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Abstract 

L’utilizzo delle microalghe come risorsa di cibo, mangimistica e fonte di energia rinnovabile, ha 

ricevuto un considerevole interesse negli ultimi anni. Tuttavia, è necessario ottimizzare le condizioni 

di crescita delle microalghe per ottenere una produttività sostenibile e fattibile dal punto di vista 

economico. Nel seguente lavoro di tesi, è stata focalizzata l’attenzione sul miglioramento della 

produttività lipidica di due specie di microalghe Botryococcus braunii e Phaodactylum tricornutum, ed è 

stato valutato il profili lipidico del ciano batterio A. maxima comunemente conosciuto come Spirulina, 

coltivato alle latitudini del Mediterraneo. Questo lavoro è stato suddiviso in quattro capitoli: 1) 

Crescita di due ceppi di Botryococcus braunii in reflui domestici prima e dopo il trattamento; 2) Effetto 

delle differenti variabili ambientali sulla quantità e sulla qualità dei lipidi di B. braunii coltivato su 

piccola e grande scala; 3) Strategie per migliorare il contenuto e il profilo lipidico di Phaeodactylum 

tricornutum; 4) Contenuto lipidico e profilo degli acidi grassi di A. maxima coltivata nel sud Italia.I due 

ceppi di B. braunii hanno mostrato un buon rendimento di crescita in acque reflue, e il più elevato 

contenuto lipidico (24±2,4 %) è stato registrato dal ceppo UTEX LB 572 cresciuto nel refluo influente. 

Sia i ceppi UTEX che IBL hanno dimostrato un equilibrio tra la quantità di acidi grassi saturi e insaturi 

adatti come fonte di carburante biologico.B. braunii  ha mostrato un contenuto lipidico della biomassa 

significativamente più elevato usando starvazione di azoto con un valore massimo del 65±4.3%. per 

quanto riguarda la produttività lipidica, la starvazione di azoto non ha migliorato la produttività 

lipidica rispetto a una coltura con il 3% di insufflazione di CO2. Anche l’utilizzo di NaHCO3 come 

fonte di C, in sostituzione della CO2 non ha mostrato risultati statisticamente significativi in termini 

della produttività lipidica di Bb. L’aggiunta di NaHCO3 ha migliorato il contenuto dell’acido γ-

linolenico con valori del 37±4% rispetto agli acidi grassi totali. L’acido γ-linolenico è importante per le 

sue proprietà anti-infiammatorie e immuno-modulatorie, e può avere molte applicazioni nel campo 

alimentare. Il contenuto e la produttività lipidica di P. tricornutum è significativamente più elevato  

utilizzando un terreno di crescita con starvazione di azoto. La produzione in vasche sotto serra ha 

mostrato i più alti valori in contenuto di EPA(25,7%) rispetto ai TFA e bassi costi di produzione con 

una alta produttività della biomassa.A. maxima è stata coltivata per due anni (2012-2013) a partire da 

Giugno fino a Novembre, e ogni mese è stato valutato il contenuto e il profilo lipidico della biomassa 

prodotta. Il contenuto lipidico medio tra le due stagioni produttive è stato, rispettivamente, di 

8.0±3.2% (dw) nel 2012 e 8.3± 2.2%( dw) nel 2013, con i valori più alti registrati a settembre di entrambi 

gli anni. Il profilo lipidico non ha mostrato delle differenze statisticamente significative tra gli anni, e 

la somma dell’acido linoleico e γ–linolenico è stata del 50% del TFA(acidi grassi totali). B. braunii e P. 

tricornutum, coltivate nel sud Italia, con tecnologie a basso costo, ha mostrato una produttività lipidica 

di 4,4 e 7,0 (ton/ha/y rispettivamente, valori considerevolmente molto più alti rispetto alla produttività 

lipidica dell’olio di semi di girasole, dell’olio di oliva, dell’olio di soia e dell’olio di mais. A. maxima ha 

mostrato una produttività lipidica di 0,96 (ton/ha/y) simile a quella dell’olio di semi di girasole 

(0,77ton/ha/y). A.maxima, P.tricornutum e B.braunii sono una fonte promettente di olio che potrebbe 

essere utilizzato come ingrediente funzionale nell’industria alimentare o nel mercato come 

supplemento per il cibo. Queste microalghe potrebbero essere coltivate alle nostre latitudini un costo 

di produzione relativamente basso e con buone caratteristiche nutrizionali   
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Abstract 

The potential of microalgae as a source of food, feedstock and renewable energy has received 

considerable interest, but if microalgae production is to be economically viable and sustainable, 

further optimization of mass culture conditions are needed. In this work  the  attention was focused on 

the improvement of lipid productivity of two microalgae  species  Botryococcus braunii and 

Phaeodactylum tricornutum, and  evaluation  of lipid productivity and fatty acid profile of the 

cyanobacterium Arthrospira maxima, formely known as Spirulina, cultivated at the mediterranean 

latitudes. The  thesis work consists of four experiments: 1) Growth of two strains of Botryococcus 

braunii (UTEX LB 572 and IB 115 ) in domestic effluents before and after pretreatment stage; 2) Effects 

of different environmental variables on quantity and quality of lipids of B. braunii cultivated in small 

and large scale; 3) Strategies to improve lipid content and fatty acid profile in Phaeodactylum 

tricornutum; 4) Lipid content and fatty acid profile of A. maxima cultivated in south of Italy. 

The two strains of B. braunii showedgood growth performances into the waste effluents with the 

highest value of lipid (24%) evidenced by UTEX LB 572 strain grown in influent medium. Both strains 

have showed a balance between saturated and unsaturated fatty acids suitable as a source of biofuel. 

B. braunii  was shown to be capable of accumulating lipids as  65% of the biomass using nitrogen 

starvation, while supplying additional CO2 (3%) in the culture medium with nitrogen starvation did 

not improved lipid productivity. NaHCO3 as a source of C, instead of CO2, improved the -linoleic 

acid content of B.braunii (37±4% on total FA). -linolenic acid is important for its anti-inflammatory 

and immune-modulating activity and can have applications in food and feed.  

The lipid content and lipid productivity of P. tricornutum was significantly enhanced using nitrogen 

starvation. Production in ponds under greenhouse showed the highest value in EPA content (25,7%) 

on total FA and low production costs with high biomass productivity. 

The obtained results suggested that nitrogen limited algal cultivation is feasible and could be a useful 

strategy for producing lipid as biofuel feedstock or fatty acids for food and feed. 

A. maxima was grown for two years (2012-2013), from June to November, monthly evaluating lipid 

content and lipid profile of the obtained biomass. The mean value of lipid content in the two seasons 

were  8.0±3.2 and 8.3 ± 2.2 %(dw), in 2012 and 2013, respectively. The highest values was in September 

of both years.  The lipid profile did not shown significant differences through the year and the sum of 

linoleic and –linolenic acids was about 50% of total FA. 

B. braunii and P. tricornutum cultivated, with low-cost technologies showed  lipid 

productivityconsiderably more higher than  Sunflower, Olive, Soy and Corn. A. maxima showed a 

lipid productivity of 0.96 t/ha/y, value close to sunflower lipid productivity 0.77t/ha/y.  

Thereforemicroalgae A.maxima, P.tricornutum e B.braunii are promising source of oil to be used as a 

functional ingredient in food industry or for the market of food supplements. These microalgae could 

be cultivated at our latitudes at relatively low cost of production with good nutritional characteristic 

 

 

  



6 
 

Chapter 1: Introduction 

1.1 Introduction 

In a bio-based economy, agricultural crops are not only used for production of food and feed but also 

for chemicals, materials and biofuels. Owing to the scarcity of available fossil feedstocks for non-food 

products, there is an increasing demand for supply of bio-basedfeedstocks for both food and non-food 

ingredients. As a result, there is a debate on whether production capacity of biomass for both food and 

non-food products can be sufficient. 

Especially with the world population rising to 9 Billion in 2050, with many inspiring to a western life 

style and diet, this challenge should be addressed urgently(Draismaa et al., 2013). Availability of 

arable land, fresh water and fertilizer usage and effects on biodiversity are major factors that need to 

be taken into account in sustainable agriculture (Godfray et al., 2010; Tilman et al., 2011). 

Microalgae are considered one of the most promising feedstocks for sustainable supply of 

commodities for bothfood and non-food products (Wijffels and Barbosa, 2010; Williams and Laurens, 

2010; Tredici, 2010; Milledge, 2011; Hoekman et al., 2012). Microalgae do not need to be grown on 

arable land, can be grown on seawater and on residual nutrients, have a high areal productivity and 

are also rich in oils, proteins and carbohydrates; moreover the algal biomass can be fractionated into 

both food and non-food products via biorefinery (Wijffels et al., 2010). 

Eukaryotic microalgae and photosynthetic cyanobacteria have a great potential for productionof food 

commodities such as edible oils, proteinand starch. Only eukaryotic microalgae are capable ofnatural 

triacylglyceride production, unlike the prokaryoticmicroalgae (cyanobacteria) and macroalgae. 

Oleaginous eukaryotic microalgae can accumulate up to50–70% oil (Chisti, 2007; Hu et al., 2008; 

Bondioli et al., 2012). 

 

1.2 Microalgal oils 

For most applications in food products, oil present astriacylglycerides (TAG) is preferred, which is the 

lipidclass used by oleaginous eukaryotic micro-organisms tostore their fatty acids under stress 

conditions(Ratledge, 2004). Theaccumulation of fatty acids by oleaginous photoautotrophicmicroalgae 

is well established and recentlyreviewed (Hu et al., 2008; Griffiths and Harrison, 2009; Rodolfi et al. 

2009). Under stress conditions; such aslimitation or depletion of specific nutrients, a sub optimalpH, 

high salinity and high light conditions, a reduction ofthe degree of unsaturation of intracellular fatty 

acids wasshown (Stephensonet al., 2010; Breuer et al., 2012; Santos et al., 2012; Lamers et al., 2010; Pal et 

al., 2001). Accumulation of fatty acids inTAG under nitrogen limitation or depletion has 

beenconfirmed for a number of microalgae (Bondioli et al., 2012,Pruvost et al. 2011;Stephenson et al., 

2010,Breuer et al., 2012,Yu et al., 2009). 

The microalgal fatty acids listed in Table 1, provided theyare present in TAG, offer options to partly 

replace functionsof the currently used vegetable oils. For instance thepresence of linoleic (C18:2) and 

alpha-linolenic acid(C18:3) may partly substitute the essential fatty acidcontribution from rape seed 

(canola), soy or sunfloweroils, while palmitic acid (C16:0) in microalgal oils cancontribute to 

structuring in food products. The presenceof long chain polyunsaturated fatty acids (LC-PUFA)such 

as eicosapentaenoic acid (C20:5), docosahexanoic acid (C22:6) and the C20:5 precursor, stearidonic 

acid (C18:4) are of interest because of their cardiovascularhealth benefits (Mozaffarian and Rimm, 

2006; Harris et al., 2008). 
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Table 1.Comparison of the fatty acid (FA) profiles of various oleaginous microalgae and major vegetable oils. Specific fatty acids present below 1% were not included. All 

microalgae were cultivated under nitrogen deplete or limiting conditions, which resulted in a total FA content above 20% (w/w) in all cases, suggesting the presence of TAG. FA 

profiles from different strains of microalgae species were pooled, with the exception of Neochlorisoleabundans, where results from the same strain were used. In cases where 

results were pooled, FA content was averaged and relative standard deviation was calculated (without subscript indicates a relative standard deviation in 1–30% range).(Rene et al. 

2013)  

 

a Solely present in FA profiles (Breuer et al., 2012). 

b Solely present in FA profiles (Zendejas et al., 2012). 

c Relative standard deviation 30–40%. 

d Rel. St. Dev. 40–106%. 

e FA profile of neutral lipids was used (Bondioli et al., 2012) 

Fatty acids  C10:0 C14:0 C16:0 C16:1 C16:2 C16:3 C18:0 C18:1 C18:2 C18:3 C18:4 C20:3 C20:4 C20:5 C22:6 Ref. 

Microalgae 

Ankistrodesmusfalcatus   11 1 3  3 53 14 12      Griffiths et al. 2012 

Chlorellavulgaris   17 1c 3 6 4c 48 9 13      Breuer et al., 2012, 

Griffiths et al. 2012 

Chlorellazofingiensis   15 1 4 2 3 47 17 8      Breuer et al., 2012 

Scenedesmussp.   19c 3d 4 2d 5 48 12d 4d 1     Breuer et al., 2012,  

Griffiths et al. 2012 

Neochlorisoleoabundans   23 2d 2c 2 4 44 21 4a      Breuer et al., 2012,   

Griffiths et al. 2012 

Cylindrothecafusiformis  6 35 35  1  9 3   2 5 3  Griffiths et al. 2012 

Isochrysissp  20d 16 3   2d 33 3 4 10   2 13a Breuer et al., 2012,  

Griffiths et al. 2012 

Nannochloropsissp.  5 40 29   1 16 1    2 4  13,  

Griffiths et al. 2012 

Phaeodactylum 

tricornutum 

5b 5c 24 47 2c 2 1c 5d 1c    1 9  Breuer et al., 2012,  

Griffiths et al. 2012 

Zendejas et al., 2012 

Thalassiosirapseudonana 7b 10 28 32 4   4   4   9 1 Zendejas et al., 2012 

Rapeseed (canola)   4    2 62 22 10      Knothe et al., 2010 

Palm   44    4 39 11       Knothe et al., 2010 

Soy   8    4 24 53 6      Knothe et al., 2010 

Sunflower   6    4 25 63       Knothe et al., 2010 
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Fish and fish oil are the common sources of long-chain PUFAs but safety issues have been raised 

because of the possible accumulation of toxins in fish (Apt. and Behrens, 1999). Moreover, the 

application of fish oil as food additive is limited due to problems associated with its typical fishy 

smell, unpleasant taste and poor oxidative stability (Certik and Shimizu, 1999; Luiten et al., 2003; Abril 

et al., 2003). 

For some applications, fish oil is often suitable because of the presence of mixed fatty acids (Robles et 

al., 1998). As PUFAs are found in fish originating from microalgae consumed in oceanic environments, 

it is logical to consider microalgae as potential sources of PUFAs (Jiang et al., 1999). 

Table 2presents the microalgal PUFAs of particular interest: however, currently, DHA is the only algal 

PUFA commercially available. Indeed, even if species have demonstrated industrial production 

potential of EPA (Porphyridiumpurpureum, Phaeodactylumtricornutum, Isochrysisgalbana, Nannochloropsis 

sp. and Nitzschialaevis) (Robles et al., 1998; Molina et al., 2003; Wen and Chen 2003), no purified algal oil 

is currently economically competitive with other sources (Apt and Behrens, 1999; Zittelli et al. 1999; 

Belarbi et al., 2000).The same problem exist with γ-linolenic acid (GLA) and arachidonic acid  AA. 

DHA is an ω3 fatty acid found in different tissues  of the body. It is a major structural fatty acid in the 

grey matter ofthe brain and in the retina of the eye, and is a key componentof the heart tissue. DHA is 

important for correct brainand eye development in infants and has been shown to 

supportcardiovascular health in adults (Kroes et al., 2003;Ward and Singh, 2005). It is found infew 

food such fatty fish and organicmeat; it also occurs naturally in breast milk but is absentin cow’s milk. 

Since  1990 onwards, a number of health and nutrition organizations specifically recommended the 

inclusionof DHA in infant formula for preterm and fullterminfants. The world wholesale market for 

infant formula isnow estimated to be about US$ 10 billion per annum (Ward and Singh, 2005). 

Martek’s DHA oil for this application (DHASCO; Martek,Columbia, MD, USA) comes from 

Crypthecodiniumcohniiand contains 40–50% DHA but no EPA or other long-chainPUFAs (Jiang et al., 

1999, Ward and Singh, 2005, Ratledge, 2004). The heterotrophic process uses anumber of fermenters, 

each about 100 m3, and meets strictmanufacturing conditions that follow the US Food and 

DrugAdministration’s (FDA) current Good Manufacturing Practice(cGMP) regulations. The 

production for 2003 was 240 t (Ratledge, 2004)and formulas containing Martek’s oil are available in 

morethan 60 countries worldwide (e.g., United Kingdom, Mexico,China, United States and most 

recently, Canada).Moreover, OmegaTech (USA), also owned by Martek,exploits Schizochytrium to 

produce a low-cost oil formerlyknown as DHA Gold (10 t in 2003; Ratledge, 2004). The oil is 

currentlyused as an adult dietary supplement in food and beverages,health foods, animal feeds and 

maricultural products. Example of these foods are cheeses, yogurts, spreads and dressings,and 

breakfast cereals. Other markets include foods for pregnant and nursing women and applications in 

cardiovascularhealth (Ward and Singh, 2005). 

Finally, the Nutrinova process (Frankfurt, Germany) usesUlkenia sp. which grows in 80-m3 fermenters. 

The oil issold under the name of DHActive (Ratledge, 2004; Pulz, Abstr. Eur.Workshop 

MicroalgalBiotechnol., Germany, p. 35, 2005). 

Contribution to product taste by microalgal oils and any adverse effect of less common fatty acids in 

the fatty acid profiles will need to be evaluated before application (Spolaore et al., 2006). 
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Table 2. Particularly interesting microalgal PUFAs. The  most interesting PUFA in microalgae 

PUFA  Structure  Potential application  Microorganism producer 

γ-Linolenic acid (GLA) 18:3 ω6, 9, 12 Infant formulas for full-

term infants  

Nutritionalsupplements 

Arthrospira 

Arachidonic acid (AA) 20:4 ω6, 9, 12 ,15 Infant formulas for full-

term/preterm infants 

Nutritional supplements 

Porphyridium 

Eicosapentaenoic acid 

(EPA) 

20: 5 ω3, 6, 9, 12, 15 Nutritionalsupplements 

Aquaculture 

Nannochloropsis, 

Phaeodactylum, 

Nitzschia 

Docosahexaenoic acid 

(DHA) 

22: 6 ω3, 6, 9, 12, 15, 18 Infant formulas for full-

term/preterm infants 

Aquaculture 

Nutritional supplements 

Crypthecodinium, 

Schizochytrium 

 

1.3 Microalgae biology 

Microalgae are a huge group of photosynthetic microorganisms from freshwater, brackish and marine 

systems, typically unicellular and eukaryotic. Some of the most significant groups of algae are green 

algae (Chlorophyceae), red algae (Rhodophyceae), diatoms (Bacillariophyceae), and brown algae 

(Phaeophyceae). Although cyanobacteria (blue green algae) are classified to the domain of Bacteria, 

being photosynthetic prokaryotes, often they are considered as ‚microalgae‛(Medlin et al., 2007). 

