss-Bonnet density:

GB ≡
1
4
εµνρσεαβγδRαβ

µνRγδ
ρσ. (3.31)

In Eq. (3.30) and below indexes placed after the symbol ”;” denote covariant
derivatives with respect to corresponding coordinates. In the next section we
present some technical details, we needed to reach the final answer.

5See the details for a more general case in the next chapter.
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3.4 Computational details

R contribution.

Under the Weyl transformation of the metric tensor given by Eq. (3.10), the scalar
curvature transforms as follows6:

R→
(
R̃
)
φ
≡ e−2φ

(
R + 6

(
φ
µ

;µ + φ;µφ
µ

;

))
, (3.32)

and integrating by parts one can easily show, that

−

∫
d4x φ

∫ 1

0
dt

( √
g̃R̃

)
φt

=

∫
d4x
√

g
(
−

1
2

(
e2φ − 1

)
R + 3 · e2φ

(
φ;µφ

µ
;

))
. (3.33)

(
H2

) µ
;µ

and R µ
;µ contributions.

For a scalar quantity f , that transforms under the Weyl transformation Eq. (3.10)
as

f →
(

f̃
)
φ
, (3.34)

its Laplacian ∆ f ≡ ∇µ∇µ f transforms as follows:

∆ f →
(
∆̃ f̃

)
φ

= e−4φ∇µe2φ∇µ

(
f̃
)
φ
. (3.35)

For f = H2 and f = R, using the relations Eq. (3.32) and Eq. (3.35), we obtain
the following contributions to the anomaly:

−

∫
d4x φ

∫ 1

0
dt

√
g̃
(
∆̃H̃2

)
φt

= −

∫
d4x
√

g
(
φ
µ

;µ + φ;µφ
µ

;

)
H2 (3.36)

and

−

∫
d4x φ

∫ 1

0
dt

( √
g̃∆̃R̃

)
φt

= −

∫
d4x
√

g
((
φ
µ

;µ + φ;µφ
µ

;

)
R + 3

(
φ

µ
;µ + φ;µφ

µ
;

)2
)
. (3.37)

6Here and below the notation (̃A)B stands for the quantity A transformed under Eq. (3.10) with
φ = B.
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GB contribution.

It is known from the differential geometry, that the Gauss-Bonnet density GB in a
four dimensional space-time can be presented in the following form, convenient
for the forthcoming analysis:

GB = CµνρσCµνρσ − 2
(
RµνRµν −

1
3

R2
)
. (3.38)

For the transformed Ricci tensor under the Weyl transformation Eq. (3.10) we
have: (

R̃µν

)
φ

= Rµν + 2
(
φ;µν − φ;µφ;ν

)
+

(
φ λ

;λ + 2φ;λφ
λ

;

)
gµν (3.39)

Using laws of transformations of the Ricci tensor and the scalar curvature Eq. (3.39),
Eq. (3.32) and also Weyl invariance of the Weyl tensor contribution after some
simple computations we obtain:

√
gGB →

( √
g̃R̃∗R̃∗

)
φ

=
√

g
(
GB + ∇µJµ

)
. (3.40)

where the current Jµ is defined as follows:

Jµ ≡ 8
(
−φνGνµ +

(
φ λ

;λ + φ;λφ
λ

;

)
φ
µ

;

)
− 4

(
φ;λφ

λ
;

) µ
;
, (3.41)

Contribution of the Gauss-Bonnet term to the anomaly potential is propor-
tional (with the sign plus) to the following expression:

−

∫
d4xφ(x)

∫ 1

0
dt

( √
g̃R̃∗R̃∗

)
φt

=∫
d4x
√

g
(
−φGB − 4Gµνφ;µφ;ν + 2

(
φ;µφ

µ
;

)2
+ 4

(
φ;µφ

µ
;

)
φ λ

;λ

)
. (3.42)
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3.5 The final result
Substituting the expression Eq. (3.30) into Eq. (3.28) and using results Eq. (3.33),
Eq. (3.36), Eq. (3.37) and Eq. (3.42) of the previous subsection we finally get:

W −Wφ ≡∫
d4x
√

g
(
A

(
e4φ − 1

)
+ BH2

(
e2φ − 1

)
−CφH4 − α1

(
e2φ − 1

)
R

+α2e2φ
(
φ;µφ

µ
;

)
− α3 φ

(
3y2

(
∇µH∇µH −

1
6

RH2
)

+Gi
µνG

µνi + Wα
µνW

µνα +
5
3

BµνBµν −
9

16
CµνρλCµνρλ

)
−α4

(
12R

(
φ
µ

;µ + φ;µφ
µ

;

)
+ 11φGB + 44Gµνφ;µφ;ν

+14
(
φ
µ

;µ + φ;µφ
µ

;

)2
+ 22

(
φ
µ

;µ

)2
)

+ α5 y2
(
2φ µ

;µ − φ;µφ
;µ
)

H2
)
, (3.43)

where Gµν stands for the Einstein tensor and the constants A, B, C, α1..α5, are
defined as follows:

A =

(
2 log

Λ2

µ2 − 1
)

45Λ4

32π2 , B =

(
1 − log

Λ2

µ2

)
15Λ2y2

20π2 , C =
3z2

4π2 ,

α1 =

(
1 − log

Λ2

µ2

)
15Λ2

32π2 , α2 =

(
1 − log

Λ2

µ2

)
45Λ2

16π2 , α3 =
1

4π2 ,

α4 =
1

128π2 , α5 =
1

8π2 . (3.44)

Remark
At this point, let us emphasize that in case Λ = µ the infinitesimal Weyl anomaly,
obtained within QFT with spectral regularization, is the bosonic spectral La-
grangian. Indeed, by definition,

S B ≡ Tr
(
χ

(
/D
Λ

))
'

∫
d4x
√

g LBS(x), (3.45)

where LBS(x) stands for the bosonic spectral Lagrangian, computed via the heat-
kernel technique (see Eq. (2.19)). Performing a similar computation and inserting
φ(x) under the sign of the trace, we get

Tr
(
φ

[
χ

(
/D
Λ

)])
'

∫
d4x
√

g φ LBS(x) , (3.46)
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and the bosonic spectral Lagrangian reads

LBS(x) =
1
√

g
δ

δφ(x)
Tr

(
φ

[
χ

(
/D
Λ

)])
. (3.47)

Expanding Eq. (3.28) up to linear order in φ and taking the functional derivative
in the infinitesimal limit, we obtain:

infinitesimal Weyl anomaly ≡ lim
φ→0

1
√

g
δ

δφ(x)
˜(WF)φ

= lim
φ→0

1
√

g
δ

δφ(x)

∫ 1

0
dt Tr

φ
˜χ (

/D
Λ

)
φ·t


= lim

φ→0

1
√

g
δ

δφ(x)

[
Tr

(
φ

[
χ

(
/D
Λ

)])
+ O

(
φ2

)]
=

1
√

g
δ

δφ(x)
Tr

(
φ

[
χ

(
/D
Λ

)])
= LBS(x) , (3.48)

where in the last step we used Eq. (3.47).

3.6 Weyl Anomaly generating functional
and collective dilaton

Using the result Eq. (3.43) we will obtain the expression for Weyl noninvariant
part of the fermionic partition function in terms of the bosonic spectral action,
coupled with the quantized ”collective dilaton”. Integrating over all possible di-
latations one obtains (generalised) Weyl invariant functional

Zinv( /D, µ) =

(∫
dφ

1
Z( /Dφ, µ)

)−1

. (3.49)

If we consider non Weyl invariant partition function we can split it in the product
of a term invariant for Weyl transformations, and another not invariant.

Z( /D, µ) = Zinv( /D, µ)Znot( /D, µ) (3.50)

The terms in Znot is due to the Weyl anomaly and we can calculate it. Consider the
identity

Z( /D) =

(∫
[dφ]

1
Z( /Dφ)

)−1 ∫
[dφ]

Z( /D)
Z( /Dφ)

(3.51)
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Since the first term is invariant by construction, the second is the not invariant one:

Znot( /D) =

∫
[dφ]e−S coll =

∫
[dφ]

Z( /D)
Z( /Dφ)

(3.52)

S coll = log
(

Z( /D, µ)
Z( /Dφ, µ)

)
= W −Wφ, (3.53)

but the righthand side of Eq. (3.53) is already known, it is given by the the final
result Eq. (3.43) of the previous section as a slightly modified bosonic spectral
action coupled to the field φ.

Finally we obtain the following bosonisation relation:∫
[dΨ][dΨ̄]e−S F [Ψ̄,Ψ,bosonic background] =

∫
[dφ]e−S coll[φ,bosonic background]+Winv , (3.54)

where Winv is (nonlocal) Weyl invariant functional of background fields, and S coll

is a local functional of background fields and the dilation φ. For a flat space-time
and coordinate independent fields S coll was computed in the previous section. In
equation Eq. (3.54) in the lefthand side bosonic background interects with quan-
tized fermions, while in the right hand side the same bosonic background interects
with a single scalar field. In this sense such a scalar field, can be considered a col-
lective scalar degree of freedom, related with the breaking of Weyl invariance.

Let us clarify some aspects of the introduction of the collective degree of free-
dom of all fermions, or bosonization. In our context the term “bosonisation” does
not mean that some composite operator Oφ(x), constructed from the scalar field φ
and its derivatives, equals another composite operator OΨ(x), constructed from the
fermionic fields Ψ and Ψ̄. More generally it means that the vacuum expectation
of the product of n bosonic composite operators Oφ(x) equals the vacuum expec-
tation of the product of n fermionic composite operators OΨ(x) for n = 1, 2, ..., i.e.
equality of corresponding classes of Green functions.

〈OΨ(x1), ...,OΨ(xn)〉ferm. vacuum = 〈Oφ(x1), ...,Oφ(xn)〉bos. vacuum, n = 1, 2, ...
(3.55)

Now we will specify the mentioned classes of Green functions. Substitute
gµν = e2αgµν and H = e−αH in Eq. (3.54) and consider α as a source. Since the
invariant part Winv in the right hand side of Eq. (3.54) remains unchanged under
this substitution, it will not give contribution, one has:(

δn

δα(x1)...δα(xn)
log Zα

F

) ∣∣∣∣∣∣
α1,...αn=0

=

(
δn

δα(x1)...δα(xn)
log Zα

coll

) ∣∣∣∣∣∣
α1,...αn=0

, (3.56)
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where

Zα
F ≡

∫
[dΨ][dΨ̄]e−S F [Ψ̄,Ψ,e2αgµν,e−αH], Zα

coll ≡

∫
[dφ]e−S coll[φ,e2αgµν,e−αH] (3.57)

In our case the composite fermionic operator OΨ, which we bosonize, and the
corresponding bosonic operator Oφ poses are given correspondingly by:

OΨ(x) =

(
δ

δα(x)
S F[Ψ̄,Ψ, e2αgµν, e−αH]

)
α=0

, (3.58)

Oφ(x) =

(
δ

δα(x)
S coll[φ, e2αgµν, e−αH]

)
α=0

. (3.59)

Notice that in the absence of the Higgs field, H = 0, these operators are (up to
a
√

g factor) nothing but traces of corresponding stress energy tensors T µν
F,coll(x) =

2δ
√

gδgµν(x)S F,coll. It is remarkable, that in this case the classical T µ
µ F vanishes on the

equations of motion, however the quantum vacuum average

〈T µ
µ F(x)〉ferm.vac. , 0, (3.60)

due to the trace anomaly. The collective action describes the trace anomaly al-
ready on classical level:

〈T µ
µ F(x)〉ferm.vac. = 〈T µ

µ coll(x)〉bos.vac. ' T µ
µ coll(x)

∣∣∣
φ=φclass

+ loop corrections, (3.61)

where φclass(x) solves the classical equations of motion δS coll[φ]
δφ(x) = 0. In contrast to

the fermionic partition function, the bosonic partition function doesn’t possess the
trace anomaly, and the Weyl non invariance of action appears already at classical
level.

In the presence of the Higgs field, i.e. when the Dirac operator is given by
Eq. (2.8), the operator OΨ(x), given by Eq. (3.58) equals to

OΨ =
√

g
(
T µ
µ F − γ5 ⊗ S (H)Ψ̄Ψ

)
, T µ

µ F ≡
2gµν
√

g
δ

δgµν
S F , (3.62)

besides 〈T µ
µ 〉 now 〈OΨ〉 contains an additional fermionic condensate 〈Ψ̄(x)Ψ(x)〉

contribution.
The computation of the collective action S coll is strongly based on the use

of the heat-kernel expansion, that being an asymptotic expansion, strictly makes
sense in the low momenta approximation, while for the large momenta regime one
should take into account all heat kernel coefficients i.e. perform a summation of
the heat kernel expansion, see the fifth chapter. Nevertheless the bosonization that
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we discuss is also valid in low momenta region, this justifies the use of the first
three nontrivial heat kernel coefficients in our treatment.

In the next chapter we generalize the spectral regularization for the bosonic
degrees of freedom and apply it for the selfconsistent description of the induced
gravity and the onset of inflation, driven by the trace anomaly.
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Chapter 4

Spectral regularization: Induced
gravity and the onset of inflation.

In this chapter we consider one more interesting application of the spectral regu-
larization related with cosmology and modified gravity following ref. [24]. Gen-
eralizing the spectral regularization discussed in previous chapter on bosonic de-
grees of freedom for weakly coupled QFT’s we will describe phenomena of in-
duced gravity and cosmological inflation driven by trace anomaly on equal foot-
ing.

4.1 Motivation
It is commonly accepted that, at the early stages of our Universe, there was a phase
of rapid acceleration, known as inflation [60–62], during which the length scales
increased by approximately e75 times within a relatively short time of less than
about 106tPl (with tPl denoting the Planck time). Such a scenario usually requires
the presence of a (scalar) field, called the inflaton. Hence, generally speaking, one
has to enlarge the field content of the theory. Although there are approaches based
on exploiting of the Higgs scalar as an inflaton [63], this models face several
difficulties [48, 64–66]. Another way out is to modify the gravitational action,
without adding the inflaton, e.g. one can add an R2-term to the Einstein - Hilbert
action [67]. Nevertheless it is definitely interesting to minimize the amount of
ingredients and try to manage just with QFT.

