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Chapter 1 

 

RESEARCH INTRODUCTION, HYPOTHESES AND 
OBJECTIVES 

 

1.1 The Need for Engineered Cardiac Tissue 

Heart disease remains the leading cause of morbidity and mortality in developed 

countries [1]. Thus, there is an urgent demand for more efficacious pharmaceuticals 

to treat heart disease and new methods to repair damaged cardiac tissue. The 

limited ability of cardiac tissue to regenerate [2] and the scarcity of organs for 

transplantation [3] contribute to the need for a larger pool of transplantable cardiac 

tissue. Tissue engineering offers the possibility of creating functional tissue 

equivalents for scientific studies and tissue repair [4]. Representative examples 

include in vitro cultured blood vessels [5], liver [6], kidney [7], muscle [8], bone [9], 

neuronal tissue [10], and cartilage [11]. 

 

1.2 Research Overview and Hypothesis 

Most living tissues are composed of repeating units on the scale of hundreds of 

microns, which are different cell types with well defined three-dimensional (3-D) 

micro-architectures and tissue-specific, functional properties. To generate thick and 

functional engineered tissues, the recreation of these structural features is of great 

importance in enabling the resulting function [12]. Recent efforts [13,14] have been 

concentrated on bottom-up approaches aimed to generate a larger tissue construct 

by the assembly of smaller building blocks, which mimics the in vivo tissue structure 

of repeating functional units. In this PhD thesis a novel bottom-up approach has been 

applied to produce functional cardiac tissue, starting from the outcomes of recently 

published works [14,15,16].  
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The overarching goal of this work was to create in vitro functional cardiac μ-tissue by 

coupling engineered porous μ-scaffold with neonatal rat cells. We hypothesized that 

such cardiac μ-tissue construct could be used as a functional building unit to obtain a 

3D cardiac tissue in vitro. The μ-scaffolds, consisting of gelatine porous micro-beads 

with a diameters distribution of 75-150 μm, were colonized by cardiac cell population 

in dynamic cell seeding condition by means of spinner flask bioreactor. To optimize 

the micro-tissue functions we varied several culture parameters: spinner culture 

conditions (duration and type of flow regime) as well as the initial composition of 

cardiac cell population. We have successfully established that μ-scaffold construct 

embedded with a specific cardiac cell composition exhibited the important properties 

of native cardiac tissue, including the assembly of differentiated cardiac cell 

populations into a 3D syncytium, as well as electrophysiological functionality and 

responsiveness to external electrical stimulation. Furthermore, it has been tested the 

possibility to produce a 3D cardiac tissue constructs, of defined size and shape, by 

exploiting the biological sintering capability of the micro-tissues (μTPs). We 

conjectured that the cardiac tissue engineered construct developed could be used as 

a biological model for studying cardiac tissue development and/or disease processes 

in vitro, and eventually as an implant to repair injured myocardium. 

 

1.3 Research Objectives 

Overall Objectives 

The overall objective of this project was to create 3D cardiac tissue using cardiac 

μTPs as building blocks. To achieve this we had to 1) devise a method to realize 

cardiac μTPs, 2) to characterize cardiac  μTPs using functional in vitro assays, and 3) 

design a method to achieve a 3D cardiac tissue by assembly the micro-modules that 

act as building blocks for the fabrication of the corresponding macro-tissue. These 

three objectives will be covered in the following section. 
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Specific Objective 1: Fabrication of cardiac μ-TP 

Cardiac μTPs constructs were fabricated using an engineered gelatine porous micro-

bead. The first step was the optimization of cell seeding parameters. In the standard 

conditions [14], HD-μTPs cultivation was initiated by inoculating HDF a density of 10 

cells bead−1, the culture suspension in the spinner flask was stirred intermittently at 

30 rpm (5 min stirring and 30 min static incubation) for the first 6h post-inoculation for 

cell adhesion, and then continuously agitated at 30 rpm. In the case of cardiac cell, 

we started the process by inoculating in the spinner flask cardiac cells and gelatin 

porous micro-beads at the ratio of 1000 cells for bead. Compared with previously 

described spinner culture conditions used to generate dermal-like tissue, in the case 

of cardiac cell culture, the ratio between cells and beads must be higher due to lower 

cardiomyocytes proliferation. Moreover, the seeding parameters were slightly 

different because of the difference in the cell adhesion time between dermal 

fibroblasts and cardiomyocytes. Indeed, dermal fibroblasts adhere within 4 hours, 

cardiomyocytes took at least 3 days to adhere and to spread on the substrate. For 

this reason, the spinner culture was carried by using a cycle of 10 minutes at rest and 

30 minutes at 30 rpm for the first 3 days of culture. After this time, the dynamic 

culture switched to continuous stirring at the velocity of 30 rpm up to 9 days of 

culture. Furthermore, we assessed three different cell composition harvested from 

neonatal rat heart with different culture medium in order to promote the realization of 

a μTP  having properties close to native cardiac tissue. Three different experiments 

were performed for the seeding phase; isolated cells were pre-plated onto tissue 

culture polystyrene to reduce the initial non-myocardial cells (NMC) contamination by 

exploiting the differential attachment time between myocardial and non-myocardial 

cells. By pre-plating the whole cell population for one hour it was obtained a cell 

population named cardiomyocite-rich (CM-R). By pre-plating for three step of one 

hour it was obtained a cell population named cardiomyocytes-extra rich (CM-ER). 

The population CM-R will be named along the paper CM-R(+) if used in combination 

with 5-bromo-2deoxyuridine (BrDu) or CM-R(-) it used in absence of BrDu[17]. As 

consequence, different features characterized each formulation of μTP. The choice of 

the first cell population, allowed obtaining a μ-scaffold well colonized by cardiac cells 

and the functional cardiac μTPs. We hypothesized that the presence of BrdU in the 
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culture medium was crucial to maintain a balance between the cardiac cells 

proliferation and the μ-tissue viability.       

 

Specific Objective 2: Characterization of cardiac μ-TP 

The functionalities and morphology of cardiac μ-TP have been characterized during 

culture in order to assess its time evolution. Electrical responsiveness and 

contractility were measured as primary indicators of micro-tissue functionality. We 

investigated the �TP self-beating capability along the culture time and verified the 

electrical coupling and electrical synchronization between μ-tissues by means of 

voltage sensitive probes. Furthermore, immunohistological analysis showed that 

connexin43, a gap junction (GJ)-related protein, was detected between μTPs during 

the synchronization and it was assessed a correlation between the connexin 43 

amount in the ECM and μTP electrical activity. In particular higher was the beating 

frequency, higher was the cx43 amount.  In addition, it was showed that the �TPs 

were responsive to external electrical stimulation: oscillating electrical field induced a 

synchronous contraction in the �TP.  Finally, we studied the capability self-

aggregation of the micro-tissues and the ability of fusion between them in the time. 

 

Specific Objective 3: 3D Cardiac tissue equivalent in vitro 

Cardiac cells were dynamically seeded on micro-scaffold for 3 days in order to 

realize cardiac micro-tissues. The micro-modules realized have been used as 

building blocks for the fabrication of the corresponding macro-tissue. In fact, after 3 

days of seeding, cardiac-μTPs suspension was transferred from the spinner flask to 

the maturation chamber to allow their molding in disc-shaped construct. After 7 days 

of culture we obtained the 3-D cardiac tissue, that showed a macroscopic and 

homogeneously beating distributed throughout on the patch and the histological 

analysis showed similarities with the native tissue. 
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1.4 Thesis Organization 

The thesis is organized into self contained chapters. The first chapter outlines the 

aim of the thesis. While, chapter 2 goes on to review and present the current 

methods and challenges in cardiac tissue engineering as well as relevant 

background literature. In chapter 3 we discuss the fabrication of μTP and their 

behaviour in the time. Finally, chapter 4 focuses on the realization of 3D cardiac 

tissue.  
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Chapter 2 
 

THE HEART, CURRENT METHODS AND CHALLENGES IN 
CARDIAC TISSUE ENGINEERING 

 

2.1 The Heart 

The heart is a muscular organ about the size of a fist, located just behind and slightly 

left of the breastbone. The vertebrate heart is principally composed of cardiac muscle 

and connective tissue; it is an involuntary striated muscle tissue specific to the heart 

and is responsible for the heart's ability to pump blood. The heart pumps blood 

through the network of arteries and veins called the cardiovascular system. The heart 

has four chambers (Fig.1): 

 

 

 

 

 

                                                                        Figure 1: Heart organization 
 
 
•The right atrium receives blood from the veins and pumps it to the right ventricle. 
•The right ventricle receives blood from the right atrium and pumps it to the lungs, 

where it is loaded with oxygen. 

•The left atrium receives oxygenated blood from the lungs and pumps it to the left 

ventricle. 

•The left ventricle (the strongest chamber) pumps oxygen-rich blood to the rest of the 

body. The left ventricle’s vigorous contractions create our blood pressure. 
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The coronary arteries run along the surface of the heart and provide oxygen-rich 

blood to the heart muscle. A web of nerve tissue also runs through the heart, 

conducting the complex signals that govern contraction and relaxation. The heart is 

organized as a complex arrangement of both cellular and acellular components. The 

myocytes are arranged in layers as originally described by Streeter [20] and more 

recently as laminae [21]. These laminae are organized into layers of myocytes two to 

five cells thick and surrounded by an endomysial collagen network. Fibroblasts form 

an interconnected network of cells that lies within the endomysial collagen network 

that surrounds the groups (lamellae) of myocytes [22, 23, 24, 21]. This arrangement 

of fibroblasts in vivo, with interconnected cellular processes forming a network of 

cells within the collagen network, is analogous to the organization of fibroblasts in a 

collagen gel. This in vivo arrangement can allow the fibroblasts to contract the 

endomysial collagen, exerting force on the myocytes. Changes in fibroblast 

contractility have been suggested to impact myocardial relaxation. The distribution of 

endothelial cells and smooth muscle cells is confined to the vasculature. Importantly, 

the intercellular connections of fibroblasts appear to be via at least two different types 

of cell-cell molecules: connexins and cadherins. In mice and rats, the connexins that 

connect fibroblasts to myocytes are connexin43 (Cx43), while connexion 45(Cx45) 

connect myocytes, although the distribution of these connexins may vary in different 

species [23,25]. 

 

2.2 Tissue Engineering in vitro 

There is an increasing demand in regenerative medicine to repair and restore the 

function of injured, degenerated, or congenitally defected tissues. In a wide range of 

pathology, neither native nor purely artificial implantable materials can adequately 

replace or repair these damaged tissues. Tissue self-repair capability is limited to the 

case of bone [6] or skin [7,8] where the damage is not invasive such as a small injury 

or a superficial wound. In many tissues such as myocardium [9] and cartilage [10] or 

in the case of large bone defect and deep skin wound, the self-repairing capability is 

lost and surgery becomes necessary. To overcome such limitations, tissue 

engineering focuses on the in vitro fabrication of living and functional tissue that can 

be implanted in the damaged zone to restore the healthy status. The classical tissue 
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engineering approach (herein referred to as “top-down”) is based on the concept of 

seeding cells into preformed, porous, and biodegradable polymeric scaffolds that act 

as a temporary template for new tissue growth and reorganization (Fig.2).  

 

 

Figure 2: Bottom-up & Top-down approaches to tissue engineering. In the bottom-up approach there are 
multiple methods for creating modular tissues, which are then assembled into engineered tissues with 
specific microarchitectural features. In the top-down approach, cells and biomaterial scaffolds are 
combined and cultured until the cells fill the support structure to create an engineered tissue [4]. 
 

Such cellular construct is then processed in bioreactors that provide a viable 

molecule microenvironment and simulate physiological conditions that furnish 

suitable stimuli for cell survival, differentiation, and extracellular matrix (ECM) 

synthesis [11]. The main drawbacks of this approach are related to: 

� the difficulty in reproducing adequate microenvironmental conditions in a 

three-dimensional (3D) thick structure at the pericellular level;  

� recreating the architecture of native tissue; 

� problems in selecting the ideal biomaterial scaffold for a given cell type;  
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� time constraints in achieving a high enough cell density and the homogeneous 

cell distribution necessary to construct a viable tissue. 

 

By studying the nature of living tissues, it is possible to observe that most of them are 

composed of repeating units on the scale of hundreds of microns, with well-defined 

3D micro-architectures and tissue-specific functional properties. The recreation of 

these structural features is becoming significant in enabling the resulting tissue 

function in vitro [12].  In light of this observation and to overcome the limitation of top-

down tissue engineering, recent efforts have been devoted to bottom-up [13,14] 

approaches aimed at generating a larger tissue construct by assembling smaller 

building blocks (Fig.2) that mimic the in vivo tissue structure of repeating functional 

units. These building blocks can be created in a number of ways, such as self-

assembled cell aggregates [15,14], microfabrication of cell-laden microgel  [12], 

creation of cell sheet [17] and microfabrication of cell seeded micro-beads [18, 19]. 