Eukaryotic microalgae can be either autotrophic or heterotrophic. Autotrophic microalgae require 

only inorganic compounds such as CO2, N, S, P, and light as an energy source for their growth and 

development. They convert captured solar energy into biomass (photosynthesis) with an efficiency 

that generally exceed those of terrestrial plants ( about 3 % reported for marine microalgae against 

0.2–2 % for terrestrial plants)(Stephenson et al., 2011). Some photosynthetic microalgae are 

mixotrophic, meaning they are able simultaneously to perform photosynthesis and to catabolize 

exogenous organic nutrients, but some species are not truly mixotrophs, because they but have the 

ability of switching between phototrophic and heterotrophic metabolisms in relation to the depending 

on environmental conditions(Kaplan et al., 1986; Perez-Garcia et al., 2011). 

With these simple growth requirements, microalgae can sustainably generate lipids, proteins and 

carbohydrates at a large scale, offering promising environmentally friendly alternatives to the current 

consumer products. 

Microalgae active compounds, such as carotenoids, phycobilins, fatty acids, polysaccharides, vitamins 

and peptides, can be used in feed, food, nutraceutical, cosmetics and pharmaceutical industries 

(Gouveia et al., 2006).  

The chemical composition of microalgae showed to be greatly variable also in agreement with some 

environmental factors, such as water temperature, salinity, light, nutrients availability and also to the 

production technologies. In outdoor cultivation most of the environmental parameters vary according 

to the season stimulating or inhibiting the biosynthesis of several nutrients; while in close 

photobioreactor systems the cultivation occur in well controlled conditions, but it is usually more 

expensive (Marinho-Soriano et al., 2006; Carlucci et al.,1999).  

1.4 Microalgae cultivation for food production 

Commercial large-scale production of microalgae started in the early 1960s in Japan with the culture 

of Chlorella used as a food additive, followed by the cyanobacteriumArthrospira. Only after 1980 large-

scale algae production facilities were established in Asia, India, USA, Israel and Australia (F.A.O. 

2008). Commercial microalgae farms for value-added products are usually conducted in open ponds 

under autotrophic conditions in location having all the year relatively warm temperature or in 

fermenters under heterotrophic conditions.  
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Microalgae showed some important advantages respect to conventional land plants: they have much 

higher biomass productivities (around 10–50 times higher) and CO2 fixation rate, moreover arid or 

low quality agricultural land can be used for their cultivation (Singh and Gu, 2010; Scott et al., 

2010).Although microalgae cultivation is carried out in aquatic environment, they use less water than 

terrestrial crops, so the freshwater consumption is strongly reduced. Furthermore, microalgae may be 

cultivated in brackish and sea water avoiding herbicide or pesticide application, and reducing the 

needs of external nutrients (NH4, NO3 and P) (Aslan and Kapdan, 2006; Pratoomyot et al., 

2005).Currently the microalgae biomass production is still in a developing phase and a lot of work is 

necessary to enhance the productivity and to reduce the production cost. The most challenging 

problems for the microalgae production industry include capital and operating cost, difficulties in 

controlling the culture conditions, contamination of bacteria or unwanted algae, unstable light supply 

and weather. Several strategies have been proposed to cope with these difficulties. First of all it is 

important to select a good microalgae/cyanobacteria strain that are rich in the target products, can 

tolerate temperature changes, high salinity and/or alkalinity. These strains can easily become 

predominant in the culture environment, thus greatly reducing contamination problems. 

Identifying preferable culture conditions for improving the production as well as designing efficient 

and cost-effective microalgae cultivation systems are also critical points (Chen et al., 2011).In 

particular, the enrichment of different components (such as lipids, proteins or pigments) in microalgae 

biomass requires different cultivation conditions and operational strategies. Under stress conditions 

microalgae can change their metabolic pattern and strategies, in order to face the difficulties (Hu, 

2004). 

In this way microalgae are induced to synthesize and produce various secondary metabolites, 

modifying also the quantity of representative primary metabolites (fat, carbohydrate and protein).  

Microalgae are very useful for the production of secondary metabolites some of them have particular 

interest because they constitute high-value products with several applications (Markou and Nerantzis, 

2013).  

However under stress conditions the decrease or the arrest of growth rates and consequently the 

decrease of the total production and productivity is observed. In some cases it is possible that the 

productivity of an accumulated compound cannot reach the productivity under regular conditions 

because of the decrease in the growth rates (Adams et al., 2013).This negative effect might be reduced 

applying a microalgae cultivation in multiple-stage process, in which in each stage optimum or 

appropriate conditions are adopted (Markou and Nerantzis, 2013). The topic of the optimization of a 

desirable compound under stress conditions is of particular significance and more research is needed. 
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Table 3. Functional ingredients from microalgae and technology production system

Production systems 

 

Functional 

ingredients 
Microalgae Species Commercial products 

Photobioreactors 

 

Astaxanthin 

 

 

 

Haematococcuspluvialis 

 

 

  

Raceways and Ponds 

 

 
 

 

Phicobiliproteins 

 

 

 

Arthrospira maxima 

Arthrospiraplatensis 

 

 

 

β-carotene 

 

 

 

Dunaliella salina 

Dunaliellabardawil 

 
 

Polysaccharides: 

sulfatedpolysaccha

ride 

Chlorella sp. 

Porphyridiumcruentum 

C. pyrenoidosa 

 

 

Proteins 

 

 

Arthrospira maxima 

Arthrospiraplatensis 

 

 

 
 

Fermenters 

 

Lipids 

 

PUFAs 

 

 

 

 

CrypthecodiniumcohniiNitzschial

aevis 

Phaeodactylumtricornutum 

Monodussubterraneus 

Porphyridiumcruentum 
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1.5Main potential applications 

Microalgae market is largely to be explored yet, although the use of microalgae as a food source or 

supplement has occurred for centuries (Spolaore et al., 2006). Nowadays, the utilization of high-value 

compounds derived from microalgae is restricted to only a few species of microalgae as summarized 

in Table 3.  

The freshwater green algae Chlorella and Scenedesmusand especially the cyanobacteria Arthrospira 

platensis and maxima are preferred for the use in human food, animal and fish feed, partially because 

of their high protein content (50–60% of dry biomass) and nutritive value.Cyanobacteria, but also 

some green microalgae such as Chlorella and Dunaliella,showed an interesting polysaccharide fractions 

and are used as dietary supplements or pharmaceuticals (Shi et al., 2007).A few species of diatoms and 

dinoflagellata are a good source of long chain polyunsaturated fatty acids (LC-PUFAs) (Chen et al., 

2007; Rocha et al., 2003). 

Among the microalgae pigments, carotenoids and phycobiliproteins showed to be the most important 

pigments from a commercial food perspective (Curtain, 2000; Lorenz and Cysewski, 2000).  

1.6Aim 

Since many years several reports studied different microalgae compounds for their interesting 

application in food, feed and energetic sectors. 

The main point of interest about microalgal compounds is the possibility to obtain very high 

concentrations of long chain polyunsaturated fatty acids (PUFAs), which are the most interest in food 

application, but also to obtain oil to energetic purpose. 

Actually fish oil is the main source of PUFAs, but others possible sources can be bacteria, fungi and 

plants that are all currently being studied for commercial production. Unfortunately, fungi require an 

organic carbon source and usually show slow growth rate (Gunstone, 1996),and plants beside the 

need arable land, should be genetically modified to produce long chain PUFAs (Whitehead, 1985). 

Instead, microalgae are the primary source of EPA and DHA in the marine food chain and can be 

grow fast under a variety of autotrophic, mixotrophic and heterotrophic culture conditions. FAO, 

2012).The fatty acid content of numerous microalgae strains have been studied (table.2) (Worm, 2006; 

Hu et al., 2008).Lipid accumulation in microalgae usually occurs when they are cultivated under stress 

conditions. The major chemical and physical stimuli are temperature, light intensity, pH, salinity, 

mineral salts. However the most used strategy is the nitrogen starvation forcing microalgae 

metabolism towards lipid accumulation (Patil et al., 2007).  

The aim of thisresearch was to investigate and modulate the lipid content and fatty acid profile of 

different microalgae strains and of the cyanobacteriumA. maximafor food and animal feedapplications 

considering also an energetic purpose. 

To achieve this aimdifferent objectives were pursued in the following Chapters. 

Firstly various microalgae strains were selected on the basis of their lipid content and fatty acid profile 

by literature data.Subsequently parameters,known to influence the lipid content of microalgae, were 

studied and analyzed: 

2. Production technologies (ponds, photobioreactors, small volumes): to select the best technologies 

for each strains in relation to their productivity, lipid production and fatty acid profile; 

3. Growth media (wastewater, standard media,N starvation); 

4. CO2 and sodium bicarbonateadded:to improve the photosynthesis utilizing alternative source of C 

from industrial gas fuel; 

5. Assessment of microalgae bioremediation capacity also to reduce the costs of fertilizers (usually 

amounting to the 20% of microalgae biomass production costs); 

6. Compare the lipid content of microalgae with other vegetable oil to evaluate their possible use in 

food and feed industries. 

The research was carried out at Criaq (Interdepartmental Research Center for management resources 

biological and Aquaculture -University of Naples, Federico II) and at the Laboratory of Marine 

Biology and Environmental Biomonitoring (Federal University of  Baiha, Brazil). 

The PhD thesis is organized in 6 chapters. First chapter is a general introduction, followed from 4 

experiments reported as scientific papers, that are submitted or in submission and a final conclusion. 
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The four experimental chapters with the relative aims are: 

Chapter 2: Growth of two strains of Botryococcus brauniiin domestic effluents before and after 

pretreatment stage: productivity, FA-profiles and biodiesel quality. 

The aim of this work was to evaluate the growth of two strains of B. braunii in secondarily treated 

sewage and to compare their bioremediation power, productivity, FA-profiles and fuel quality of 

the generated biodiesel. 

Chapter 3: Effects of different environmental variables on amount and quality of lipid content of 

B.braunii cultivated in small and large scale. 

The aim of this chapter was to evaluate, on a small and large volumes, the effects of relevant 

environmental operating variables (different grow condition) on B. braunii (SAG 38.01). The lipid 

content was studied in terms of quantity and quality, to define the best grow condition to 

maximize the per cent lipid production of dry weight, to obtain the fatty acid profile most 

interesting for agro-food application, without reduce excessively mode the biomass productivity. 

Chapter 4: Strategies to improve lipid content and profile in Phaeodactylum tricornutumThe aim of this 

research is to evaluate, on a small and large scale, the effects of relevant environmental operating 

variables (different grow condition) on P. tricornutum (SAG 10.901A). The lipid content was 

studied in terms of quantity and quality, to define the best grow condition to maximize the per cent 

lipid production of dry weight, to obtain the fatty acid profile most interesting for agro-food 

application without reduce in excessive mode the productivity of microalgae studied. 

Chapter5: Lipid content and fatty acid profile of A. maxima cultivated in south of Italy 

The main purpose of this work is to evaluate the biomass productivity, lipid content and fatty acid 

profile of Arthrospira maxima cultivated in pond under greenhouse in South of Italy (Portici , 

Naples) in a period of production from June to November in two years - 2012 and 2013. 
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Chapter 2 

Growth of two strains of Botryococcusbrauniiin domestic effluents before and after pretreatment 

stage: productivity, FA-profiles and biodiesel quality. 

 

2.1 Introduction 

Microalgae, as an alternative and renewable source of biomass feedstock for biofuels, have been 

explored previously. Nevertheless, a scalable and commercially viable system has not yet been 

feasible. The general claims are that hydrocarbon content of algae, and specially fatty-acids, 

isoprenoids andtriacylglycerols (TAG), have the potential to compensate for future decline of crude oil 

production if algae growth and harvesting can be energetically and environmentally sustainable 

(Chisti,  2007; Metzger et al., 2003). 

The use of appropriate technologies with increased efficiencies and reduced environmental impacts, 

by coupling biomass cultivation with CO2 mitigation (for carbon credits) and wastewater treatment 

(for nutrient removal) will lower production costs and provide additional benefits (Wijffels and 

Barbosa, 2010). 

Industrialized countries generate a great volume of urban and industrial wastewaters. It is estimated 

that the volume of domestic effluents generated by North America, Europe and Latin America is of 

approximately 70, 63 and 47 km3y-1, respectively (Uno, 2009). These effluents should not be dumped 

directly into rivers, lakes or the sea before treatment to reduce contaminants to environmentally safe 

levels. Special attention is required for inorganic substances which encourage vegetal growth, such as 

ammonium, nitrates and phosphates, that contribute for the eutrophication of the water bodies 

receiving the effluents (Uno, 2009). Conventional treatment of municipal wastewater, based on 

primary settling and secondary biological processing (e.g. activated sludge or trickling filter), removes 

only a fraction of the nitrogen (40%) and phosphorus (12%) contained in the waste. 

In order to improve the process, new methods (tertiary steps) and, consequently, additional costs are 

required (Carey and Migliaccio, 2011).The European Directive 6498/15/EC establishes a threshold of 10 

and 1mg per liter for total N and P. Wastewater Treatment Plant (WWTP) effluents commonly show 

N and P values around 20 – 70 mg/l and 4 – 12mg/l, respectively(Carey and Migliaccio, 2011). 

Therefore, there is still a clear need for new developments and biological systems are often considered 

to be the ideal means for responding to such a demand (Rawatet al., 2011). In fact a successive 

biological nitrification–denitrification step can be successfully adopted to remove the residual 

nitrogen (Lam and Lee, 2012) and phosphorus. Microalgae based systems have shown a high potential 

to assist with nutrient removal. The economic costs are, however, a primary concern once improved 

nutrients removal would require an overall increase in energy consumption of about 60–80% (Lam 

and Lee, 2012). Therefore, new systems should explore the combination of wastewater treatment with 

the production of renewable energy to offset final costs (Liet al., 2012; Park et al., 2011). 

It is generally recognized that microalgae play an important role in the self-purification of natural 

waters (Chanet al., 2011). A complete tertiary process aimed at removing ammonia, nitrate and 

phosphate will thus be about four times more expensive than primary treatment. Microalgae cultures 

may offer an efficient solution to tertiary and quinary treatments due to the ability to use inorganic 

nitrogen and phosphorus for their growth (Richmond, 1986, Oswald, 1988b, Oswald, 1988c, Garbisu et 

al., 1991,Garbisu et al., 1993 and Tam and Wong, 1995). Their capacity to remove heavy metals (Rai et 

al., 1981), as well as some toxic organic compounds (Redalje et al., 1989), therefore, does not lead to 

secondary pollution. Amongst beneficial characteristics they produce oxygen, and have a disinfecting 

effect due to increase in pH during photosynthesis (Mara and Pearson, 1986 and De la Noüe and De 

Pauw, 1988). 

Algae can be used in wastewater treatment for a range of purposes, some of which are used for the 

removal of coliform bacteria, reduction of both chemical and biochemical oxygen demand, removal of 

N and/or P, and also for the removal of heavy metals Teles et al. (2013). 

http://www.sciencedirect.com/science/article/pii/S1319562X12000332#b0865
http://www.sciencedirect.com/science/article/pii/S1319562X12000332#b0700
http://www.sciencedirect.com/science/article/pii/S1319562X12000332#b0705
http://www.sciencedirect.com/science/article/pii/S1319562X12000332#b0310
http://www.sciencedirect.com/science/article/pii/S1319562X12000332#b0310
http://www.sciencedirect.com/science/article/pii/S1319562X12000332#b0315
http://www.sciencedirect.com/science/article/pii/S1319562X12000332#b0995
http://www.sciencedirect.com/science/article/pii/S1319562X12000332#b0835
http://www.sciencedirect.com/science/article/pii/S1319562X12000332#b0835
http://www.sciencedirect.com/science/article/pii/S1319562X12000332#b0845
http://www.sciencedirect.com/science/article/pii/S1319562X12000332#b0570
http://www.sciencedirect.com/science/article/pii/S1319562X12000332#b0220
http://www.sciencedirect.com/science/article/pii/S1319562X12000332#b0220
http://www.sciencedirect.com/science/article/pii/S1319562X12000332#b0220
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Microalgae based systems have shown a high potential to remove nutrients from wastewaters 

simultaneously with the synthesis of valuable chemicals, besides carbohydrates and oils that can be 

used respectively for ethanol and biodiesel production. (Park et al., 2011).Biofuels have been 

advocated as a suitable option to replace fossil fuels (Cerón-García et al., 2013; Altieri, 2009). However, 

several social and environmental issues are associated with increasing land crops-based biodiesel 

production (Altieri, 2009), while microalgae based systems were identified as capable of overcoming 

both economic and ecological problems 83 (Wijffels and Barbosa, 2010; Amaro et al., 2011). In addition, 

microalgae systems can generate further commodities such as bio-kerosene, bio-plastics, bio-

hydrogen, biogas and other chemicals derivatives (Sawayama et al., 1994; Chisti and Yan, 2011). 

Botryococcus braunii is a colonial Chlorophyceae (green microalga) which is widely distributed on all 

continents, in freshwater, brackish and saline lakes, reservoirs or even small pools, situated in 

temperate, tropical and continental zones as well. This species is characterized by an original 

organization of colonies and an unusual capacity to produce unsaturated long-chain hydrocarbons, 

reaching contents ranging from 15% to 75% of its dry weight. In addition, it produces extra-cellular 

polysaccharides that induce the formation of colonies, the size of which depends on the 

hydrodynamic stress within the bioreactor. Its great potential as a renewable source of basic or 

combustible chemical products has been demonstrated by different research groups(Liet al. 2012). This 

alga is, therefore, a potentially good renewable source of chemical feedstock or fuel (Largeau et al. 