During the very early stages of our universe, matter can be described by a set
of massless fields with negligible interactions. Such fields, studied in the context
of QFT in curved space-time, may lead to an inflationary era. More precisely trace
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(conformal) anomaly, resulting from the renormalisation of the conformal part of
the vacuum action, becomes the dominant quantum effect and can drive an infla-
tionary era in the absence of an inflaton field. Such a proposal was first introduced
by Starobinsky [60], then studied by Vilenkin [68], and more recently it has been
further investigated by various authors (see for instance Ref. [69] and references
therein, and Refs. [70, 71]). The proposal of Starobinsky can be regarded as a
modified gravity scenario,

Starobinski : S infl
[
gµν

]
=

M2
Pl

16π

∫
d4x
√
−gR︸                ︷︷                ︸

Einstein-Hilbert action one puts by hand

+W
[
gµν

]︸    ︷︷    ︸
Quantum effective action describes Weyl anomaly

, (4.1)

having however QFT origin.
It is remarkable, that the Einstein-Hilbert action itself can be also seen as

an induced quantum effect [72, 73], however one cannot — to our knowledge
— find in the literature a consistent mathematical scheme allowing to describe
simultaneously induced quantum gravity and anomaly-induced effective action.
Standard computation of trace anomaly in curved space-time usually relies on ζ-
functional regularization [74], that does not exploit the ultraviolet cutoff scale,
thereby missing the effect of Sakharov’s induced gravity. In contrast to that, the
frequently used Fock-Schwinger proper time regularization [75, 76], that gives
immediately the Einstein-Hilbert action as a quantum effect, is not suitable to
describe the Weyl anomaly, since it leads to a local Weyl noninvariant expression,
while anomaly generating functional is however known to be nonlocal [77]. As we
will see, using the spectral regularization, one can describe the onset of inflation
driven by the trace anomaly of the quantum effective action in the absence a “bare”
Einstein-Hilbert action i.e. our formalism allows to study induced gravity and
anomalous inflation in a self consistent way.

Our approach : S infl
[
gµν

]
(4.2)

= WΛ︸︷︷︸
describes Weyl anomaly + induced Einstein-Hilbert action

In other words, we show that a cosmological arrow of time can result from a purely
quantum effect.
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In what follows we derive a mathematical description of anomaly using spec-
tral regularization for classically Weyl invariant scalar and gauge theories. Then
we show how the induced gravitational Einstein-Hilbert action appears in our for-
malism. After we discuss the trace anomaly induced inflation. Our main con-
clusion is that, requiring stability of the cosmological constant under loop cor-
rections, the condition of Sakharov’s induced gravity becomes equivalent to the
condition for the existence of a stable inflationary solution.

4.2 Spectral Regularisation and
Collective Dilaton Lagrangian

In this section we will derive a mathematical description of anomaly generalizing
the spectral regularization, introduced before, also on bosonic degrees of freedom.
We will first compute the anomaly and then present the anomaly generating func-
tional. The latter is achieved through the introduction of an auxilary field, that
can be considered as a collective degree of freedom of vacuum fluctuations of all
fields, dual to conformal anomaly.

4.2.1 Spectral Regularisation: generalization for bosons.

Our main aim is to compute the influence of vacuum fluctuations of quantised
fields on the dynamics of the metric tensor in the context of QFT with an ultravi-
olet cutoff.

Since in asymptotically free QFT, the interactions — non-abelian interactions,
Yukawa interactions and Higgs self-interactions — can be considered as pertur-
bative, the effect we are interested in is, at leading order, given by one-loop vac-
uum energy of free fields. However, even this simple approximation may lead, in
curved space-time, to non-trivial effects like Sakharov’s induced gravity [72] and
Starobinsky’s anomaly-induced inflation [60].

Let us consider a theory of free quantised fields of various spins moving in a
gravitational background. The classical action reads

S cl =

∫
d4x
√

g

 NH∑
j=1

H jDHH j +

NF∑
j=1

ψ̄ j /Dψ j +
1
4

NV∑
j=1

Fµν jFµν
j

 , (4.3)
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where

/D = ieµkγ
k
(
∂µ −

i
2
ωmn
µ σmn

)
, (4.4)

DH = −∇2 −
R
6
, (4.5)

where NF,NV,NH stand for the number of Dirac four component fermions, gauge
vector bosons and real Higgs-like scalars, respectively. The classical action Eq. (4.3)
is conformally invariant. This setup may be considered as a good description of
the Standard Model (or its generalizations) when all masses are much smaller than
the Planck mass and the scalar fields are conformally coupled to gravity.

In order to quantise the theory we follow Faddeev-Popov gauge fixing proce-
dure. In Feynman-t’Hooft gauge (a type of an Rξ gauge, as a generalization of the
Lorentz gauge, with ξ = 1), the action reads

S cl,gf =

∫
d4x
√

g

 NH∑
j=1

H jDHH j +

NF∑
j=1

ψ̄ j /Dψ j

+

NV∑
j=1

(
1
2

Aµ
j (Dvec)νµ Aν j + c̄ jDghc j

) , (4.6)

where

Dgh ≡ −∇2 , (4.7)

(Dvec)νµ ≡ −δνµ∇
2 − Rν

µ . (4.8)

The object we are interested in, is a quantum partition function that (up to irrele-
vant constant) is given by

Z ≡

∫
[dψ̄][dψ][dH][dA][dc̄][dc]e−S cl[ψ̄,ψ,H ,A,c̄,c,gµν]

= ZNF
F · Z

NH
H
· ZNV

vec · Z
NV
gh , (4.9)

and is formally equal to:

Z =

(
det

(
/D2

)) NF
2

(det (DH ))
NH

2

(
det

(
Dgh

))NV

(det (Dvec))
NV
2

. (4.10)

Note that in a theory with Nw
F two-component Weyl fermions one should replace

NF by Nw
F /2 in q. (4.10). Each operator O, appearing as det(O) in Eq. (4.10), is
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of a Laplacian type and unbounded; hence each determinant is infinite, rendering
the whole partition function ill-defined. Now we regularize each determinant in
Eq (4.10) in the same way like we did in the previous chapter, namely we take
into account eigenvalues of corresponding operators smaller than Λ2

detO =
∏

λn −−−−−−−−−−−−−−−−→
spectral regularization

det
(
OΛ

µ2

)
=

∏
λn≤Λ2

λn

µ2 , (4.11)

where
OΛ ≡ O · PΛ , (4.12)

with
PΛ ≡ Θ

(
Λ2 − O

)
, (4.13)

the projector on the subspace of eigenfunctions of O with eigenvalues smaller
than Λ. The parameter µ is again introduced in order to have a dimensionless
expression under the sign of determinant and in what follows, we consider Λ = µ;
other choices of µ will not affect substantially the regularization scheme.1

Although the procedure of spectral regularization can be easily understood
and has nice properties, like preserving gauge invariance and general covariance,
technically it is not easy to handle (in contrast to the Fock-Schwinger proper time
formalism). Nevertheless, one can address both, induced quantum gravity and
anomaly-induced inflation, using spectral regularization. Indeed, they are both re-
lated with Weyl non-invariance of the effective quantum action (or Weyl anomaly),
since the classical theory is Weyl invariant. In the following, we compute Weyl
anomaly and present the anomaly generating functional.

4.2.2 Spectral regularization:
computation of the Weyl anomaly

Let us consider a conformal transformation of the metric tensor (3.10) Since the
classical action Eq. (4.3) is Weyl invariant, the Weyl non-invariant contribution
comes out, by definition, from Weyl anomaly. Let us compute the difference
between the initial and the Weyl transformed quantum effective action, namely

W − (̃W)φ = log

 (̃Z)φ
Z

 . (4.14)

1The case of an arbitrary choice of µ is discussed in the previous chapter for the fermionic
determinant and can be easily generalized for scalar or vector fields.
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For the fermionic effective action WF, this difference, Eq. (4.14), reads (see Eq. (3.28)
at µ = Λ)

WF − ˜(WF)φ = −

∫ 1

0
dt Tr

φ
 ˜χ  /D2

Λ2


φ·t

 , (4.15)

where
χ(z) ≡ Θ(1 − z) . (4.16)

Repeating the same computation for the case of a scalar field, one can easily show
that

WH − (̃WH )φ =

∫ 1

0
dt Tr

φ [
˜

χ
(DH

Λ2

)]
φ·t

 . (4.17)

Indeed, under conformal transformation the Laplacian DH transforms as

DH → (̃DH )φ ≡ e−3φDHeφ , (4.18)

and thus one obtains

WH − (̃WH )φ = log

 ˜(ZH )φ
ZH


=

∫ 1

0
dt ∂t log ˜(ZH )φ(x)·t

= −
1
2

∫ 1

0
dt ∂t Tr

log
 D̃H

Λ2 P̃Λ


φ(x)·t


= −

1
2

∫ 1

0
dt Tr

D̃H
−1 (
−3φD̃H + D̃Hφ

)
P̃Λ +

(
∂tΘ

[
Λ2 − D̃H

])
· log

D̃H
Λ2︸                            ︷︷                            ︸

0


φ·t

=

∫ 1

0
dt Tr

{
φP̃Λ

}
φ·t
, (4.19)

with
PΛ ≡ Θ

(
Λ2 − DH

)
. (4.20)

Since the Laplacians Dvec and Dgh do not transform in a homogeneous way, like
DH (see, Eq. (4.18)), one cannot write a straightforward generalization of Eq. (4.19)
for Dvec and Dgh. Nevertheless, there is a non-trivial interplay between gauge and
ghost modes and using the computation presented in the next subsection one can
generalize Eqs. (4.15), (4.17). Hence, defining

Wgauge ≡ Wvec + Wgh , (4.21)
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one obtains

Wgauge −
˜(Wgauge

)
φ

=∫ 1

0
dt

 Tr
φ [

˜
χ
(Dvec

Λ2

)]
φ·t

 − 2 Tr

φ
 ˜χ (

Dgh

Λ2

)
φ·t


 . (4.22)

In the next subsection we will carefully discuss the case of gauge bosons and
derive the formula Eq. (4.22).

4.2.3 Gauge-Ghost’s Contribution: the computation

Starting from the Maxwell action for gauge fields

S M =

∫
d4x
√

g
(
1
4

FµνFµν

)
, (4.23)

we perform a Faddeev-Popov quantisation procedure, adding the gauge fixing
term

S gf ≡
1
2

∫
d4x
√

g
(
∇µAµ

)
, (4.24)

and the ghost action S gh

S gh =

∫
d4x
√

gc̄Dghc , (4.25)

where
Dgh ≡ −∇

2 . (4.26)

The overall gauge fixed Maxwell-ghost action then reads

S vec−gh ≡ S M + S gf + S gh

=
1
2

∫
d4x
√

g
(
Aµ(Dvec) ν

µ Aν

)
+

∫
d4x
√

gc̄Dghc , (4.27)

where

(Dvec)νµ ≡ −δνµ∇
2 −

[
∇µ,∇

ν
]

= −δνµ∇
2 − Rν

µ . (4.28)

The partition function describing a contribution of the quantised vector fields and
ghosts to the vacuum energy is given by the functional integral

Zvec−gh =

∫
[dA][dc̄][dc]e−S vec−gh

=
det Dgh
√

det Dvec
. (4.29)

36



Since both operators Dvec and Dgh are unbounded, the last equality is formal and
thus we perform a spectral regularization. Following the general prescription we
introduce the cutoff scale Λ and the two projectors

PΛ
vec = Θ

(
Λ2 − D2

vec

)
,

PΛ
gh = Θ

(
Λ2 − D2

gh

)
, (4.30)

in order to truncate the spectrum of the Dvec and Dgh operators, respectively.
The regularization is based on replacing the unbounded operators Dvec and Dgh

by the truncated operators DΛ
vec and DΛ

gh, respectively, denoted by

Dvec → DΛ
vec ≡

(Dvec

Λ

)
PΛ

vec + 1 − PΛ
vec ,

Dgh → DΛ
gh ≡

(
Dgh

Λ

)
PΛ

gh + 1 − PΛ
gh , (4.31)

in the determinants appearing in the partition function Eq. (4.29). Hence, the
regularized partition function reads

ZΛ
vec−gh ≡

det DΛ
gh√

det DΛvec

= − exp
{

Tr
(
1
2

PΛ
vec log Dvec

)
− Tr

(
PΛ

gh log Dgh
)}

. (4.32)

We are interested in computing the contribution of the quantised vector fields and
ghosts to the anomaly S coll. We will impose the above discussed regularization
and use Eq. (4.32) for the regularized partition function. Note that we denote a
quantity Q[gµν] computed on the transformed metric tensor gµνe2φ by(

Q̃
)
φ
≡ Q

[
e2φgµν

]
. (4.33)
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For the anomaly we have

S coll = log


(
Z̃Λ

vec−gh

)
φ

ZΛ
vec−gh


=

∫ 1

0
dt ∂t log

(
Z̃Λ

vec−gh

)
φ·t

= −

∫ 1

0
dt ∂t

 Tr
(
1
2

P̃Λ
vec log D̃vec

)
φ·t
− Tr

(
P̃Λ

gh log D̃gh

)
φ·t


= −

∫ 1

0
dt

(
1
2

Tr
[
P̃Λ

vec

(
D̃Λ

vec

)−1
∂tD̃Λ

vec

]
φ·t

− Tr
[
P̃Λ

gh

(
D̃Λ

gh

)−1
∂tD̃Λ

gh

]
φ·t

 . (4.34)

In contrast to the fermionic and scalar cases, the next step in the computation of
the anomaly S coll is not a trivial task, because both operators Dvec and Dgh do not
transform in a covariant way, namely[