Once obtained, these building blocks can be assembled in larger tissue through a 

number of methods including random packing, stacking of layers, or direct assembly 

[74]. Templates are rather cheap and allow rapid production of big quantities of 

Microscale Building Blocks of defined shape and size. Their assembly into ordered 

constructs requires further development (Fig. 3).  
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Figure 3: from tissue assembly to tissue development in vitro. Tissue fabrication methods allow the 
assembly of cells into primitive tissue compartments, which are prone to remodeling. The tissue 
geometry along with the manipulation of the environment at a microscale further promotes the self-
organization of cells into more complex tissues in vitro. [4]. 
 

 

Examples of constructs resulting from a bottom-up approach include structures from 

various single cell types and from mixtures of different cell types by pouring different 

types of cell beads into a single PDMS mold (fig 4A). Although approximately 100000 

monodisperse cell beads are required to fabricate millimetrescale 3D tissue. The 

primary advantages of this method are rapid production of millimetre-thick 3D cell 

structures, homogeneous cell density, and tissue formation without necrosis in a 

period of less than a week because of the supply of the cell culture medium through 

cavities between cell beads. In addition, when the millimetre-thick 3D cell structure 

was composed of HepG2 cells and NIH 3T3 cells, albumin secretion increased daily 

from the HepG2 cells in the 3D tissue, but not in the 2D culture system. However, the 

construction of the vessel network in the 3D cell structures is required to maintain cell 

viability over a long period. Adaptations of this method will allow the formation of 

capillary networks in the structure because methods using the mold can integrate 

cell-laden fibers as capillaries into bead-based cell structures [103]. As another 

method of a bead-based assembly, the printing of cellular spheroids or cell-laden 

hydrogel beads can be used to sequentially stack these materials layer-by-layer 
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[104,105]. Combined with computer-aided printing systems, the printing approach 

enables the rapid construction of complex 3D structures with different types of cells.  

 

 

 

Figure 4: 3D organotypic construct (i) Fluorescent image of a macroscopic structure with a complex 
shape. Live cell staining indicates that almost all cells within the structure are alive.( j) 3D cell structures 
formed by knitting cell-laden hydrogel fibers. The fibers are composed of collagen and alginate gel 
encapsulating HeLa cells.34 (k) Ring-shaped cell structure fabricated by printing cell beads. Various cell 
types are spatially coded within the structure.30 (l) Tube-shaped structure prepared by printing cell 
beads.30.[28]. 

 

For example, the printing of cellular spheroids or cell-laden collagen beads has been 

used to reproducibly construct ring-shaped structures containing multiple cell-laden 

beads in specific designed locations (Fig.4B) and hollow tubes (Fig. 4D) 

[104,105,106]. A fiber-based assembly method was recently proposed for the 

construction of 3D cell structures with complex shapes. Assemblies of cell-laden 

hydrogel fibers can be formed by weaving these fibers together, much as threads are 

woven to form cloth [107]. These approaches produce a metastable multicellular 

construct that will remodel over time according to biological and physical principles 

(i.e. migration of the cells, shrinkage of the hydrogel). Shapes and patterns are not 

inevitably translated to the final tissue. Designs must thus focus on promoting proper 

remodeling into the final architecture. Clearly, understanding and promoting tissue 

self organization would tremendously improve tissue microfabrication. The study of 
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the emergence of forms and functions in vitro tissue models is still in its infancy. It is 

likely that those strategies of auto assembly can only reach a limited complexity and 

should be followed by more complex manipulations of the microenvironment. The 

rapid development of complex microfluidic systems, microbioreactors and detecting 

tools allows the long term culture of microscale tissues in precisely defined 

microenvironment. Microbioreactors permit the long term culture in controllable and 

continuous environment using minute amounts of biological factors [107] and to 

include parameters like shear stress, interstitial flow [108,109] or gradients of soluble 

factors [110,111]. They present great possibilities to culture micro-tissues in 

controlled, heterogeneous environments. Mechanisms underlying tissue organization 

such as the development, maintenance of tissues architecture and function are highly 

conserved through organisms and are better understood now than two decades ago 

[112] it appears clearer that, beyond genetic regulation, the tissue architecture and 

microenvironment feeds back to promote its development, maintain its integrity and 

function [113,114]. Thus, to promote in vitro tissue developments, of special interest 

are (i) the creation of multicellular architectures prone to remodeling and (ii) 

strategies and tools to manipulate the microenvironment and promote in vitro 

organization. 

 

2.3 Engineered Cardiac Muscles for Functional Cardiac 
Regeneration  
The heart is one of the most important organs in the entire human body, owes its 

specialized functions to the unique complement of cells and their complex 

arrangements. Its contractile function derives primarily from cardiomyocytes (CMs). 

The myocardium is composed of tightly packed cardiomyocytes connected via gap 

junctions and supported by resident fibroblasts and vascular cell populations, which 

act as supporting cells by maintaining the extracellular matrix (ECM) as well as 

guiding electrical current propagations throughout the heart. Together these three 

cell types form a mechanically and electrically coupled unit that generates the force 

necessary to pump blood throughout the body. Until the recent discovery of resident 

cardiac progenitor cells [1,2] the myocardium was thought to be composed entirely of 

terminally differentiated cells. However, in their native state, these progenitor cells do 
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not contribute sufficiently to the repairing of major cardiac trauma. Regenerative 

potential of the heart is severely limited, predominantly because of a low proliferative 

capacity of CMs and propensity to scar formation following injury. A constant supply 

of oxygen and nutrient is required to sustain the high metabolic demand of CM. For 

this reason, any disruption of circulation to the heart muscle, such as that seen 

during a myocardial infarction (MI), will lead to rapid cell death and tissue necrosis. In 

most cases, the cell debris triggers an inflammatory response that is characterized by 

the infiltration of monocytes and macrophages. The necrotic tissue is then replaced 

by granulation tissue consisting mainly of fibroblasts and collagen. Finally, this tissue 

is remodelled to form a stiff and non-contractile scar tissue. In end-stage heart failure 

and many congenital cardiac anomalies, the requirement for heart transplantation is 

inevitable. While various surgical procedures and pharmacological therapies can 

prolong the life span, neither provides a cure. Heart transplantation results in an 

effective treatment; however, there is a shortage of donor organs. In addition, organ 

rejection and/or failure, life-long requirement for immunosuppression therapy and 

complications of that therapy further threaten the long-term success of heart 

transplants [3]. An alternative cardiac tissue source is required to address a growing 

need. This alternative source of cardiac tissue is most likely to arise from the 

collective efforts of the tissue engineering field, where through a multi-disciplinary 

approach to in vivo and in vitro tissue development, new organs may be generated 

for transplantation and tissues for reconstruction. The National Science Foundation 

(USA) defined tissue engineering as, ‘an interdisciplinary field that applies the 

principles of engineering and the life sciences towards the development of biological 

substitutes that restore, maintain or improve tissue function [4]. The final product of 

tissue engineering developed by the scientists and engineers will require to produce 

implantable cardiac tissue in vitro by combining CM and other supporting cell types in 

an appropriate scaffold. The resulting engineered cardiac tissue should possess 

similar mechanical and functional properties as native cardiac tissue. The presence 

of functional cells should have the capability to secrete ECM and growth factors to 

encourage beneficial host remodeling, which will significantly contribute to the long 

term integration of the implant [5]. 
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2.4 Cell Sourcing for Cardiac Tissue Engineering 

Cell sourcing is perhaps the most important consideration when designing tissue 

regeneration strategies. An optimal cell source should be easily obtainable, the 

choice of cell can directly impact on ECM remodeling, the functioning of the 

regenerated tissue and ultimately host response. The cells selected should also be 

matched with suitable scaffolds, culture conditions and delivery methods in order to 

maximize its therapeutic potential. In cardiac tissue engineering, the cells of interest 

are primarily cardiomyocytes, cardiac fibroblasts, and endothelial cells. The following 

sections will outline the features of these cell types and their most common sources. 

 

Cardiomyocytes  

The most impressive feature of the heart is its ability to contract continuously and 

synchronously during a person’s lifespan. Heart muscle cells, called cardiomyocytes 

(CM), are the primary cell type responsible for the generation of contractile force. The 

developmental origin of CM can be traced back to the mesoderm layer of the 

gastrulated embryo [20]. The heart itself is formed by two separate waves of 

myogenesis known as the primary and secondary heart fields. The primary heart field 

originates from the anterior lateral mesoderm and give rise to the left ventricle of the 

mature heart, while the secondary heart field develops into the right ventricle inflow 

and outflow tracks [21]. The secondary heart field also gives rise to some of the non-

myocyte component of the heart including cardiac fibroblast (CF), smooth muscle 

cells (SMC) and endothelial cells (EC). 

Cardiomyocytes share many similarities with skeletal muscle cells; both are striated, 

multinucleated, and excitable cells. In comparison to skeletal muscle cells, CM are 

more resistant to fatigue, contain more mitochondria, and are more adapted to 

aerobic respiration. Nevertheless, perhaps the most distinct anatomical feature of CM 

are the intercalated discs found between adjacent cells. Intercalated discs are areas 

of cell membrane rich in desmosomes and gap junctions. Desmosomes are cadherin 

family transmembrane proteins that are associated with intermediate filaments. 

Through homophilic binding, desmosomes also confer mechanical cell adhesion and 

integrity between CM. On the other hand, intercellular communications are mediated 
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by gap junctions. Transmembrane proteins called connexins form hemi-channels on 

the membranes of adjacent cells. These connexins can align and form a direct 

channel between the cytoplasm of these adjacent cells, allowing membrane 

depolarization to propagate from one cell to the next, thus facilitating action potential 

propagation over the myocardium. The ultimate goal of cell sourcing in tissue 

engineering is to find a cell type that can differentiate into all the necessary cells 

found in an organ in order to recapitulate organogenesis during development. 

Embryonic stem cells (ESC) derived from the inner cell mass of the blastocyst seems 

to be the best choice for tissue engineering. These cells are pluripotent and have 

strong proliferative capacity compared to adult stem cells. However, pluripotency is 

not without its downfalls. Direct injection of undifferentiated ESC can lead to teratoma 

formation [22]. Therefore, the phenotype of ESC and ESC derived cells must be 

carefully regulated. Selective differentiation of ESC have been shown to be a 

promising path towards a steady source of CM [23,24]. Laflamme et al. demonstrated 

that the injection of differentiated human ESC in a rat model maintains cardiac 

phenotypes and continues to proliferate over 4 weeks [25]. In addition, the same 

group has demonstrated the utility of human ES derived CM in tissue engineering 

application by fabricating contractile cardiac constructs [26]. Although ESC derived 

CM improved cardiac function in vivo, their allogeneic nature poses a significant 

obstacle towards clinical application. The recent discovery of induced pluripotent 

stem (iPS) cells derived from adult fibroblast may be the answer for an autologous 

and pluripotent cell source. The Yamanaka group pioneered the technique in 

restoring pluripotency of somatic cells to the same level as ESC by ectopically 

expressing Oct3/4, Sox2, Klf4 and c-Myc [27]. It can be assumed that current 

methods being used to drive ESC toward CM differentiation can similarly be applied 

to iPS cells. Like other stem cells, the in vivo tumorgenicity and immune response 

toward iPS cells will ultimately determine their clinical usefulness. Further studies are 

needed to answer these questions. From a clinical therapy perspective, the ideal CM 

for tissue engineering should retain contractile phenotype indefinitely, cause minimal 

immune response in the host, and participate in functional remodeling by organizing 

into contractile bundles [28]. Much of these criteria can be satisfied by using CM 

differentiated from stem or progenitor cells. Studies in stem cell lineages have 

identified populations of adult stem cells in tissues, such as adipose [29], skin, dental 

pulp [30] and amniotic fluid [31,32], some of which are capable of differentiating into 
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beating CM [33]. However, the most studied population for cardiac regeneration in 

clinical application to date is the bone marrow derived messenchymal stem cells 

(MSC). These cells inhabit the stromal space of bone marrow. They can be obtained 

through direct bone marrow aspiration or from peripheral blood. In both cases, the 

MSC reside as a subpopulation of cells within the mononuclear cell fraction [34]. 