1980; Casadevall et al. 1985; Wolf et al. 1985a,b; Kojima and Zhang 1999). Both economic and technical 

barriers have prevented the commercial development of methods for production of hydrocarbons 

using B. braunii. (Sawayama et al. 1992, 1994) reported continuous culture of the hydrocarbon-rich 

microalga Botryococcus braunii in secondarily treated sewage. They examined the growth and 

hydrocarbon productivity of B. braunii on secondarily treated sewage in a continuous system, and 

reported the consumption of inorganic nutrients in this process. Also Orpez et al. (2009) utilized B. 

braunii to removal nitrogen and phosphorus from secondarily treated sewage from domestic 

wastewater and reported good performance in terms of nutrients removal efficiency and lipids 

production.  

The aim of this work was to evaluate the growth of two strains of B. braunii in secondarily treated 

sewage and to compare their bioremediation power, productivity, FA-profiles and fuel quality of 

the generated biodiesel  

 

2.2 Material and methods 

2.2.1 Algal strain and culture conditions 

Two strains of Botryococcus braunii(UTEX LB 572 and LABIOMAR/IB/UFBA IBL C115). were used in 

this work .The strain LABIOMAR/IB/UFBA IBL C115 is a local strain presently kept in the Microalgae 

Bank of the Marine Biology Lab (LABIOMAR) of Federal University of Bahia (Brazil). The inocula 

were axenically prepared using CHU-13 medium The strains were cultivated under constant agitation 

(90 bpm), aeration (with 2.5% CO2 addition), under a photonic fluxof 174 µE/m2/s (fluorescent lamp) 

(photoperiod of 12:12h light:dark cycle) and at a constant temperature of 25±1°C.  

2.2.2 Experimental set-up 

The domestic effluents were collected after the pretreatment stage (physical removal of large particles 

and fat materials) and at the discharge from the aeration tanks. Samples were collected from a 

Wastewater Treatment Plant (WWTP) in the municipality of Salvador, Bahia, Brazil. The wastewaters 

were utilized no treated and the control was represented by  CHU 13 medium (Largeauet al., 1985). 

The experiments were carried out in triplicates using 1 liter borosilicate Pyrex flasks. 
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2.2.3 Analytical methods 

Microalgae growth was directly monitored by optical density (OD 680nm), pH, temperature (oC) and 

total suspended solids (g/L) (APHA – Standard Methods, 1995). Biomass was recovered by 

centrifugation (4.000 g at 10°C for 20 min) followed by freezying and lyophilization. The dry weight 

was estimated gravimetrically (APHA, Standard Methods, WPCF 1995). Dried biomass was also 

tested for total lipids (Folch et al., 1957) as percentage of dry weight. 

Samples of the wastewater effluents were analyzed for ammonium (N-NH4), nitrate (N-NO3), nitrite 

(N-NO2), phosphate (P-PO4), pH, conductivity, turbidity and total suspended solids (TSS) according to 

APHA, Standard Methods (1995). 

The fatty acid composition analysis was performed by GC after derivatization to fatty acid methyl 

ester (FAME) with 2 N KOH in methanol, according to the IUPAC standard method (AOCS, 1998; 

Ruiz et al., 2008). FAME, including methyl octanoate, were analyzed on a Perkin Elmer AutoSystem 

XL gas chromatograph (Perkin Elmer, Waltham, MA, USA) equipped with a PTV(programmed 

temperature vaporizer), a flame ionization detector, and a capillary column 100 m _ 0.25 mm inner 

diameter, film thickness of 0.20 mm. Stationary phase 50%cyanopropyl methyl silicone (Supelco, 

USA). The carrier gas, helium, was introduced at a flow rate of 20 cm/s. The oven temperature 

program was as follows: 120°C for 5 min,5°C/min ramp to 165°C for 5 min; and then 10°C/min ramp 

to 240°C for 20 min. The split ratio was 1/60, and the flam ionization detector temperature was set at 

260°C(Romano, 2013). Peaksidentification was obtained using the external standard Supelco TM 37 

FAME mix (Supelco) by comparing the retention times with the pure standard components. 

2.2.4 Growth kinetics and productivity 

Kinetic parameters were estimated using a sigmoid model (Origin® v.7.0) as described by Nascimento 

et al, 2013. The software is equipped with a statistical package for testing the fitness of the model in 

describing the biological response. The results are expressed as probability (P<0.05). The kinetic 

parameters were also crosschecked using linear regression of the exponential phases. This approach 

was applied on the experimental data and their natural logarithmic (Ln) transformed values, for the 

calculations of productivity, 

For statistical analysis it was also applied linear regression (with at least five points) for assessing 

correlations between variables (R2 available in the text). A parametric analysis of variance (ANOVA) 

was carried out in order to assess the differences among tested groups. As post-hoc test, it was used 

the Tukey’s multiple comparison test (MCT). All analysis were carried out within the 

GraphpadInstat® software (v. 3, 2008), at the significance level of 5 % (P <0.05). 

2.2.5 Fuel quality of the generated Biodiesels 

For the transportation sector, jet-fuel and biodiesel are products that can be respectively obtained from 

biomass and oil, by catalytic cracking and transesterification of fatty-acids composing the 

triacylglycerol molecules. Triacylglycerols, ranging from 11-80% (w/w) in algal oil (Zemke et al., 2010),  

are the main components for biodiesel production (Knothe , 2005; Demirbas and Demirbas 2011) and 

the responsible ones for the biodiesel quality, which is defined by the fatty-acids composing the TAG 

molecules (Nascimento et al., 2013; Teles et al., 2013).  As the algal species have diverse fatty acid 

compositions, biodiesels from algae have different fuel quality, defined by parameters such as cetane 

number (CN), which estimates the delay of ignition and combustion performance, iodine value (IV), 

representing the total unsaturation within a mixture of  FAME, and the saponification value (SV), 

which is a measure of the average molecular weight of all the FA present in oil (Knothe, 2005; 

Nascimento et al., 2013). The Cold Filter Plugging Point (CFPP) calculated based on the Long Chain 

Saturation Factor (LCSF), specifies at which temperature biodiesel will clog filters and fuel lines 

(Meher et al., 2006). The higher the CFPP value, the more the biodiesel tends to clog filters and fuel 

lines at low temperatures. Oxidation Stability (OS) estimates the biodiesel’s susceptibility to 

deterioration and is mainly related to the content of double-bonds in the component FAME 

(Nascimento et al., 2013). The higher the polyunsaturated methyl ester content, which can be predicted 
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based on the degree of unsaturation (DU) of the FAME chains, the higher will be the biodiesel 

oxidation potential (Meher et al., 2006).  

Potential biodiesel quality was estimated using correlative models as  described by Nascimento et al., 

(2013), involving empirical equations  previously applied to vegetable oils and tested for accuracy and 

predictive capacity (Krisnangkura, 1986; Ramos et al., 2009; Francisco et al., 2010). The models were 

applied to FAME-profiling of each algal strain,and treatments, aiming to relate the molecular structure 

of fatty acids with the quality of the biodiesel produced ( Nascimento et al., 2013). The CN estimate 

model (Eq. 2) involved two independent variables, chain length and degree of unsaturation of each 

component ester. Chain length was expressed by saponification (SV) that is inversely related to the 

esters’ molecular weight, using Eq. 3, while the degree of unsaturation was expressed by the Iodine 

Value (IV) using Eq. 4 (Krisnangkura, 1986) 

CN=46.3+ (5.458/SV) - (0.225 x IV).................................................................Eq. 2 

SV= ∑ (560 x N) / M .........................................................................................Eq. 3 

IV= ∑ (254 x D x N) / M ...................................................................................Eq. 4  

whereD= double bonds; M= molecular mass; N= percentage of each FAME;  

The DU (Unsaturation degree) was calculated based on Eq.5 by considering the amount of MUFA and 

PUFA present in the algal oil, in weight percentage (Francisco et al., 2010). 

DU=MUFA + (2 x PUFA)<<<<<<<<<<<<<<<<<<<<.Eq.5 

The CFPP (cold filter plugging point) was calculated using Eq.6 in correlation with the LCSF (long-

chain saturation factor), estimated using Eq. 7. LCSF influences CFPP by weighing up the values of the 

longer FA chains (weight percentages) in order to reproduce their impacts on fuel cold flow properties 

(Francisco et al., 2010). 

CFPP = (3.1417 x LCSF) – 16.477 <<<<<<<<<<<<<<<<..Eq. 6      

LCSF = (0.1 x C16) + (0.5 x (C18) + (1 x C20)+ (1.5 x C22) + (2 x C24)<...Eq.7 

The estimated properties for each microalgae-based biodiesel were presented as the average of the 

products of the calculated FAME values and their percentage in the mixture (Wijfel et al 2010, Metzger 

et al 2005). Further details are described by Nascimento et al (2013) .The fuel properties (CN, SV, IV 

and CFPP) of the algal biodiesels were compared between the strains and treatments. 

2.3 Results and discussion 

2.3.1 Wastewater characterization 

The wastewater chemical composition is showed in Table 1.  

In the influent and effluent, the N source was represented especially by NH4,  that was the most 

suitable form of N to be assimilated by microalgae, while nitrate was the only N source in the CHU 

medium. It has been proven that B. braunii consumes nitrogen quickly in ammonium form (Orpez et 

al., 2009). The effluent presented a lower content of N and P; thus, the N concentration was increased 

by adding NO3 until reaching the same CHU13 N concentration.  

 

 

 

 

 



20 
 

 

          Tabela1: Chemical variables analyzed in the wastewater samples 

 Influent Effluent CHU-13 

Turbidity (NTU) 235.0 4.50 
0.00 

Salinity (%o) 4.00 3.00 
0.00 

pH 6.50 6.40 
6.80 

SS (g l-1) 0.25 0.01 
0.00 

DQO in nature (mg O2l-1) 770.9 63.1 
49.5 

DQO filtered (mg O2l-1) 386.4 30.2 
- 

NH4 (mgN-NH4 l-1) 22.87±0.02 7.85±0.03 
- 

NO3 (mgN-NO3 l-1) 2.09±0 2.50±0.03 
20.0 

NO2 (mgN-NO2 l-1) 0.02±0.06 0.07±0.10 
- 

Total N (mgl-1) 24.98 190.42 
20.0 

PO4 (mgP-PO4 l-1) 10.20±0.01 1.89±0.01 
6.81 

N/P ratio 2.44 8.91 
2.93 

 

The N/P ratio was an important factor in the microalgae growth and the influent presented a ratio 

very similar to CHU medium (≈2.93) while the effluent that had a ratio nearly double (5.54) respect to 

CHU medium, began 10.58 after the addition of NO3 (Table 1). Mc Ginn et al. (2011) reported that the 

concentration of NH3 and PO4- in secondarily treated wastewater adequate to support high 

productivity should fall into the range of 20-40 mg l-1and 1-10 mg l-1respectively.  

 

2.3.2 Biomass production 

In order to compare the performance of two strains of B. braunii (UTEX LB 572 and 

LABIOMAR/IB/UFBA IBL C115), on different media under the experimental conditions above 

described, growth curves were plotted (figure 1), with the graphs showing the values of biomass (as 

dry weight) versus time (in days). In all treatments, the microalgae showed a typical batch growth 

with an exponential phase of about 5 to 8 days during the 10 days of incubation (Figure 1). It was 

assumed that the results do not show a significant lag phase for any of the trials because the inocula 

were carefully prepared before each experiment (Figure 1). The slopes of the curves and the data of 

productivity (Table 2) suggested that the effluent and the influent were suitable for biomass 

production generating adequate daily productivity and growth rates (Table 2). 
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Table 2. Productivity evaluated for the two strains of B. braunii grown on different medium  

Growth medium Productivity (mgl-1d-1) 

UTEX LB 572                      LABIOMAR/IB/UFBA IBL C117 

Influent 38.50±10.7  58±10.7 

Effluent 44.53±4.30  54.13±10.0 

CHU 64.5±6.36  44.86±5.86 

 

The data reported in Table 3 show that daily productivity and growth rate of the two strains were not 

statistically different (P>0.05), although B. brauniiIBL C115 showed values that tend to be higher than 

B. brauniiLB572 in the influent as well as in the effluent. In CHU medium a daily productivity of 64.5 

mg L-1 d-1 and growth rate of 0.27 was registered for B. brauniiLB572, values higher than the others 

obtained using wastewater medium, while B. brauniiBL C115 presented a lower daily productivity 

(44.86 mg L-1 d-1) in comparison with influent and effluent, and a growth rate of 0.23 d-1. The two 

strains showed for the two parameters analyzed values that were statistically different (P<0.05) with 

the UTEX strain productivity 1.4 times higher than the Brazilian strain in CHU medium. 

Yoo et al. (2010) reported for B. braunii (UTEX LB 572) incubated at 25 ± 1°C with continuous 

illumination of 150 µmol m-2 s-1, a productivity of 26.55 ± 7.66mg dw L-1 d1  with 10% CO2 addition and 

77mg L-1 d-1 with 5.5% CO2 in CHU medium in 14 days. These values were lower than the obtained in 

the present work where the cultures have been enriched with 2.5% CO2. The longer lag phase in 

response to the additional 10% CO2 and lower pHin culturescould be the reason for the lower growth 

rate and daily productivity. 

Our results about specific growth rate  are in line with data of Yoshimura et al. (2013), which reported 

for different B. braunii strains values in the range  from 0.07 and 0.5 d-1 with the lowest value for B. 

braunii LB572. These results strenght the possibility to reuse the nutrients presented in the municipal 

wastewater after the pretreatment stage (physical removal of large particles and fat materials) and at 

the discharge from the aeration tanks. 

The used municipal wastewater contained high concentrations of ammonium after the pretreatment 

stage (physical removal of large particles and fat materials) as well as at the discharge from the 

aeration tanks; the total nitrogen (T-N) removal efficiency by the two strains was about 62%  for LB572 

and 61 and 65% for IBL C115 respectively when influent or effluent was used as medium while was 48 

and 61% in the control (CHU medium). 
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             Tabela 3: Kinetic parameters of both Botryococcus strains 

 B. braunii (UTEX BL 572) B. braunii (IBL C115) 

 Influent Effluent CHU-13 Influent Effluent CHU-13 

XO (mg SS·L-1) 148 145 135 178 173 163 

XM (mg SS·L-1) 854 673 904 802 665 728 

R2 0.99 0.99 1.00 1.00 1.00 0.98 

p-value 0.01 0.01 0.00 0.00 0.00 0.01 

μ (day-1) 0.12 0.15 0.27 0.15 0.16 0.23 

Productivity (mg ·L-1·d-1) 38.5 44.53 64.5 58 54.13 44.86 

Lipid productivity (mg ·L-1·d-1) 20±0.4 23±1.2 19±1.2 14±0.6 19±2.3 17±1.2 

TN  removalefficiency (%)  62.7 62 48 61.1  65 61 

TP removal rate (%) 100 100 100 100 100 100 

Exponential phase (days) 5 5 5 5 5 5 

 

Lipid biomass content is reported in table 4. 

Fatty acid methyl esters derived from vegetable oil and animal fat through transesterification process 

is referred as biodiesel. Not all lipids can be converted to FAME, the chemical ingredient of biodiesel. 

Therefore, measurement of FAME in algal biomass is a direct indication of amount of lipids suitable 

for biodiesel production. Botryococcus braunii  is known to contain longer chain hydrocarbons 

(Banerjee et al., 2002). 
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Table 4: Fatty acids profile evaluated for both Botryococcus strains on three different media 
Fatty acid (%)  B. braunii (UTEX LB 572) B. braunii (IBL C115) 

Influent Effluent CHU-13 Influent Effluent CHU-13 

Butyric C4:0 1.97 1.3 1.3 2.6 0.4 - 

Caproic C6:0 2.24 0.5 2.0 0.7 1.0 1.89 

Caprylic C8:0 1.93 0.2 0.2 - - 1.62 

Capryc C10:0 0.46 0.2 0.2 1.6 0.3 0.92 

Undecanoic C11:0 0.95 - - - - - 

Lauric C12:0 - - - 1.6 - - 

Myristic C14:0 5.71 7.4 6.9 9.5 3.2 5.9 

Pentadecanoic C15:0 0.29 0.5 0.4 0.9 0.4 0.39 

Palmitic C16:0 21.19 26.0 20.0 29.4 15.1 20.39 

Heptadecanoic C17:0 0.21 0.6 0.4 0.5 0.5 0.66 

Stearic C18:0 6.29 11.1 8.4 12.9 7.4 8.44 

Arachidic C20:0 0.19 - 0.2 - - 0.50 

Heneicosanoic C21:0 0.52 0.5 0.5 - 0.5 0.48 

Behenic C22:0 8.31 4.4 4.1 1.0 9.2 5.68 

Lignoceric C24:0 4.99 - 7.5 - 3.2 2.89 

Myristoleic C14:1 - - - 0.3 0.2 - 

Palmitoleic C16:1 1.16 1.4 2.0 3.0 - - 

Cis-10 Heptadecanoic C17:1 1.04 - - - 0.5 - 

Elaidic C18:1 

n9t 

1.06 2.1 1.4 - 1.1 1.16 

Oleic C18:1n9

c 
28.46 33.4 30.1 30.7 41.2 38.34 

Cis-11Eicosenoic C 20:1 2.70 0.7 1.5 1.6 1.5 1.81 

Linolelaidic C18:2n6t 0.21 - 0.2 - - - 

Linoleic C18:2n6

c 
3.12 1.9 1.9 - 2.5 2.35 

γLinolenic C18:3n6 0.73 - 0.9 - - 0.92 

Cis 8.11.14-Eicosatrienoic C20:3n6 0.89 0.7 2.8 - 1.2 1.08 

Arachidonic C20:4n6 1.89 0.8 0.8 0.4 1.3 1.12 

Cis-5.8,11,14,17-

Eicosapentaenoic 

C20:5n3 
1.87 5.6 3.5 0.7 7.0 2.89 

Cis-13,16-Docosadienoic C22:2 1.62 0.5 2.0 - 3.2 1.46 

Saturated (% FA/TL) 55.25 52.7 52.1 60.7 41.2 49.76 

Monounsaturated (% FA/TL) 34.96 37.6 35 36.6 44.8 41.31 

Polyunsaturated (% FA/TL) 10.33 9.5 12.1 1.2 13.2 9.82 

FA Total (% biomass DW) 20 24 18 14 18 17 
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In this experiment, the accumulation of lipids in B.brauni (UTX-LB572) varied from 18% to 24% of 

the dry weight; and the respective range shown by B. braunii(IBL C115) are from  14–18%.  