(̃Dvec)
λ

µ

]
φ

= e−2φ
(
(Dvec) λ

µ + 2φµ∇λ − 2φλ∇µ − 2φ λ
µ + 4φµφλ

)
,[

D̃gh
]
φ

= e−2φ
(
Dgh − 2φµ∇µ

)
. (4.35)

From the transformation law, Eq. (4.35) above, we derive

∂t

[
(̃Dvec)

λ

µ

]
φ·t

= −2φ
[
(̃Dvec)

λ

µ

]
φ·t

+ 2
[
φ̃µ∇λ

]
φ·t
− 2

[
φ̃λ∇µ

]
φ·t
− 2

[
φ̃ λ
µ

]
φ·t
,

∂t

[
D̃gh

]
φ·t

= −2φ
[
D̃gh

]
φ·t
− 2

[
φ̃µ∇µ

]
φ·t
. (4.36)

Substituting Eq. (4.36) in Eq. (4.34) we obtain the expression for the anomaly; it
has a part similar to that of the fermonic and bosonic cases and in addition there
are some “bad terms”, namely

S coll =

∫ 1

0
dt

{
Tr vec

(
φ
[
P̃Λ

vec

]
φ·t

)
− 2 Tr gh

(
φ
[
P̃Λ

gh

]
φ·t

)
+ ˜(“bad terms”)φ·t

}
,

(4.37)
where the “bad terms” are given by

“bad terms” ≡ 2
{

Tr vec
[
PΛ

vec (Dvec)−1
(
φµ∇

λ − φλ∇µ − φ
λ
µ

)]
+ 2 Tr gh

[
PΛ

gh

(
Dgh

)−1 (
φµ∇µ

)]}
. (4.38)
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In what follows we will show that the “bad terms” cancel.
Let us first introduce a complete set Φn, n = 1, 2... of orthonormal eigenfunctions
of the ghost operator Dgh, as

DghΦn = λnΦn with
∫

d4x
√

gΦnΦm = δnm . (4.39)

One can easily check that the set of functions ξµn ≡
∇µΦn√
λn

satisfies

(Dvec)µν ξ
ν
n = λnξ

µ
n with

∫
d4x
√

gξnµξ
µ
m = δnm, (4.40)

namely it forms an orthonormal basis in a space of longitudinal eigenvectors of
the the operator Dvec. Let us also introduce the orthonormal set of transversal
eigenvectors of

(Dvec)µν Bν
n = βnBµ

n with
∫

d4x
√

gBnµBµ
m = δnm and ∇µBµ

n = 0 , (4.41)

so the set {ξµn , B
µ
m} with n,m = 1, 2, · · · forms a basis in the space of all gauge

potentials. The gauge contribution to the “bad terms” is

Tr
[
PΛ

vec (Dvec)−1
(
φµ∇

λ − φλ∇µ − φ
λ
µ

)]
=

∑
n: λn≤Λ

∫
d4x
√

g
(
ξµn

(
D−1

vec

) η
µ

(
φη∇

λ − φλ∇η − φ
λ
η

)
ξnλ

)
+

∑
n: βn≤Λ

∫
d4x
√

g
(
Bµ

n

(
D−1

vec

) η
µ

(
φη∇

λ − φλ∇η − φ
λ
η

)
Bnλ

)
︸                                                         ︷︷                                                         ︸

0

= −2
∑

n: λn≤Λ

1
λn

∫
d4x
√

g (Φnφ
ν∇νΦn) , (4.42)

and the ghost contribution to the “bad terms” reads

2 Tr
[
PΛ

gh

(
Dgh

)−1 (
φµ∇µ

)]
= 2

∑
n: λn≤Λ

1
λn

∫
d4x
√

g (Φnφ
ν∇νΦn)

= − Tr
[
PΛ

vec (Dvec)−1
(
φµ∇

λ − φλ∇µ − φ
λ
µ

)]
. (4.43)

Clearly, the “bad terms” cancel mode by mode.
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Hence, the final answer for the gauge-ghost contribution to the anomaly is

S coll =

∫ 1

0
dt

 Tr
φ [

˜
χ
(Dvec

Λ2

)]
φ·t

 − 2 Tr

φ
 ˜χ (

Dgh

Λ2

)
φ·t


 , (4.44)

where the cutoff function χ is the Heaviside step-function

χ(z) ≡ Θ(1 − z) . (4.45)

4.2.4 Weyl anomaly upon the spectral regularization:
final result

To complete the computation of the scalar and gauge contributions to the anomaly,
Eqs. (4.17) and (4.22) respectively, we will follow the same procedure as in
Refs. [10, 12, 13, 17, 18].

Let us first perform a decomposition of the projector PΛ:

PΛ = Θ
(
Λ2 − O

)
= lim

ε→0

1
2πi

∫ +∞

−∞

ds
s − iε

eise−
(

is
Λ2

)
O , (4.46)

and then do a heat kernel expansion2 in terms of the heat kernel (Schwinger-De
Witt) coefficients [44]:

Tr
(
φ e−zO

)
'

∞∑
n=0

z
1
2 (n−4)an (φ,O) , (4.47)

where
z =

is
Λ2 , (4.48)

and
an (φ,O) =

∫
d4x
√

g φ an (O, x) . (4.49)

The main advantage of the heat kernel method is that it provides the required
information in terms of only a few geometric invariants. Since Eq. (4.49) relies on
the asymptotic heat kernel expansion, it makes sense only when the background
field invariants, appearing in the heat kernel coefficients an (O, x), are smaller than
the corresponding powers of the ultraviolet cutoff Λ. This requirement defines the

2More precisely a Schrödinger kernel expansion, since the argument z is purely imaginary.

40



applicability of our approach; we assume this requirement to be satisfied.3 Since
we are working on a manifold without boundary, only even heat kernel coefficients
a2k are non-zero.

Performing the integration over s in Eq. (4.49), namely∫ +∞

−∞

ds sk−3eis =

 1
2πi Ress=0

(
sk−2eis

)
for k = 0, 1, 2 ;

(2π) ik−3
(
∂(k−3)δ

)
(1) = 0 for k ≥ 3 ,

(4.50)

we obtain

Tr
(
φ Θ

(
Λ2 − O

))
=

∫
d4x
√

g
(
a0(O, x)

2
Λ4 + a2(O, x)Λ2 + a4(O, x)

)
. (4.51)

Using the expansion Eq. (4.51) for the total anomaly we obtain

W − (̃W)φ =

∫
d4x φ(x)

∫ 1

0
dt

√
g̃φt

{
Λ4

2

(
NHaH0 + NV

[
avec

0 − 2agh
0

]
−

Nw
F

2
aF

0

)
+Λ2

(
NH

(̃
aH2

)
φ·t

+ NV

[(̃
avec

2

)
φ·t
− 2 ˜(agh

2

)
φ·t

]
−

Nw
F

2

(̃
aF

2

)
φ·t

)
+

(
NH

(̃
aH4

)
φ·t

+ NV

[(̃
avec

4

)
φ·t
− 2 ˜(agh

4

)
φ·t

]
−

Nw
F

2

(̃
aF

4

)
φ·t

)}
. (4.52)

We give in Tables 4.1 and 4.2 the values of the heat kernel coefficients a0, a2 and
a4, respectively, for free massless fields of different spin. In what follows we will

Table 4.1: Heat kernel coefficients a0 and a2 for free massless fields of various spin; we
have calculated them using Ref. [44].

Spin a0 a2

0, conformal coupling 1
16π2 · 1 0

1/2, Dirac fermion 1
16π2 · 4 1

16π2

(
R
3

)
1, without ghosts 1

16π2 · 4 1
16π2

(
R
3

)
0, minimal coupling 1

16π2 · 1 − 1
16π2

(
R
6

)
1, gauge (i.e., with ghosts) 1

16π2 · 2 1
16π2

(
2R
3

)

use the shorthand notations listed below:

φµ ≡ ∂µφ, X ≡ φµφµ, Y ≡ ∇µφµ . (4.53)
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Table 4.2: Heat kernel coefficient a4 for free massless fields of various spin [44].

a4 = 1
2880π2

(
a ·C2 + b ·GB + c · R µ

;µ

)
Spin a b c

0, conformal coupling 3/2 -1/2 -1
1/2, Dirac fermion -9 11/2 6

1, gauge (i.e., with ghosts) 18 -31 18

Using Eq. (3.33), Eq. (3.37) and Eq. (3.42) the total anomaly Eq. (4.52) reads

W − (̃W)φ =

∫
d4x
√

g
{
α1

(
e4φ − 1

)
+ α2

(
1
2

(
e2φ − 1

)
R − 3 e2φX

)
+ α3φ C2

+α4

(
φ GB + 4Gµνφµφν − 4XY − 2X2

)
+ α5

(
(X + Y)R + 3(X + Y)2

)}
, (4.54)

where

α1 ≡
Λ4

128π2

(
NH + 2NV − 2Nw

F
)
,

α2 ≡
Λ2

16π2

(
−

1
6

Nw
F +

2
3

NV

)
,

α3 ≡
1

2880π2

(
3
2

NH +
9
2

Nw
F + 18NV

)
,

α4 ≡ −
1

2880π2

(
1
2

NH +
11
4

Nw
F + 31NV

)
,

α5 ≡
1

2880π2

(
−NH − 3Nw

F + 18NV
)
. (4.55)

At this point, one can make a remark:
Remark
We would like to compare results for the trace anomaly obtained via the spectral
and the ζ-function regularizations. An infinitesimal anomaly reads

lim
φ→0

1
√

g
δ

δφ(x)
(̃W)φ = −

(
Λ4

2
· A0(x) + Λ2 · A2(x) + Λ0 · A4(x)

)
, (4.56)

3In the case of anomaly-induced inflation, one must check that the scalar curvature R is small
enough with respect to the ultraviolet cutoff scale Λ2; this is indeed the case.
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where

A0 ≡ NH aH0 + NV

[
avec

0 − 2agh
0

]
−

Nw
F

2
aF

0 ,

A2 ≡ NH aH2 + NV

[
avec

2 − 2agh
2

]
−

Nw
F

2
aF

2 ,

A4 ≡ NHaH4 + NV

[(
avec

4
)
− 2agh

4

]
−

Nw
F

2
aF

4 , (4.57)

and the heat kernel coefficients a0, a2, a4 are given in Tables 4.1 and 4.2. The
A4-contribution coincides with the result for anomaly obtained via ζ-function reg-
ularization and the dimensional one [2]. Quadric and quadratic in Λ terms can be
interpreted as an ultraviolet divergence and hence subtracted through the addition
of the corresponding local counter terms. Indeed, one can define the renormalised
effective action

W ren ≡ W +

∫
d4x
√

g
(
α1 + α2

(R
2

))
, (4.58)

with α1, α2 defined in Eq. (4.55). One can easily check (see computations in
subsection 4.3.2) that

lim
φ→0

1
√

g
δ

δφ(x)
˜(W ren)φ = −A4(x), (4.59)

with A4 defined in Eq. (4.56). However in this way, spectral regularization does
not lead to any new result.

In what follows, we will not subtract the divergent terms and we will keep Λ

finite and of order of the Planck scale. We will thus be able to describe simulta-
neously both, the induced gravitational action and the onset of (trace) anomaly-
induced inflation. We will hence conclude that all terms in the Lagrangian, leading
to a period of an accelerated expansion of the universe, may be considered as the
outcome of a quantum effect.

4.2.5 Anomaly generating functional and collective dilaton

Although – in contrast to proper time regularization – spectral regularization does
not allow one to compute the partition function explicitly, there is a formalism
based on the introduction of a collective dilaton (see the previous chapter) that al-
lows one to express the Weyl non-invariant part of such a regularized determinant,
as an integral over an auxilary field φ of some local action that depends on φ and
the background fields.
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Repeating the steps of the previous chapter i.e. substituting the conformally
transformed metric tensor gµνe2φ in Eq. (4.10) and integrating over all possible
φ(x), one can write the identity

Z =

(∫
[dφ]

(̃
Z−1)

φ

)−1

·

∫
[dφ]

 Z

(̃Z)φ

 . (4.60)

Since the first term above is the integral over the Weyl group of a Weyl trans-
formed quantity, it is Weyl invariant under the action of the Weyl group, so we
denote it by Zinv. Hence, Eq. (4.60) can be rewritten as

Z ≡ Zinv ·

∫
[dφ]e−S coll , (4.61)

where

S coll ≡ log

 (̃Z)φ
Z

 . (4.62)

Thus, the non-Weyl invariant partition function Z in Eq. (4.61) is written as the
product of a term Zinv invariant under Weyl transformations and another one, non-
invariant, which depends on the auxiliary field φ and is due to Weyl anomaly.
The introduction of the auxiliary field, representing the collective degree of free-
dom of all fermions, can be seen as bononisation. As we will later show, there
exists a local Lagrangian Lcoll depending on φ and background fields, such that
S coll =

∫
d4x
√

gL. Hence, instead of computing Z, we can use a bosonisation-like
relation

Z[gµν] =

∫
[dψ̄][dψ][dH][dA][dc̄][dc]e−S cl[ψ̄,ψ,H ,A,c̄,c,gµν] (4.63)

' Zinv ·

∫
[Dφ]e−S coll[φ,gµν] .

Clearly, φ stands for a collective degree of freedom of vacuum fluctuations of all
fields dual to conformal anomaly, hence the term “collective action”.

Since all our computations were carried in Euclidean QFT, in order to ap-
ply our result in a physical context one should perform a Wick rotation back to
Minkowski signature in Eq. (4.54). Hence, for the anomaly generating functional
we have

Zcoll ≡

∫
[dφ]e−S coll −−−−−−−−−−−−−−−−−−→

Wick rotation back
Zcoll M ≡

∫
[dφ]eiS coll M , (4.64)
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and the Minkowskian version of the collective action reads

S coll M =

∫
d4x
√
−g

(
−α1

(
e4φ − 1

)
+ α2

(
1
2

(
e2φ − 1

)
R − 3 e2φX

)
− α3φ C2

−α4

(
φ GB + 4Gµνφµφν − 4XY − 2X2

)
− α5

(
(X + Y)R + 3(X + Y)2

))
, (4.65)

with the coefficients given in Eq. (4.55).
In what follows, we will show that Weyl anomaly in QFT with spectral regular-

ization reproduces Sakharov’s induced gravity, as well as Starobinsky’s anomaly-
induced inflation. This is the main message of our study.