Under the right condition, these MSC can be induced to express cardiomyogenic 

markers [35] and play a cardioprotective role to nearby cardiomyoblasts [36]. In 

clinical studies, intravenous or intramyocardial injections of MSC in acute MI have 

been shown to increase ejection fractions and vascularity around the infarct area 

[37,38]. However, few MSC differentiate into CM lineage and those that are 

committed have little to do with the functional improvements that are observed [39]. 

Therefore, it appears that much of the benefits of MSC in acute MI are derived from 

their cytoprotective and angiogenic roles [40,41]. Although not a viable CM source for 

therapeutic applications, primary rat neonatal ventricular cardiomyocytes have 

served as a useful cell model that has greatly contributed to the understandings of 

CM physiology and development. Structurally, neonatal CM lack a well developed T-

tubule system, the deep invagination of the sarcolemma, found in adult CM [43]. This 

leads to a more heterogeneous cytosolic Ca2+ concentration compared to adult 

myocytes and contributes to its unique excitation-contraction coupling characteristic. 

 

 

Cardiac Fibroblasts  

The cardiac fibroblast (CF) constitutes the bulk of non-myocyte cell population in the 

heart [44]. They are traditionally defined as cells of mesenchymal origin that produce 

interstitial collagen [45,46] and maintain ECM components, including collagen, 

fibronectin, and laminin. Fibroblasts tend to lack a basement membrane and display 

multiple processes or sheet-like extensions. These cells contain an oval nucleus, 

extensive rough endoplasmic reticulum, a prominent Golgi apparatus, and abundant 

cytoplasmic granular material. Unlike cardiomiocytes and endothelial cell, the cardiac 

fibroblast is found natively in the stromal space and lack basement membranes. This 

feature gives CF its unique ability to migrate and populate injury sites, such as a 

myocardial infarct, and quickly restore tissue volume and ECM proteins [47]. In the 

developing fetal heart, CF contributes to ECM rich structure including valves and 
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atrial ventricular walls. As the heart matures, a 3D network of collagen and CF, 

known as the cardiac skeleton, begins to take shape. This network allows CF to exert 

forces on the myocytes, as well as, to respond to external stimuli through 

degradation and synthesis of ECM. These processes help maintain the mechanical 

integrity of the heart through cell-cell and cell-ECM interactions. More importantly, CF 

forms heterotypic gap junctions with neighboring CM or CF, whereby the conductivity 

of these junctions can be modulated by the differential expression and coupling of 

connexins isoforms, including Cx45, Cx43 and Cx40 [48,49]. The cell-cell interaction 

between CF and CM helps to ensure the long range synchronization of myocardium 

contraction. Cardiac fibroblast also plays a pivotal role during cardiac repair. Under 

appropriate stimulation, relatively quiescent fibroblasts can acquire an active 

synthetic, contractile phenotype and express several smooth muscle cell markers not 

typical of fibroblasts [50]. These cells express contractile proteins, are more mobile 

than undifferentiated fibroblasts, can effectively contract collagen gels, and are 

believed to be important for wound closure and structural integrity of healing scars 

[51]. Moreover, myofibroblasts are associated with hypertrophic fibrotic scars in 

various injury models. Apoptosis of the myofibroblast has been shown to be 

associated with the progression of granulomatous tissue to a mature scar. On the 

other hand, failure of apoptosis has been suggested to drive the progression to 

fibrosis.  However, upon injury, myofibroblasts appear in the myocardium and are 

believed to arise from resident interstitial and adventitial fibroblasts. They may also 

originate from progenitor stem cells in the heart or from the circulation. Whatever 

their origin, the dynamic balance between fibroblast and myofibroblast phenotype is a 

critical factor in the wound healing outcome. 

 

Cardiac Endothelial Cells 

The complex cavitary surface of the cardiac wall is completely lined by the 

endocardial endothelium (EE). The morphology of the EE has been well described 

[42]. It is recognizable as a sheet of endothelial cells with a central nuclear bulge and 

distinct, extensive intercellular junctions. EE cells are somewhat larger than 

endothelial cells in most other portions of the circulatory system. The luminal surface 

of most of these cells possesses a scattered variety of microappendages, or 
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microvilli, projecting into the cardiac cavity. It can be estimated that the labyrinth of 

trabeculae and furrows, together with the numerous microvilli on the luminal surface 

of the EE cells, may augment the surface area by a factor of 100 or more. This 

surprisingly large contact surface area of the EE offers an astonishingly high ratio of 

cavitary surface area to ventricular volume, particularly in the right ventricle. This 

suggests an important sensor role for the EE [75]. One of the key factors for 

myocardial regeneration is revascularization of damaged tissue. In the normal heart, 

there is a capillary next to almost every CM, and endothelial cells (ECs) outnumber 

cardiomyocytes by 3:1 [76]. Developmental biology experiments reveal that 

myocardial cell maturation and function depend on the presence of endocardial 

endothelium at an early stage [76]. Experiments with inactivation or overexpression 

of vascular endothelial growth factor (VEGF) demonstrated that at later stages, either 

an excess or a deficit in blood vessel formation results in lethality due to cardiac 

dysfunction [76,77]. Both endocardium and myocardial capillaries have been shown 

to modulate cardiac performance, rhythmicity, and growth [78]. In addition, a recent 

study showed the critical importance of CM-derived VEGF in paracrine regulation of 

cardiac morphogenesis [79]. These findings and others highlight the significance of 

interactions between CMs and endothelium for normal cardiac function. However, 

little is known about the specific mechanisms for these interactions, as well as the 

role of a complex, 3-dimensional organization of myocytes, ECs, and fibroblasts in 

the maintenance of healthy cardiac muscle. The critical relation of CMs and the 

microvasculature suggests that successful cardiac regeneration will require a 

strategy that promotes survival of both ECs and CMs. 

 

2.5 Properties and Functions of Cardiac Extracellular     
Matrix 

The cardiac ECM is composed mainly of collagen and plays a vital role in myocardial 

structure and function. It serves to direct contractile force generated by cardiac 

myocytes and contributes to the passive stretch characteristics of the ventricle. Thus 

deformation of the extracellular matrix may help restore ventricular myocytes to 

precontraction length [52,53]. This expansion phase is thought to create suction that 

pulls blood into the ventricles from the atria. Collagen subtypes and fibronectin 
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compose the majority of cardiac ECM proteins. The majority of ECM components in 

the heart are secreted by cardiofibroblasts and myofibroblasts [53,54,55]. Cardiac 

myocytes and cells of many organs adhere to the extracellular matrix via matrix-

specific receptors including those for fibronectin [56]. Moreover, these ECM 

components are able to transmit external stimuli to the myocytes and fibroblast and 

trigger intracellular signaling that can alter cellularfunctions. Recent work by Ott et al. 

demonstrated that decellularized native cardiac tissue can be repopulated with CM 

and CF and give rise to functional tissue that possesses the microarchitecture of 

native tissue [57]. This suggests that both the composition and organization of ECM 

molecules are important for proper tissue development. Collagen types I and III are 

the most abundant forms of collagen within the myocardium [58,59], and cornprise 

the bulk of replacement scar tissue following myocardial infarction [60]. The cardiac 

ECM is a complex array of different molecular components, and that it plays an 

important role for the transfer of mechanical force in both contraction and relaxation 

phases in the cardiac cycle. As impaired lusitropic cardiac performance may 

contribute to the overall pathogenesis of heart failure, investigations of the regulation 

of cardiac ECM component gene transcription and ECM protein deposition in various 

disease states and growth are essential. 

 

Collagen 

Collagen type I is the major collagenous product of cardiac fibroblasts as this 

molecular species represents about 80% of the total cardiac collagen content [59, 

62]. This observation is in agreement with the results of a recent study of collagen 

isoforms synthesized by cultured cardiac fibroblasts [63]. Two different collagen 

subunits, the products of a unique gene, coalesce to form the trimeric protein. Two 

thirds of the trimer is formed by two α-1 (I) chains (molecular weight = 95 kDa); the 

remainder of the trimer is an α-2 (1) chain (95 kDa). Procollagen polypeptides 

undergo cleavage before becoming mature cellular proteins wherein peptide 

sequences are removed from both the amino and carboxyl ends by specific 

proteases. Collagen type I is characterized by a unique lack of disulfide bonds 

between adjacent chains. Collagen type III is relatively abundant in the myocardium, 

accounting for approximately 12% of myocardial collagen content. Collagen type III, 
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composed of three identical chains of α-1 (III) subunit polypeptides, forms aggregates 

(struts) which are thinner than those containing collagen type I in heart. The 

procollagen a-1 (III) subunits have a molecular weight of 140 kDa which is reduced to 

95 kDa after posttranslational modification. Jointly, collagen types I and III represent 

more than 90 % of all myocardial collagen. 

 

2.6 Biomaterials for Cardiac Tissue Engineering  

Scaffolds may be formed from natural, synthetic or hybrid materials and fashioned to 

provide appropriate pore size, connectivity and strength, adhesion, or even to furnish 

growth factors ‘on demand’ by incorporating these into surface coatings, in so called 

‘smart surfaces’. The traditional paradigm of tissue engineering is to seed-shaped 

scaffolds with cells ex vivo and implants the composite structure into the living 

animal, where the tissue is vascularized and the scaffold incorporated into 

surrounding tissues or progressively replaced by the host tissue [4]. Scaffold used in 

cardiac tissue engineering must reflect the natural cardiac scaffold and will depend 

on the type of construct desired. For example, scaffolds used to develop a graft 

overlaying an infarct site may require different elasticity characteristics to a 

composite tissue used to replace a full-thickness myocardium, which is subjected to 

full systolic pressure. Material tested for cardiac tissue engineering include 

polyurethrane [65], 1,3-trimethylene carbonate [66] and D,L-lactide and copolymers, 

poly(1-caprolactone) [67], polyglycolic acid (PGA), poly(lactic acid) (PLA) and 

polyglycolic acid [68]. While CM growth has been reported on these polymers, 

significant problems associated with the elastic properties of polymeric materials 

(inability to stretch synchronously with native heart), acidic (PGA, PLA) or toxic (PU) 

degradation products remain to be resolved before these products can be fully 

utilized in cardiac tissue engineering. While some natural materials such as gelatine 

[69] and alginate [70,71] can be incorporated into three-dimensional structures in 

order to encourage better cell interaction with the scaffold, other materials, such as 

collagen I and Matrigel, are most similar to mammalian cellular ECM-like 

environments and most supportive of implanted CM survival by facilitating cell 

adhesion, proliferation and differentiation. However, because of their rapid 

degradation by local tissue proteases, the potential immunogenicity and as a 
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potential reservoir of infectious agents [72] these natural materials are currently being 

modified and are more often used in conjunction with solid scaffolds [73]. Other 

technologies for cardiac tissue engineering are being developed in very creative 

ways, such as using mechanical strain to condition tissue [81] or decellularization of 

a rat heart as a natural scaffold [57]. New technologies that generate scaffold-less 

cell dense CM sheets have also been reported and have shown potential in vivo. 

More importantly, this technology bypasses the issues associated with the use of 

exogenously added natural and synthesized scaffold [80]. 

 

2.7 Bioreactors 

The 3D cell constructs that are development ex vivo usually lack the vascular 

network that exists in normal vascularised tissue. Thus, the gas and nutrient supply 

to the scaffold-seeded cells depends merely on mass diffusion. In static cultivation, 

with no fluid mixing, large diffusion gradient are performed between the cell 

constructs and their surroundings so that the cells in the centre of the construct do 

not get sufficient nutrients; the waste removal from the centre is poor; and thus the 

cells eventually die. Oxygen transport is typically considered as the main limiting 

factor for nutrient exchange [91]. To improve mass transport, researchers have 

designed several bioreactors, which exemplify different patterns of fluid dynamics 

and vessel geometry. A basic fluid-dynamic cultivation vessel is the spinner flask, 

which is a flask usually agitated at 50 rpm [92,93]. In these vessels, the cells 

constructs are subjected to turbulently mixed fluid that provides a well-mixed 

environment around the cell constructs and minimized the stagnant layer at their 

surface. It has been shown that cultivation of cardiac cell constructs in spinner flasks 

produces engineered tissues that are superior, in almost every aspect (aerobic cell 

metabolism, metabolic activity, morphological appearance, etc.) to tissues cultivated 

under static condition [92,93,94]. Bioreactors combined with mechanical signal 

stimuli improved the proliferation and distribution of the seeded cardiac cell 

throughout the scaffold volume and further stimulated the formation and organization 

of ECM, which contributed to the improvement in the mechanical strength of the 

cardiac graft [61,95]. Future bioreactors for CTE should combined both perfusion and 

mechanical stimuli; for example, by allowing for adjustable pulsate flow and varying 
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levels of pressure. Such bioreactors are currently under development for engineering 

heart valves ex vivo [96,97]. One of the most important difficulties in CTE is to grow 

3D structures that contain more than a few layers of muscle cells. Most bioreactors 

simply cannot supply enough nutrients and oxygen to the growing tissue. Whereas 

human heart muscle is approximately 100 micrometers, or less than 10 cell layers, 

thick. Beyond this thickness, the innermost cells are too far from the supply of fresh 

growth medium to thrive. After transplantation, rapid vascularisation, adequate 

perfusion, survival, integration, and function of the engineered cardiac patch remain 

critical steps in the translation of in vivo achievements into an effective therapeutic 

tool [98]. 