The wastewaters had a positive influence on lipid production on B.braunii (UTEX-LB572),  with 

the best result, found for the use of wastewater effluent (24%), while no positive effect was 

achieved on the local strain (IBL C117). In fact, the lipid production was approximately the same 

of the algae grown on a standard medium but in this case there was a positive effect on the total 

production (Table.2) This represents an attractive solution for a cheap and unappreciated product 

as the amount of lipid was increased in effluent and influent. Table 4 shows the qualitative 

analyses of FAs (percentages of monounsaturated (MUFA), polyunsaturated (PUFA) and 

saturated fatty acids (SFA)). B.braunii (UTX-LB572)  grown  in wastewaters showed the highest 

ratio of lipid accumulation per biomass (30%); Other authors have observed a small but different  

result  with different amounts of FAs in C16:0 and C18 isomer Hai-Linh Tran 2010. In B.( IBL 

C117 )  different results for all FAs have been observed (  Nascimento et al.  2013). The biodiesel 

fuel quality depends on the results of the overall fatty acids composition present in the strain. For 

both strains, the condition that produced at the same time the highest FA productivity and 

MUFA concentration was the treatment with wastewater effluent.  

Quality of Botryococcus strains-derived biodiesels cultivated in wastewater 

Oil quality is an essential factor for the success of the algal-based biodiesel industry (Nascimento 

et al., 2013). Several countries have established biodiesel quality standards and guidelines to 

regulate biodiesel production, for example EN 14214 in Europe, ASTM D 6751-10 in the United 

States, RANP/2008 in Brazil, and similar guidelines for South Africa and Australia (Stansell et al., 

2011). The main fuel quality parameters (CN, SV, IV, CFPP and OS) were used to compare the 

quality of biodiesels that could be generated from two strains of Botryococcus  cultivated in 

influent and effluent wastewater in relation to a nutrient-sufficient growth medium (Chu-13). 

These parameters can be estimated by analyzing the molecular characteristics of FAME 

composing the biodiesels (Table 4). It has been reported (Nascimento et al., 2013) that biodiesels 

with long chain fatty acids and a low degree of unsaturation (DU) tend to have a good ignition 

quality (higher CN values), but they do not show good flow performance at low temperatures 

(CFPP). On the other hand, biodiesels with good CFPP can be achieved by short chain fatty acids 

and high DU (Stansell et al., 2011). Therefore, it is clear that balanced fatty acid distribution is 

critical to improving biodiesel quality. 

Table 4 shows the FA-profiles determined for the focused Botryococus strains cultivated on 

different media. The FA composition of the intracellular lipids was represented by the acids with 

the chain lenghts from 4 to 24 carbon atoms. Oleic acid (C18:1w9c) dominates the FA-profiles, for 

both strains in all treatments (28.46 minimum and and 41.20 maximum in biomass % dw), the 

highest values obtained in the effluent growth medium. It has been followed in quantity by 

Palmitic (C16:0) and Stearic (C18:0), which are the ones which predominate in most of 

Chlorophyta microalgae.  Among the monoenoic acids, besides the Oleic (C18:1n9c) there were 

present in all treatments in high amounts, another isomers such as C18:1n9t (Eladic), 

C16:1(Palmitoleic) and  C20:1 (Eicosenoic) were present. The strains were also characterized by 

the presence of three C18 and four C20 polyenoic acids. Differently from the results obtained  

from B. braunii Kütz IPPAS H-252 and B. braunii isolate from Shira Lake (Volova et al. 2003), all 

the polyenoic C18 had double-bonds in the n6 position, which means that they have not been 

synthesized via a direct elongation of oleic acid as was shown by Templier at al., (1987). The 

occurrence of C 28:1n9, which is a taxonomic characteristic of B. braunii strain (Metzger at al., 

1990) could not be detected by the analytical technique used in the present study. Nevertheless 

the highest content in Oleic Acid (C18:1n9c) in all the treatments suggests that the taxonomic 

classification is the same for both strains, even though some differences can be noticed in their 

respective FA-profiles.  

The general dominance of SFA for both species (Table 4), followed by similar significant amounts 

in quantity by MUFA such as oleic (C18:1) may guarantee that the biodiesels generated from 
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these stocks in all treatments would comply (Table5) with the European standard for CN 

(minimum  51). Yet they would meet the American and Brazilian standards with minimum CN of 

47 and 45, respectively (Nascimento et al., 2013; Stansell et al., 2011). The lower values of PUFA 

for all the treatments will provide relatively low DU values even though the local B. braunii 

showed a larger variation in response to different treatments, with a higher Oleic production in 

the effluent  treatment (Table 5).  As high DU values tend to decrease the ignition quality and 

increase susceptibility to oxidation (Knothe, 2005; 2008),  DU in oils has to be limited. European 

standards for biodiesel stipulate that linoleic ester (C18:2n6) and polyunsaturated ester (≥ 4 

double-bonds) content must be less than 12% (mol/mol) and 1% (mol/mol), respectively (Knothe, 

2006, Stansell et al., 2011). In fact, both strains of B. braunii, in all cultivation conditions in this 

study, satisfy this criterion (Table 5). 

Biodiesels with more SFA have the best oxidative stability. However, especially when the carbon 

chains are longer as happens in Botryococcus strains oils, the derived biodiesels will have a high 

melting point, and could crystallize at normal engine temperatures (Meher et al., 2002). This is 

defined as poor CFPP properties (Knothe, 2008). Despite the fact that these characteristics provide 

good ignition properties, they decrease the flow and enhance the chances for plugging filters and 

fuel lines. Comparatively, however, biodiesels with a predominance of  MUFA content in oils, are 

the ones that best satisfy all standards regarding CN and still have good CFPP values 

(Nascimento et al., 2013). 

Yoo et al. (2010)  have already suggested that Botryococcus braunii  was the most appropriate for 

biodiesel production, based on their oil productivity and CN value. However, it has been 

reported that there are very significant differences in composition between species of the same 

taxonomic group ( Zhila et al., 2001), which could lead to variations in biodiesel quality. The oils 

from the Botryococcus strains in this study were mostly composed of SFA, followed by MUFA, 

especially represented by the oleic acid (Table 4). This was not the same results reported by 

Nascimento et al., (2013)whohasshowed that B. braunii UTEX produced 76.3% of oleic acid, almost 

double B. terribilis (a local strain). This difference in composition leads to an imbalance in 

saturation/unsaturation ratios and further reduces biodiesel quality. Oleic acid helps balance 

ignition quality and cold filter properties (Knothe, 2008; Nascimento et al., 2013). Biodiesel with 

higher oleic acid content than SFA does not normally cause polymerization during combustion. 

However, the long carbon chains of oleic acid increase the CFPP value and may cause the 

formation of agglomerates. In addition, a higher oleic acid content increases unsaturation that 

may decrease oxidation stability.  

Even though the Chu-13 medium has provide lower values of CFPP when compared to both 

wastewater treatments, other cultivation conditions such as low light may have contributed for 

the higher production of longer-saturated chains FA, increasing CFPP and the possibility of 

clogging filters. This property, which limit the application of Botryococcus- derived biodiesel in 

cold climate regions, can be minimized by cultivation strategies or by mixing the oils from 

species with opposite characteristics  
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Appendix 1 

Sceening test to define the CO2 concentration to added in the experiments with B. braunii 

 

Introduction 

Usha Tripathi et al. (2001) reported higher growth and carotenoid production in different 

microalgae enriched with 0.5, 1.0, and 2.0% CO2 concentrations. It was also reported that different 

algae require different levels of CO2 for their photoautotrophic adaptability (Tripathi et al. 2001). 

Therefore, different levels of CO2 were studied for enhancing the biomass and other metabolites 

production in two strains of B. braunii. 

Analytical methods 

Microalgae growth was directly monitored through measures of optical density (OD 680nm), pH 

and dried weight. The biomass of B. braunii UTEX LB 572 and IBL C115was harvested by 

centrifugation (4.500 at 4°C for 5 min) followed by freezing and lyophilization. The dry weight 

was estimated gravimetrically (APHA, Standard Methods, WPCF 1995).  

Statistical analysis  

The results are expressed as mean ± SE (standard error) of three replicates. All data were 

performed by SPSS 17.0 for Windows (SPSS Inc., USA). One-way analysis of variance (ANOVA) 

was used to evaluate differences among the four CO2 concentrations. A value of P < 0.05 was 

considered statistically significant (P<0.05). 

 

Results 

The Carbon Assimilation in the biomass of B. braunii IBLC-115, cultivated at different 

concentration of CO2, was reported in Table 1 together with the biomass productivity and lipids 

data. B.braunii IBL, enriched with 2 % CO2, showed a Carbon Assimilation with a value 

significantly lower than the others CO2 concentration treatments. However the Carbon 

Assimilation evaluated at CO2 concentration of 3-5-10 % (v/v) didn’t show  significantly 

differences (Table 1). The lipid content evaluated in the different CO2 treatments followed the 

same behavior of Carbon Assimilation, while the productivity weren’t significantly different. 

 

Table 1:% Carbon Assimilated, biomass productivity  and % lipid in B. braunii IBLC-115 growth at different 

concentration CO2 (v/v) 

Strains % C02 

(v/v) 

C Assimilation  

(% dw) 

Biomass  productivity  

(mg L−1 day−1) 

Lipid   

(% dw) 

B. baunii IBL  

2 23±5b 39±3 22±6b 

3 31±1.5a 34±5 31±2a 

5 31±3a 33±4 32±2a 

10 24±6ab 33±3 33±1.5a 

 

In Table 2 was reported the Carbon Assimilated in the biomass of B. braunii UTEX  572. The 

treatments showed not significantly difference in Carbon Assimilation, biomass productivity and 

lipid production (% w/w). 
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Table 2: % Carbon assimilated, biomass productivity  and % lipid   in B. braunii UTEX growth at different 

CO2 (v/v) concentration  

 

The increase in biomass yields and lipid content in those two strains of B. braunii in response to a 

CO2-enriched atmosphere when compared with control cultures, in the present study suggested 

to insufflate carbon dioxide to 3% (v/v) for the next experiments 

. 

Reference 
Tripathi U, Sarada R, Ravishankar GA. (2001). A culture method for microalgal forms using two 

tier vessel providing carbon-dioxide environment: Studies on growthand carotenoid production. 

World J. Microb. Biotechnol. 17:325-329. 

 

 

  

Strains % CO2 C assimilation 

(% dw) 

Biomass productivity 

(mg L−1 day−1) 

Lipid  

(% dw) 

B.braunii UTEX  

2 18±5 50±3 26±6 

3 22±1.4 46±4 32±2 

5 23±4.2 40±3.5 33±2 

10 19±1 15±3 28±4 
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Chapter 3: 

Effects of different environmental variables on quantity and quality of lipid content of B. 

braunii cultivated in small and large scale 

3.1 Introduction 

Microalgae are photosynthetic microorganisms that are able to use the solar energy to combine 

water with carbon dioxide to create biomass. Because the cells grow in aqueous suspension, they 

have more efficient access to water, CO2, and other nutrients. 

The Relationship between cultivation conditions and biosynthesis of value-added compounds 

has been studied. Under stress conditions (sub- or supra-optimal conditions) microalgae can 

change their metabolic pattern and strategies, in order to face the difficulties. The biomass 

composition is influenced by this dynamic change, that acts on the metabolic strategy inducing a 

fluctuating of the relative compounds content of the biomass (Hu, 2004). Microalgae are induced 

to synthesize and produce various secondary metabolites, in addition modifying also the 

quantity of representative primary metabolites (fat, carbohydrate and protein). The identification 

of preferable culture conditions to improve the production as well as to designe efficient and 

cost-effective microalgae cultivation systems are critical points. 

In this study it has been considered three strategies for lipid production from microalgae: 

nitrogen starvation, carbon dioxide supply and sodium bicarbonate addition.  

Nitrogen, which generally accounts for about 7–10% of cell dry weight, is an essential constituent 

of all structural and functional proteins in algal cells. In general, microalgae have a limited ability 

to produce nitrogen storage materials when growing under nitrogen-sufficient conditions. Until 

cell nitrogen falls below a threshold value, photosynthesis still continues, albeit at a reduced rate.  

N starvation is an efficient environmental pressure used to increase lipid accumulation (Stephen 

et.al 2011). The general principle is that when there is insufficient N for protein synthesis required 

for growth, excess carbon from photosynthesis is channeled into storage molecules such as 

triglyceride or lipid. The microalgae lipid content in this condition could be doubled or even 

tripled (Perez-Garcia et al. 2011, Gouveria et al. 2006), and a linear relationship between the N 

source concentration and the lipid content was observed  (Marinho -Soriano et al. 2006).  

In addition to the increase in total lipid content in microalgal cells as a result of cultivation in N 

depleted media, it was found that gradually the lipid composition from free fatty acid-rich lipid 

changes to mostly triglyceride-containing lipid (Carlucci et al. 1999).  

Another method to improve the microalgae productivity and the production of lipids is the 

addition of carbon dioxide, because the microalgae can grow more rapidly and convert solar 

energy into chemical energy via CO2 fixation.  

CO2 fixation by microalgae has been positively correlated with its cell growth rate and light 

utilization efficiency, since it involves photoautotrophic growth (Jacob-Lopes et al., 2009). Some of 

the physicochemical parameters that affect CO2 fixation include: temperature, medium 

composition, pH, light intensity and CO2 concentration (Ho et al., 2011). 

Microalgae can fix CO2 from different sources which can be categorized as CO2 from atmosphere, 

CO2 from industrial flue gases and CO2 in the form of soluble carbonates (NaHCO3/Na2CO). 

Many microalgae and cyanobacteria  species can actively take up HCO3
- from the external 

environment via transport across the plasma membrane into the cytosol and derive CO2 from 

HCO3 via the action of carbonic anhydrase maintaining a steady state flux to ribulose-1,5-

bisphosphate carboxylase oxygenase for photosynthesis. Alternatively, extracellular carbonic 

anhydrase can catalyse the inter-conversion of HCO3-“ and CO2. Both mechanisms of HCO3 

utilization have been reported in phytoplankton (Colman and Gehl 1983, Raven 1991, Merrett et 

al. 1996, Nimer et al. 1997, Huertas and Lubian 1998, Bozzo et al. 2000, Young et al. 2001). Sodium 

bicarbonate has been used as a carbon source for the study of growth and biochemical 

composition of different microalgae species (Guiheneuf et al. 2008, Jayasankar and Valsala 2008, 

Guiheneuf et al. 2009, Sostaric et al. 2009, Pimolrat et al. 2010, Yeh et al. 2010) and has been shown 
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to stimulate triacylglycerol accumulation (Guckert and Cooksey 1990, Gardner et al. 2012). 

Moreover, different species exhibit different potentials to utilize HCO3 from the culture media 

(Nimer et al. 1997, Huertas and Lubian 1998). 

Botryococcus braunii is a colonial Chlorophyceae (green microalga) which is widely distributed on 

all continents, in freshwater, brackish and saline lakes, reservoirs or even small pools, situated in 

temperate, tropical and continental zones as well. This species is characterized by an original 

organization of colonies and an unusual capacity to produce unsaturated long-chain 

hydrocarbons, reaching levels ranging from 15% to 75% of its dry weight (Metzger and Largeau, 

2005). In addition, it produces extra-cellular polysaccharides that induce the formation of 

colonies, the size of which depends on the hydrodynamic stress within the bioreactor. Its great 

potential as a renewable source of basic or combustible chemical products has been demonstrated 

by different research groups. This alga is, therefore, a potentially good renewable source of 

chemical feedstock or fuel (Largeau et al. 1980, Casadevall et al. 1985, Wolf et al. 1985, Kojima and 

Zhang 1999). 

The aim of this chapter is to evaluate, on a small and large volumes, the effects of relevant 

environmental operating variables (different grow condition) on B. braunii (SAG 38.01). The 

lipid content was studied in terms of quantity and quality, to define the best grow condition to 

maximize the per cent lipid production on dry weight, to obtain the fatty acid profile most 

interesting for agro-food application, without reduce in excessive mode the biomass 

productivity. 

3.2 Materials and Methods 

Strain and cultivation  

B. braunii SAG 38.01 (University of Goettingen) was selected for this experiment and was grown 

and maintained routinely in CHU13 medium (Largeau et al., 1985). 

N starvation  

B. braunii SAG 38.01 was cultivated in different condition: nitrogen starvation with air and with 

the addition to 3% (v/v) CO2. The inoculum was axenically prepared using CHU-13 medium 

without nitrogen. The growth was conducted under photonic flux of 174 μE/m2/s (fluorescent 

lamp) (photoperiod of 24 h light), constant temperature of 25 ± 1 ° for 28 day. The cultures were 

carried out in continuous, two harvests were effectuated after 14 and 28 days.The experiments 

were carried out in triplicates using 5 liter borosilicate Pyrex flasks. 

Bicarbonate addition 

B. braunii SAG 38.01 was cultivated adding bicarbonate (NaHCO3) at 2 concentrations, 

corresponding to 3% and 6% CO2 (v/v), both in batch and in continuous. The bicarbonate was 

added in batch at concentrations of 6 and 12gL-1 on the final volume (10L) and in continuous at 

daily concentrations of 0.214 and 0.419 gL-1 trough a peristaltic pump (ISMATEC IPC 8 channel – 

42ml/h). 

Tests were conducted under constant mixing and photonic flux of 174 μE/m2/s (24/24 h light), at a 

constant temperature of 25 ± 1 ° for 28 day. The biomass was harvested after 14 and 28 days.The 

experiments were carried out in triplicates using 10 liter plexiglass photobioreactors. 

Photobioreactors  

B. braunii SAG 38.01 was cultivated in batch in standard medium (CHU13), under constant 

mixing blowing air, light 26 MJ/m2/die(photoperiod of  9:15h  light:dark cycle - data collected 

from Ministry of Agriculture Forestry and Environmental) and at a water temperature of 26±5°C. 

The growth was carried out under greenhouse in triplicates using polyethylene photobioreactors 

of 120 L (low technology). 
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3.2.1 Analytical methods 

Microalgae growth was directly monitored through optical density (OD 680nm), pH and biomass 

dry weight. Biomass smaller volumes (5-10 liters) was harvested by centrifugation (4.500 at 4°C 

for 5 min) and then freeze-dried, while the biomass of photobioreactors of 120 L was harvested 

by continuous centrifuge (4.500 rpm) preceded by a flocculation step with NaOH (1N) and then 

freeze-dried. 