4.3 Sakharov’s Induced Gravity and
Spectral Regularisation

4.3.1 Standard Approach: Proper Time Regularisation

The standard approach to the Sakharov’s induced gravity is based on Fock-Schwinger
proper time regularization [73]. In this formalism, one first selects a convenient
reference metric g̃µν and then computes the difference in the one-loop contribu-
tion to the effective action which results from comparing two different metrics
defined on the same topological manifold. Hence, we consider the difference
W[gµν] −W[ ˜gµν], with W defined as W ≡ − log Z.

Let us write the formal equality

Tr
(
log

D
D̃

)
=

∞∑
n=0

log
λn

λ̃n

(4.66)

= −

∞∑
n=0

∫ ∞

0
ds

(
e−sλn

s
−

e−sλ̃n

s

)
(4.67)

= −

∫ ∞

0

ds
s

Tr
(
e−sD − esD̃

)
, (4.68)

and then perform a heat kernel expansion for the Tr (e−sD) and Tr (esD̃) terms to
get

Tr
(
log

D
D̃

)
= −

∫ ∞

0

ds
s

∞∑
k=0

sk−2
(
a2k(D) − a2k(D̃)

)
, (4.69)
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where the coefficients ak are the Seeley-De Witt coefficients, universal functions
of the space-time geometry. In order to perform the integration over s in Eq. (4.69)
for k = 0, 1 one needs an ultraviolet regulator µuv; integration over s for all other
values of k, namely for all k > 1, is ultraviolet finite but it requires the infrared
regulator µir � µuv. It is worth noting that the heat kernel expansion has allowed
us to identify the potential divergences.
We obtain

Tr
(
log

D
D̃

)
= −

∫ µ−2
ir

µ−2
uv

ds
s

∞∑
k=0

sk−2
(
a2k(D) − a2k(D̃)

)
= −

µ4
uv

2

(
a0 (D) − a0

(
D̃
))
− µ2

uv

(
a2 (D) − a2

(
D̃
))

− log
(
µ2

uv

µ2
ir

) (
a4 (D) − a4

(
D̃
))

+ · · · (4.70)

Let us emphasise that the regulators µuv and µir are not ultaviolet and infrared,
respectively, cutoff scales for the spectrum of D; they are attributes to make the
regularization scheme finite.4

Using Eq. (4.10) with log det = Tr log and Eq. (4.70) we get

Wpt ≡ − log Z =

∫
d4x
√

g
(
λ

pt
ind +

M2 ind
Pl

16π
R +

{
O

(
R2

)})
, (4.71)

where

λ
pt
ind =

µ4
uv

64π2

(
2Nw

F − NH − 2NV
)
, (4.72)

and

M2 ind
Pl =

µ2
uv

2π

(
Nw

F

6
−

2NV

3

)
. (4.73)

The main idea of Sakharov’s induced gravity lies in attributing a physical meaning
to the ultraviolet cutoff scale, so that it denotes the upper scale for which the
considered QFT is a valid effective theory. In this way, it is not necessary to
subtract divergences, and setting Λ ∼ MPl ∼ 1019GeV, the term µ2

uvR can be
considered as an induced gravitational action.

Hence, starting from a classically Weyl invariant theory, quantisation implied
a Weyl non-invariant Einstein-Hilbert action. One may thus conclude that, un-
der proper time regularization, the Weyl anomaly contains operators of dimension

4Considering D = −∂2 + m2 or D = −∂2 and a finite volume of Euclidean spacetime, the
spectrum D has an infrared cutoff, however the integration over s in Eq. (4.69) is still infrared
divergent.
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two, in contrast to the (standard) dimensional regularization or the ζ-function reg-
ularization, where anomaly contains just operators of dimension four.

Nevertheless, the considered proper time regularization procedure does not re-
produce correctly the a4-contribution to the anomaly (c.f. Eq. (4.59)), and there-
fore it cannot be used to investigate the trace anomaly induced inflation. Indeed,
substituting in Wpt, defined in (4.71) above, the conformally transformed metric
tensor e2φgµν and then taking the derivative over φ(x), one immediately finds

lim
φ→0

1
√

g
δ

δφ(x)
(̃Wpt)φ = 4 λpt

ind +
1

8π
M2 ind

Pl R , (4.74)

taking into account that the
{
O

(
R2

)}
-terms in Eq. (4.71) are given by

log
(
µ2

uv

µ2
ir

)
a4 (D) = log

(
µ2

uv

µ2
ir

)
1

2880π2

[
3
2

NH +
9
2

Nw
F + 18NV

] ∫
d4x
√

gC2

= Weyl inv. , (4.75)

and thus do not contribute in Eq. (4.74).
Let us remind to the reader that as we have previously shown (see the remark,

Eq. (4.56)), the spectral regularization reproduces correctly the a4-contribution
to the anomaly. We will next show that it also reproduces correctly the induced
Einstein-Hilbert action; it can be thus used to describe both.

4.3.2 The Spectral Regularisation Approach

The effective action
Weff[gµν] = − log Z[gµν] , (4.76)

is known to be a non-local functional of the metric tensor gµν and in particular, of
the Lagrangian density Leff[gµν], so that

Weff[gµν] =

∫
d4x
√

gLeff[gµν] (4.77)

does not exist and correspondingly the local collective action S coll, once integrated
over φ, captures all non-locality of the Weyl non-invariant part of the effective
action.

Nevertheless, the terms with coefficients α1, α2 and α5 in the anomaly, Eq. (4.54),
can be generated by local terms in the effective action Weff .
Indeed, let us consider

Wloc[gµν] =

∫
d4x
√

g
(
−α1 − α2

(R
2

)
− α5

(
R2

12

))
, (4.78)
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and

Wloc[gµν] −Wloc[gµνe2φ] =

∫
d4x
√

g
(
α1

(
e4φ − 1

)
+ α2

(
1
2

(
e2φ − 1

)
R − 3 e2φX

)
+α5

(
(X + Y)R + 3(X + Y)2

))
. (4.79)

Comparing Eqs. (4.54) and (4.79), we conclude that the total effective action can
be rewritten as

W = Winv + Wloc + Wnonloc , (4.80)

where Winv is some Weyl invariant functional of gµν and Wnonloc is a non-local
functional, generating α3 and α4 terms in the collective action Eq. (4.54) (we
refer the reader to Ref. [77]). Equivalently, one can say that QFT with spectral
regularization leads to Sakharov’s induced gravity:

Wind
[
gµν

]
=

∫
d4x
√

g
(

Λ4

128π2

(
2Nw

F − NH − 2NV
)

+
Λ2

32π2

(
1
6

Nw
F −

2
3

NV

)
R + O

({
R2

}))
=

∫
d4x
√

g
(
λind +

1
16π

(
Mind

Pl

)2
R
)

+ O
({

R2
})
, (4.81)

where (
Mind

Pl

)2
=

Λ2

12π
(
Nw

F − 4NV
)
, (4.82)

and

λind =
Λ4

128π2

(
2Nw

F − NH − 2NV
)
, (4.83)

with O
({

R2
})

denoting all local and non-local terms responsible for Λ0-contributions
in the anomaly-induced effective action. The latter is much smaller in the low en-
ergy regime (R << Λ) and hence it can be neglected at energies much smaller than
the cutoff scale. It however plays a significant role during the inflationary era; it
will be studied in the next section within the isotropic approximation.

In order to identify the induced Planck mass with the real one at ∼ 1019GeV
one should impose the cutoff scale Λ at the Planck energy scale. This however
automatically leads to a huge value of the induced cosmological constant, namely
λind ∼ M4

Pl. One may consider the presence of bare cosmological constant with
the opposite sign, namely λbare ∼ − M4

Pl and impose the fine-turning:

λobservable = λbare + λind .
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To avoid such a fine-tuning, we will adopt an alternative approach and hence, we
will impose the Pauli compensation principle, i.e we require, that the Λ4 fermonic
and bosonic contributions to the vacuum energy cancel each other. The latter
implies that the numbers of physical fermonic and bosonic degrees of freedom
are equal, namely

NH = 2
(
Nw

F − NV
)
, (4.84)

on the number of scalars, spinors and vectors, so that all quartic divergences can-
cel.
Thus, under spectral regularization we obtain:

Wind
[
gµν

]
=

∫
d4x
√

g
(

Λ2

32π2

(
1
6

Nw
F −

2
3

NV

)
R + O

({
R2

}))
. (4.85)

The above equation, Eq. (4.85), agrees with the one obtained following the Fock-
Schwinger proper time formalism [73]. It is worth noting that the Pauli compen-
sation condition NH = 2

(
Nw

F − NV

)
is not just a property of the spectral regular-

ization; it holds in all regularization procedures with an ultraviolet cutoff scale
and in that sense it is universal.

In the next section, we will consider a high energy region, but R < Λ2, i.e.
where the spectral regularization is still applicable. We will show that, imposing
the Pauli compensation condition, the Λ0-contribution to the anomaly (which we
have neglected here), together with the Λ2-contribution, leads automatically to
Starobinsky’s anomaly-induced inflation.

4.4 Inflation Induced from Trace Anomaly:
The Isotropic Approximation

We will explore the dynamics of a metric tensor in the isotropic approximation.
The spacetime is considered to be spatially flat, namely gµν = eβ(τ)ηµν; the cases of
closed and open universes can be studied along similar lines. Although one should
first derive an equation of motion for the metric tensor gµν and only afterwards
substitute the conformally flat anzatz, it is possible to avoid the first step following
the procedure described in Ref. [78].

Hence, to get equations of motion in the isotropic case for an arbitrary5 general
5Although the procedure discussed is Ref. [78] deals with a local action W, repeating the same

analysis one obtains the same result also in a nonlocal situation, provided after the substitution of
the conformally flat anzatz, the action can be written as the right-hand-side of Eq. (4.86). As we
will see, our model belongs to this case.
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covariant action W[gµν] one should [78]:

• Firstly, substitute the conformally flat anzatz ds2 = dt2 − a(t)2d~x2 in the
action W[gµν].

• Secondly, rewrite the result of the substitution in the form

W[a(t)] = vol ·
∫

dt a3
I(H, Ḣ), (4.86)

where vol is a three-dimensional volume and H stands for the Hubble pa-
rameter, H ≡ ȧ/a. In principle, the function I can also depend on higher
derivatives of the Hubble parameter, but we will restrict ourselves to the
minimal needed case.

• Thirdly, obtain the following equation for the scale factor:

I − H
∂I

∂H
+

(
−Ḣ + 3H2

) ∂I
∂Ḣ

+ H
d
dt
∂I

∂Ḣ
= 0 , (4.87)

which is just the generalization of the Friedmann equation.

Remark
Equation (4.87) is third order in a, while the equation of motion δW/δa = 0 is of
fourth order. One can easily check that the above prescription is just a formula-
tion of energy conservation. Indeed, since W[a(t)] in Eq. (4.86) does not depend
explicitly on time, Nother’s theorem implies conservation of the quantity:

E ≡
∂L
∂at

at − L +
∂L
∂att

att −

(
d
dt
∂L
∂att

)
. (4.88)

If in addition, one imposes that the overall (gravity+fields) energy E vanishes,
then the resulting equation will be exactly Eq. (4.87).

In our case the action is given by6

Wtotal

[
gµν

]
= W + Wλ, Wλ ≡

∫
d4x
√
−g (−λ) (4.89)

where7 W is a quantum effective action 1
i log Z with Z defined by Eq. (4.10) and

spectral regularization.
6The cosmological constant λ is known to be much smaller than all other constants of dimen-

sion four, in particular M4
Pl. We do not expect that λ is generated dynamically through quantum

anomalies and we can make no comment on its origin. In the following, we are interested to check
that the cosmological constant will not destabilise the inflationary solution.

7In what follows we skip the index M for brevity, keeping in mind, that we are working in a
Minkowski space-time.
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Following the prescription described above, we must substitute the confor-
mally flat anzatz for the metric tensor in comoving coordinates in Eq. (4.54). This
is done in two steps: firstly, we substitute the conformally flat anzatz in the con-
formal coordinates gµν = e2β(τ)ηµν and secondly, we perform the corresponding
change of variables to the comoving frame. Hence, substituting gµν = ηµν and
φ = β(τ) in Eq. (4.54), we get8

Wtotal
[
β(τ)

]
= vol ·

∫
dτ

(
3α2e2ββ2

τ + (3α5 − 2α4) β4
τ + 3α5β

2
ττ − λe4β

)
. (4.90)

Performing the change of variables β(τ)→ a(t) with

τ =

∫ t

t0
a−1 (z) dz, β(τ) = log a(t), (4.91)

we arrive to the following expression for the effective action:

Wtotal[(a(t))] = vol ·
∫

dt a3
I

(
H, Ḣ

)
, (4.92)

where

I(H, Ḣ) ≡ 3α2H2 + (6α5 − 2α4) H4 + 3α5Ḣ2 + 6α5H2Ḣ − λ . (4.93)

Substituting the above expression for J, Eq. (4.93), in Eq. (4.87), we arrive to the
following equation of motion in terms of the Hubble parameter H:

Ḧ + 3 HḢ −
1
2

Ḣ2

H
+

3
4

H3

Q
− 3 HΛ2 +

λ P
H

= 0 , (4.94)

where

Q ≡
NF − 4NV

NF + 8NV
,

P ≡
96π2

NF − 4NV
. (4.95)

Equation (4.94) for the Hubble parameter H(t) is of second order, so we write it as
a system of two first order equations, in order to use the phase portrait technique.
Hence,

d
dt

(
v
H

)
=

 −3 Hv + 1
2

v2

H −
3
4

H3

Q + 3 HΛ2 − λ P
H

v

 . (4.96)

8We use the fact, that W[ηµν] = 0, that can be easily checked by direct computation, since in
this case the spectrum of each Laplacian, appearing under the sign of determinant is trivial.
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We are looking for special points of the vector field on the [H, v]-plane defined
by the right-hand side of Eq. (4.96). Solving this algebraic equation we find two
special points9, H1 and H2:

H1 =
√

2QΛ

√
1 −

√
1 −

λP
3Λ4Q

'
1
Λ

√
λP
3

(
1 + O

(
λ

Λ4

))
, (4.97)

describing a slowly expanding universe, and

H2 =
√

2QΛ

√
1 +

√
1 −

λP
3Λ4Q

' 2
√

QΛ

(
1 + O

(
λ

Λ4

))
, (4.98)

describing a rapidly expanding universe and hence offering a good candidate for
an inflationary model.