 

2.8 Fabrication and Culture Platforms for Cardiac Tissue 
Engineering 
One of the key challenges is certainly the choice and the interaction between cells 

and biomaterials on a molecular level to contribute to the functionality of the 

engineered tissue. To maximize the regenerative potential of the cells, one must 

consider the impact of tissue fabrication and culture strategies on the cells’ 

behaviour. Schematic diagrams of these cardiac tissue engineering strategies can be 

found in figure 5 [90]. The classical tissue engineering approach is the creation of a 

tissue construct by seeding desired cells into a scaffold in vitro with or without 

manipulation (e.g. special conditioned culture system [82]) followed by implantation in 

vivo. The disadvantage of this method is that poor survival of implanted cells; also 

these can only be seeded on the surface and must actively migrate into the core of 

the scaffolds. This may lead to uneven cell seeding throughout the depth of the 

scaffold.  The said observations indicate that cell survival in the construct is one of 

the major obstacles to engraftment of engineered constructs in vivo. To improve cell 

survival, several strategies have been investigated including the use of various cell-

supporting scaffold materials [67,68]. Incorporation of pro-angiogenic factors and pro-

survival factors into scaffolds [73,64] co-culturing of CMs with other cell types to form 

vasculature [83,84] in vitro or a combination of these strategies, with some success 

in improving engrafted cell survival. 
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Fig. 5: Diagram showing the main strategies used in cardiac tissue engineering: (a) the ‘classical’ tissue 
engineering approach with cells seeded into scaffold then implanted in vivo; (b) engineered heart tissue 
(EHT) approach; (c) cell sheet approach; (d) gravity enforced cell assembly approach; and (e) 
decellularized heart scaffold approach [90]. 

 

One way to improve the uniformity of seeding cells within the scaffold is to combine 

cells with compatible hydrogel prior to casting and gelation. One of the most creative 

and promising approaches to cardiac tissue engineering  uses neonatal rat CMs, 

collagen I matrix, Matrigel and a mechanical stretching device to create a 

spontaneously contractile construct called engineered heart tissue (EHT) [9,81,85]. 

Nonetheless, cells embedded near the core of the gel still suffer from diffusion 

limitation and tend to have low viability. Therefore, recent studies have shifted their 

focus towards the fabrications of micro-tissue such as the approach described within 

this thesis. By shrinking the size of the scaffold down to several hundred micrometers 

in diameter, cells embedded in the core may receive sufficient nutrients to survive.  
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Instead of seeding cells into a three-dimensional porous scaffold, Kelm et al. have 

created micro-tissues (~100 μm) containing CM capable of supporting core tissue 

viability, in fact provide an environment for them to migrate and assemble into 

contractile tissues  in vitro using gravity-enforced techniques to form spheroid-like 

micro-tissues [14,86]. Another CTE approach that holds clinical application potential 

is the cell sheet technique [87]. The centerpiece of this approach is the invention of a 

thermo-sensitive cell culture surface, coated with a polymer – poly (N-

isopropylacrylamide, PIPAAm), which is cell adhesive at 37°C and changes its 

properties in reverse below 32°C. Once CMs have aggregated and formed gap 

junctions, changing the temperature allows the beating cells to be lifted off the culture 

dish as a cell sheet without disruption to their gap junctions or architecture [88]. 

Further in vivo work demonstrated the potential for stacking individual CM cell sheets 

into a three-dimensional contractile cardiac tissue [80], which survived subcutaneous 

implantation for 1 year and application to rat hearts showed functional integration of 

the cell sheet with the host heart [89]. The benefit of this approach is a scaffold-free, 

cell dense tissue similar to compact myocardium. This approach, however, is limited 

by the diffusion of nutrients to sustain the viability of the patch and remains to be 

adapted for formation of thick myocardial tissue constructs where specific 

vascularization strategies will need to be employed. 

 

2.9 Biomaterials for cell delivery into the heart 

The past decade’s burst in cell therapy clinical trials has resulted in a multitude of 

reports ranging from high expectations to modest questioning of the efficacy of cell 

therapy for cardiovascular disease. The perception is, however, that cell therapy 

would greatly benefit from improvements in the techniques of cell delivery and an 

improved understanding of mechanisms driving heart repair. A lack of 

standardization across clinical trials, because of variable cell sources and 

preparations, delivery methods, target patient population, time points, and functional 

readouts, has only added to the inherent variability, making a comprehensive cross 

study comparison rather difficult. To move forward, we need to develop new 

technologies that can address the challenges and limitations of the current preclinical 

trials. Cell injection: The administration of cell suspensions in fluid via a syringe or 



28 
 

catheter results in massive attrition after injection, by processes that occur almost 

immediately, and irrespective of cell type or formulation, delivery mode, and disease 

state. These processes occur before the vascular supply can be established and 

integration with the host cells can occur. The capacity of the heart to retain implanted 

cells for even 24 h is rather small [99], and local barriers of cell survival and function 

beyond this time point are substantial. Survival of ‘‘naked’’ cells in the hostile 

environment of an acute or chronic infarct is a major challenge. Several possibilities 

have been identified for improving cell engraftment and maximizing the potential of 

cells to mediate heart regeneration. One reported approach identified the addition of 

prosurvival factors into the cell suspension as a method to substantially improve the 

survival of transplanted cardiomyocytes [100]. A solution for improved cell retention, 

just starting to be explored in the lab settings, is the use of catheter-based hydrogel 

cell delivery, which builds on existing delivery methods used in the clinic. Hydrogels, 

delivered as a fluid phase suspension via catheter, slowly polymerize during the 

trajectory to the target tissue, polymerizing and entrapping cells in situ. With already 

extensive use and demonstrated safety of catheter-based cell delivery [101], the 

addition of a delivery vehicle offers a possibility for improving engraftment. Hydrogels 

offer additional distinct advantages of customization using growth factors to 

specifically enhance the vasculogenic or myogenic capacity of encapsulated cells 

[102], while physically shielding cells from the harsh ischemic environment, as they 

mediate repair. Although this option provides for a near-term solution to improve cell 

retention in the heart, it can be further advanced to mediate the effects of the 

microenvironment in situ. 
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Chapter 3 
 

A BOTTOM-UP APPROACH TO CARDIAC TISSUE 
ENGINEERING: HOW TO BUILD-UP A TISSUE 
EQUIVALENT IN VITRO 

 

Bottom up strategy  

In this study, we exploited a bottom-up approach to build a functional cardiac μTPs in 

vitro. Initially, we focused on generating μ-sized tissue modules with specific 

microarchitectural features that can be used alone as living fillers in damaged areas 

or serve as building blocks to engineer large biological tissues through a bottom-up 

approach. The process philosophy is schematized in figure 1. The optimized dynamic 

culture conditions used, coupled with the sub-millimetric nature of the μTP, allowed to 

overcome the transport limitations and enabled the massive production of viable and 

functional micrometric building blocks. Moreover, we devoted particular attention to 

the role of micro-scaffolds in addressing μ-tissue reorganization. Indeed, despite 

many works regarding scaffold free tissue regeneration [19,20,22], we demonstrated 

that micro-scaffolds are crucial in the early stages of the culture because they 

triggers the cell to synthesize precursors of ECM that act as a natural surrounding 

environment for cardiac cells. In this work, we observed that the scaffold does not 

hinder the electromechanical properties of the cardiac μ-modules, which showed 

spontaneous beating and synchronization properties. This suggests that the cardiac 

μ-TP as an implantable living micro-tissue for infracted zone regeneration or can be 

used as representative tissue modules for TOC applications. 
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Figure 1: Scheme of the bottom-up process 

 

 

3.1 Introduction  

The heart is the first organ formed in the embryo and all subsequent activities in life 

depend on its functioning. The past decade has witnessed decisive advances in 

understanding cardiac functions and dysfunctions, both a genetical and molecular 

level. Although such insights into the mechanisms of heart development and disease 

have stimulated new therapeutic opportunities for the prevention and palliation of 

cardiac pathogenesis, mortality rates associated with heart related pathologies 

remain at the top of disease statistics in industrialized countries [10]. Since cardiac 

myocytes lose their ability to divide after birth, the regenerative capacity of adult heart 

tissue is limited and substantial cell loss or dysfunction, such as what occurs during 

myocardial infarction, is largely irreversible and may lead to progressive heart failure 

[11]. Recently, cell transplantation to repair or supplement impaired heart tissue has 

been pursued by various approaches as an alternative therapy for heart 

transplantation [12]. Several possible cell types, including myoblasts, cardiomyogenic 

cells derived from bone marrow stroma, Lin- c-kitpos bone marrow cells, multipotent 

endothelial cells, and embryonic stem cells, have been reported as human 

implantable cell sources [13,14]. Myocardial injection of autologous myoblasts has 

been clinically performed and shown to produce some limited recovery from heart 

dysfunction [15]. In these therapies using direct delivery of isolated cells, each cell 

differentiates and remodels in response to its surrounding environment, leading to 

tissue regeneration and functional repair. In contrast to isolated cells, research on 
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further advanced therapies to transplant tissue-engineered functional heart grafts has 

also now begun [16]. As originally proposed by Langer and Vacanti [17] the most 

popular in tissue engineering approach is based on the premise that preparations of 

cells, extracellular matrix (ECM), and growth factors together lead to tissue 

reconstruction, and that 3-dimensional (3-D) biodegradable scaffolds are useful as 

alternatives for ECM. The scaffold temporarily provides the biomechanical support for 

the cells until they produce their own extracellular matrix. Because tissue-engineering 

constructs contain living cells, they may have the potential for growth and cellular 

self-repair and remodelling. This context has also been applied to cardiac tissue 

engineering. A crucial factor in creating viable 3-dimensional tissue in vitro is the 

achievement of adequate perfusion throughout the tissue. This is especially true for 

cardiac tissue due to its high metabolic rate and oxygen demand. Radisic et al. [18] 

incorporated oxygen carriers and flow channels into neonatal rat cardiomyocyte 

seeded scaffolds to overcome the transport limitations. A 3-dimensional model was 

used by Zimmermann et al. [19], where a neonatal ventricles rat cell population was 

embedded into a Matrigel/collagen gel. Other 3-dimensional culture systems rely on 

cell secreted extracellular matrix (ECM) as the major matrix component [23]. Other 

techniques for the recreation of cardiac muscle in vitro are based on the creation of 

cardiac micro-muscle that can be used alone or serve a building block for the 

creation of macroscopic tissue. Kelm et al. [20, 21] created tissue spheroids 

containing CM in a hanging drop culture system. The scale of these micro-tissues 

(~100 μm) has been shown to support core tissue viability. Sefton et al. made cardiac 

micro-modules by cell laden technology where cardiac cells were embedded in 

biopolymer micro-modules. Cardiac cells were able to survive and to respond to 

external stimuli, but they could neither self-beat nor self-aggregate into superior 

scales. Finally cardiac muscle can also be fabricated by means of cell sheet 

technology. Shinizu et al. [22] demonstrated that sheets of cardiac cells can be 

harvested as an intact micrometric layer and stacked with other cardiac sheets to 

obtain a macroscopic tissue of about a hundred of microns. In the works discussed 

so far there is a lack of information regarding the possibility of recreating a cardiac 

surrogate in vitro ensuring that cardiomyocytes are embedded in their own ECM. 

Indeed, even if such micro-tissues possessed many of the functions of cardiac 

muscle at micron scale they were composed mainly by cell aggregates. We argue 

that the presence of an endogenous ECM plays a relevant role for the tissue 
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engineered constructs. Cell / ECM cross-talk is a key-factor in the native tissue and 

should be maintained in vitro. This leads to the creation of more representative tissue 

models improving the performance of both in vitro, such tissue on a chip system 

(TOC), and in vivo applications.  