The dry weight was estimated gravimetrically (APHA, Standard Methods, WPCF 1995).  

 

Lipid productivity and lipid profile  

B. braunii 38.01 dried biomass was analyzed for total lipid content (Folch et al., 1957) and fatty 

acids profile. 

The fatty acids profile was performed by gas chromatography after derivatization to fatty acid 

methyl ester (FAME) with 2 N of KOH in methanol, according to the IUPAC standard method 

FAME, including methyl octanoate.The analyses  were carried out by Perkin Elmer AutoSystem 

XL gas chromatograph (Perkin Elmer, Waltham, MA, USA) equipped with a PTV(programmed 

temperature vaporizer), a flame ionization detector, and a capillary column 100 m- 0.25 mm inner 

diameter, film thickness of 0.20 mm. Stationary phase 50% cyanopropyl methyl silicone (Supelco, 

USA).  

The carrier gas, helium, was introduced at a flow rate of 20 cm/s. The oven temperature program 

was as follows: 120°C for 5 min, 5°C/min ramp to 165°C for 5 min, and then 10°C/min ramp to 

240°C for 20 min. The split ratio was 1/60 and the flam ionization detector temperature was set at 

260°C (Romano et al. 2013). Peaks identification was obtained using the external standard Supelco 

TM 37 FAME mix (Supelco) by comparing the retention times with the pure standard 

components. 

3.3 Results ad Discussion 

Effect of nitrate starvation on biomass and lipid productivity of B. braunii 

The lipids accumulation in many microalgae species occurs when they are under ‘‘fattening’’ 

conditions such as nitrogen limitation (Li et al., 2008, Mandal and Mallick, 2009).  

However, it is necessary to explore how long the microalgal cells should be cultivated under N-

starvation condition in order to obtain the optimal lipid production.  

In this work B. braunii was cultivated under a high light intensity for 28 days without nitrogen 

and the lipid content and productivity was monitored.  

The effects of N starvation on B. braunii biomass was reported in Graphic 1 while lipid content (% 

dry weight) and productivity (mg/l/day) are shown in table 1. After 14 days of cultivation 

(harvest 1) B. braunii, grown in CHU13 medium (control) with air or  enriched with 3% CO2 (v/v) 

presented similar biomass productivity (35.71 vs 30. mg/L/day, graph. 1). After 28 days (harvest 

2) of cultivation B. braunii growth in CHU13 with 3% CO2 showed the highest biomass 

productivity: 77 mg/L/day. The data were in line with Rao et al. (2007) results: at 1 and 2% level of 

CO2 a significantly increase in biomass production was reported for different strains of B. braunii 

after a culture period of 20 days, but not before. In previous studies the biomass productivity of 

B. braunii showed not to be modified significantly with CO2 addition at 10% v/v respect to the 

control culture mixed only with air (Chan Yoo et al. 2009).Meanwhile the lowest productivity was 

16 mg/L/day obtained in nitrogen starvation condition without CO2 addition after 14 days. After 

28 days this value increased at 43.7 mg/L/day, resulting significantly different and lower than the 

value obtained for the control with CO2 addition. 
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Graphic 1.B. braunii SAG Biomass productivity at 14 and 28 days (harvest 1 and 2 respectively) . 

Control-Air= CHU13+Air, Control-CO2 = CHU13+3%(v/v)CO2, Air-N= CHU13 without nitrogen 

+Air , CO2-N= CHU13  without nitrogen +3%(v/v) CO2. 

 

The biomass productivity showed a significantly increase (P<0,05) after 28 days of culture in 

comparison to 14 daysfor all the treatments, 

The ability to increase in biomass concentration during initial nitrogen starvation was observed 

for many microalgal strains (Silva et al., 2009, Guarnieri et al., 2011, Li et al., 2008, Lu et al., 2010, 

Msanne et al., 2012, Packer et al., 2011, Pal et al., 2011, Pruvost et al., 2009 and Pruvost et al., 2011). 

Moreover it was expected that the lipid content during the stationary phase was higher than 

previous phase (Yoo et al., 2010). The effects of nitrogen starvation on B. braunii lipid content (% 

dw) and productivity (mg/l/day) are reported in Table 1. With air mixing the lipid content in the 

two harvests (after 14 and 28 days) was higher than Control: 52% vs 22% and 65% vs 38% of dry 

weight, respectively.  

Same  trend was showed by the culture obtained by N starvation with 3%CO2:  higher values 

than control samples with CO2 addition. The absence of nitrogen has been determined an 

increase in the production of lipids also in the experiment carried out by Shing (1992). 
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Table 1: Lipid content and productivity in B. braunii at 14 and 28 days (harv. 1 and 2)of cultivation 

on:CHU-13- Air (Control-Air ), CHU13- 3% (v/v ) CO2 (Control -CO2), CHU-13 without nitrogen - Air (Air-

N), CHU-13 without nitrogen + 3%(v/v) CO2 (CO2-N). 

  Harvest Lipid Content 

(% dw) 

Lipid Productivity  

(mg/ L/day) 

Control-Air  I 22±5 7.7±1.9 

II 38±3.9 19±2 

Air-N I 52±7* 8.3±1 

II 65±4.3* 28.62±1.6* 

Control CO2 I 22±3 7.04±0.96 

II 40±7 31.3±4.8* 

 CO2-N I 37±5.1* 6.3±1 

II 58±6* 29±3* 

    
 

The higher lipid percentage was obtained from nitrogen starvation culture with Air and CO2, 

while the highest biomass productivity  was observed in the Control culture with CO2 added, the 

lipid productivity (mg/l/day) showed values not significantly different in the two treatment 

without N and in the control enriched with CO2 3%(v/v) for the two  harvests (Table 1).  

Consequently, the CO2 addition was identified as a critical treatment to achieve a high biomass 

productivity after 20 days, while nitrogen starvation as a critical treatment to achieve a high lipid 

content and productivity. 

This result is consistent with previous reports, for example, the total lipid content of Neochloris 

oleoabundans and Chlorella sp. increases by a factor of 2 at a low N concentration (Hsieh and Wu 

2009, Li et al. 2008a).  

Data on B. braunii biomass and lipid productivity are relatively limited and evaluated for little 

volumes. Lee et al. (2010) reported a biomass productivity of 35.7 mg/l/day and a lipid 

productivity of 11.5 mg/l/day of Botryococcus sp. cultivated in BG11 mixing with air for 7 days, 

while Yoo et al. (2010) for B. braunii UTEX 572 grown in CHU13 enriched with CO2 10% (v/v), 

after a period of adaption, presented a productivity of 26.55 ± 7.66 mg/l/day (14 days cultivation)  

with a total lipid productivity of 5.51 ± 1.53. Mata et al.2010 in a review have reported for B. 

braunii a biomass productivity of 20 mg/l/day with a very huge variation in lipid content (25-75% 

dry weight biomass) without can define a realistic lipid productivity.  

Effect of bicarbonate on biomass and lipid productivity of B. braunii 

An adequate supply of inorganic carbon is essential forregular photosynthesis and growth in 

photoautotrophicmicroalgae. This may be achieved through the supply of gaseous CO2 to the 

media in which the microalgae aregrowing, with high stripping leak. However, in commercial 

situations where the supplyof adequate CO2 may be limited, alternative inorganiccarbon sources, 

e.g. bicarbonate salts (NaHCO3), could potentially be utilised. Furthermore, bicarbonate has 

greater solubility than CO2, thus reducing issues associated with low retention times (Hsueh et al. 

2007). However, interspecies differences in utilisation of bicarbonate as a carbon source may 

result in differences in metabolic efficiency and biochemical composition (Giordano et al. 2005).  

In this research  Botryococcus braunii after 14 days (I harvested) showed a biomass productivity 

statistically not different between Control and sodium bicarbonate added in batch at 6 g/L (37 

mg/L/day and 33 mg/L/day, respectively), but after 28 days the biomass productivity incresead, 

reaching the highest values when sodium bicarbonate was used at concentration of 12g/l in batch 

and  0.429 g/L/day in continuous (Graphic 2) although the comparison was statistically not 

different. 

White et al. (2012) instead, in seawater microalgae species showed that bicarbonate addition had 

significant effects on growth.The threshold level of inorganic carbon added to the cells, which 
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increase grow, is species dependent and will undoubtedly be intrinsically linked with light 

availability and other environmental conditions (Carvalho and Malcata, 2005). 

 

 
Graphic 2. B. braunii SAG biomass yeld at 14 and 28 days (harvest I and II) at different level of NaHCO3. 

Control=CHU13, SB1=CHU13+6 g/L NaHCO3, SB2=CHU13+12g/L NaHCO3,SB1C=CHU13 +0.214 g/L/day 

NaHCO3, SB2C=CHU13 +0.428 g/L/day NaHCO3. 

 

Effect of NaHCO3 addition on lipid production in B. braunii are showed in Table 2. For the first 

harvest (after 14 day) the highest lipid content of 31.5±4.2 % (dry weight) was obtained by the 

sample growth with sodium bicarbonate at 6 g/L (SB1). In the second harvest the highest lipid 

content was given by the control and sample SB1 (respectively 43.5±2.4 % and 40.3±2.7 %), both 

values not significantly different from SB2C. The lipid content increased significatively from the 

first to second harvest for all treatments, except for SB1C. 
Dev Goswami et al. (2012) reported for Selenastrum sp. grown with sodium bicarbonate addition 

(from 20 to 100 ppm) a biomass productivity that increase to 1.1 mg/ml/day at 60 ppm of 

bicarbonate with a lipid content of 14% (dry weight): behavior not in agreement with the present 

study data for B. braunii. 
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Table 2. Effect of NaHCO3 on  lipid content (% on dry weight) and lipid productivity in B. braunii after 14 

(harvest I) and 28 days of culture (harvest II). Control=CHU13, SB1=CHU13+6 g/L NaHCO3, 

SB2=CHU13+12g/L NaHCO3,SB1C=CHU13 +0.214 g/L/day NaHCO3, SB2C=CHU13 +0.428 g/L/day NaHCO3 . 

  
Harvest 

Lipid content  

(% dw) 

Lipid productivity mg/ 

L/day 

Control 
I 20±3.1 7.42±1.06 

II 43.5±2.4 19.57±1.3 

SB1 
I 31.5±4.2* 10.3±1.7 * 

II 40.3±2.7 22.97±2.3* 

SB2 
I 11.5±3.4* 2.6 ±0.5* 

II 26.4±4.2* 21.9±1.8 

SB1C 
I 18.1±3.2 4.8±0.6* 

II 23.2±2* 7.8±1* 

SB2C I 13.3±3.7* 3.34±0.3* 

  II 36.4±4* 27.6± 2.1* 

 

It's important underline that the sample cultivated in sodium bicarbonate at 0.429 mg/L/day in 

continuous (SB2C) gave a good lipid productivity (27.6 mg/L/day), significantly different respect 

other samples (Table 2). 

B. braunii cultivation in photobioreactors: biomass and lipid productivity 

The microalgae massive culture for feed and food stocks is at the moment carried out in ponds 

(90% of the total biomass production) or photobioreactors (more expensive technologies, but 

more productive and safety). Large-scale algae production facilities are established in Asia, India, 

USA, Israel and Australia (F.A.O. 2008) and not data are presented for our latitudes. 

Photobioreactors have been successfully used for producing large quantities of microalgal 

biomass (Molina Grima et al., 1999, Tredici, 1999, Pulz, 2001, Carvalho et al., 2006), but often they 

present high cost management for the technologies associated.  

To assess the variability in biomass production and lipid content on the basis of production 

technologies and environmental parameters the B. braunii production was carried out in 

photobioreactors (120L) of very low technologies and management cost, collocated under green-

house in Portici (Naples). Biomass productivity (g/l/day), lipid content (% dry weight) and lipid 

productivity (mg/l/day) were evaluated. The lipid content was 33±5% on biomass dry weight 

while lipid and biomass productivity were 5.09±1 mg/L/day and 15.3±3.2mg/L/day, respectively; 

these data were significantly lower than small volume cultures (indoor with controlled 

temperature, irradiance and photoperiod). The different obtained productivity was probably 

because the high daytime light (see Mat and met paragraph) increased dissolved oxygen 

concentration that produced photo-oxidative damage to algal cells.  

 

Fatty acid composition in B.braunii cultivated at different environmental conditions  

The fatty acids composition of B. braunii is typical of Chlorococcales (Ahlgren et al. 1992), being 

very rich in palmitic acid, oleic acid, and linolenic acid. 

 

Nitrogen starvation  

The fatty acid profile (%) of B. braunii in nitrogen starvation is reported in table 3. The most 

important results can be summarized as follow: Palmitic acid (C16:0) and Stearic acid (C18:0) 

percentage did not change if the culture medium was  with or without nitrogen while Oleic acid 

(C18:1) was higher in nitrogen starvation samples (Air-N, CO2-N) and Linolenic acid was higher 

in control samples (Control-Air, Control CO2). These results were generally compatible with 
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previous observations on the aging of nitrogen-starvation cultures (Khozin-Goldberg et al. 2002), 

which are characterized by an enhanced proportion of oleic acid and total fatty acid (TFA) 

content. The increase in oleic acid proportion during aging is believed to be, at least partially, the 

result of a shift from ω-3 to ω-6 unsaturated fatty acid in lipids that ensues after the transfer from 

the logarithmic to the stationary phase, as previously observed in many microalgae (Khozin-

Goldberg et al. 2002). It has also already been shown that the TFA content and composition 

change during culture growth, however, nitrogen starvation induces a larger increase in the fatty 

acid (FA) content than the culture growth itself (Khozin-Goldberg et al. 2002). When decreasing 

the nitrogen concentration in the Chu-13 the oleic acid production was increased according with 

literature data (Gang-Guk Choi et al. 2010). 

-Linolenic acid percentage showed no significantly difference between sample cultivated with 

CO2 addition (Control-CO2) and samples with nitrogen starvation (Air-N,CO2-N) but resulted 

higher respect the sample cultivated in Air (Control-Air).The fatty acids concentrations didn’t 

show significantly difference between the two harvests. The mean highest values omega- 6 (55%) 

are present in B.braunii cultivated with CO2 (Control-CO2). 

 
Table 3. Fatty acid profile of B. braunii at 14 and 28 days of culture (harvest I and II). Control-Air= 

CHU13+Air, Control-CO2 = CHU13+3%(v/v)CO2, Air-N= CHU13 without nitrogen +Air , CO2-N= CHU13  

without nitrogen +3%(v/v) CO2. 

Fatty acid profile (%) 

  Harvest Palmitic Stearic Oleic Linoleic ˠ Linolenic 

Control-Air  

I 19±1.5 1±.3 15±1 24±2.3 8±2 

II 22±2.3 2±0.2 17±1.3 22±2.4 11±2 

Air-N 

I 20±2 3±0.9 36±3.2* 16±1* 22±2* 

II 21±1.7 2±0.5 34±3.2* 18±1.3 23±2* 

Control CO2 

I 19±2 2±0.4 19±1.3 26±2.3 28±3* 

II 23±2.5 1±0 22±2* 24±2.2 29±2.5* 

 CO2-N 

I 20±2 2±0.2 32±3* 20±1.5* 25±2* 

II 21±1.8 2±0.3 32±0.5* 16±1.7* 24±3* 
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Sodium bicarbonate  

The fatty acid profile of B. braunii cultivated at different concentrations of sodium bicarbonate are 

shown in table 4.It was found that B. braunii cultivated in medium enriched with 0.214 mg/L/day 

of sodium bicarbonate (SB1C-2 harvest) determined the highest value of oleic acid (P<0.05) and 

palmitic acid (P<0.05) according to Fang et al. (2004) Dickson et al. (2008) reported that the amount 

of Oleic acid 18:1 on a dry weight increased when the CO2 concentration was raised from 1 to 

30% (v/v),according data of  the present experiment.Respect to the control, the -linolenic acid 

showed a statistically significant increase  in all treatments, except in B. braunii cultivated in 

medium at 0.214g/L of sodium bicarbonate (SB1).The highest mean value of omega- 6 (48 %) was 

obtained from sample cultivated at 0.428 mg/L/day of NaHCO3 ( SB2C)  showing in particular, a 

concentration of 37% of -linolenic acid . 

Table 4. Effect of NaHCO3 on fatty acid profile of B. braunii at 14 and 28 days (harvest I and II). 

Control=CHU13, SB1=CHU13+6 g/L NaHCO3, SB2=CHU13+12g/L NaHCO3,SB1C=CHU13 +0.214 g/L/day 

NaHCO3, SB2C=CHU13 +0.428 g/L/day NaHCO3 . 

 

  

% Fatty acid profile  

   Harvest  Palmitic Stearic Oleic Linoleic -Linolenic 

Control 
I 16±2 12±3 11±2 20±1.9 7±2 

II 17±3 6±1 10±2.4 18±0.8 9±2 

SB1 
I 20±2.5 10±1.5 14±2.3 11±2.4* 24±4* 

II 31±5* 24±4* 24±4* 4±0.8* 6±1.5 

SB2 
I 14±3.2 3±1.2* 14±2.1 19±2.1 21±3* 

II 17.5±4.4 3.1±1* 29.9±6* 17±3 21.6±4* 

SB1C 
I 13±4 1±02* 13±3.2 20±4.2 14±3.1* 

II 24±3.2* 4±1 43±9.3* 9±2.2* 14±2.1* 

SB2C 
I 24±3* 4±1 16±3 25±3 19±2* 

II 12±2 5±1 11±2.2 19±3 37±4* 
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Photobioreactors 

In table 5 fatty acid profile (%) of B. braunii grown in photobioreactors of 120 liters under green-

house is reported. The fatty acid  profile in this experiment is comparable with data obtained in 

little volumes (10L, Control-Air) (see Mat and Met paragraph). The predominant component of B. 

braunii grown in photobioreactors was palmitic acid followed by oleic acid, linoleic acid and -

linolenic acid.The decrease in the unsaturation level of fatty acids as evidenced in this case, is 

well known during the temperature shift in a wide range of living cells (Sato and Murata, 1981). 