Linearising the system Eq. (4.96) in the vicinity of each special point, we draw
the following conclusions:

• The rapidly expanding solution H2 is stable (stable focus on [H,V] plane).

• The slowly expanding solution H1 is unstable (unstable focus on [H,V]
plane).

In conclusion, if Pauli compensation condition is satisfied, namely if all quar-
tic divergences cancel each other, then Sakharov’s induced gravity leads to Starobin-
sky’s anomaly-induced inflation, and vice versa.

In this and previous chapters we considered the QFT under the spectral reg-
ularization i.e. in a presence of the ultraviolet cutoff Λ. We did not discuss the
reason of an introduction of such a cutoff scale. We did not discuss the question:
”What sort of new physics or phase transition one expects to meet at high ener-
gies?” In the next two sections we will consider two models naturally exhibiting a
presence of the ultraviolet cutoff scale. The former is based on the bosonic spec-
tral action, reviewed in the first chapter while the latter will be just a generalization
of the SM motivated by the idea of strong unification at the Planck scale.

9There are four special points, but since we are interested in expanding solutions we only
consider positive values of H.
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Figure 4.1: Phase portrait showing the dynamics of the scale factor in the case of the
Sakharov’s induced gravity with the Pauli compensation condition for the quartic diver-
gences cancellation. The parameters are taken as follows, NV = 12, NV = 5NV.This
system shows the existence of a stable de Sitter solution with the scalar curvature smaller
or equal to the MPl; corresponds to a rapidly expanding universe.
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Chapter 5

High vs. low momenta behavior of
the bosonic spectral action

In previous chapters we discussed some applications of the ultraviolet spectral
regularization in QFT. Now we consider some QFTs naturally exhibiting the ul-
traviolet cutoff scale. We are talking about a situation, when the cutoff scale has
the physical meaning of an energy in which the theory (seen as effective) has a
phase transition. Following ref. [23] we will show that the bosonic spectral ac-
tion, discussed so far, exhibits two qualitatively different regimes of behavior, the
and transition scale is give by the cutoff scale Λ. While the low energy regime
of the BSA reproduces the Standard Model non minimally coupled with gravity,
the high energetic behavior appears to be drastically different and as we will see
exchange of high momenta bosons is impossible in this theory. The latter, due
to uncertainty principle, makes impossible measurement of distances smaller than
the inverse cutoff scale Λ−1, thereby introducing the minimal length scale in this
theory.

Traditional approach to BSA, that we discussed before is based on the heat
kernel expansion

S B =
∑

n

Λ4−2na2n( /D), (5.1)

that is an expansion in inverse powers of the cutoff scale Λ. A contribution, pro-
portional to Λ−2n has the following structure,

Λ−2n(contribution) =

∫
d4x
√

g
(
powers of fields, powers of ∂

Λ2n

)
(5.2)

where powers of the cutoff scale Λ in denominator are compensated by powers of
fields and their derivatives in numerator. As a matter of fact, higher heat kernel co-
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efficients contain higher derivatives of fields and at low energies their contribution
is small, so BSA recovers Standard Model bosonic Lagrangian.

high momenta = large derivatives, or symbolically
∂

Λ
> 1 (5.3)

Nevertheless high momenta behavior of BSA is also of interest, since as we will
see it is qualitatively different. In order to study propagation of high momenta (i.e.
large frequency) bosons one should compute BSA up to quadratic order in fields,
summing all derivatives. One needs such a resummation of the heat kernel expan-
sion, that allows to derive linear equations of motion, valid for both high and low
momenta regions. The solution was obtained by Barvinsky and Vilkovisky [79]:

Tr exp
(
−

D2

Λ2

)
'

'
Λ4

(4π)2

∫
d4x
√

g tr
[
1 + Λ−2P

+Λ−4(Rµν f1

(
−
∇2

Λ2

)
Rµν + R f2

(
−
∇2

Λ2

)
R

−P f3

(
−
∇2

Λ2

)
R + P f4

(
−
∇2

Λ2

)
P + Ωµν f5

(
−
∇2

Λ2

)
Ωµν)]

+O(R3,Ω3, E3), (5.4)

where P ≡ E − 1
6R , and f1, ..., f5 are known functions:

f1(ξ) =
h(ξ) − 1 + 1

6ξ

ξ2 , f5(ξ) = −
h(ξ) − 1

2ξ
,

f2(ξ) = 1
288h(ξ) − 1

12 f5(ξ) − 1
8 f1(ξ) , f3(ξ) = 1

12h(ξ) − f5(ξ) ,

f4 = 1
2h(ξ) .

and

h(z) :=
∫ 1

0
dα e−α(1−α) z .

For illustrative purposes in what follows we will discuss simplified bosonic
spectral action corresponding a single fermion, interacting with gauge Higgs and
gravitational fields. We will compute for this special case the righthand side of
(5.4) and will show that at low energies (5.4) reproduces BSA, discussed above

55



(i.e. heat kernel result1) completely. In the next section we will introduce the
Dirac operator for our simplified case and compute relevant curvatures E and Ω

appearing in the Barvinsky - Vilkovisky expansion.

5.1 Dirac operator and relevant curvatures.
We remind, that we work with Euclidean fermions, and impose the fermionic
doubling discussed in the second chapter, the Hilbert space is split into left and
right parts,

H = HL ⊕ HR (5.5)

where HL and HR are spaces of left and right (four component) fermions, and the
Higgs field φ connects left and right fermions. In case of a single massive fermion,
the classical action reads

S F =

∫
d4x
√

g Ψ† /DΨ,

Ψ ≡

(
ψL

ψR

)
,

where the Dirac operator

/D =

(
iγµ∇µ γ5φ

γ5φ iγµ∇µ

)
= iγµ∇ν ⊗ 1L−R

2 + γ5φ ⊗ σ
L−R
1 , (5.6)

and

1L−R
2 =

(
1 0
0 1

)
, σL−R

1 =

(
0 1
1 0

)
(5.7)

are matrices, acting on L and R indices. In the following we will skip this indexes
for brevity.

Now we have to present the relevant Laplacian in a canonical form. Square of
the Dirac operator reads:

/D2
=


(
iγµ∇µ

)2
+ (γ5φ)2 iγµ∇µγ5φ + γ5φ iγµ∇µ

iγµ∇µγ5φ + γ5φ iγµ∇µ
(
iγµ∇µ

)2
+ (γ5φ)2

 (5.8)

Using known formula [44](
iγµ∇µ

)2
= −

(
∇2 +

i
4

[
γµ, γν

]
Fµν +

R
4

)
(5.9)

1We mean a0, a2 and a4 contributions.
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and the simple identity

iγµ∇µγ5φ + γ5φ iγµ∇µ = iγµ∇µγ5φ − γ
µγ5φ i∇µ = iγµγ5

[
∇µ, φ

]
= iγµγ5φ;µ

we obtain

/D2
= −

(
∇2 ⊗ 12 +

[ i
4

[
γµ, γν

]
Fµν +

R
4
− φ2

]
⊗ 12 −

[
iγµγ5φ;µ

]
⊗ σ1

)
(5.10)

Canonical form of the Laplace type operator

/D2
= −

(
∇2

tot + E
)
, (5.11)

where the total derivative
∇tot ≡ ∇µ ⊗ 12 (5.12)

Comparing equations (5.10) and (5.11) we conclude that

E =

[ i
4

[
γµ, γν

]
Fµν +

R
4
− φ2

]
⊗ 12 −

[
iγµγ5φ;µ

]
⊗ σ1 (5.13)

Since the following relation takes place[
∇µ,∇ν

]
= iFµν −

1
4
γσγρRσρµν, (5.14)

the curvature Ωµν reads

Ωµν ≡
[
∇
µ
tot,∇

ν
tot
]

=

(
iFµν −

1
4
γσγρRσρµν

)
⊗ 12. (5.15)

At this point we have all ingredients needed to perform the Barvinsky - Vilkovisky
expansion.

5.2 Barvinsky-Vilkovisky expansion
Now we have to substitute curvatures E and Ω given correspondingly by (5.13)
(5.15) in the righthand side of (5.4). Since the computation is not so trivial, in this
section we will give some intermediate technical details. The only nontrivial con-
sideration deserve f3, f4 and f5 terms in (5.4). After straightforward computation
we arrive to the following answer for f3 contribution

−tr P f3

(
−
∇2

Λ2

)
R = −

2
3

R f3

(
−
∇2

Λ2

)
R + 8 φ2 f3

(
−
∇2

Λ2

)
R (5.16)
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The f4 and f5 contributions are more technically involved, since one has to
take traces over gamma matrices. Product of two commutators of gamma matrices
equals to [

γD, γE
] [
γA, γB

]
= −

1
6
εDEAB εFGHMγ

FγGγHγM︸                ︷︷                ︸
4!γ5

+2
{
ηDB

[
γE, γA

]
+ ηEA

[
γD, γB

]
− ηDA

[
γE, γB

]
− ηEB

[
γD, γA

]}
+4

(
ηDBηAE − ηDAηEB

)︸                  ︷︷                  ︸
contributes in tr

Hence
tr

[
γD, γE

] [
γA, γB

]
= 16

(
ηDBηAE − ηDAηEB

)
(5.17)

Using the identity (5.17) we obtain the following expressions for f4 and f5 contri-
butions

tr P f4

(
−
∇2

Λ2

)
P = 4 Fµν f4

(
−
∇2

Λ2

)
Fµν +

1
18

R f4

(
−
∇2

Λ2

)
R (5.18)

+8 φ2 f4

(
−
∇2

Λ2

)
φ2 + 8 φ;µ f4

(
−
∇2

Λ2

)
φ;µ −

4
3

R f4

(
−
∇2

Λ2

)
φ2

tr Ωµν f5

(
−
∇2

Λ2

)
Ωµν

= −8 Fµν f5

(
−
∇2

Λ2

)
Fµν − Rµνρσ f5

(
−
∇2

Λ2

)
Rµνρσ (5.19)

Substituting our intermediate results (5.16), (5.18), (5.19) for f3, f4 and f5 contri-
butions in the general formula (5.4) we obtain

Tr exp
− /D2

Λ2

 ' 1
16π2

∫
d4x
√

g { 8Λ4 − Λ2
(
8φ2 −

2
3

R
)

+R
[
8 f2

(
−
∇2

Λ2

)
−

2
3

f3

(
−
∇2

Λ2

)
+

1
18

f4

(
−
∇2

Λ2

)]
R

+8 Rµν f1

(
−
∇2

Λ2

)
Rµν − Rµνρσ f5

(
−
∇2

Λ2

)
Rµνρσ

−φ2
[
−8 f3

(
−
∇2

Λ2

)
+

4
3

f4

(
−
∇2

Λ2

)]
R

+8 φ
[
−∇2 f4

(
−
∇2

Λ2

)]
φ + 8 φ2 f4

(
−
∇2

Λ2

)
φ2

+Fµν

[
4 f4

(
−
∇2

Λ2

)
− 8 f5

(
−
∇2

Λ2

)]
Fµν

}
(5.20)
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The formula (5.20) is much more informative rather then the heat kernel anzatz

Tr exp
− /D2

Λ2

 ' Λ4a0( /D) + Λ2a2( /D) + Λ0a4( /D)

=
1

16π2

∫
d4x
√

g
{

8Λ4 − Λ2
(
8φ2 −

2R
3

)
+4φ

(
−∇2 −

R
6

)
φ + 4φ4 +

4
3

FµνFµν

−
1

10
CµνρσCµνρσ +

11
1080

R∗R∗
}

(5.21)

Although as we will see in the next section the formula (5.20) reproduces2 cor-
rectly ”standard” BSA anzatz (5.21) at low energy, it is valid for all energy region
in the quadratic in fields approximation.