 

3.2 Materials and Methods  

3.2.1 Micro-scaffold production 

Preparation of gelatin porous micro-beads 

Gelatin porous micro-beads (GPMs) have been prepared according to a modified 

double emulsion technique (O/W/O) [1]. Gelatin (type B Sigma Aldrich Chemical 

Company, Bloom 225, Mw=l 76654 Dalton) was dissolved into 10 ml of water 

containing TWEEN 85 (6% w/v) (Sigma Aldrich Chemical Company). The solution 

was kept at 60°C. Toluene containing SPAN 85 (3% w/v) (Sigma Aldrich Chemical 

Company) was continuously added to the aqueous gelatin solution (8 % w/v) to 

obtain primary oil in water emulsion. The added toluene formed droplets in the gelatin 

solution until saturation. Beads of gelatin containing droplets of toluene were 

produced through the addition of excess toluene (30 ml). The overload of toluene 

allowed the obtaining of a double emulsion (O/W/O). After cooling below 5°C, 20 ml 

of ethanol was added to extract toluene and stabilize GPMs. The resulting 

microspheres were filtered and washed with acetone and then dried at room 

temperature. Microspheres were separated selectively by using commercial sieves 

(Sieves IG/3-EXP, Retsch, Germany). GPMs with 75-150 μm size range were 

recovered and further processed. After sieving the number of micro-carriers per 

milligram was determined by counting micro-beads in cell culture dish (w/2 mm grid 

Nunc). Finally the micro-beads morphology has been examined by means of 

Scanning Electron Microscopy (SEM). 
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Crosslinking of GPM 

Crosslinking of GPMs have been stabilized by means of chemical treatment with 

glyceraldehyde (GAL), in order to make them stable in aqueous environment at body 

temperature. In particular, GPMs were dispersed into acetone/water solution 

containing GAL and mixed at 4°C for 24 h. Then microspheres were filtered and 

washed with acetone and dried at room temperature. The percentage of the 

crosslinking agent (GAL) introduced during the stabilization step was 2% and 5% w/w 

(GAL / micro-beads).      

 

Scanning electron microscopy (SEM) 

SEM was performed to analyze the morphology of naked micro-beads. The former 

didn’t need any dehydratation process so micro-beads were mounted onto metal 

stubs using double-sided adhesive tape and then gold-coated using a sputter coater 

at 15 mA for 20 min. Coated samples were then examined by scanning electron 

microscopy (FE-SEM, Ultraplus Zeiss).      

 

3.2.2 Cardiomyocyte isolation 

Hearts were removed aseptically from neonatal (2–3 days old) Wistar rats 

immediately after euthanasia with CO2. The atria were removed and the ventricles 

placed in cold CBFHH buffer(NaCl 58.44g/mol, KCl 74.56g/mol, MgSO4x2H2O 

246.48 g/mol, KH2PO4 136.09 g/mol, Na2HPO4x2H2O 177.99 g/mol, Glucose 

dehydrated 180.16 g/mol, HEPES 238.3 g/mol, PH 7.4) containing antibiotics 

[streptomycin and penicillin (50 U/ml; GIBCO BRL, Carlsbad CA); ampicillin (100 

mg/ml; Sigma, St. Louis, MO)] and antimycotic amphotericin B (5 _g/ml; Mediatech, 

Herndon, VA). The ventricles were rinsed in CBFHH three times to remove leftover 

blood and minced into pieces<1mm3. Then the ventricles were dissociated into single 

cells by proteolytic enzymes during repeated digestions with gentle stirring. 

Pre-digestion 

� Add 8ml of Collagenase (180U/ml Collagenase type II Worthington co#CLS-2) 

solution to the tissue. 
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� Digest for 10 min on the shaker to 37°C. 

� Let tissue sediment and discard supernatant. 

 Digestion cycles 

� Add 8ml of Collagenase solution to the tissue. 

� Digest for 10 min on the shaker to 37°C. 

� Let tissue sediment and transfer supernatant to the first “tube collection” (The 

enzyme solution containing the digested tissue was neutralized with an equal volume 

of culture medium (DMEM, 1g/l Glucose), supplemented with 10% fetal bovine 

serum, 1% penicillin (100U/mL) and streptomycin (100 mg/mL). 

� Add 7ml of DNase solution (4μg/ml DNase I, type V from bovine spleen, 

Sigma co#D8764) to the tissue. 

� Pipette up and down for 20 to 25 times to ensure adequate mixing. 

� Let sediment deposit again and transfer the supernatant to same “collection 

tube”. 

� Start again by adding collagenase solution and follow the same cycle only 

changing in the time the amount of solution and the digestion time until the tissue has 

completely been dissolved. 

The cell suspension in the collection tubes was sifted by the sieve (pore size 100μm) 

with 10-15 ml of culture medium and then centrifuged at 1200 rpm for 15 min at 4°C. 

Isolated cells were pre-plated onto tissue culture polystyrene to reduce the initial non-

myocardial cells (NMC) contamination by exploiting the differential attachment time 

between myocardial and non-myocardial cells. By pre-plating the whole cell 

population for one hour it was obtained a cell population named cardiomyocite-rich 

(CM-R). By pre-plating for three step of one hour it was obtained a cell population 

named cardiomyocytes-extra rich (CM-ER). The population CM-R will be named 

along the paper CM-R(+) if used in combination with 5-bromo-2deoxyuridine (BrDu) 

or CM-R(-) it used in absence of BrDu.  
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3.2.3 Micro-tissue realization and characterization 

Process overview 

The realization of cardiac micro-tissues (c-μTPs) consists of a dynamic cell culture on 

gelatin porous microspheres. The whole process is divided in three phases: the 

seeding phase (SP, duration three days) and evolution phase (EP, duration nine 

days) allow cell attachment and micro-tissue maturation in the spinner flask 

bioreactor; the aggregation phase (AP, duration seven days) allows micro-tissue bio-

fusion and building-up of the macroscopic tissue in a maturation chamber kept under 

dynamic culture conditions.  

 

Seeding Phase (SP)  

Dry GPM were sterilized before using by absolute ethanol sub-immersion for 24h. 

Successively several washings in calcium-free and magnesium-free phosphate-

buffered saline (PBS) were performed to remove completely the ethanol. Before cell 

seeding PBS was removed and replaced with the culture medium. Cardiac-μTPs 

cultivation was initiated by inoculating CM-R and gelatin porous micro-spheres at a 

ratio of 1000 cells*bead−1 in a spinner flask bioreactor (Integra Bioscience, cod#182 

023) filled with 150 ml of culture medium (DMEM, 1g/l Glucose supplemented with 

10% foetal bovine serum, 1% penicillin 100U/mL and streptomycin 100 mg/mL) and 

inserted in an incubator with controlled atmosphere (37°C in humidified atmosphere 

containing 5% CO2). To optimize the seeding parameters, the spinners were 

operated up to three days under two different conditions: a) 5 min stirring at 30 rpm 

and 30 min resting for six h followed by continuous stirring at 30 rpm up to three 

days; b) 5 min stirring at 30 rpm and 30 min resting up for three days.              

                                                                                                                                    

MTT assay 

Aliquots containing micro-tissues at S3 were collected from the spinner operating 

under conditions (a) and (b) and, transferred in a Petri dish, then 900μl of culture 

medium and 100μl of MTT (3-(4, 5_dimethyltiazol-2-yl)-2, 5-diphenyltetrazolium 

bromide - Sigma) solution were added. The MTT assay is a colorimetric assay for 
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assessing cell viability. Enzyme-based methods using MTT rely on a reductive 

coloring reagent and dehydrogenase in a viable cell to determine cell viability with a 

colorimetric method. This method was easy-to-use, safe, has a high reproducibility, 

and was widely used in both cell viability and cytotoxicity tests.  Among the enzyme-

based assays, the MTT assay was the best known method for determining 

mitochondrial dehydrogenase activities in the living cells. MTT was reduced to a 

purple formazan by NADH. After incubation for 45 min at 37°C the micro-tissues 

were observed and imaged under optical microscope (BX53; Olympus). 

 

Evolution Phase (EP) 

The realization of the micro-tissues was carried out by using CM-R (-), CM-R (+) and 

CM-ER cells in different experiments. For all spinner culture conditions the seeding 

phase was performed under intermittent stirring (5 min stirring at 30 rpm and 30 min 

resting up to three days – corresponding to SP condition (b), see seeding phase). 

After the SP phase, the dynamic conditions were switched from intermittent to 

continuous stirring at 30 rpm to allow μTP evolution (EP phase) for a total duration of 

nine days. In the experiments with CM-R(+), culture medium encircled with BrDu 0.2 

mM was used from the third day till the ninth day. The culture medium was changed 

every two days. Aliquots of 5 ml of culture medium containing micro-tissues were 

collected for subsequent analyses at two time intervals: short time, ranging from 3 - 5 

days (EP3 - EP5); long time, ranging from 6 – 9 days (EP6 - EP9).   

 

Alamar Blue assay 

After the seeding phase, three aliquots from spinner flasks containing CM-R (-) and 

three aliquots from CM-R (+) were collected into cell culture dish (w/2 mm grid Nunc) 

for μ-TP counting and after was transferred in multiwell low attachment (Corning 

Costar Ultra-Low Attachment Multiwell Plates 24 well). The multiwell containing μ-

TPs was kept in incubator under continuous stirring at 30 rpm to recapitulate the 

spinner flask conditions. At time point corresponding to EP1, EP3, EP5, EP7, EP9, 

EP11, the μ-TPs were incubated for 4 h at 37°C in humidified atmosphere containing 

5% CO2 with Alamar Blue (Invitrogen) and the number of cells as indicated by the 
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was evaluated by spectrophotometric reading as indicated by the manufacturer . It 

was thus possible to have an index of the number of cells per micro-beads during the 

culture time. Alamar Blue is a proven cell viability indicator that uses the natural 

reducing power of living cells to convert resazurin to the resorufin. The active 

ingredient of Alamar Blue (resazurin) was a nontoxic, cell permeable compound that 

was blue in colour. Upon entering cells, resazurin was reduced to resorufin. Viable 

cells continuously converted resazurin to resorufin, thereby generating a quantitative 

measure of viability cellular. After incubation with Alamar Blue, the samples can 

readily be measured on spectrophotometer (on a UV-Vis at 570 nm and 595nm).  

Finally, results were analyzed by plotting absorbance intensity vs compound 

concentration. 

 

3.3.4 Cell viability and morphology on the micro-beads 

Histology 

Over culture time (EP1 to EP9) 1 ml of μTP suspension was collected from the 

spinner culture every two days and fixed in a solution of 10% neutral buffered 

formaline for 24 h, dehydrated in an incremental series of alcohol (75%, 85%, 95% 

and 100%, and 100% again, each step 20 min at room temperature) treated with 

xylene and then embedded in paraffin. Successively, the samples were sectioned at 

a thickness of 7µm, and stained using hematoxylin-eosin (Bio Optica) solutions and 

Picro Sirius Red (PSR) (Sigma Aldrich) following standard procedure, finally the 

sections were mounted with Histomount Mounting Solution (invitrogen) on coverslips 

and the morphological features of constructs were observed with a light microscope 

(Olympus, BX53). Moreover, histological sections stained with PSR were further 

observed by using polarized microscope. Polarized light images of samples stained 

with PSR alone were acquired with an inverted microscope (BX53; Olympus) with a 

digital camera (Olympus DP 21). A linear polarizer was placed between the light 

source and the specimen, while the analyzer was installed in the light path between 

the specimen and the camera. It is known that the colour of collagen fibers stained 

with PSR and viewed with polarized light depends upon fiber thickness; as fiber 

thickness increases, the colour changes from green to r 
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ECM composition 

To quantitatively determine the proportion of different colored collagen fibers, we 

resolved each image into its hue, saturation and value (HSV) components by 

applying the software’s “color threshold” function. Only the hue component was 

retained and a histogram of hue frequency was obtained from the resolved 8-bit hue 

images, which contain 256 colors. We used the following hue definitions; red 0-51, 

green 52-120 [4,5]. The number of pixels within each hue range was determined and 

expressed as a percentage of the total number of collagen pixels, which in turn was 

expressed as a percentage of the total number of pixels in the image. The analysis 

was performed on 10 Picro Sirius Red stained sections of each time points and 

different region of interests (ROIs) were examined for each section. Since the aim of 

imaging analysis was to investigate the evolution of endogenous ECM composition, it 

was necessary to exclude by ROI the areas occupied by the micro-scaffold when it 

was still present. This condition was verified only for the short time µTP. 