 

Table 5: %Lipid profile in B. braunii at 14 days (harv. 1) in CHU-13 medium 

Fatty acid         % dry weight 

Palmitic 29±3 

Stearic 2±0.3 

Oleic 18±1.2 

Linoleic 10±1 

-Linolenic                9±1 

 

Food and Feed application 

Moreover, B.braunii lipid profile should be compared with that of vegetable oils. As it is shown in 

table 6 B.braunii  linoleic acid profile is sometime comparable to that of vegetable oils used in 

human food and for animal feed, while B. braunii -Linolenic acid concentration shows values 

higher than vegetable oils. However, linseed -Linolenic acid profile is higher than that of 

B.braunii. 

Due to the high presence of -linoleic acid, important for its anti-inflammatory and immune-

modulating activity, and due to the presence of polyunsaturated fatty acid, a lot of application in  

human food and animal feed could be developed as functional ingredients.  

A food ingredientis considered “ functional”  if, besides its nutritious capacity, it has a 

scientifically proven benefit for one or more functions of the human organism, improving the 

state of health or well-being or reducing the risk of disease.In some countries (Germany, France, 

Japan, USA, China, Thailand), food and feed companies have already started to market functional 

foods containing microalgae and cyanobacteria. Food safety regulations for human and animal 

consumption are the main constraint for the biotechnological exploitation of microalgal 

resources, however successful cases already exists. In 2002 the use of the marine diatom Odontella 

aurita by Innovalg (France) as a novel food was approved, following EC Regulation 258/97. 

Currently some microalgae-related health claims were evaluated by EFSA: among them the most 

interesting regarded Chlorella pyrenoidosa for digestive and liver health and Spirulina to  

improve glucose management.A series of claims regarding eye health, oxidative balance, 

cardiovascular system and connective tissue and joints for H. pluvialis astaxanthin were recently 

rejected, however  they will be likely resubmitted soon. 
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Table 6: fatty acid composition of some  vegetable oils used for human and animal nutrition (Zambia, 2007). 

 

3.4 Conclusions 

This study demonstrates that lipids content and productivity of B.braunii was significantly 

enhanced using treatmentsas nitrogen starvation with and without CO2, and using as C source 

sodium bicarbonate (addition in continuos and in batch). The sodium bicarbonate can be 

considered a possible substituteof CO2 for B. braunii, taking into account that the NaHCO3 is more 

stable source of C respect to CO2 gas (reduction in leak). The massive production of B. braunii in 

low cost and technology photobioreactors showed values for biomass productivity and lipid 

content lower respect to the other experiments in small volumes, because submitted to more 

stress factors dependent on the change in the environmental temperature and photoperiod, but 

resulting economically sustainable. 

The data on lipid content and lipid and biomass productivity were in line with literature data. 

The fatty acid profile of B. braunii resulted very interesting for application in food and feed 

industries, being characterized by some very important fatty acid as Palmitic, Stearic, Oleic, 

Linoleic and -Linoleic, which composition and quantity can be modulated applying different 

environmental culture conditions. B.braunii lipid profile can be compared with vegetable oils, 

linoleic acid profile is sometime comparable to that of vegetable oils used in human food and for 

animal feed, while B. braunii -Linoleic acid concentration shows values higher than that of 

vegetable oils.  

Due to the high presence of -Linoleic acid, important for its anti-inflammatory and immune-

modulating activity, and due to the presence of polyunsaturated fatty acid, a lot of application in  

human food and animal feed could be developed. 

 

  

Acid  Borage Canola  Cornusa Coconut Cottonseed    Linseed   ExtraVirOlive      Palme    Peanut      Rice    Soybean   Sun flower  

Caprylic C8:0  6.38 
Capric C10:0  5.56 
Lauric  C12:0  0.06 45.46 
Myristic C14:0  8.75 0.06 18.82 0.77 0.05 1.12 0.03 0.21 0.06 0.06 
Palmitic C16:0  0.06 3.75 10.34 10.08 21.87 4.81 8.7 42.7 9.4 16.9 9.9 5.7 
Heptadecanoic C17:0  3.46 0.04 0.07 0.08 0.05 0.17 0.11 0.12 0.1 0.04 
Stearci C18:0 0.22 1.87 2.04 4.31 2.27 3.03 3.47 4.55 2.65 1.78 3.94 4.79 
Arachidic  C20:0 0.3 0.64 0.44 0.08 0.026 0.02 0.46 0.39 1.38 0.61 0.41 0,3 
Bhenic  C22:0  0.11 0.35 0.31 0.36 0.13 0.58 3.14 0.77 0.48 1.16 
Lignoceric C24:0  12.96 0.27 0.26 0.12 0.01 0.05 0.06 1.66 0.41 0.21 0.31 
Palmitoleic C16:1  0.29 0.21 0.47 0.51 0.06 0.08 
Heptadecanoic-cis C17:1  0.07 0.11 0.12 0.25 0.06 0.01 0.08 0.06 
Oleic C18:1 16.52 62.41 25.54 16.61 21.42 76.34 39.37 48.71 40.5 21.35 15.26 
Linoleic  C18:2  38.47 20.12 59.27 56.35 15.18 8.64 10.62 31.06 36.2 56.02 71.17 
y-Linolenic C18:3 0.22 8.37 1.07 0.33 54.24 0.75 0.21 0.23 1.6 7.15 0.45 
cis-11 Eicosenoic  C20:1 4.4 1.54 0.37 0.14 0.4 0.34 0.17 1.43 0.53 0.22 0.22 
cis -11-14Eicosadi C20:2 0.5 0.11 0.09 0.1 0.39 0.11 0.09 
Euric C22:1 0.12 
cis 13-16-Docosano C22:2 2,09 0.19 
Nervonic C24:1 0.26 0.2 0.16 0.1 0.06 0.38 0.39 
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Chapter 4 

Strategies to improve lipid content and profile in Phaeodactylum tricornutum 

The culture of marine microalgae for the production of polyunsaturated fatty acid (PUFA) has 

become a subject of interest in recent years, but it has not yet reached commercial scale. The only 

currently available commercial source of n-3 PUFA is fish oil, but the amount of fish oil is 

continuously decreasing while the demand for PUFA is continuously on the increase. Microalgae, 

are a natural source of long-chained, polyunsaturated essential fatty acids such as EPA and DHA. 

Microalgae are photoautotrophs oraganisms using light energy to produce chemical energy and 

convert inorganic carbon (CO2) into sugars and organic compounds. Few algae species are used 

commercially today, also for the industrial production of essential oils (e.g. Schizochytium sp. And 

Crypthecodinium cohni). The important parameter for commercial scale cultivation is productivity, 

given as the biomass produced per volume or area over time. The availability and supply of 

energy and nutrients affect the biomass and lipid productivity and the EPA/DHA content in the 

cell. Some species can accumulate > 50% lipids/DW under stress conditions, and the aim is to 

optimize the fraction in EPA/DHA of these lipids.  

Photoautotrophic microalgae can produce 15-30% EPA of total fatty acids.  

Because the cells grow in aqueous suspension, they have more efficient access to water, CO2, and 

other nutrients. Very interesting is the relationship between cultivation conditions and the 

biosynthesis of value-added compounds. Under stress conditions (sub- or supra-optimal 

conditions) microalgae can change their metabolic pattern and strategies, in order to face the 

difficulties. The biomass composition is influenced by this dynamic change, that acts on the 

metabolic strategy inducing a fluctuating of the relative compounds content of the biomass (Hu, 

2004). Microalgae are induced to synthesize and produce various secondary metabolites, in 

addition modifying also the quantity of representative primary metabolites (fat, carbohydrate 

and protein). Identifying preferable culture conditions for improving the production as well as 

designing efficient and cost-effective microalgae cultivation systems are critical points.  

In this study have been considered two strategies to increase lipid production from P. 

tricornutum: carbon dioxide addition and nitrogen starvation. 

N is an essential constituent of all structural and functional proteins in algal cells. In general, 

microalgae have a limited ability to produce nitrogen storage materials when growing under 

nitrogen-sufficient conditions. Until cell nitrogen falls below a threshold value, photosynthesis 

still continues, albeit at a reduced rate.  

N starvation is an efficient environmental pressure used to increase lipid accumulation (Stephen 

et.al 2011). The general principle is that when there is insufficient N for protein synthesis required 

for growth, excess carbon from photosynthesis is channeled into storage molecules such as 

triglyceride or lipid. The microalgae lipid content in this condition could be doubled or even 

tripled (Perez-Garcia et al. 2011,Gouveia et a.l 2006), and a linear relationship between the N 

source concentration and the lipid content was observed (Marinho-Soriano et.al 2006). In addition 

to the increase in total lipid content in microalgae cells as a result of cultivation in N depleted 

media, it was found that gradually the lipid composition from free fatty acid-rich lipid changes to 

mostly triglyceride-containing lipid (Carlucci et.al 1999).  Another method to improve the 

microalgae biomass productivity and the production of lipids is the addition of carbon dioxide, 

http://www.sourcewatch.org/index.php?title=Crypthecodinium_cohni&action=edit&redlink=1
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because the microalgae can grow more rapidly and convert solar energy into chemical energy via 

CO2 fixation. CO2 fixation by microalgae has been positively correlated with its cell growth rate 

and light utilization efficiency, since it involves photoautotrophic growth (Jacob-Lopes et al., 

2009). Some of the physicochemical parameters that affect CO2 fixation include: temperature, 

medium composition, pH, light intensity, and CO2 concentration (Ho et al., 2011). Phaeodactylum 

tricornutum (Bohlin 1897) is a unicellular brown diatom penate, belong class Bacillariophyceae. It 

is the only species in the genus Phaeodactylum, distributed in same European countries, America 

,Australia and New Zealand, Asia and Pacific Island. The most notable characteristic of this strain 

were its ability to produce a high proportion of fatty acids reaching contents ranging from 18% to 

57% of its dry weight (Mata.et a.l 2010) . EPA can account for up to 20–40% of the total fatty acids, 

as a function of culture conditions ( Ibáñez González et al. 2000). EPA is an essential fatty acid for 

the human metabolism and is involved in the blood lipid equilibrium, lowers triglyceride levels 

in blood serum, reduces the degree of platelet aggregation, is anti-inflammatory ,and prevents 

hypertriglyceridemia and various carcinomas . From a down-stream processing perspective, this 

strain has an additional advantage in effect it produces little quantity of DHA. Thus, the potential 

problem of separating DHA from EPA does not arise. (Yongmanitchai et al.1991).  

The aim of this research is to evaluate, on a small and large scale, the effects of relevant 

environmental operating variables (different grow condition) on P. tricornutum (SAG 10.901A). 

The lipid content was studied in terms of quantity and quality, to define the best grow condition 

to maximize the per cent lipid production of dry weight, to obtain the fatty acid profile most 

interesting for agro-food application without reduce in excessive mode the productivity of 

microalgae studied. 

4.1 Materials and Methods 

Strain  

The species P. tricornutum (SAG 10.901A), obtained from University of Goettingen, was selected 

for this experiments and cultivated at University of Naples Federico II (Criacq). The strain was 

grown and maintained routinely in 1/2 SWES medium, in standard condition (temperature of 23 

± 2 C°, under photonic flux of 174 μE/m2/s - fluorescent lamp, photoperiod of 24 h light). The 

inocula were axenically prepared.  

Cultivation indoor (little volumes and photobioreactors: N starvation  

P. tricornutum was cultivated at different conditions: nitrogen starvation without CO2 addition 

and with 3% (v/v) CO2.  

N starvation condition was applied gradually (semi-continuus), after the exponential medium 

phase was reached, a specific microalgae culture volume was harvested and the harvested culture 

volume was replaced with the same volume of N-depleted medium. The nitrogen content in the 

medium was checked during the experiment using the nitrate assay kit (HATCH Metod 8507).  

The experiment (conducted in triplicate) was carried out in little volumes using 10 liter 

borosilicate Pyrex flasks and in a column bubble photobioreactor (250 L) of PMMA at light and 

temperature controlled. 

The microalgae growth in little volumes was monitored for 28 days, under a photonic flux of 174 

μE/m2/s, a photoperiod of 24 h light, constant temperature of 25 ± 1 °C and under constant air 

mixing. Every 7 days 2,5 L of culture were collected.  
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The experiments in photobioreactor were conducted for 21 day, under light (1W/L neon lamp, 

they light Philips), with a photoperiod of 24 h light, temperature of 21 ± 2 °C and under constant 

air mixing , every 7 days 165 L of culture were collected. 

Cultivation outdoor (photobioreactors and ponds)  

P. tricornutum was cultivated in standard medium, under constant air mixing, in photobioeactor 

(May 2013) and ponds (July 2013) outdoor under green-house.  

The environmental conditions for photobioreactor culture were: light 26 MJ/m2/die, photoperiod 

of 9:15 light:dark cycles (data of Ministry of Agriculture Forestry and Environmental), 

temperature water grave of 26±2°C.  

Photobioreactor: the experiments were carried out in triplicate for 14 days under greenhouse, 

using a low technology photobioreactor (120 L) of polyethylene. The harvest was done in batch. 

The environmental conditions for pond culture were: light 25 MJ/m2/die, photoperiod of 10:14 

light: dark cycles (data of Ministry of Agriculture Forestry and Environmental), average 

temperature water grave of 23±2 °C.  

Pond:the experiments were carried out for 21 days under greenhouse, using a low technology 

pond (2.5 m3). The harvest was done in semi-continuous. For coating the pond have been used 

low-cost materials, such as polyethylene for food use. 

 

4.1.1 Analytical methods 

The microalgae growth was directly monitored by optical density (OD 625 nm), pH, temperature 

(°C). The harvesting was carried out flocculating the culture with NaOH (5 N) until a pH of 10.4, 

and subsequently centrifuged in a continuous centrifuge at 4.500 rpm for 5 min. The wet biomass 

was dried by freeze-drying and lyophilization. The dry weight was estimated gravimetrically 

(APHA, Standard Methods, WPCF 1995). 

Determination Lipid productivity and lipid  profile  

Dried algal biomass was analyzed for total lipid content (Folch et al., 1957) as percentage of dry 

weight. The fatty acids profile was performed by gas chromatography after derivatization to fatty 

acid methyl ester (FAME) with 2 N of KOH in methanol, according to the IUPAC standard 

method . FAME, including methyl octanoate, were analyzed on a Perkin Elmer AutoSystem XL 

gas chromatograph (Perkin Elmer, Waltham, MA, USA) equipped with a PTV (programmed 

temperature vaporizer), a flame ionization detector, and a capillary column 100 m -0.25 mm inner 

diameter, film thickness of 0.20 mm. Stationary phase 50% cyanopropyl methyl silicone (Supelco, 

USA).  

The carrier gas, helium, was introduced at a flow rate of 20 cm/s. The oven temperature program 

was as follows: 120°C for 5 min, 5°C/min ramp to 165°C for 5 min, and then 10°C/min ramp to 

240°C for 20 min. The split ratio was 1/60 and the flam ionization detector temperature was set at 

260°C (Romano et al. 2013). Peaks identification was obtained using the external standard Supelco 

TM 37 FAME mix (Supelco) by comparing the retention times with the pure standard 

components. 

 

4.2 Results and Discussion 

Cultivation indoor (little volumes and photobioreactors): N starvation  

The lipids accumulation in many microalgae species occurs when they are grown in nitrogen-

depleted cultures (Li et al., 2008Lombardie Wangersky , 1991, Mc Ginnis et al. , 1997). Several 
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recent reports (Mandal and Mallick, 2009) demonstrated that  the effects of nitrogen deficiency 

was  a sharp increase in the lipid content, because the condition of nitrogen-depletion probably 

tends to transforms carbon protein or peptides to lipids or carbohydrates. However, it is 

necessary to explore how long the microalgal cells should be cultivated under N-starvation 

condition in order to obtain the optimal lipid production. 

In this work P. tricornutum was cultivated under a high light intensity for 28 days without 

nitrogen ,and the lipid content and productivity was monitored.  

The effects of N starvation on P. tricornutum biomass was reported in Graphic 1 (small volumes) 

and Graphic 2 (photobioreactor), while lipid content (% dry weight) and productivity (mg/L/day) 

are shown in table 1 (little volumes) and table 2 (photobioreactor). 

Phaeodactylum cultivated in flaskes with ½ SWES with CO2 (3% v/v), and CO2  3% without 

nitrogen (CO2-N) after 7 days of cultivation (harvest 1) presented the highest biomass 

productivity: 89.4 mg/L/day, and 93 mg/L/day respectively, values significantly different from 

the culture growth in ½ SWES medium enriched with air (Control-Air) and 1/2 SWES medium 

nitrogen-depleted (Graphic 1).At 14 and 21days (harvest 2 and 3) high biomass productivities 

were obtained in culture cultivated with 1/2 SWES medium and CO2 3% (v/v) with values 

respectively of 65 mg/L/day and 51 mg/L/day although not significantly different to the other 

treatments. 
The lowest biomass productivity (22 mg/L/day) was registered at the last harvesting (after 28 

days) of P. tricornutum growth in standard medium with air mixing and withot nitrogen. 
Although on all harvested the medium (with and without nitrogen) was reintegrated, the 

productivity was different,Hockin et al. (2012) and Valenzuela et al. (2012) reported that the gene 

expression levels for TCA enzymes are largely maintained during nitrogen depletion to 

potentially provide precursors for nitrogen assimilation, in the event more nitrogen is 

encountered. This explains the rapid reversal of lipid accumulation when nitrate is supplemented 

to the depleted cells. Metabolism is primed for assimilation of nitrogen and can quickly shift back 

toward growth conditions. As soon as nitrogen becomes available, carbon can be redirected from 

fatty acid storage to biomass growth and existing lipids are consumed (Valenzuela 2013 ). The 

obtained values of biomass productivity are in agreement with literature data (from 0.003 to 1.9 

g/L/day: Mata et al. 2010, Rodolfi et al. 2009,Song,  2013).  

In the bubbling column photobioreactor the highest productivity was obtained after 7 days (first 

harvest) reaching a value of 35.8 mg/L/day, not significantly different from biomass of the 3rd and 

4th harvest that gave  respectively 23 and 25 mg/L/day.The values of biomass productivity in the 

bubble column photobioreactor in the first three harvested were lower compared to the harvest 

samples growth in flask with air mixing in nitrogen starvation (Air-N).  
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Graphic 1: P. tricornutum: biomass productivity in little volumes at 7, 14, 21 and 28 days (harv. 1, 2, 3 and 4) 

at different conditions: ½ SWES - Air (Control-Air ), ½ SWES - 3% (v/v ) CO2 (CO2), ½ SWES without 

nitrogen - Air (Air-N), ½ SWES - without nitrogen +3%(v/v) CO2 (CO2-N). 