We also notice that in order to apply BSA in particle physics one should sub-
tract huge ”cosmological constant” ∼ Λ4 and enormously large Higgs mass term,
∼ Λ2H2 normalizing both on their physical values, that are known to be much
smaller than corresponding powers of the cutoff scale Λ. Renormalized bosonic
spectral action reads

(BSA)ren ≡ (BSA) + (λ − counterterm) +
(
H2 − counterterm

)
(5.22)

In our simplified case3

(BSA)ren = Tr exp
− /D2

Λ2

 − 1
16π2

∫
d4x
√

g
{
8Λ4 − 8Λ2φ2

}
(5.23)

5.3 Low momenta limit
Before we go ahead and consider high momenta behavior of BSA, first we would
like to show, how at low momenta regime the general formula (5.20) reduces to
the frequently used heat kernel result, based on the anzatz (5.21), describing the
Standard Model bosonic action coupled with gravity. At low momenta regime
combinations of form factors f1, .., f5 appearing in (5.20) have the asymptotics

2Up to a constant related with Gauss-Bonnet contribution, that however does not effect on
dynamics

3We consider for simplicity the cosmological constant λ = 0 and the Higgs vev also equal to
zero, since each of them is much smaller than the uv cutoff scale Λ, since the latter is of the order
of the Planck mass.
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listed below:

8 f1(ξ) −
2
3

f3(ξ) +
1

18
f4(ξ) ' −

1
60

+ O(ξ)

8 f1(ξ) '
2
15

+ O(ξ)

− f5(ξ) ' −
1

12
+ O(ξ)

−8 f3(ξ) +
4
3

f4(ξ) '
2
3

+ O(ξ)

8 f4(ξ) ' 4 + O (ξ)

4 f4(ξ) − 8 f5(ξ) '
4
3

+ O(ξ)

Substituting these formulas in the Barvinsky-Vilkovisky expansion (5.20) we find
the following behavior of the right hand side of (5.20) at low momenta:

Tr exp
− /D2

Λ2

 ' 1
16π2

∫
d4x
√

g
{

8Λ4 − Λ2
(
8φ2 −

2R
3

)
+4φ

(
−∇2 −

R
6

)
φ + 4φ4 +

4
3

FµνFµν

−
1

60
R2 +

2
15

RµνRµν −
1

12
RµνρσRµνρσ

}
(5.24)

Terms, appearing in the right hand side of (5.24) proportional to Λ4 and Λ2 co-
incide with a0 and a2 contributions in (5.21) correspondingly. Higgs and gauge
actions, appearing in (5.24) again coincide with a4 contribution in (5.21), never-
theless one have to be careful with the terms, quadratic in Riemann tensor. This
combination can be expressed via Gauss-Bonnet density and Weyl square:

R∗R∗ = RµνρσRµνρσ − 4RµνRµν + R2

CµνρσCµνρσ = RµνρσRµνρσ − 2RµνRµν +
1
3

R2

−
1

60
R2 +

2
15

RµνRµν −
1

12
RµνρσRµνρσ = −

1
10

CµνρσCµνρσ +
1

60
R∗R∗

It is remarkable, that GB contribution, being a topological term does not depend
on the metric tensor gµν and thereby does not contribute to equations of motion:

δ

δgµν(x)

∫
d4x
√

g R∗R∗ = 0, (5.25)

while Weyl tensor contribution coincides with the one, given by a4. Finally we
conclude, that up to a constant, that does not effect on equations of motion, low
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momenta behavior of Barvinsky - Vilkovisky expansion (5.20) coincides the result
(5.21), coming from first three heat kernel coefficients.

At low energies the renormalized BSA reads4

(BSA)ren '
1

16π2

∫
d4x
√

g
{

2Λ2

3
R (5.26)

+4φ
(
−∇2 −

R
6

)
φ + 4φ4 +

4
3

FµνFµν −
1

10
CµνρσCµνρσ

}
+ O

(
1

Λ2

)
In what follows we would like to study high momenta behavior of BSA. We

are interested in propagation of free particles, therefore for our purposes quadratic
in fields approximation in (5.20) is sufficient. On the other side if one wants to
study interaction of particles at high momenta, using BSA, a knowledge of the
ansatz (5.20) is not enough: one should take into account cubic and higher powers
of curvatures E and Ω but this goes beyond the scope of present project.

Extracting the quadratic in fields contribution in (5.20) is straightforward for
gauge and scalar fields, however in gravitational sector one should perform some
computations, and the next section is devoted to this issue. Although some of this
formulas one can find in the literature, we present here detailed computations, for
pedagogical purposes and in order to avoid mistakes in signs due to mixing of
notations.

5.4 Gravitational sector: weak fields
Now we consider gravitons i.e. fluctuations of the metric tensor, imposing the
transverse and traceless gauge fixing condition

gµν = δµν + hµν, hµµ ≡ δ
µνhµν = 0, ∂µhµν = 0 (5.27)

First we focus our attention on the contribution in (5.20), linear in R, i.e. Einstein
Hilbert action.

R - contribution.

Rewriting the Einstein-Hilbert action as a quadratic combination of Christoffel
symbols (see the Appendix)∫

d4x
√

g R =

∫
d4x
√

g
(
ΓγγσΓσµν − ΓσγνΓ

γ
σµ

)
gµν (5.28)

4We do not write Gauss-Bonnet contribution since it does not effect on the dynamics
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and expanding the Christoffel symbols at linear order

Γµνρ =
1
2

(
∂ρhµν + ∂νhµρ − ∂

µhνρ
)

(5.29)

and substituting the result in (5.28) we find, that due to the gauge fixing condition,
only one term ΓΓ of the two contributes in (5.28)∫

d4x
√

g R '
1
4

∫
d4x δµν

(
∂γhσν + ∂νhσγ − ∂

σhγν
) (
−∂σhγµ − ∂µh

γ
σ + ∂γhσµ

)
Again due to the gauge fixing condition, only three terms of nine in the previous
formula are nonzero

=
1
4
{ ∂γhσν ∂

γhνσ − ∂
µhσγ ∂µh

γ
σ + ∂σhγν ∂σhγν︸                         ︷︷                         ︸

cancel each other

} =
1
4

∫
d4x hνσ

(
−∂2

)
hνσ, (5.30)

and the final result for Einstein-Hilbert action at the leading order reads∫
d4x
√

g R '
1
4

∫
d4x hνσ

(
−∂2

)
hνσ (5.31)

Riemann and Ricci tensors

Using our notations and sign conventions for Riemann and Ricci tensors in Ap-
pendix, and the linearized Christoffel symbols (5.29) we obtain the following ex-
pression for the Riemann tensor at the leading (i.e. linear) order

Rµ
νρσ = ∂σΓµνρ−∂ρΓ

µ
νσ+O(Γ2) '

1
2

(
∂σ∂νhµρ − ∂ρ∂νh

µ
σ + ∂µ∂ρhνσ − ∂µ∂σhνρ

)
(5.32)

Due to the gauge fixing condition only one term of four in the the linearized Rie-
mann tensor (5.32) survives when one computes the leading asymptotic of the
Ricci tensor

Rνρ '
1
2
∂2hνρ + O(h2) (5.33)

Square root of g contribution

Expanding
√

g in Taylor series up to quadratic order in metric perturbations we
have

√
g = 1 +

[(
∂
√

g
∂gµν

) ∣∣∣∣∣
gµν=δµν

hµν

]
+

1
2

[(
∂2√g

∂gµν∂gρσ

) ∣∣∣∣∣
gµν=δµν

hµνhρσ

]
+ O(h3)
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It is known, that,
∂g
∂gµν

= ggµν (5.34)

and (
∂ gλξ

∂ gµν

)
= −

1
2

(gµσgνρ + gνσgµρ) . (5.35)

Using the identity (5.34) we obtain, that the first derivative in (5.34) vanishes

∂
√

g
∂gµν

∣∣∣∣∣
gµν=δµν

=
1
2
√

g gµν
∣∣∣∣∣
gµν=hµν

=
1
2

hµµ = 0. (5.36)

Formulas (5.34) and (5.35) allow us to compute the second derivative in (5.34)

∂2√g
∂gµν∂gρσ

=
1
2
√

g
(
1
2

gµνgρσ −
1
2

[
gµρgνσ + gµσgνρ

]
,

)
(5.37)

and the final answer reads

√
g = 1 −

1
4

hµνhµν + O(h3) (5.38)

5.5 High momenta behavior
Now we have all ingredients, needed to finish the computation of the quadratic
part of BSA at high momenta.

One can easily find large momenta asymptotic of the form factors:

f1(ξ) '
1
6
ξ−1 − ξ−2 + O

(
ξ−3

)
f2(ξ) ' −

1
18

ξ−1 +
2
9
ξ−2 + O

(
ξ−3

)
f3(ξ) ' −

1
3
ξ−1 +

4
3
ξ−2 + O

(
ξ−3

)
f4(ξ) ' ξ−1 + 2 ξ−2 + O

(
ξ−3

)
f5(ξ) '

1
2
ξ−1 − ξ−2 + O

(
ξ−3

)
In quadratic approximation gauge, Higgs and gravitational fields being free

do not interact with each other so we consider each sector separately and than
combine all together.
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Gravitational sector

Using formulas (5.31), (5.32), (5.33) and (5.38) from the previous section we
obtain that:

RµνρσRµνρσ contribution

−
1

16π2

∫
d4x
√

g Rµνρσ f5

(
−
∇2

Λ2

)
Rµνρσ

'
Λ4

16π2

∫
d4x hµν

− (
−
∂2

Λ2

)2

f5

(
−
∂2

Λ2

) hµν

RµνRµν contribution

1
16π2

∫
d4x
√

g 8 Rµν f1

(
−
∇2

Λ2

)
Rµν '

Λ4

16π2

∫
d4x hµν

2 (
−
∂2

Λ2

)2

f1

(
−
∂2

Λ2

) hµν

R contribution

1
16π2

2
3

∫
d4x
√

g Λ2R =
Λ4

16π2

∫
d4x hµν

[
1
6

(
−
∂2

Λ2

)]
hµν (5.39)

√
g contribution

1
16π2

∫
√

g 8Λ4 =
Λ4

16π2

∫
d4x

(
8 − 2hµνhµν

)
(5.40)

Overall gravitational contribution

Λ4

16π2

∫
d4x

[
8 + hµν Fgr

(
−
∂2

Λ2

)
hµν + O

(
h4

)]
Fgr (ξ) ≡ −2 +

ξ

6
+ 2 ξ2 f1(ξ) − ξ2 f5(ξ) ' −3 + O

(
1
ξ

)
(5.41)

For the renormalized BSA we obtain:

(BSA)gr
ren '

Λ4

16π2

∫
d4x hµν F ren

gr

(
−
∂2

Λ2

)
hµν

F ren
gr (ξ) ≡

ξ

6
+ 2 ξ2 f1(ξ) − ξ2 f5(ξ) ' −1 + O

(
1
ξ

)
(5.42)
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Gauge sector

The contribution in (5.20), quadratic in Fµν reads5

1
16π2

∫
d4x Fµν

[
Fvec

(
−
∂2

Λ2

)]
Fµν

Fvec ≡ 4 f4 (ξ) − 8 f5 (ξ) '
16
ξ2 + O

(
1
ξ3

)
(5.43)

Imposing transversal gauge fixing condition

∂µAµ = 0 (5.44)

we get the following gauge contribution to the gauge fixed BSA

(BSA)vec
gf =

Λ2

16π2

∫
d4x Aµ

[
F

gf
vec

(
−
∂2

Λ2

)]
Aµ

F
gf

vec ≡ 2ξ (4 f4 (ξ) − 8 f5 (ξ)) '
32
ξ

+ O
(

1
ξ2

)
(5.45)

Scalar sector

Collecting all terms, quadratic in φ in (5.20) we get the following scalar contribu-
tion

Λ2

16π2

∫
d4x φ

[
Fsc

(
−
∂2

Λ2

)]
φ

Fsc ≡ −8 + 8 ξ f4(ξ) '
16
ξ

+ O
(

1
ξ2

)
(5.46)

And subtracting unphysical terms in (5.20) for the renormalized scalar sector of
BSA we have

(BSA)sc
ren =

Λ2

16π2

∫
d4x φ

[
F ren

sc

(
−
∂2

Λ2

)]
φ

F ren
sc ≡ 8 ξ f4(ξ) ' 8 + O

(
1
ξ

)
(5.47)

5Results regarding the gauge sector were first obtained in [80, 81].
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Overall contribution

Collecting together results of (5.41), (5.43) and (5.46) we arrive to the following
large momenta asymptotic of the BSA in quadratic in fields approximation

Tr exp
− /D2

Λ2

 ' Λ4

16π2

∫
d4x

[
8 − 3hµνhµν + 16φ

1
−∂2φ + 16Fµν

1
(−∂2)2 Fµν

]
Correspondingly from (5.42), (5.45) and (5.47) we derive the large momenta
asymptotic of the renormalized BSA in quadratic approximation in fields6

(BSA)high
ren '

1
16π2

∫
d4x

[
−Λ4hµνhµν + 8Λ2φ2 + 32Λ4Aµ

1(
−∂2)Aµ

]
(5.48)

It is interesting to compare the latter with low momenta asymptotic:

(BSA)low
ren '

1
16π2

∫
d4x

[
Λ2

6
hµν

(
−∂2

)
hµν

+4φ
(
−∂2

)
φ +

8
3

Aµ

(
−∂2

)
Aµ

]
, (5.49)

that can be obtained from formulas from (5.42), (5.45) and (5.47) using low mo-
menta asymptotics of functions F ren

gr , F ren
sc F

gf
vec or directly from formula (5.26),

expanding its righthand side up to a quadratic order in fields.
As we can see the low and high energy regimes of BSA, given by formu-

las (5.49) and (5.48) correspondingly are completely different. The low energy
regime leads to wave equation of motion and thereby propagating particles, at
high momenta the action does not contain positive powers of derivatives, so one
has two understand what it means physically. In the next section we will give a
physical interpretation of the result (5.48).

5.6 Physical interpretation
In order to interpret these results, and understand their physical meaning, we take
the point of view that the cutoff is a physical scale up to which we may trust our
theory, the natural candidate would be Planck’s length. There is physical cutoff

on length, which is imposed as a cutoff on the eigenvalues of the Dirac operator.
This does not necessarily mean that there is a minimal length7, although this is a
possible interpretation.

6Transversal gauge fixing condition is imposed.
7For example the presence of ΛQCD does not mean than in chromodynamics there is a maximal

energy. There is however a phase transition, related with confinement.
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We will see that a cutoff on the eigenvalues of the Dirac operator, and hence
of the Laplacian, has profound consequences on the propagation of the fields. We
are considering free fields (i.e. plane waves), they are the ones one should use
to probe spacetime. The propagator in position space ∆F(x, y) has a meaning:
the probability amplitude that a particle is created at position x, and later annihi-
lated at position y. The probing of spacetime, in whichever scheme of realistic
or gedanken experiment, involves always the interaction of particles, which are
“created” in some apparatus, then interact with another particle at some position
in space, and then are “annihilated” in a detector.