 

Immunofluorescence and Multiphoton anlaysys 

Over culture time (EP1 to EP9) 1 ml of μTP suspension was collected from the 

spinner culture every two days in order to be imaged by Confocal Leica TCS SP5 II 

combined with a Multiphoton Microscope where the NIR femtosecond laser beam 

was derived from a tunable compact mode-locked titanium:sapphire laser 

(Chamaleon Compact OPO-Vis ,Coherent). μ-TPs were fixed with 4% 

paraformaldehyde for 20 min at room temperature, rinsed twice with PBS buffer, and 

incubated with PBS-BSA 0.5% to block unspecific binding. After fixation, the samples 

were stained with phalloidin tetramethylrhodamine B isothiocyanate (phalloidin, 

Sigma-Aldrich) and SYTOX Green (Invitrogen), for actin microfilaments and nucleus 

detections, respectively. In particular the samples were incubated with SYTOX Green 

stock solution (10 mg/mL in dimethyl sulfoxide) diluted in PBS (1/500 v/v) for 10 min 

at 37°C, and after rinsing in PBS, they were stained with phalloidin for 30 min at room 

temperature. Moreover two-photon excited fluorescence has been used to induce 

second harmonic generation (SHG) and obtain high-resolution images of unstained 

collagen structures in μ-TPs’ ECM. The samples were observed under the 

simultaneous excitation of the three different lasers: λex =488 nm, λem = 500-530 



49 
 

nm for cell nuclei; λex = 543 nm, λem=560-650nm for cell cytoskeleton) and λex = 

840nm (two photons), λem =415-425 under for unstained collagen detection 

generated by Second Harmonic Generation (SHG). Other samples where stained to 

detect specific cardiac markers (α- actinin sarcomeric and Cx43 gap junction). The 

immunofluorescences were performed on sample slices 5-8 μm thick obtained by 

cryomicrotome (Leica CM 1850). Anti-α actinin sarcomeric monoclonal antibody was 

used at dilution 1:800 (Sigma); Anti-Cx43 polyclonal antibody was used at dilution 

1:2000 (Sigma). The secondary antibodies for α-actinin sarcomeric and Cx43 were: 

Alexa Fluor 488 mouse anti-mouse IgG (H+L) (dilution 1:500; Life technologies) , 

Alexa Fluor 546 mouse anti-rabbit IgG (H+L) (dilution 1:500; life technologies). 

Finally, the sample slices were imaged under Confocal Leica TCS SP5 with: λex 

=488 nm, λem = 500-530 nm for α-actinin sarcomeric; λex = 543 nm, λem=560-

650nm for Cx43. 

 

Ultrastructural analysys (TEM) 

TEM was performed to observe cells and the typical functional structure of cardiac 

tissue. μ-TPs were fixed with 2.5% glutaraldehyde (Sigma-Aldrich) in sodium 

cacodylate buffer 0.1 M (pH 7.2), washed with sodium cacodylate buffer and then 

fixed with 1% aqueous osmium tetroxide (Electron microscopy sciences, USA). 

Afterwards, the samples were dehydrated in a graded series of ethanol (Sigma-

Aldrich), block contrasted with 1% uranyl acetate (Merck, Germany) and embedded 

in EMbed 812 (Electron microscopy sciences, USA). The prepared ultra-thin sections 

(65 nm) were contrasted with 0.3% lead citrate (Merck, Germany) and imaged with a 

Philips CM12 transmission electron microscope at an accelerating voltage of 80 kV. 

 

Self assembly: spontaneous aggregation of μ-tissues  

At time point EP3, a small amount of micro-tissues were collected from the spinner 

and placed in a round bottom multiwell low attachment (Corning Costar Ultra-Low 

Attachment Multiwell Plates 96 well) in order to promote their fusion. Images from the 

multiwell were taken every other day up to 11 days. From the images was evaluated 

the total area of the micro-tissues and reports as ration of the area between total 
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area at EP (t) and EP3 (where t varied from t = 1, to t = 11 days). 

 

μ-tissue self beating measurements 

The investigation of spontaneously beating of μ-TPs was carried out by placing a 

small amount of micro-tissue collected from the spinner in a Petri low attachment 

placed under an inverted microscope (OLYMPUS - X81), coupled with a CMOS-

camera (Hamamatsu Photonics – C11440-22CU). The beating micro-tissues were 

imaged at 30 fps. The movies were inspected both visually and by image processing 

tool. For visual inspection, the number of beating was counted and divided by the 

movie duration time (approximately 35 sec) and converted in beat per minutes. The 

image analysis was performed by measuring the change of micro-tissue morphology 

along the time. To obtain the change of morphology as function of time the image 

sequences were analyzed with Stack Differences plug in Image J (NIH, version 

1.43m). The peaks of the curves obtained corresponded to a single beat.  

 

Self assembly and synchronization: Membrane depolarization measurements 

For analysis of electrical communication we used a membrane voltage sensitive, di-

4-ANEPPS (molecular probes), to monitor the action potential propagation and the 

electrical connection between the μ-TPs. Di-4-ANEPPS stock solution (2mM) was 

freshly prepared with DMSO (sigma) solution and added to the culture medium to 

give a final concentration of 10μM of D-4-ANEPPS. The samples were exposed to 

the dye at 37°C for 30 min, the samples were then washed in Tyroide’s solution 

consisting (in mM) 140 NaCl, 4 Cl, 0.5 MgCl2, 1.8 CaCl2, 5 HEPES, 55 D-glucose(PH 

7.4). We recorded the samples by Confocal Leica TCS SP5 II and the signals were 

monitored through a high resolution by Leica TCS SP5 Confocal microscope 

(70ms/frame, pixel size 713.7nm, objective HCX IRAPO L 25X/0.95 water immersion, 

resonant scanner 8000Hz, pinhole 600µm). Fluorescence ratio imaging 

measurements are typically performed by recording fluorescence intensities excited 

at about 450 and 510 nm, detecting emission at >570 nm. The ratio of these 

intensities (F450/F510) decreases upon membrane hyperpolarization. 
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External stimuli responsiveness 

μ-TP were equilibrated in 1x Tyrode’s solution at 37°C for 1 hour prior to 

measurement. Electrical responses of μ-TPs were assessed using custom made 

testing chambers. μ-TP were paced between a pair of graphite electrodes kept 1 cm 

apart by a silicon bracket glued to a glass slide. Using this device made in laboratory 

we collected the μ-TP among the electrodes were placed with Tyrode’s solution, 

which was enough to partially submerge the electrodes. The small chamber volume 

ensured that most of the μ-TP was located between the electrodes.  A signal 

generator (Thurlby Thandar Instruments, TGA 1230) connected to the electrodes 

provided the desired electrical stimulation (Pulse features: Ampl. : 4.5V/cm, Freq. : 

1Hz / 0.5Hz). Contractions and response to external stimuli of μ-modules were 

recorded with a CMOS-camera (HAMAMATSU PHOTONICS – C11440-22CU) on an 

Inverted microscope (OLYMPUS - X81) with an acquisition of 30 fps. The image 

sequences were analyzed using ImageJ (NIH, version 1.43m). The contractility of μ-

TP was defined as the fractional en face area change during one contraction cycle 

using frame-by-frame video analysis in ImageJ. 

 

3.3 Results and discussion 

3.3.1 Micro-scaffold production and characterization 

The morphology of GPMs is shown in figure 2 (A, B). The modified double emulsion 

technique allows the fabrication of micro particles having good sphericity, high 

superficial and bulk porosity with a high degree of interconnection. The average pore 

size was about 20 μm and the microspheres diameters distribution falls in the range 

of 75-150 μm. As described above, the GPMs were prepared in two formulations by 

varying their crosslink degree, 2% and 5% respectively. We showed [2] the higher 

the crosslink extent, the higher the degradation time. Lastly, the number of dry micro-

carries per milligram was evaluated to be 5000 beads per milligram by video-

microscopy analysis.  This was done in order to control the cell/microspheres ratio at 

the inoculums step of the seeding phase, as described below. 
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Figure 2: GPM morphology by SEM micrographs. 

 

3.3.2 Cardiac-μTP evolution and characterization  

Cell adhesion and proliferation: viability and morphology of Cardiac-μTP  

As explained in chapter 2, the cardiac function is determined by the coordinated and 

dynamic interaction of several cell types together with components of the 

extracellular matrix (ECM). This interaction is regulated by mechanical, chemical, and 

electrical signals between the cellular and non-cellular components of the heart. 

Recent studies using fluorescence-activated cell sorting indicate that the number of 

myocytes remains relatively constant during development and disease, whereas the 

number of fibroblasts and other cell types can change dramatically. Cardiac 

fibroblasts appear to have different origins at different stages of development and 

fluctuate in response to a variety of physiological signals. Fibroblasts form a network 

of cells that are connected to each other via specific cadherins and connexins, to the 

ECM via integrins, and to myocytes by a variety of receptors, including connexins 

Quantitative changes in mechanical, chemical, and electrical signals can alter the 

overall cardiac form and function [4]. In the heart, the cellular components primarily 

consist of myocytes, fibroblasts, and the vascular system. In addition, transient cells, 

such as mast cells, macrophages, and lymphocytes, can be found under certain 

conditions, such as in response to pathophysiological stimuli (Fig. 3). Finally, in 
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cultures with more NMCs, the cardiomyocytes may have slower beating rates, less 

negative membrane potential, and slower action potential upstroke velocities [24,25]. 

 

 

 

 
FIGURE 3: Model of interactions between cells and extracellular matrix in the heart. 

 
 
 
 

 
Seeding Phase (SP) 
Seeding phase parameters were optimized by inoculating CM-R and porous gelatine 

micro-spheres at the ratio of 1000 cells*bead−1 in a spinner flask. Cell adhesion and 

distribution on gelatine micro-spheres, was strongly related to dynamic culture 

parameters. The MMT images in figure 4, show that cell cell-to-bead distribution and 

cell seeding efficiency, were improved by using the dynamic condition “b” (5 min 

stirring at 30 rpm and 30 min resting up to three days) compared with dynamic 

condition “a” (5 min stirring at 30 rpm and 30 min resting for six h followed by 

continuous stirring at 30 rpm up to three days).  
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FIGURE 4: MTT on μ-TP after 3 days of culture, 4A: condition “a”. 4B: condition “b” showed the increased 
cell seeding efficiency. 

 
 
 
Evolution Phase (EP)  
The evolution phase was carried out by using three different formulations with 

cardiac cells: CM-R (+), CM-R (-) and CM-ER. In figure 5 the results of Alamar blue 

assay are shown and a comparison between CM-R (+) and CM-R (-) was made in 

terms of the number of cells per micro-beads during culture time. For both micro-

muscle types the cell number increased with culture time. During the first 3 days of 

culture the cell number was quite similar (600 cell / beads, figure 5), but, as culture 

time increased, the micro-tissue created with CM-R (-) showed an hyper proliferation 

of cells compared with C-MR (+). This was due to the effect of BrDu addition that 

hinders fibroblast proliferation. The cell population named CM-ER, did not proliferate 

over culture time due to the high cardiomyocytes content (data not shown) according 

to literature data [26,27]. 
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Figure 5: Alamar blue assay showed that During the first 3 days of culture the cell number was quite 
similar (600 cell / beads, figure 5), but, as culture time increased, the micro-tissue created with CM-R (-) 
showed an hyper proliferation of cells compared with C-MR(+). This was due to the effect of BrDu addition 
that hinders fibroblast proliferation. 

 

 

Histology 

Histological analysis in Figure 6 shown the morphological difference of the micro-

tissues realized with the three kind of cell population at time point EP3 and EP9. CM-

ERs were no not able to colonize the micro-scaffold and they shown to grow and to 

aggregate around the scaffold (figure 6 A). As the culture time increased the cells 

was able to form spherical clusters resembling a cardiac spheroids made-up mainly 

by cell aggregate (figure 6B). CM-R (-)s shown a good integration with micro-scaffold 

just after the seeding phase. Indeed, figure 6C (time point EP3) shows that cells are 

embedded within the micro scaffold and a small amount of extracellular matrix has 

been produced. At the time EP9 the scaffold was completely disappeared and the 

micro-muscle is mainly composed by extracellular matrix. Moreover the centre of 

micro-muscle was observed to be quite necrotic (figure 6D). By using CM-R (+) cells 

it was observed a similar behaviour as CM-R (-) at the time point EP3 (figure 6E). 

Interestingly, at time point EP9 the micro-muscle shown a better morphology in terms 

of cell distribution and ECM synthesis and no necrotic core was observed (Figure 

6F).  
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Figure 6: Hematoxylin and eosin staining images of cardiac μ-TP. Images showed the time evolution of 
μTP in terms of cells number increase, the ability to colonize the pores of the GMP and cell-seeded GPM 
aggregate formation. Scale bar is 100μm. 
 