 

Graphic 2:P. tricornutum: biomass productivity in bubble column photobioreactor (250L) at 7, 14, 21 and 28 

days (harv. 1, 2, 3 and 4), medium 1/2SWES. 

The effects of nitrogen starvation on P. tricornutum lipid content (% dw) and productivity 

(mg/l/day) are shown in table 1. The highest values of lipid content were reached after 28 days 

(harvest 4) in samples grown in nitrogen starvation with air (Air -N) and with CO2 (CO2-N), the 

values are respectively of 26,9±3,5 and 26±3 % dw, significantly different respect the other 

treatments. The lipid percentage in the samples Air-N and CO2-N increased when the nitrogen 

values were close to zero (Graphic 3 and 4), as already observed by Thomas et al. (1896).Zhi-Kai 

Yang (2013) reported that the light-harvesting complex involved in photosynthesis, including six 

members of fucoxanthin chlorophyll a/c proteins, showed decreased expression in P. tricornutum 

growth in medium deprived in nitrogen. Also in diatom Cyclotella cryptica, where in vivo 
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experiments using antibodies against phosphothreonine residues and in vitro studies using *γ-

32P] ATP showed that fucoxanthin chlorophyll a/c binding proteins of 22 kDa became 

phosphorylated (Brakemann et al. 2006). This suggests that –N(privation) could decelerate the 

light-harvesting process in photosynthesis. Down regulation of the light-harvesting complex 

under −N (privation)  effectively reduces light energy absorption. Furthermore, the decrease in 

photosynthetic activity inhibits the relevant carbon fixation pathway. Therefore, alternative 

metabolic pathways may occur, which compensate for carbon assimilation and eventually lead to 

high lipid accumulation under –N( privation). Although the treatment in nitrogen starvation with 

insufflation Air gave the highest value of lipid content (% dw), the lipid productivity (mg/L/day) 

was the lowest respect the other samples (5.1±3 mg /L/day). In the microalgae growth in 1/2 

SWES with and without nitrogen in CO2 the highest values lipid productivity (mg/L/day) were 

observed in  the first 3 harvested. 

 

Table 1: Lipid productivity (mg/l/day) and content (% DW) of P. tricornutum harvesting at 7, 14, 21 and 28 

days (harv. 1, 2, 3 and 4) at different conditions: ½ SWES - Air (Control-Air ), ½ SWES - 3% CO2 (v/v ) (CO2), 

½ SWES without nitrogen - Air (Air-N), 1/2 SWES- without nitrogen + 3% CO2 (v/v) (CO2-N). Little volumes 

 

Harvest Lipid content  

(% dw) 

Lipid productivity  

(mg/ L/day) 

Control 

I 18,5±7 10,80±2 

II 20±5 9,56±1 

III 21±4 7,4±2 

IV 21±1,5 9,24±3 

Air-N 

I 22±7 13,06±2 

II 25,1±5 12,75±3* 

III 25±4,5 7.5±2 

IV 26.9±3,5* 5.1±3* 

CO2 

I 16±1.5 14.24±2* 

II 19±2.3 12.35±3* 

III 21±3 10.71±1,5* 

IV 22±2 12.1±2 

 CO2-N 

I 17.5±4 15.81±3* 

II 20.8±5 10.77±2* 

III 24±3 12.24±3* 

IV 26±3* 10.92±3 
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Graphic 3  

 

 

Graphic 4  

Graphic 3-4: levels of nitrogen (mg/L) after each harvest in: ½ SWES without nitrogen – Air (Air-N), ½ 

SWES without nitrogen –CO2 (CO2-N). Little volumes 
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The lipid content (% dw) and lipid productivity (mg/L/ day) of the bubble column 

photobioreactor indoor, are shown in Table 2. The highest lipid content (% dw) in the 

photobioreactor was obtained at the 4th  harvest (after 28 days) with a value of 25±2.5 mg/L/day, 

value not statistically different from the previous harvest (14 days). The lipid percentage 

increased when the nitrogen value was close to zero (Graphic 5).This values confirm what 

happened in the algal sample cultivated in standard medium deprived of nitrogen with air 

insufflation (AIR-N) in small volumes (flask 10 liter). The lipid productivity values not showed 

difference between harvested according to  value observed in the last harvest of the sample 

cultivated in standard medium deprived of nitrogen with air insufflation(AIR-N) in small 

volumes (flask 10 liter). 

 

Table2: Lipid productivity (mg/l/day) and content (% DW) of P. tricornutum harvesting at 7, 14, 21 and 28 

days(harv. 1, 2, 3 and 4) with ½ SWES  without nitrogen –Air. Bubble column photobioreactor indoor (250L) 

  

Harvest Lipid content  

(% dw) 

Lipid productivity 

(mg/ L/day) 

 

I 18±1.8a 6.4±3 

photobioreactor indoor II 20±2a 6±2 

 

III 23±4ab 5.2±3 

  IV 25±2.5b 6.25±3.4 

 

 

 

 

 

Graphic 5:  Levels of nitrogen(mg/L) after each harvest in :1/2SWES without nitrogen –Air.Bubble 

column photobioreactor indoor (250 L) 
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Cultivation outdoor (photobioreactors and ponds)  

To assess the variability in biomass production and lipid content on the basis of production 

technologies and environmental parameters, P. tricornutum was cultivated under green-house in 

Portici (Naples) in photobioreactors (120L) and in ponds (2,5m3) both with very low technologies 

and low management cost. Biomass productivity (mg/L/day), lipid content (% dry weight) and 

lipid amount (mg/l/day) were evaluated. In the photobioreactor the biomass productivity was 

15±2 mg/L/day with a lipid content of 17.9±5.3 (% dw), while lipid productivity was 2.59±2 

mg/L/day, this data were significantly lower respect to samples grown in standard medium with 

air in flask (Control 10L), because the small volume cultures were carried out indoor at stable 

condition of temperature, irradiance and photoperiod.In the large scale probably the high 

daytime light (see Mat and met paragraph) increased dissolved oxygen concentration that 

produced photo-oxidative damage to algal cells. Yusuf Chisti (2007) reported that to prevent 

inhibition and damage, the maximum tolerable dissolved oxygen level should not generally 

exceed about 400% of air saturation value.The biomass productivity (Graphic 6) considering the 

three harvesting was around 36±1 mg/L/day, value not comparable with the productivity 

obtained by Mirón et al. (2002) (4 kg m3 after 12 day) but in photobioreactor in batch, with split 

cylinder airlift reactor, draft-tube airlift reactor . The highest lipid content (%dw) was obtained in 

the last harvest (13±1.58 mg/L/day), with  lipid amount that was  not significantly different 

among harvesting (Table 3). Both lipid and biomass productivity was higher than those of the 

photobioreactor, because the photobioreactor was cultivated in batch, while the ponds was 

cultivated in continuous, moreover the ponds presented a larger surface and the culture inside 

had an height, that did not exceed 25 centimeter allowing light penetration. 

 

Graphic 6: Biomass productivity (mg/L/day) of P. tricornutum harvesting at 7, 14 and 21 days (harv. 1, 2 and 

3) with ½ SWES in Air. In pond (2,5m3) 

  



59 
 

Table 3:Lipid productivity (mg/l/day) and content (% DW) of P. tricornutum  harvesting at 7, 14 and 21 days 

(harv. 1, 2 and 3) with ½ SWES in Air. In pond (2500L) 

  Harvest Lipid content  

(% dw) 

Lipid productivity 

mg/ L/day     

ponds outdoor I 9±1 33±1.5 

 

II 10±1 3.4±2 

  III 13±1.5 5.5±2.1 

 

Fatty acid profile: cultivation indoor (little volumes and photobioreactors) - N starvation  

In Table 4 the fatty acid profile (%) of P. tricornutum grown in small volumes in nitrogen 

starvation is reported. Myristc acid (14:0), Pamitoleic acid (C16:1) and Oleic acid (C18:1) did not 

show a statistically significant difference among samples. Palmitic acid (C16:0) was higher in 

some nitrogen starvation samples (Air-N, CO2-N) and samples cultivated with 3% CO2. Palmitic 

acid (C16:0) was high in some nitrogen starvation samples (Air-N, CO2-N) and in samples 

cultivated with 3% CO2, but Linolenic acid in the same samples gave significantly lower values 

than the control. EPA (C20:5) level was significantly higher in the microalgae cultivated in 

standard medium whit air (harvest 1-2-3-4 Control and harvest 1 Air-N). the other samples 

showed significantly lower values respect to these. Notwithstanding the EPA concentration in the 

sample growth in standard medium (with and without nitrogen) with CO2 was low, it resulted 

better than P.tricornutum growth on other forms of carbon, added at values among 1.50 and 2.40% 

(Garcia, 2005). 

 

Table 4: % Lipid Characterization of Phaeodactylum  TricornutumTricornutum  cultivation at 7 ,14 ,21 and 28 

days (harv. 1 ,2,3and 4) with : 1/2SWES- Air (Control-Air ), 1/2SWES- 3%(v/v )CO2 (CO2), 1/2SWES  without 

nitrogen - Air (Air-N) ,1/2SWES- without nitrogen +3%(v/v) CO2 (CO2-N).In borosilicate flask 10L 

  

% Lipid Characterization 

  harvested Myristic Palmitic Palmitoleic Oleic  linolenic EPA 

Control I 7±1.3 24±1.5 35±1.3 5±1.2 7±2.3 12±2.5 

II 5±1.3 25±4.5 34±6.0 6±1.5 7±1.3 15±1.2 

III 7±1.2 22±1.3 36±3.4 7±0.8 5±1.4 14±1.3 

IV 7±2.4 22±7.4 36±3.1 7±3.4 5±0.5 14±3.0 

Air-N I 7±1.21 22±1.3 36±1.5 7±1.2 5±2 14±2.5 

II 6±1 35±4* 39±6 8±2 1±1* 6±1* 

III 5±1 38±1* 37±3 7±0.8 1±1.4* 6±1* 

IV 5±2 35±7 35±3 5±3 1±1* 6±3* 

CO2 I 6±2.0 33±3.5* 37±4.0 5±1.4 2±3.8* 8±1.5* 

II 6±1.6 34±1.8* 37±44 6±1 2±2.0* 6±1.3* 

III 5.5±1.3 37±2.0* 36±2.1 6±4.0 3±2.7 7±3.1* 

IV 4±2.4 34±6.3 36±3.4 6±1 3±1 7±3* 

CO2-N I 5.5±1 32±3 36±7 6±1 3±4 7±1* 

II 6.4±1 36±2* 40±4 7±1 1±1.5* 6±1* 

III 4.7±2 40±2* 36±2 6±4 1±3* 7±3* 

IV 4.6±2 37±5.5* 35±3 6±1 1±1* 6±3* 
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Table 5 reports the fatty acid profile (%) of cultures growth in the photobioreactor indoor (250L). 

Myristc acid (14:0) showed low value in the harvest 3, significantly different than the other 

harvested. Palmitic acid (C16:0) concentration increased since the second harvesting. Pamitoleic 

acid (C16:1)not showed a statistically significant difference among harvested. Oleic acid 

(C18:1)presented the highest value in the 2nd  harvest (4.8±0.5 %) .Linoleic acid (C18:3) and EPA 

(C20:5) showed the best results after 7 days (harvest 1).The results obtained in the first harvest for 

the photobioreactor at temperature and luminosity controlled were compared with harvested of 

small volumes (10L) grown in standard medium with air.Nitrogen content of the medium has 

been reported to affect the proportion of saturated to unsaturated fatty acids in many 

microorganisms. Under nitrogen stress, Dunaliella bardawil and Dunaliella salina produced a 

higher percentage of EPA (Amotz et al. 1985). In contrast, the proportion of polyunsaturated fatty 

acids in the freshwater algae Scenedesmus and Chlorella increased at high nitrogen concentrations, 

which is consistent with reported data, at limited nitrogen levels (Holdsworth et al. 1976, Thomas 

1984,Yongmanitchai et al. 1990).Also Tonon et al. (2002) showed that the eicosapentaenoic acid 

content in P. tricornutum ranges from 16.1% for exponential cells to 5.8% of total lipids for 

stationary ones. 

 

Table 5:% Lipid Characterization of  Phaeodactylum Tricornutum  cultivation at 7 ,14 ,21 and 28 days (harv. 1 

,2, 3 and 4) with 1/2SWES  without nitrogen - Air. In photobioreactor indoor(250L) 

  % Lipid Characterization     

photobioreactor 

indoor 

harvest  Myristic Palmitic Palmitoleic Oleic  Linolenic EPA 

I 7.6±1a 26.8±3a 30.6±3a 1±0.2a 8.6±1.3a 13.9±1a 

II 8.7±1a 38.8±4b 26.4±3a 4.8±0.5b 4±0.6b 6±1b 

III 1±1b 44±5b 35±4a 2±0.2a 1±0.2b 5±0.6 b 

IV 8±1a 39±3.9b 32±3.1a 2±0.3a 1±0.2b 6±0.7 b 

 

 

Phaeodactylum Tricornutum cultivation outdoor in photobioreactors and ponds fatty acid 

composition 

The table 6 showed , lipid profile(%) of P. tricornutum in photobioreactors. The fatty acids profile 

in this  experiment is comparable for some fatty acid with air control (Control-Air) of first 

experiment. The fatty acid with the highest percentage was oleic acid 14%. The decrease in the 

unsaturation level of fatty acids as shown in this case is well known during the temperature shift 

in a wide range of living cells (Sato N, Murata N 1981) 

Table 6: % Lipid Characterization of  Phaeodactylum Tricornutum cultivation at 14 days in 1/2SWES with- Air. 

In photobioreactor outdoor (100L) 

 

%Lipid characterisation 

 
Myristic Palmitic Palmitoleic Oleic  Linolenic EPA 

 photobioreactor 

outdoor 
6±2.1 26±4.3 23±4 14±4.5 8±2 10±1 
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The fatty acids percentage in P.tricornutum cultivation in ponds are shown in Table 7. 

Myristic acid (14:0), Oleic acid (C18:1) and -Linolenic did not a statistically significant difference 

among harvested. Palmitic acid (C16:0) in 2° and 3° harvested presented values significantly 

different compared to the first one. High concentration of EPA were observed in the first harvest 

(25% of total fatty acids), also found in the literature (Fajardo et al.l 2007,Mirón et al.l 2003 ) and 

greater than that contained in the oil cod liver, that has about 18%. Renaud et al 1995 reported 

that in Isochrysis galbana increased in EPA content at a temperature of 20°C. 

Table 7:% Lipid Characterization of Phaeodactylum Tricornutum harvesting at 7, 14 and 21 days in ½ SWES 

with- Air. In photobioreactor outdoor in continus (1600L) 

      % Lipid Characterization     

  harvest Myristico Palmitic Palmitoleic Oleic -Linolenic EPA 

  I 6±2.1 18±2 19.3±1.8 13.9±1 3.1±0.9 25.7±3 

ponds II 4±3 30.7±3.6* 27.4±3* 13.4±1.5 4.8±1 17.6±2* 

  III 4±2 29.1±3* 25.4±2.5* 12.3±1.5 4.2±0.6 15.3±1.5* 

 

4.3 Conclusions 

This study showed starvation nitrogen showed to be a good treatment to increase lipid 

percentage. CO2 was a good treatment to increase biomass productivity, that lipids content and 

productivity of P.tricornutum  was significantly enhanced using treatments as nitrogen starvation 

with and without CO2,but the best technology production was the pond due to EPA 

concentration and  low cost management and maintenance. It is estimated that the pond has a 

cost 10 times lower per liter of biomass produced compared to a photobioreactor at PMMA 

luminosity and temperature controlled with a bubble column air. A further optimization of 

productivity, and reduction of production costs, which are realistic in a 5 year perspective see the 

production of EPA and DHA of microalgae has the potential to develop into a sustainable 

alternative to fish oil for use in aqua-feed. This potential can be realized by establishing a fit-for-

purpose research and development pipeline with integrated research along the value chain in 

light of the recent price development and the future fish oil 
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Chapter 5 

Lipid content and fatty acid profile of A. maxima cultivated in south of Italy 

Introduction 

The genus Arthrospira belongs to the group of systematic Cyanobacteria, ancient prokaryotic 

organisms appeared on Earth three billion years ago. Arthrospira (Spirulina) is an edible 

cyanobacterium that performs prokaryotic oxygen-evolving photosynthesis, .converting CO2 into 

organic compounds using the energy from sunlight (Ciferri 1983, Vonshak 1997). It often 

dominates the plankton of warm lakes that have high carbonate/bicarbonate content and pH 

levels (Grima et.al l999, Ciferri 1983, Vonshak1997). The species marketed in food industries with 

the name of ‚Spirulina‛ are Arthrospira maxima and Arthrospira platensis (Cohen et al. 1995, Viti et 

al. 1997).  

The cyanobacterium Spirulina has been used as a food for centuries by native peoples from Lake 

Chad in Africa and Lake Texcoco in Mexico (Vonshak 1997, Henrikson 1994), at the moment it is 

used as food supplement for undernourished people in many parts of the world (Henrikson, 

1994) due to its high level of various pigments (e.g., chlorophyll a, phycocyanin and carotenoids), 

proteins (about 60-70%of dry weight), vitamins, minerals, and some essential fattyacids (e.g., γ-

linolenic and eicosapentaenoic acids) (Apt et al. 1999, Choi et al. 2008, Ciferri 1983, Franke et 

al.1994, Sanghvi et al. 2010, Vonshak1997) Preparations of Spirulina, sold in capsule form or in 

foods such as beverages, pastes, biscuits have been shown to have therapeutic properties in the 

treatment of conditions such as hypercholesterolemia and atherosclerosis (Ramamoorthy and 

Premakumari, 1996), pre-menstrual tension and arthritis and as an auxiliary in weight loss 

(Henrikson, 1994). Among the compounds present in Spirulina biomass, gamma-linolenic acid γ-

Linolenic (C18:3, ω6,) and phycocyanin are received most attention from researchers. 