Due to homogeneity and isotropy, a two-point Green’s functions depends on
the difference between positions: G(x − y). These are distributions acting on
the space of test functions which physically are the sources J(x). The latter are
classical, and we consider them to be the probes of spacetime. Let us now consider
two situations, long and short distances. To probe short distances one requires
high energetic sources. Mathematically this means that, in momentum space, the
support of J(k) is located in the large k region. Using Eq. (5.48) it turns out,
as we will discuss in more detail below, that asymptotically, in the high energy
region, the Green’s function becomes δ(x − y), or its derivatives. A source in x
has no effect on any other point, except x itself. Heuristically, usually you have
the vacuum, you “disturb” it with a source, and this disturbance propagates in a
certain way, usually as a particle, generally a virtual one. Now instead we have
that what happens in a point has no effect on neighbouring points. Points do not
talk to each other.

Let us be more detailed. The classical action reads (in the quadratic field
approximation):

The classical action reads (in the quadratic field approximation):

S [J, ϕ] =

∫
d4x

(
1
2
ϕ(x)F (∂2)ϕ(x) − J(x)ϕ(x)

)
, (5.50)

where ϕ is any of the bosonic fields, φ, A, or h. The equation of motion is:

F (∂2)φ(x) = J(x) (5.51)

The inverse of the differential operator, staying in lefthand side is a Green function
G(x − y)

G =
1

F(∂2)
(5.52)

allows us to write the solutions of (5.51) as

ϕJ(x) =

∫
d4yJ(y)G(x − y) (5.53)
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It is more convenient to use a momenta representation, expending the field ϕ and
the source J in Fourier series, i.e. in eigenfunctions of the momenta operator.

ϕ(x) =
1

(2π)2

∫
d4k eikx ϕ̂(k) J(x) =

1
(2π)2

∫
d4k eikx Ĵ(k)

G(x − y) =
1

(2π)2

∫
d4k eik(x−y) Ĝ(k) (5.54)

The Green function in momenta space reads

G(k) =
1

F(−k2)
(5.55)

and thus we obtain:

ϕJ(x) =
1

(2π)4

∫
d4keikxJ(k)

1
F(−k2)

(5.56)

At low energy F(k) ∼ k2, and everything is as we know. The Green’s function
is the usual one, leading to the normal propagation of particles. The calcula-
tion above shows that in the very high energy regime (the scale is given by Λ)
the qualitative behavior has changed, and asymptotically F(k) = 1/k2 vectors,
and F(k) = 1 for scalars and gravitons. We now related this behavior of F with
the nonpropagation, or better, to the impossibility to probe nearby points. Short
distances require high momentum probes, let us therefore consider J(k) , 0 for
|k2| ∈ [K2,K2 + δk2], with K2 very large.

ϕJ(x) −−−−→
K→∞

 1
(2π)4

∫
d4k eikxJ(k)k2 = (−∂2)J(x) for scalars and vectors

1
(2π)4

∫
d4k eikxJ(k) = J(x) for gravitons

(5.57)
What we find remarkable is the fact that the values of φ j(x) depends only on J or
its derivatives calculated at x itself. Compare with the standard case, in which to
have the value at x the whole function J is required. In term of Green’s function
in position space, expression (5.57) means

G(x − y) ∝
{

(−∂2)δ (x − y) for vectors
δ (x − y) for scalars and gravitons

(5.58)

Remark on the fermionic case

Although BSA, exhibiting, as we have seen the minimal length scale, has to do
with dynamics of bosons, one can naturally modify a theory of fermions in such
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a way that the minimal length will appear also there. The key idea is the spectral
regularization.

The latter, we remind, is based on the replacement:

/D −→ /DPΛ + (1 − PΛ) Λ, PΛ = Θ(Λ2 − /D2)

Thus the classical fermionic action modifies as follows

S F =

∫
d4x
√

gψ̄ /Dψ −→
∫

d4x
√

g
(
ψ̄ /DPΛψ + Λψ̄ (1 − PΛ)ψ

)
The latter means, that the fermionic Green function in momenta space G(k)

becomes
G(k) = 1, k2 > Λ

or in coordinate space it acts as a delta function on high momenta sources

G(x − y) = δ(x − y).

It is remarkable, that similar result, i.e. presence of minimal length scale upon
the spectral regularisation was obtained in the framework of spectral geometry
in [82].

In this chapter we have seen, that the bosonic spectral action exhibits a phase
transition at high momenta. While the low energy regime, described by the for-
mula (5.49), leads to propagating particles, the high momenta regime is given by
(5.48) that can be interpreted as the fact, high momenta bosons do not propagate.
Since, due to uncertainty principle, to probe short distances one requires high
momenta, we see, that in this theory appears a notion of the minimal length scale.

In the next chapter we discuss another model, naturally posing the phase tran-
sition at the Planck scale related with non propagating gauge bosons. In contrast
to the one, discussed above the new one will not be related with the bosonic spec-
tral action and will be just based on the addition of the fermionic multiplets to the
Standard Model, motivated by some natural requirements.
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Chapter 6

Universal Landau Pole

In the previous chapter we considered BSA as an example of the model, natu-
rally exhibiting the ultraviolet cutoff scale. We have seen, that BSA reproduces
QFT at energies, smaller than the corresponding cutoff scale Λ ∼ MPl, while at
higher momenta the behavior is qualitatively different: the bosons do not propa-
gate anymore. Nevertheless that model is based on the Spectral Action Principle,
discussed in the second chapter. One can ask, if exists such a generalization of the
SM that exhibits similar behavior i.e. the physical cutoff scale in the ultraviolet
without referring to the Spectral Action Principle. In what follows we give the
arguments towards this idea and propose physically reasonable realization, based
on the Universal Landau Pole for all gauge couplings at the Planck scale. Let us
start from the motivation.

6.1 Do we really need asymptotic freedom?
The guiding principle, one follows when constructs a theory is a simplicity, which
states that ”the less number of parameters - the better”. Thats why unification
theories claiming, that all interactions unify at some GUT scale ∼ 1016Gev are so
fascinating and attractive for a broad class of researches starting from mid 70-th
[83] and till nowadays, see e.g. [84]. Such theories enlarging the gauge group
naturally lead to asymptotic freedom at high energies. The latter means that there
is no essential ultraviolet cutoff scale, and formally these models can be exploited
at arbitrary high energies.

Nevertheless one should not forget about gravity: at the Planck scale the grav-
ity becomes strongly coupled and one should not neglect by quantum gravitational
effects anymore. Since no self consistent quantum gravitational theory is known
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one can not go beyond the Planck scale. In this sense the grand unification, lead-
ing to asymptotic freedom, may loose its motivation. Thus it seems natural to
impose the strong unification of all gauge couplings at the Planck scale [31, 32]
- in this case both principle of minimality and strong gravity at Planck scale are
respected.

Under the renormalization group flow the coupling constants of the three fun-
damental gauge interactions behave quite differently [85]. While the couplings
of the non-abelian interactions, weak and strong, constantly diminish with as the
energy increases, the coupling of the abelian interaction grows, and eventually di-
verges, a phenomenon usually referred as Landau pole [86,87]. In fact a precense
of new multiplets of particles will alter this behavior. One may render the strongly
coupled regime at the Planck scale, requiring that new physics is organized in such
a way, that under the RG flow all gauge couplings will have a common Landau
Pole at the Planck scale.

g1,2,3(µ)→ ∞ at µ→ MPl (6.1)

In this chapter, we are going to show, that such a Universal Landau Pole (ULP)
model can be constructed, and under some essential assumptions, the minimal
solution is unique and moreover, the ULP generalization of the Standard Model
naturally solves the instability problem [91–93] of the Higgs potential, related
with relatively light mass ∼ 125 GeV of the Higgs boson, recently discovered by
LHC [89, 90].

It is remarkable, that when the energy approaches to ULP, kinetic terms of all
gauge fields vanish, so gauge bosons can not propagate anymore.

1
g(µ)2 FµνFµν → 0 at µ→ MPl, (6.2)

The situation is very similar to the one, discussed in the previous chapter, how-
ever we emphasize, that now we do not impose the Spectral Action principle, but
add new particles to the Standard Model. In the next section we formulate the
minimality requirements.

6.2 Minimal ULP: requirements
We are looking for a solution to render ULP based on some physical assumptions:

• Simplicity: We want to avoid the proliferation of parameters, and we do not
want any fine tuning.
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• Gauge Group: We want the gauge group of the Standard Model: S U(3) ×
S U(2) × U(1) unchanged - enlarging the gauge group without a contradic-
tion with the ”minimality” requirement in principle can be motivated just
by introduction of a GUT group. This scenarios however lead to ULP at
1016GeV [see [88] for review] i.e. three order of magnitude smaller, than
the Planck scale.

• Stability: quartic coupling of the Higgs field self interaction λ is always
positive under the renormalization group flow. This is the most important
discrimination.

• Higgs sector: We want it to remain unchanged. If the new particles are Dirac
4-component spinors with Dirac masses→ automatically there are no axial
anomalies. Use of the same Higgs field to generate masses of new heavy
particles is problematic, because it requires huge Yukawa’s and worsen the
instability. We note, that if masses of new fermions were generated by
(minimal SM) Higgs, with vertex Yψ̄ψH loop correction drives the quartic
coupling λ to negative values, and the bigger Yukawa constant Y , the less
stable is the Universe. Indeed consider the sign of the contribution of the
Yukawa coupling into quartic coupling’s beta function. It is negative, the
larger the Yukawa, the more lambda is decreasing under RG running. Going
beyond the minimal SM, and introduction of many Higgs doublets makes
the situation much more complicated, and leads us out of the simplicity
requirement.

• NO pathological electric charges → restrictions on the representations of
new fermions.

6.3 Minimal working ULP: realization
In order to satisfy requirements, listed in the previous section we use Dirac mass
terms Mψ̄ψ for new fermions and we are looking for a minimal number of them.
To get rid of pathological electric charges we consider new fermions belonging to
known (SM) representations of gauge group, however we stress, that new paricles
are vector-like fermions. Thus we introduce

• L-quarkons: SU(3) - triplets, SU(2) - doublets, Y = 1
3 , i.e. under gauge

transformations transform as left quarks
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• R-quarkons: SU(3) - triplets, SU(2) - singlets, Y = 4
3 , −

2
3 i.e. under gauge

transformations transform as right quarks

• L-leptos: SU(3) - singlets, SU(2) - doublets, Y = −1 i.e. under gauge
transformations transform as right quarks

• R-leptos: SU(3) - singlets, SU(2) - singlets, Y = −2, 0 i.e. under gauge
transformations transform as right quarks

The only new vertexes appearing in this theory with respect to SM couple
Quarkons and Leptos to electro-weak (E-W) gauge bosons and gluons, see Fig.
6.1, and correspondingly the only new diagrams, modifying RG flow at one loop
are presented on Fig. 6.2.

Figure 6.1: New vertexes appearing in the minimal ULP generalization of the Standard
Model couple new fermions (double arrowed line) to the E-W gauge bosons (wavy line)
and gluons (curly line)

gg g g

Figure 6.2: The only new one loop diagrams modifying the RG flow at one loop. Double
arrowed line represents new fermions, E-W gauge bosons are depicted by wavy line and
curly line presents gluons.
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6.4 Scheme of the computation
It is remarkable, that in the Standard Model there is a perfect agreement between
one and two loops approximations for the running of gauge couplings, see Fig.
6.3. Since in our ULP approach we add new particles in perturbative region, one
may expect the same agreement, therefore in order to describe the gauge running
we will use one loop approximation.

Figure 6.3: On the first picture one and two loops approximations for gauge coupling
running are compared. The second picture represents one and two loops approximations
for the top quark Yukawa coupling running. On the third picture one and two loops results
for quartic coupling running are compared. On all plots solid lines represent two loops
results, while one loop graphics are depicted with dash lines.

We will assume that the various particles have masses such that they contribute
only when a particular threshold of energy is reached. The full evolution is there-
fore given by a set of straight segments and the solution is found matching the
boundary conditions.

Running of the gauge couplings is given by:

4π
g2

1,2,3(t)
= −

b1,2,3 · (t − t0)
2π

+
4π

g2
1,2,3(t0)

, t ≡ log
µ

GeV

b1 =
41
6

+
2
3

NL−leptos +
4
3

NR−leptos +
2
9

NL−quarkon +
20
9

NR−quarkon

b2 = −
19
6

+
2
3

NL−leptos + 2NL−quarkon

b3 = −7 +
4
3

(
NL−quarkon + NR−quarkon

)
The integers N in these formulas refer to the number of quarkon and leptos multi-
plets contributing to beta functions.
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Since the coefficients are piecewise constant, and change at the energies repre-
senting the scale at which the new particles, it is possible to do a systematic search.
We have imposed as boundary condition of the differential equation that 1/αi = 0
at the Planck scale MPl. In any case the model cannot be trusted at energies ap-
proaching MPl for more than one reason. The perturbative approach will have
broken down, not to speak of the one loop approximation, and moreover gravi-
tational effects could not be ignored. Our setting a precise boundary condition
giving a common pole at a particular scale is therefore just expedient to describe
a common pole that the present theoretical tools cannot properly describe.

As we said above, there would be four kinds of particles that switch on at
four scales, and the boundary conditions at the intermediate scales impose three
constraints. We require that the scales be between the TeV region and the ULP,
and that the evolution is monotonous (the curves must not intersect themselves).
One can see, however, that the only allowed order of masses of new particles is
this one: QuarkonL, QuarkonR, LeptosL, LeptosR. If one tries to change it, e.g
ordering: QuarkonL, QuarkonR, LeptosR, LeptosL, one gets the Fig. 6.4

Actually one has a system of three linear equations with four unknowns: masses
of left and right quarkons, masses of left and right leptos. Putting one of them by
hand we have a system of three equations for three variables. If one requires the
switching on of the leptos to be at the same scale one finds solutions. On the
contrary setting the quarkons at the same scale does not provide a solution. This
enables us to reduce the number of parameters to three, with three equations, and
therefore find a unique solution. Since the scale for the leptos must be larger
than the one of quarkons and therefore closer to the Planck scale the possibility
of splitting the two scale of the leptos give just a little uncertainty at very high
energies.