 
 
 
In summary, we showed that morphological and functional cardiac μ-TP 

characteristics are different, depending on the presence or absence of proliferating 

NMCs. As described above, the number of cardiac fibroblasts appears to be crucial 

in the evolution and function of the heart tissue. Whether similar cell interactions 

occur in vivo, for example pathological states were frequently associated with 

myocardial remodelling involving fibrosis. This was observed in ischemic and 

rheumatic heart disease, inflammation, hypertrophy, and infarction. The growth in 

fibrous tissue content was based on the maintained proliferative potential of 

fibroblasts, and the synthesis of extra-cellular matrix (ECM) proteins, predominantly 

by fibroblasts [6,7].  

 

Immunofluorescence and Multiphoton analysis 

For the following investigation only data concerning to CM-R (+)-μTPs are presented 

because it was considered the gold standard formulation. Spatial distribution of cells 

and ECM within the CM-R(+)-μTPs has been analyzed by means of multichannel 

fluorescence and multiphoton imaging (figure 7 A,C), as well as polarized microscopy 

images from PRS stained μTP sections (figure 7 B,D). The images refer to “short 
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time” (EP3-EP5) and “long time” (EP6-EP9) of spinner culture. The multichannel 

images highlight cell’s nuclei in green, cell’s cytoskeleton in red, unstained collagen 

in gray. In the polarized images the de-novo synthesized collagen is shown in a 

colour scale ranging from green to red. The images showed the time evolution of 

μTPs in terms of number of cells, collagen deposition, μTPs aggregation and 

degradation of micro-scaffold. At short time of culture (figure 7A) the cells are mainly 

present on the surfaces of the GPM and colonize a small fraction of the inner pores; 

no signal of mature collagen was detected by SHG. At “long time” (Fig.7C) the μTPs 

morphology changed, the GPM porosity appeared collapsed and it was impossible to 

distinguish individual GPM. The number of cells increased with culture time and 

some neo-ECM deposition was observed (gray).  

As explained in section 2.5 (Properties and Functions of Cardiac Extracellular 

Matrix), the role of extracellular matrix proteins in the heart during development and 

in several pathologic situations has received considerable attention in recent years. 

Recently developed biochemical and morphologic methodologies have revealed that 

extracellular matrix components are important in the organization of cellular 

structures as well as in the developing heart, and were partially responsible for 

contractile function and dysfunction in healthy and diseased hearts, respectively. 

Furthermore, in figure 7 B, D the PRS staining allowed monitoring collagen 

maturation and evolution with time. According to histology and SHG images, from 

short time culture to long time culture there is an increase in collagen deposition (red 

and green pixel) but it is interestingly to highlight that the proportion of green fibers 

decrease while the proportion of red fibers increases (Figure 7 E,F).   
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Figure 7: time evolution of morphology and ECM composition 

 

 

Ultrastructural analysis (TEM) 

TEM micrographs demonstrated that from the fourth day onwards the cardiac-μTPs 

showed development of typical functional structures of cardiac tissue (Figure 8). 

Ultrastructural hallmarks of cardiomyocyte were the development of T tubules with 

sarcoplasmic reticulum, specialized cell-cell junctions as an intercalanted disk and 

desmosomes. Moreover in figure 8D the cell well stretched on micro-scaffold was 

observed and in Figure 8E the transmission electron micrographs of the constructs 

demonstrated the presence of well-organized myofilaments with equally spaced Z 

lines.  

 

 

Figure 8: TEM micrograph of μTP showed development of typical functional structures of cardiac tissue   
after 4 days of culture. A) Intercalanted disk, arrow B) Glycogen, C) Desmosomes , arrow D) the cell 
stretch on micro-beads and tuble t  with the sarcoplasmic reticulum (SR), arrow E) Well-organized 
myofilaments with clearly defined Z-lines (arrow). 
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Self assembly: spontaneous aggregation of μ-tissues 

Cardiac μ-tissue precursors obtained by previous steps were collected in a low 

attachment multiwell and the ability of biological fusion was studied by image 

analysis. In the graph (Fig. 9) it was possible to observe a reduction in μm2 in the 

time of the micro-tissues.  

 

 

 

Figure 9: Reduction in μm2 in the time of the micro-tissues. 

 

 

Time evolution of functional properties 

At first day of evolution phase (EP1) spontaneous beating was recorded. The beating 

rate, evaluated by ImageJ (figure 10 A,B) analysis, revealed a decrease in the 

beating activity of μTPs from short time (20 b.p.m) to long time (12 b.p.m)  as shown 

in figure 10 C. This observation was confirmed by further analysis: the expression of 

Cx-43 [5]. In fact the beating properties are believed to be related to GJ 

communications and finally linked to expression of Cx-43. In figure 10 D,E 

immunofluorescence images showing the distribution of α-actinin sarcomeric (green) 

and Cx-43 (red) during culture time are reported. Cardiomyocytes were tightly 
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interconnected with gap junctions and pulsate simultaneously in native heart tissue 

[9]. It is also well-known that confluent cultured cardiomyocytes on culture surfaces 

connect via gap junctions and beat simultaneously. Therefore whether electrical and 

morphological communications were established between μTPs was a crucial point. 

In fact, we examined by immunofluorescent analysis whether GJ communication was 

established between the μTPs during a “short” and “long time”. Figure 10 shows the 

monoclonal antibody against Cx43-specific peptides revealed distinct punctuate 

staining at myocyte cell-cell contacts. The number and size of Cx43-positive spots 

decreased with the culture period, at "short time" abundant Cx43 was detected not 

only at cell-to-cell interfaces, but also on the free cell membrane, while at "long time" 

there were a small number of Cx43-positive spots at the zones of contact between 

myocytes and the size of each spot was also small. Finally, by means of image 

analysis it was possible to extrapolate the time evolution of the Cx-43 density 

expressed as pixel / mm2, shown in figure 10, indicating a decrease of junction 

density in the tissue with culture time.  

These results demonstrated that the cardiac micro-tissues during the “short time” 

preserve intact Cx43 on their surfaces. These results suggest that, in the time that 

coincides with “short time”, the capability of self aggregation with a  rapid and intact 

GJ formation in addition to deposited the right amount ECM, provide a functional 

communication between μTPs, creating a cardiac micro modules equipped with self-

beating and synchronization. Instead, the “long time” micro-modules could be 

considered pathological μTP; decrease in the beating and cx-43 is probably due to 

the increase in the cardiac fibroblasts and the factors they produce.  
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Figure 10: Expression of Cx43 between μTPs during “short” and “long time”. The constructs were fixed 
and the frozen sections were obtained. The frozen sections stained with anti-Cx43 antibody (red) and α-
actinin sarcomeric (green) revealed that Cx43 was abundant during the “short time” not only at cell-to-
cell interfaces, but also on the free cell membrane, while in the "long time" the quantity of cx-43 
decreases dramatically. The graph showed the morphometrical analysis of Cx43-positive spots during 
“short” and “long time”.  
 

 

Self-Assembly and synchronization: Membrane depolarization measurements  

The conduction and propagation of action potential within and between the μTPs was 

critical for successful cardiac tissue engineering. Biological communication between 

the μTPs, was proved by use of voltage sensitive probes in order to evaluate time 

evolution of fluorescence directly linked to the membrane depolarization. The 

depolarization rate in localized areas in the μTPs was compared with their global 

beating rate marked as “a”, “b”, “c” and “global”, respectively (figure 11 A,B). By 

reporting the variation of the fluorescence intensity with the time (figure 11 C-F), it is 

possible to see that there is signal synchronization within and between the μTPs. 

Indeed, the beating frequency evaluated in all points was similar (30 b.p.m.) and the 

values are very close those one evaluated by means of bright field imaging.  

Of particular importance was the ability to assess local differences in contractility and 

whether action potentials propagated throughout the thickness of the construct or 

merely on the surface. This data demonstrates the ability of cells to migrate into the 
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porous micro-scaffold, not remaining on the surface, and the skill to communicate 

with each other generating the synchronizing of the beat. It was found that three days 

were necessary to establish a sufficient electrical connection between the μTPs 

without any conduction disturbance. Thus, we thought that these analyses would 

provide important basic data for the transplantation of myocardial μTPs in future 

studies. 

 

 

Figure 11: Image analysis performed on the same samples, in bright field and with voltage sensitive 
probes, demonstrated that there is synchronized spontaneous beating. We compared the beating of three 
different zones in the micro-tissue: a, b, c with a beating of the global micro-tissue.  

 

 

Electrical response assessment 

A certain amount of the μTPs contracted spontaneously in the absence of external 

electrical stimulation. Other than such active properties, the passive beating was 

investigated by placing non-beating μTPs under pulsating electrical stimulations by 

means of the device described above and showed in figure 12 A.  Two train pulse 

signals having different frequency were imposed: 1Hz and 0.5Hz respectively. By 

recording the shape change by bright field images of the μTPs, it was possible to 

establish that μTPs contract with the same frequency (figure 12 B,C). 
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Figure 12: A) Device made in lab to stimulate the micro-tissue. B) The graphs show the response at the 
different frequency stimuli. 

 

 

3.4 Conclusions 
The in vitro fabrication of dense native heart-like tissue holds great promise not only 

for myocardial infarction treatment but also as an in vitro experimental model for the 

study. Due to limited cell migration in 3D preformed scaffold and restriction of nutrient 

transportation, traditional top down scaffolds-based approach had not proven to be 

suitable for the fabrication of dense engineered heart tissues, unless external 

stimulation and bioreactor are used. Other techniques, such as scaffold free tissue 

engineering or cell laden microgel, even if lead to the realization of functional cardiac 

muscles does not allow the development of a cardiac ECM and are formed mainly by 

cell aggregates that because of correctly arranged give rise to macroscopic functions 

such self-beating.   

Here we focused on the possibility to build-up a functional cardiac micro-muscle 

where the ECM growth and assembly is taken in to account. It has been used the 

gelatine because cell are able attaches and migrates, and is thus suitable for 

cultivating the adherent cells. Moreover it has been demonstrated that the interaction 
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between pore surface and fibroblasts lead to a deposition of endogenous ECM in the 

pore space [5,28]. This study demonstrates the feasibility of forming dense CTE 

grafts in vitro by means of porous gelatine composite micro-beads, exploiting to main 

advantages:  

� The small size of the micro-beads facilitates rapid transport of nutrients by 

diffusion to cells at any location in the beads. Indeed using the correct cell 

composition the micro-tissues are viable up to nine days of culture.  

� Characterizing sub-millimeter sized micro-tissues containing cardiomyocytes 

and cardiac fibroblasts cells we found that fibroblast interacting with gelatine micro-

scaffold was able to lid down ECM entrapping cardiomyoocytes, generating a tissue 

equivalent formed by cell embedded in their own ECM.  

It has been demonstrated that to do this, cellular composition and choice should be 

optimized. We demonstrated that cardiac micro-tissues containing intact GJ 

precursors in addition to deposited ECM allow for rapid and complete electrical 

communications. Finally, characterizing the individual μTP and we found that there 

are able to self assemble and by exploiting such properties we realized a 3D cardiac 

patch as described in the next chapter. 
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CHAPTER 4 

 

3D CARDIC-TISSUE EQUIVALENT IN VITRO 

 

4.1 Introduction  

One of the most challenging issues of cell-based tissue engineering is the 

implementation of strategies to successfully culture large construct in vitro mimicking 

the natural tissue organization. To reach this aim recent efforts have been 

concentrated on bottom-up tissue fabrication methods [6] using both scaffold-free 

[7,8] and scaffold-based micro-modules as building blocks [9,10] to generate a larger 

3D tissue construct. However, while many studies focused their attention on the 

molding capability of building blocks [8,9,11,12], at best of our knowledge few efforts 

have been spent to reach a deep understanding of their role in ECM organization as 

well as the cellular organization. To address this challenge cells have been mixed 

with natural or artificial hydrogel or seeded on micro-carriers to form modular tissues 

of specific geometries and mechanical properties. In this context, cell-laden hydrogel 

resembled the architecture of the target tissue at micron-scale, but scaling up the 

production to tissue level dimensions has not been proven yet [6,9]. On the contrary, 

a long time culture of 3D engineered tissue rich in endogenous ECM have been 

performed by molding cell-seeded micro-beads [12,10]. This kind of scaffold-based 

building block have the ability to temporarily support the new tissue, giving the 

possibility to the cells to organize and in order to be provided by cell-derived ECM 

layer essential for the cells to grow and differentiate in a tissue like environment, 

biologically fused in a 3D tissue equivalent under appropriate culture conditions. In 

this fashion, our has developed [13] a  strategy yielding 3D cardiac tissue constructs 

of defined size and geometry by means of the biological sintering of cell seeded 

micro-scaffold so-called micro-tissue precursors (μTPs). Since μTPs were shown to 

spontaneously aggregate in a stable manner, a 3D viable tissue formation strategy 

based on the assembly of μTPs was proved feasible (Chapter 3). Furthermore, we 
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assessed that the optimal time and dynamic process conditions optimized in order to 

promote and to control the cellular organization and the assembly of de novo 

deposited ECM lead to the realization of a 3D cardiac equivalent. 