Phycocyanin was first studied as food colorant (Sarada et al. 1999), while γ-Linolenic was mainly 

studied for its therapeutic and nutraceutical properties such as its ability to decrease blood 

cholesterol levels (Ishikawa et al. 1989). There are a lot of researches on Spirulina as a potential 

source of γLinolenic (Alonso and Maroto 2000, Quoc et al. 1994, Cohen et al. 1987, 1993) and the 

growth conditions showed to influence the γ-Linolenic content. Spirulina is cultivated mainly in 

tropical and subtropical regions, but also where temperate zones the climatic conditions can 

induce a high biomass productivity and profits. Several studies evaluated the Spirulina 

productivity in the north countries of the Mediterranean such as Spain ( Jimènez et al.  2002) and 

Italy (Zittelli et al.  1996) but there are no consistent data about changes in the composition of the 

biomass during a production season. Some researchersconsidered the variation of the chemical 

composition of Spirulina in response to different climatic regimes or light intensity variation, but 

all experiments were conducted in the laboratory-scale, using cultures in flasks or in 

photobioreactors.The main purpose of this work is to evaluate the biomass productivity, lipid 

content and fatty acid profile of Arthrospira maxima cultivated in pond under greenhouse in South 

of Italy (Portici , Naples)from June to November in two years - 2012 and 2013. 

5.1 Materials and methods 

Strain and cultivation  

The species Arthrospira maxima(SAG 84.79), obtained from University of Goettingen, was selected 

for this experiment and cultivatedat University of Naples Federico II(Criacq).The strain was 

grown and maintained routinely in Zarrouk medium, in standard condition (temperature of 26 ± 

2 C°, under photonic flux of 174 μE/m2/s - fluorescent lamp, photoperiod of 24 h light). The 

inocula were axenically prepared.  
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Cultivation in pond under greenhouse  

Arthrospira maxima was cultivated in 3 ponds of 11m2 (final volume 2,5 m3) coated in PVC, 

suitable for foodproduction in Zarrouk medium. The experiment was carried out from June to 

November for two years (2012-2013), under constant aeration. The data of environmental 

conditions as Light, photoperiod and temperature were provided by ENEA in Portici (NA) and 

by Ministry of Agriculture Forestry and Environmental. 

The culture harvest was carried out, at exponential growth phase, from two to five times a week, 

using a pre-filter of 400 µm and a filter of 50 µm. Between 2012 and 2013, a remarkable 

improvement in harvesting performance was made using a harvesting system more efficient and 

semi-automatic,with higher energy consumption.One time a week, based on the dried biomass 

harvested a replenishment of nutrient salts were made. 

 

Analytical methods 

Microalgae growth was directly monitored by optical density (OD 560nm), pH and temperature 

(°C). The organic dry weight was estimated gravimetrically (APHA, Standard Methods, WPCF 

1995).Several  biomass rates were freeze and lyophilization for subsequent analysis.was made 

Lipid productivity and lipid profile  

Algal biomass Arthrospira maxima was tested for total lipids (Folch et al. 1957) as percentage of dry 

weight. The fatty acids profile was performed by gas chromatography, after derivatization to 

fatty acid methyl ester (FAME) with 2 N of KOH in methanol, according to the IUPAC standard 

method FAME, including methyl octanoate, were analyzed on a Perkin Elmer AutoSystem XL 

gas chromatograph (Perkin Elmer, Waltham, MA, USA) equipped with a PTV(programmed 

temperature vaporizer), a flame ionization detector, and a capillary column 100 m -0.25 mm inner 

diameter, film thickness of 0.20 mm. Stationary phase 50% cyanopropyl methyl silicone (Supelco, 

USA).  

The carrier gas, helium, was introduced at a flow rate of 20 cm/s. The oven temperature program 

was as follows: 120°C for 5 min, 5°C/min ramp to 165°C for 5 min, and then 10°C/min ramp to 

240°C for 20 min. The split ratio was 1/60 and the flam ionization detector temperature was set at 

260°C (Romano et al.2013). Peaks identification was obtained using the external standard Supelco 

TM 37 FAME mix (Supelco) by comparing the retention times with the pure standard 

components. 

 

Statistical Analysis 

Data were analyzed using one-way analysis of variance (ANOVA). A value of P< 0.05 

wasconsidered significant. Each value was based on three repetitions, and the corresponding 

data are presented as mean ± standard deviation(n = 3). 

5.2 Results and discussion 

Biomass productivity 

The biomass productivity of Spirulina was reported in graphic 1 (production season from June to 

November for two years: 2012-2013).The biomass productivity (g/m2/day) in 2013 was 

significantly higher respect to 2012 production,from June to September,but was not different in 

October and November. 
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Graphic1:  Biomass productivity (g/m2/ day)of Spirulina years 2012 2013. 

 

The average productivity of the summer  2012 was 3.88 g /m2/day, lower than value obtained the 

second summer: 6 g/m2/day. The ponds in 2013 in fact, had a total production of 37.4% higher 

than the previous year. This difference is not related to the climatic conditions as temperature 

and radiation (see Graphic 2) were not significantly different in the two years, but to the 

improvement of the harvesting and culture mixing systems.  

In 2012 the culture mixing was provided through the air bubbling, while in 2013 a wheel was 

applied, moreover the harvesting efficiency in 2013 was increased through the use of a semi-

automatic system, that allowed to collect a triple quantity of the biomass in the unit of time, 

compared to the rudimentary system used in 2012. 

During the months of June, July and August, the productivity was 43% higher than that obtained 

in the following period (September, October, November). This reduction in productivity is 

absolutely a normal and expected behavior, as reported also in the work of Zittelli et al. (1996), 

mainly induced to the radiation and temperature reduction in autumn and winter respect to the 

summer.In this work, the winter  biomass productivity decrease compared to the summer 

months was in the order of 20% in the autumn to get to 60% in the winter. Even in the work of 

Richmond et al. (1990) was reported a similar decline in productivity, which increased to 25-27 

gm-2d-1 for the period from May to October, starting to 12-14 gm-2d-1 for the next 6 months 

(November to April).  

The productivity data of the present work were low if compared to the studies reported in 

literature, but a simple comparison is not exhaustive, considering that the production was made 

applying low technologies with minimum costs. Jiménez et al.(2003) reported 

aSpirulinaproduction in southern Spain in 9 months (except winter) with an average potential 

productivity of 10.3 gm-2d-1 (DW), which decresead to 8-2 gm-2d-1(DW)over 12 months. 
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Graphic2:  Daily global irradiation performance in Naples from 2012-2013. 

 

Graph 3 shows the annual productivity (g/m2/y) of Spirulina in 2013 compared with the 

productivity of some common agricultural products (cultivated in Italy from 2008 to 2012) ( FAO 

official data - STAT , 2013). The high Spirulina productivity stands out, showing a value 40% 

higher respect to corn and more than double respect to rice and potatoes (in terms of dry weight). 

 

Graphic 3 : Comparison of Spirulina productivity with several agricultural products in Italy 
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Fatty acid and lipid profile : 

InTable 1 the lipid content (%dw) and productivity (g/m2/day) of A. maxima in 2012 and 2013 

years were reported.In the year 2012 the months June and July showed values of lipid 

content(%dw)significantly lower that other months.In the 2013 the lipid content was not 

significantly different among months, and the values obtained in the months August,September 

and November were not significantly different respect 2012 harvested.The mean percentages 

between the two seasons of production were, respectively 8.0±3.2 in 2012 and 8.3 ± 2.2 in 2013. 

Table1: Content(%dw) and productivity Lipidi (g/m2/day) of Arthrospiara maxima  in 2012 and 2013 years  

  

2012 2013 

Lipid content 

(%dw) 

Lipid productivity 

(g/m2/day) 

Lipid content 

(%dw) 

Lipid productivity 

(g/m2/day) 

June 4±1a 0,14±0,02a 7±0,2d 0,35±0,04e 

July 5±1a 0,22±0,02b 9±1d 0,62±0,05f 

August 7±2b 0,21±0,02b 9±2db 0,49±0,04g 

September 11±1c 0,24±0,03b 12±2dc 0,52±0,04g 

October 12±2c 0,36±0,04c 6±2d 0,19±0,03h 

November 9±4c 0,14±0,01a 7±3dc 0,11±0,04ha 

 

The data of Bujar et al. (1970), Challem et al. (1981), Earthrise Spirulina Farms (1986) and Santillan 

(1974) indicated a lipid content variable between 6-7% (DW), values slightly lower than mean 

values found in the present work.The highest lipid productivity in 2012 was registered  in 

October, while in 2013 the highest value was in July, values significantly different respect other 

crops.Focusing the discussion on a healthy point of view, it is important to consider that the sum 

of two polyunsaturated fatty acids , linoleic acid and –linolenic, was about 50% of total fatty acid 

(Table 2). In 2012 the linoleic acid showed little variability, with a content ranged 15% to 21% and 

the γ -linolenic acid showed a fluctuating behaviour, with an average value of 27% - minimum 

value in September (14%) and maximum in June (39%). In 2013  the percentage of linoleic acid 

was lower with high  variability and also for the γ -linolenic acid the situation was similar.  
Some authors reported significant variations in polyunsaturated content related to the culture 

temperature changes. Mühling et al. (2005) showed that at 20° C - culture temperature – the 

values of palmitic acid was lower than 30° C, but the content of linoleic acid and γ –linolenic was 

higher. In the present study it was not detected a clear correlation between temperature and fatty 

acid profile. Lang et al. (2011) studying the same our strain of Spirulina (SAG 84.79) found a 

percentage of γ-linolenic acid on total lipid not different by the results obtained in this research 

(24.8%), also showing a high variability in the other species.  
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Table 2:Linoleic and -Linolenic content (%) of Arthrospira maxima cultivated for two years (2012-2013) in 

south of Italy 

Month 
Year 2012 Year 2013 

 

Linoleico Linolenico Linoleic Linolenic 

June 21±2a 39±2a 18±2ba 28±2.4d 

July 19±3a 18±3b 18±2.5ba 37±3e 

August 15±4a 31±2.5c 15±3ba 29±2.8d 

September 20±1a 14±1.7b 13±3b 36±2e 

October 21±1a 27±2.1c 10±3c 34±2.1e 

November 19±4a 34±3a 18±2.4ba 31±2.7d 

 

5.3 Conclusions 

Actually, commercial scale production facilities of Spirulina are mainly allocated in sub-tropical 

regions.The improvement of Spirulina growth conditions is usually very important to start a 

commercial production, that can be economically and nutritionally interesting. In literature there 

are many scientific works on the Spirulina cultivation but a lot of them were carried out indoor in 

small volumes, using photobioreactors, that although providing excellent performance of 

growing, do not represent a viable and economic sustainable way to massive microalgae 

production. The researches carried out on large volumes (outdoor ponds or raceways), at our 

latitudes, reported very high productivity (near 30 ton/ha/year) but often using expensive 

equipments with also high management costs.It is important to underline that in literature there 

is a lack of information about the possible variations in Spirulina biomass composition related to 

the seasonal climatic changes, especially at our latitudes. The present work showed the possible 

influence of environmental factors on the biomass and lipid productivity of Spirulina, although 

the lipid profile did not show significatively changes trough the years.That the light radiation 

and the temperature, while having a positive influence on the productivity, do not seem to have 

the same effect as regards the lipid composition. The total lipid content and its composition did 

not show a trend correlated with meteorological parameters. A.maxima literature  data claim 

biomass productivity at our latitudes  of about 30 ton/ha/y (Jimenez et al. 2003) so with 8% lipid 

productivity could reach 2,4 ton/ha/y of oil. The results of this work will be useful for the 

development of commercial cultivation of an innovative product in Campania, providing data on 

both the productive potential, both on the variability of the product during the seasons in terms 

of fatty acid profile. 
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6. Final Conclusions  

Consumers around the world are moving toward functional foods as a way to preserve and 

improve their well being. They are beginning to search for not only low-fat and low-sugar 

products, but also for foods considered as natural or with ingredients taken from natural sources 

as opposed to synthetically produced ingredients. Consumers are searching for food products 

that will help them prevent and fight diseases, increase their energy and wellness, and help them 

live longer, healthier, and productive lives. With that in mind, food scientists can find in 

microalgae a novel source for wholesome food and bioactive ingredients. Microalgae have been 

around ‚forever,‛ but only in the last few decades have been produced and marketed as 

nutraceuticals and food supplements. Their potential is so much greater than the current 

applications. Genera such as Spirulina, Chlorella, Dunaliella, Haematococcus, Schizochytrium, and 

Isochrysis  have become popular microalgae sources of protein-rich biomass and compounds, 

especially carotenoids, pigments, antioxidant extracts, and essential fatty acids.The acceptance of 

the use of microalgae biomass or biomolecules extracted from it has resulted in the development 

of various innovative food products enriched with microalgae or their sub-products. Up to the 

moment, very few such products have appeared in the health and natural sector shelves of stores 

across Europe and Asia, therefore, there is still a very large untapped opportunity in this food 

area. This study aiming to improve in different way  lipid profile and relative production  of 

microalgae B.braunii, P.tricornutum and cyanobacteria A.maxima, has focused attention on some 

fatty acids of food interest (Table 1). 

                     Table 1: Algal fatty acids considered in this study 

                

Fatty Acidi     Possible health effect   

        

Palmitoleic acid      

reduce risk of certain heart 

diseases 

Palmitic acid 

  

antimicrobial activity 

Oleic acid      antioxidant activity   

Linoleic  acid  

  

lowering of cholesterol 

 Linolenic acid      

anti-inflammatory and immune-

modulating activity 

EPA fatty acid     

reduce risk of certain heart 

diseases 

 

B.braunii  SAG: Showed that the lipid productivity and content was significantly enhanced using 

treatments as nitrogen starvation with and without CO2, and using sodium bicarbonate as C 

source.The fatty acid profile of B. braunii resulted very interesting for application in food and 

feed industries, being characterized by some very important fatty acid as Palmitic, Stearic, Oleic, 

Linoleic and -Linolenic, which composition and quantity can be modulated applying different 

culture conditions. Comparing the obtained lipid profile of B. braunii with some vegetable oils 

was observed that  , linoleic acid amount is sometime comparable vegetable if oils used in human 

food and for animal feed, while -Linolenic acid percentage shows values higher than level 

reported for vegetable oils.  Due to the high presence of -Linolenic acid, important for its anti-

inflammatory and immune-modulating activity, and due to the presence of polyunsaturated fatty 

acid, a lot of application in human food and animal feed could be developed. B.braunii U-TEX 
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and IBL strains have shown to be a good source of biodiesel for their ratio between fatty 

saturated and unsaturated. 

Phaeodacctylum tricornutum: lipids content and lipids productivity were significantly enhanced 

using treatments as nitrogen starvation with and without CO2, and the best production 

technology, due to EPA concentration and  low cost management and maintenance was the pond. 

The fatty acid profile of P. tricornutum resulted very interesting for application in food and feed 

industries. For the presence of EPA that is very important for his function in the anti-

inflammatory activity, anti-cancer and for the treatment of developmental disorders and mental 

health. A.maxima: Albeit light radiation and temperature have a positive influence on the 

productivity  do not seem to have the same effect on lipid composition. The total lipid content 

and its composition did not show a trend correlated with meteorological parameters. The results 

shown the possibility, at our latitudes, to produce Spirulina under greenhouse with excellent 

nutritional value for most of the year and with good production rates maintaining low operating 

costs (energy and management) at low level. This results could be useful for the development of 

commercial cultivation of an innovative product in  Campania, providing data on both the 

productive potential and on the variability of the product during the production season. In some 

European countries n-3 FA daily intake in adults vary between 80 and 420 mg/d. EU 

recommended daily intake of Omega-3 EPA/DHA is 250 mg/d. In order to achieve a ‚Source‛ 

claim a min. 15% RDI (i.e. 37.5 mg EPA+DHA) in 100g or 100ml product will be needed and to 

achieve a ‚Rich Source‛ claim a min. 30% RDI (i.e.75mg EPA+DHA). EFSA proposes, for n-6 

PUFA, 10g as labelling reference intake value, which is consistent with recommended intakes for 

adult individuals in the  population. In accordance with the EFSA statements, taking into 

consideration the algae used in this work, 20 gr of B. braunii oil and 24 gr of A.maxima oil could 

met the daily intake of n-6. The assumption of 1 gr of P. Tricornutum oil would be satisfied the 

daily ration of EPA. 
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Graphic 1: Lipid productivity of microalgae B.braunii, P.tricornutum, A.maxima cultivated with low 

technology in mediterranean latitude and lipid productivity of vegetable commonly used as a source of food 

oils. 

 

It’s important to underline that microalgae as B. braunii and P. tricornutum, cultivated in south of 

Italy, with low-cost technologies (in a period of 200 days) showed  lipid productivity  higher if 

compared to the lipid productivity of Sunflower, Olive, Soy and Corn (data obtained from 

http://faostat3.fao.org and http://www.inran.it)(Graphic 1).A. maxima showed a lipid productivity 

comparable to the sunflower, although the main food characteristics of A. maxima is the protein 

content, that can reach the 60% of the dried weight (Beckeret al. 2007).  The estimated lipid 

productivity of 4.4 ton/ha/y for P.tricornutumis in the range (from 0.86 to 23 ton/ha/y) reported by 

Mata et al. (2010).Some authors for B.braunii reported a lipid productivity ranging from 1.5 to 4.5 

ton/ha/y, value 30% lower than our results in agreement with values reported by Asnokkomor et 

al. (2012) whit a lipid productivity of 6.5 ton/ha/y.  Literature data on A.maxima claim biomass 

productivity at our latitudes  of about 30 ton/ha/y (Jimenez et al. 2003)so with 8% lipid 

productivity could reach 2.4 t/ha/y of oil. Commercial scale facilities of Spirulina produce between 

10 to 30 ton/ha/y, so lipid productivity should be between 0.8 and 2.4 ton/h/y (Sasson 1997) our 

data of 0.96 using low-tech cultivated process in agreement with these data. In conclusion, 

considering the results obtained in this study and the literature data that indicate microalgae fatty 

acids as a panacea for human heath (e.g. antioxidant, immune-stimulating, antimicrobial) with 

also some possible use as a drug delivers (as an example B. braunii oil may be useful enhancers 

for flurbiprofen delivery via the skin as reported by Fang 2004), we can consider A.maxima, 

P.tricornutum and B.braunii as a good source of oil to be used as a functional ingredient in food 

industry or for the market of food supplements. These microalgae could be cultivated at our 

latitudes at relatively low cost of production with good nutritional characteristic through the 

year. 
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