We are also able to fix the number n of generations. For n = 1, 2, 3 we don’t
have enough particles to change signs of all beta functions. n = 4 is our case.
When one has n ≥ 5, there appears a region of metastability (lambda becomes
negative), that we would not like to have - see Fig. 6.4

Nevertheless in order to determine the quartic coupling running, one loop ap-
proximation is not good enough, see Fig. 6.3 and the reason is relatively large ∼ 1
value of the top Yukawa quark constant at low energies. In order to maintain the
precision, we proceed as follows: below the first threshold,where the top Yukawa
coupling is largest ∼ 1 and perturbation theory in the scalar sector worst we will
use two loops approximation. Above this scale Yt is smaller so we will perform
our computation at one loop level.

In the low energy i.e. Standard Model region one should solve the following
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Figure 6.4: On the left: running of quatric coupling for different n. Only n = 4 does not
exhibit the instability. On the right: an attempt to put the wrong order of the crossovers
QuarkonL, QuarkonR, LeptosR, LeptosL leads to selfintersections

system of (nonlinear) equations

dX(t)
dt = βX(X(t)), X = {g1, g2, g3, y, λ} , t = log µ

GeV
t0 = 172.9,
g1(t0) = 0.358729,
g2(t0) = 0.648382,
g3(t0) = 1.16471,
y(t0) = 0.937982,
λ(t0) = 0.125769

(6.3)

where the initial conditions come out from experiment data and the beta functions
are presented below. For the abelian gauge coupling g1 the beta function is defined
as follows [94]:

β(2)
g1

=
1

16π2

41
6

g1
3

+
1

256π4 g1
3
(
199
18

g1
2 +

9
2

g2
2 +

44
3

g3
2 −

17
6

y2
)

(6.4)

For the S U(2) gauge coupling g2 the beta function reads [94]:

β(2)
g2

=
1

16π2

(
−

19
6

)
g2

3

+
1

256π4 g2
3
(
3
2

g1
2 +

35
6

g2
2 + 12 g3

2 −
3
2

y2
)
. (6.5)
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For the strong coupling g3 the corresponding beta function is given by [94]

β(2)
g3

=
1

16π2 (−7)g3
3

+
1

256π4 g3
3
(
11
6

g1
2 +

9
2

g2
2 − 26 g3

2 − 2 y2
)
. (6.6)

For the top quark’s Yukawa coupling y we have [95]

β(2)
y =

1
16π2 y

[
−9/4 g2

2 −
17
12

g1
2 − 8 g3

2 + 9/2 y2
]

+
1

256π4 y
[
−

23
4

g2
4 − 3/4 g2

2g1
2 +

1187
216

g1
4

+9 g2
2g3

2 +
19
9

g1
2g3

2 − 108 g3
4

+

(
225
16

g2
2 +

131
16

g1
2 + 36 g3

2
)

y2

−12 y4 − 12 y2λ + 6 λ2
]
. (6.7)

For the quartic coupling λ the corresponding beta function reads [96]

β(2)
λ =

1
16π2

[
24 λ2 − 6 y4 + 3/4 g2

4 + 3/8
(
g2

2 + g1
2
)2

+
(
−9 g2

2 − 3 g1
2 + 12 y2

)
λ
]

+
1

256π2

[
305
16

g2
6 −

289
48

g2
4g1

2 −
559
48

g2
2g1

4 −
379
48

g1
6

+30 y6 − y4
(
8/3 g1

2 + 32 g3
2 + 3 λ

)
+λ

(
−

73
8

g2
4 +

39
4

g2
2g1

2 +
629
24

g1
4

+108 g2
2λ + 36 g1

2λ − 312 λ2
)

+y2
(
−9/4 g2

4 + 21/2 g2
2g1

2 −
19
4

g1
4

+λ

{
45
2

g2
2 +

85
6

g1
2 + 80 g3

2 − 144 λ
})]

. (6.8)

Solving numerically the nonlinear system (6.3) up to the first treshhold we
generate initial conditions for the forthcoming computation, which is performed,
as we said, with one loop precision.
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6.5 The final result
Performing the computation, discussed in the previous section we arrive to the
following result. New particles must be at the following scales:

• At 5.0 103 GeV the L-quarkons (NL−quarkon = 4).

• At 3.7 107 GeV the R-quarkons (NR−quarkon = 4).

• At 2.6 1014 GeV the L and R-leptos (NL−leptos = NR−leptos = 4).

On Fig. 6.5 we show the running of the gauge coupling. (the initial running shown
is actually made with the two-loop equation). One can see that the hierarchy of the
couplings is respected, the strong force remains stronger than the weak. The scale
at which there is the appearance of the new particles is larger than the experimental
bounds on the presence of new fermions, but not too much. This scenario shows
that the ULP may exist with new physics at energies within reach. The top quark

Figure 6.5: The running of αi, the inverse of the gauge couplings. The dotted lines are
the runnings in the absence of quarkons and leptos. The αi are in descending order as i
increases.
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Yukawa coupling is undistinguishable from the standard model for energies up to
106 GeV, and vanishes at the ULP, see Fig. 6.6

The quartic coupling running is shown in Fig. 6.7. We see that the quartic
coupling for our choice of new particles comes close to vanish, but never actually
becomes negative. That means that the ULP generalization of the Standard model
saves the world from the vacuum instability! In the next section we explain why

Figure 6.6: The running of yt. The dotted line is the SM case.

ULP is a natural mechanism to resolve the instability problem
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Figure 6.7: The running of quartic coupling of the Higgs field. The dotted line shows the
instability that the standard model develops in the presence of a Higgs mass of 124-126
GeV.

6.6 Remark on the resolution of the vacuum insta-
bility problem.

Now we clarify how our vector-like fermions save the Universe from instability,
i.e. how they don’t let RG flow to drive the quartic coupling λ(µ) to negative
values.

Let us trace at one loop level, how the quartic coupling becomes negative in
the Standard Model. The one loop beta function is given by (6.9), and since the top
quark Yukawa coupling is the biggest one at low energy region, we see, neglecting
by other constants, that the whole beta function is negative.

β(1)
λ =

1
16π2

(
24 λ2−6 y4+

3
4

g4
2 +

3
8

(
g2

2 + g1
2
)2

+
(
−9 g2

2 − 3 g1
2 + 12 y2

)
λ
)
. (6.9)

As we have figured out after addition of new particles, the top Yukawa quark cou-
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pling decreases significantly faster with respect to the Standard Model case, see
Fig. 6.6, correspondingly the contribution of the diagram, presented on Fig. 6.8
decreases with growth of energy. From another side, the contribution of bosonic

t

HH

HH

yy

y y
t t

t

Figure 6.8: Feynman diagram, giving the biggest contribution in the one loop beta func-
tion of the quartic coupling. With growth of energy its contribution decreases.

loops increases, since all gauge couplings grow up. At some point bosonic dia-

HH

HH

EW g.b. EW g.b.

g1,2

g1,2

g1,2

g1,2

H

H

HH

HH

EW g.b. EW g.b.

g1,2
2

g1,2

g1,2

g1,2

H

HH

HH

EW g.b. EW g.b.

g1,2
2

g1,2
2

Figure 6.9: Feynman diagrams, giving the biggest contribution in ULP regime. Although
their contribution is small at low energies, at high energies they dominate over fermionic
loops.

grams start to dominate over the fermionic ones, curing the sign of beta function
(6.9). Thats is how the ULP saves the world from the vacuum instability.
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Chapter 7

Conclusions

In this thesis we studied several applications of the ultraviolet spectral regularisa-
tion in QFT to the bosonic spectral action, induced gravity and cosmology. Then
we discussed some relevant physical models, requiring a presence of the ultra-
violet cutoff. Now let us summarize, what has been done and what are future
perspectives of this research.

First we have seen how the bosonic spectral action emerges form the fermionic
action via (generalised) Weyl anomaly of the fermionic partition function under
the spectral regularisation. This is valid considering the Standard Model as an
effective field theory, valid for the energies smaller than a physical scale Λ. The
procedure followed is spectral and therefore well suited for the noncommutative
approach to the standard model. In such a setup the Weyl anomaly generating
functional was expressed as a functional integral over an auxiliary dilaton field of
a local action, and the latter comes out to be the Chamseddine Connes Bosonic
Spectral Action introduced in the context of noncommutative geometry, coupled
to the dilaton.

Another important result, that we obtained is related with a generalization of
the spectral regularization on bosonic degrees of freedom. More precisely, impos-
ing spectral regularization with the cutoff scale Λ in a classically Weyl invariant
theory, we related Sakharov’s induced gravity to the anomaly-induced effective
action and thus obtained Starobinky’s anomaly-induced inflation. We computed
the anomaly and expressed the anomalous part of the quantum effective action
through the quantized single collective scalar degree of freedom of all quantum
vacuum fluctuations, dubbed the collective dilaton field φ, described by the lo-
cal action Eq. (4.54). It is worth noticing that the condition of stability of the
cosmological constant under Λ4-corrections, namely NH = 2

(
Nw

F − NV

)
, appears

naturally within our procedure. Our approach allowed us to treat the Sakharov’s
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induced gravity on equal footing with the Starobinsky’s anomaly-induced infla-
tion, in a self-consistent way. More precisely, we found that

M2 ind
Pl =

Λ2

12π
(
Nw

F − 4NV
)
,

Hinflat ' 2

√
Nw

F − 4NV

NF + 8NV
· Λ ·

(
1 + O

(
λ

Λ4

))
.

Provided the stability condition is satisfied, Sakharov’s induced gravity and anomaly
induced action leading to Starobinsky’s anomaly-induced inflation appear simul-
taneously if Nw

F > 4NV. The fact that QFT gave rise to the Einstein-Hilbert action
and the onset of an inflationary era, in the absence of an inflaton field, may indicate
that the cosmological arrow of time results from quantum effects in a classically
Weyl-invariant theory. In future research one should carefully elaborate the mass
issue and also go beyond the isotropic approximation to realize how our approach
feats the CMB data.

Then we discussed some models naturally exhibiting the transition scale in
the ultraviolet. We explored the high momenta asymptotic of the bosonic spec-
tral action. Using the covariant perturbation theory, invented by Barvinsky and
Vilkovisky, which is suitable for studying of a high energy regime of Bosonic
Spectral Action we found that high energy bosons do not propagate, that indicates
the phase transition at the cutoff scale Λ. The fact, that kinetic terms quadratic
in fields vanish at high momenta definitely looks fascinating, however it is also
interesting to clarify what happens with cubic terms and higher: if they survive
and we have some sort of highly nontrivially interacting fields that in no sense
can be regarded as free, or the higher terms also vanish freezing all the dynamics
completely. This is a still open question.

Finally we studied another model, naturally exhibiting the ultraviolet cutoff

scale. Being motivated by presence of strong gravity at the Planck scale, we
proposed a strong unification of all gauge interactions at the Planck scale, as an
alternative to asymptotic freedom. The unification was achieved adding fermions
with vector gauge couplings coming in multiplets and with hypercharges identical
to those of the Standard Model. The presence of these particles also prevents the
Higgs quartic coupling from becoming negative, thus avoiding the instability (or
metastability) of the SM vacuum. The mechanism of the vacuum stabilization that
we proposed, which is natural for the ULP model is interesting by itself and can
be considered outside of the ULP context. One can rise a question, what are the
restrictions on the vector-like fermionic multiplets needed to resolve the vacuum
instability? How can we do it in a minimal way? These and other question we
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leave for future research, and at this point we declare
THE END.
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A Appendix

Definitions
Riemann tensor

Rµ
νρσ = ∂σΓµνρ − ∂ρΓ

µ
νσ + ΓλνρΓ

µ
λσ − ΓλνσΓ

µ
λρ (A.1)

Ricci tensor
Rµν = Rσ

µσν = ∂νΓ
σ
µσ − ∂σΓσµν + ΓλµσΓσλν − ΓλµνΓ

σ
λσ (A.2)

Scalar curvature

R = gµν
{
∂νΓ

σ
µσ − ∂σΓσµν + ΓλµσΓσλν − ΓλµνΓ

σ
λσ

}
(A.3)

Christoffel symbols, first of the second kind

Γµ,νρ ≡
1
2

(
∂ρgµν + ∂νgµρ − ∂µgνρ

)
(A.4)

Γµνρ ≡
1
2

gµλ
(
∂ρgλν + ∂νgλρ − ∂λgνρ

)
(A.5)

Einstein-Hilbert action
First useful identity: derivation

0 =

∫
d4x
√

g∇µAµ =

∫
d4x
√

g
[
∂µAµ + Γ

µ
µλAλ

]
=

∫
d4x

[√
g Γγγµ − ∂µ

√
g
]︸                ︷︷                ︸

0

Aµ (A.6)

First useful identity: result
Γγγρ = ∂ρ log

√
g (A.7)
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Second useful identity: derivation

0 = ∇σgµν = ∂σgµν + Γ
µ
σξ gξν + Γνσξ gµξ (A.8)

Second useful identity: result

∂σgµν = −
(
Γ
µ
σξ gξν + Γνσξ gµξ

)
(A.9)

First intermediate step

−∂σ
{√

ggµν
}
Γσµν = −

√
g
[
ΓγγσΓσµν − 2ΓσγνΓ

γ
σµ

]
gµν (A.10)

Second intermediate step

Γσσµ∂ν
{√

ggµν
}

= −
√

g ΓγµνΓ
σ
γσ gµν (A.11)

Third intermediate step

√
gR =

√
g
{
ΓγγσΓσµν − ΓσγνΓ

γ
σµ

}
gµν − ∂σ

{√
g
[
gµνΓσµν − gµσΓγµγ

]}
(A.12)

Final result ∫
d4x
√

g R =

∫
d4x
√

g
(
ΓγγσΓσµν − ΓσγνΓ

γ
σµ

)
gµν (A.13)
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