In this chapter the optimal time for taking the μTPs for aggregation in 3D tissue 

equivalent and the role of micro-scaffold properties in providing guidance to direct 

tissue morphogenesis has been investigated. Engineered constructs then were 

compared to native cardiac tissue to assess their suitability to serve as an in vitro 

model for scientific studies and potentially as tissue equivalents for in vivo tissue 

repair. 

 

4.2 Materials and methods  

4.2.1 Cardiac-��TP molding  

As previously described [1] cardiac-μTPs suspension was transferred from the 

spinner flask, to a 50 ml Falcon centrifuge tube and, after settling, transferred by 

pipetting into the maturation chamber to allow their molding in disc-shaped construct 

(1 mm in thickness, 5 mm in diameter). After 3 days in spinner flask it was collected 

the μTP into the chamber maturation. During the filling procedure, the maturation 

chamber was accommodated on a device connected with a vacuum pump to make 

the process faster and to assure that any bubble was in the maturation space. Finally 

the assembling chamber was placed on the bottom of a spinner flask and completely 

surrounded by culture medium. The spinner was operated at 60 rpm and the medium 

was exchanged every 2 days. The maturation space was disk shaped (1 mm in 

thickness, 1 mm in diameter) inserted in a dynamic environment allowing tangential 

flow that guarantee optimal nutrient supply and waste removal through the 

maturation space during the culture time. After 7 days in the assembling chamber 

obtained a 3D cardiac tissue equivalent. 

 

 4.2.2 Self-beating 

The 3D cardiac tissue after 7 days into maturation chamber was characterized of 

self- beating. The investigation of spontaneously beating of μ-TP was undertaken 
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using a CMOS-camera (hamamatsu photonics – C11440-22CU) on an inverted 

microscope (OLYMPUS - X81).  

 

4.2.3 Cell and ECM organization 

Cell and ECM organization along the biohybrid’s thickness were assessed by 

performing histological analysis on transverse sections of biohybrid. Transverse 

sections of samples were stained using hematoxylin-eosin (Bio Optica solutions, 

Masson’s trichrome (Sigma Aldrich) and Picro Sirius Red (PSR) (Sigma Aldrich) 

following standard procedure and analyzed by an optical microscope (BX53; 

Olympus). Moreover histological sections from neonatal ventricle rat stained with the 

same histological staining were observed and compared. Polarized light images of 

samples stained with PSR alone were acquired with an inverted microscope (BX53; 

Olympus) with a digital camera (Olympus DP 21). A linear polarizer was placed 

between the light source and the specimen, while the analyzer was installed in the 

light path between the specimen and the camera. It was known that the color of 

collagen fibers stained with PSR and viewed with polarized light depends upon fiber 

thickness; as fiber thickness increases, the color changes from green to red [14,15]. 

 

4.3 Results and discussion 

4.3.1 Self-beating 

To realize a 3D macroscopic cardiac-like tissue, it was choose to use as building 

block μTPs-CM-R(+) in the short time phase (EP-4) because their major functional 

properties. To do this, μTPs were loaded in a micro pipette and casted in the 

maturation chamber that was then placed in a spinner flask bioreactor to guarantee 

dynamic culture conditions. The Assembly process was stopped after 7 days 

obtaining a 3D cardiac-like tissue 5 mm in diameter and 1 mm thick. The beating 

frequency of the patch was evaluated by means of video-microscopy (see 

supplementary info patch.avi) and it was evaluated a beating frequency of 

approximately 150 b.p.m. Moreover, we interpret these data to reflect a “conditioning” 

effect: greater initial CM number promote CM survival, in fact CM-CM interactions 
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may also be important. It has been reported that the MCs release into the culture 

medium complex proteins that promote their own survival and beating [23]. It was 

therefore possible that MCs condition their microenvironment in culture and that a 

great number of NMCs somehow interfere with this process, perhaps by degradation 

or binding of a macromolecule necessary for MC communication. However, a great 

beat showed that the biological fusion was complete into 3D and that with this strategy 

cardiac cells retain the ability to communicate between them. 

 

4.3.2 Histology  

Figure 1 shows the morphological analyses performed on cross section of cardiac 

patch and comparison with native cardiac muscle from neonatal rat is also reported. 

Figure 1 A, D shows Masson Trichrome staining of cardiac patch and native tissue, 

respectively. From the images it is possible to see that collagen (in blue) was present 

in small amounts, along the whole thickness and was distributed between the cells as 

well as in native tissue. Images of H/E histology of the cross section of biohybrid 

(Figure 1 B) shown complexes of multicellular aggregates and longitudinally oriented 

cell bundles as in the native tissue (Fig.1 E). Moreover, by PRS analyses, Fig 1C and 

1F, it is possible to observe a network of fibrillar collagen filling the interstitial space 

and bridging the gap between the cells and the porous gelatine scaffold.  

Mechanical stress plays an important role in the regulation of myocardial structure 

and function, a process well recognized by cardiac surgeons [16]. Increased 

mechanical stress can stimulate cells to hypertrophy, orient, and increase their 

contractile state [17,18,19]. Increased mechanical load can also stimulate the 

secretion and reorganization of extracellular matrix components [20]. The 

extracellular matrix was the substrate for cell adhesion, growth, and differentiation, 

and it provided the mechanical support necessary for effective cardiac contraction 

[21,22]. Given the critical role of mechanical stimuli in maintaining effective 

myocardial structure and function, the goal of this study was that without any 

mechanical stimulation there was a balanced cell proliferation, without necrotic areas, 

and highly organized formation of the fibrillar collagen network that results with an 

organization of tissue in which cells and ECM were not arranged randomly but there 

is an orientation along an axis. 
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Figure 1: Histological analyses. A, D) Masson trichrome stained cross section of cardiac patch and 
neonatal ventricle rat, respectively. B, E) Hemtoxylin and eosin staining of cardiac tissue equivalent and 
neonatal tissue, respectively. C, F) PRS staining on cardiac patch made in lab and neonatal tissue, 
respectively. Scale bar is 100μm. 

 

4.4 Conclusions  

In this study we have demonstrated that modular cardiac tissues could be used to 

produce a 3D cardiac tissue equivalent. The matrix scaffold provided a transient but 

crucial structural support for the cells until they can secrete and maintain their own 

extracellular matrix.  In order to obtain a macroscopic viable 3D tissue equivalent we 

needed firstly to engineer the μTPs in terms of their ECM composition. Cardiac cells 

were able to adhere and to growth on micro-scaffold and by means of cell / material 

cross talk, the key components of the ECM were secreted and assembled. Such 

process leads to an up-regulation of the ECM assembly on the �TPs in suspension, 

leading to the death of the �TPs. Indeed, as spinner culture increased we observed 

that even if the fibroblast growth was blocked, the mature fraction increased. At the 

early time (short time culture) of the spinner culture, the immature fraction of the 

cardiac ECM was higher and we used such micro tissues as building block for the 

realization of the 3D cardiac muscle. After one week of assembly and maturation we 

observed a tissue characterized by an increased self-beating and the ECM was quite 

similar to that one of the native tissues. We observed that this behavior was the 

opposite of the micro-tissue evolution where the cells were engaged in assembly the 

existing ECM, leading to a formation of a scar-like tissue. In the assembly phase it 

seems that cells were preferentially engaged in leading down new ECM in order to 
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reach a configuration characterized by a completely connected and synchronized 3D 

structure. The development of a functional tissue construct was dependent on the 

capacity of the seeded cells to re-establish an architecture that resembles native 

myocardium. Our observations indicate that with this approach, the heart cells 

possess an innate capacity to re-establish complex 3D myocardial organization if 

provided with appropriate environmental cues. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



75 
 

References  

 

[1] Urciuolo F, Imparato G, Palmiero C, Trilli A, Netti PA. Effect of Process Conditions on the Growth 

of Three-Dimensional Dermal-Equivalent Tissue Obtained by Microtissue Precursor Assembly. Tissue 

Eng. 2011;17:155-64. 

 
[2] Akins RE, Boyce RA, Madonna ML, et al. Cardiac organogenesis in vitro: reestablishment of three-

dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng. 1999;5:103–

118. 

 
[3] Carrier RL, Papadaki M, Rupnick M, et al. Cardiac tissue engineering: cell seeding, cultivation 

parameters, and tissue construct characterization. Biotechnol Bioeng. 1999;64:580–589. 

 
[4] Li RK, Yau TM, Weisel RD, et al. Construction of a bioengineered cardiac graft. J Thorac 

Cardiovasc Surg. 2000;119:368–375. 

 
[5] Li RK, Mickle DA, Weisel RD, et al. Human pediatric and adult ventricular cardiomyocytes in 

culture: assessment of phenotypic changes with passaging. Cardiovasc Res. 1996;32:362–373. 

 
[6] Lydia Sorokin.The impact of the Extraacellular matrix on inflammation. Nature review Immunol. 

2010 Vol. 10 

 
[7] Hugo Fernandes,Lorenzo Moroni,Extracellular matrix and tissue engineering applications. Journal 

of Material Chemistry. 

 
[8] M. J. Buehler, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 12285– 12290 

 
[9] F. W. Keeley, C. M. Bellingham and K. A. Woodhouse, Philos. Trans. R. Soc. London, Ser. B, 

2002, 357, 185–189. 

 
[10] Braverman IM, Fonferko E (1882) Studies in cutaneous aging: I.the elastic fibre network. JInvest 

dermatol 78:434-443 

 
[11] A. Lamure, M. F. Harmand and C. Lacabanne, J. Biomed. Mater. Res., 1990, 24, 735–747 

 
[12] G. C. Gurtner, S. Werner, Y. Barrandon and M. T. Longaker, Nature, 2008, 453, 314–321. 

 
[13] Lavker RM. Cutaneous aging: chronologic versus photoaging. In: Gilchrest BA, ed. Photoaging. 

Cambridge, Mass.: Blackwell Science, 1995: 123-35. 

[14] Rich L, Whittaker P. Collagen and picrosirius red staining: a polarized light assessment of fibrillar 

hue and spatial distribution. Braz. J. morphol. Sci. 2005;22:97-104. 



76 
 

[15] Nadkarni SK, Mark CP, Park BH, De Boer JF, Whittaker P, Bouma, BE et al.Measurement of 

Collagen and Smooth Muscle Cell Content in Atherosclerotic Plaques Using Polarization-Sensitive 

Optical Coherence Tomography. Journal of the American College of Cardiology 2007;49: 1475-1481. 

[16] Payam Akhyari, Paul W. M. Fedak, Richard D. Weisel, Tsu-Yee Joseph Lee, Subodh Verma, 

Donald A. G. Mickle and Ren-Ke Li Mechanical Stretch Regimen Enhances the Formation of 

Bioengineered Autologous Cardiac Muscle Grafts, Circulation. 2002;106:I-137-I-142. 

[17]  Ruwhof C, van der LA. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal 

transduction pathways. Cardiovasc Res. 2000;47:23–37. 

[18] Sadoshima J, Izumo S. The cellular and molecular response of cardiac myocytes to mechanical 

stress. Annu Rev Physiol. 1997;59:551–571. 

[19] Fink C, Ergun S, Kralisch D, et al. Chronic stretch of engineered heart tissue induces hypertrophy 

and functional improvement. FASEB J. 2000;14: 669–679. 

[20] Chiquet M. Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biol. 

1999;18:417–426. 

[21] Ross RS, Borg TK. Integrins and the myocardium. Circ Res. 2001;88: 1112–1119. 

[22] Weber KT. A whisper on the wind spawns a storm. Cardiovasc Res. 2000; 46:211–213. 

[23] Gordon HP, Brice MC (1974) Intrinsic factors influencing the maintenance of contractile 

embryonic heart cells in vitro. I. The heart muscle conditioned medium effect. Exp Cell Res 85: 303-

310. 

 

 

 


