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ABSTRACT	  
	  
Metabolomics	   is	   the	   comprehensive	   assessment	   of	   low	   molecular	   weight	  
organic	   metabolites	   within	   biological	   system.	   The	   identification	   and	  
characterization	  of	  several	  chemical	  species,	  or	  metabolic	  fingerprinting,	  is	  an	  
emergent	  approach	  in	  metabolomics	  field	  that	  provides	  a	  valuable	  “snapshot”	  
of	   metabolic	   profiles.	   This	   approach	   is	   finding	   an	   increasing	   number	   of	  
applications	  in	  many	  areas	  including	  cancer	  research,	  drug	  discovery	  and	  food	  
science.	   The	   combined	  use	  of	  NMR	  spectroscopy,	  data	  pre-‐processing	   tools,	  
and	   multivariate	   statistical	   data	   analysis	   allows	   to	   go	   through	   into	   the	  
metabolite	   “signature”	   of	   various	   samples.	   The	   PhD	   project	   focused	   on	   the	  
use	   of	   metabolic	   NMR	   fingerprinting	   as	   an	   exploratory	   and	   predictive	   tool.	  
The	   first	   study	   tested	   the	   potentiality	   of	   Nuclear	   Magnetic	   Resonance	  
spectroscopy	   as	   “magnetic	   tongue”:	   the	   NMR	   metabolomic	   signature	   can	  
differentiate	   canned	   tomato	   samples,	   on	   the	   basis	   of	   their	   chemical	  
composition	   and	   can	   be	   correlate	   to	   the	   sensory	   descriptors.	   Orthogonal	  
projection	  to	  latent	  structures	  (OPLS)	  models	  were	  performed	  to	  demonstrate	  
the	   NMR	   potentiality	   to	   predict	   the	   sensory	   descriptors.	   The	   second	   study	  
showed	   the	   applicability	   of	   this	   methodology	   to	   measure	   and	   to	   predict	  
sensory	  descriptors	  in	  extra-‐virgin	  olive	  oil.	  The	  third	  study	  demonstrated	  that	  
the	   combined	   use	   of	   NMR	   spectroscopy	   and	   chemometrics	   can	   provide	   a	  
cocaine	  seizures	  profiling,	  improving	  police	  investigation	  strategies	  about	  the	  
cocaine	  trafficking	  routes	  and	  distribution	  network.	  	  
The	  last	  study	  of	  the	  PhD	  project,	  performed	  at	  the	  University	  of	  Copenhagen	  
(Department	  of	  Food	  Science,	  Faculty	  of	  Life	  Science),	  concerns	  the	  analysis	  of	  
metabolomic	  profiles	  of	  human	  colon	   cancer	   cell	   lines.	   The	   study	   includes	  a	  
development	   of	   the	   experimental	   protocol	   for	   an	   efficient	   harvesting,	  
quenching	  and	  extraction	  of	  cellular	  metabolites	  of	  HTC-‐116	  human	  adherent	  
cancer	   cell	   lines	   in	   order	   to	   analyze	   colon	   cancer	   cells	   metabolome	   and	   to	  
understand	  in	  vitro	  actions	  of	  novel	  anticancer	  drugs.	  
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1	  INTRODUCTION	  
	  
	  
Data	  does	  not	  equal	  information;	  information	  does	  not	  equal	  knowledge;	  and,	  

most	  importantly	  of	  all,	  knowledge	  does	  not	  equal	  wisdom.	  	  

We	  have	  oceans	  of	  data,	  rivers	  of	  information,	  small	  puddles	  of	  knowledge,	  

and	  the	  odd	  drop	  of	  wisdom.	  

Henry	  Nix,	  1990	  

Data,	   information	   and	   knowledge	   represent	   the	   keywords	   in	   metabolomics	  

field.	  Metabolomics	   –	   the	   dynamic	   portrait	   of	   the	  metabolic	   status	   of	   living	  

system	   –	   is	   a	   strongly	   developing	   field	   as	   evident	   from	   the	   exponentially	  

growing	  number	  of	  papers.	  Over	  the	  past	  decades,	  metabolomics	  approaches	  

have	  been	  widely	  adopted	  in	  many	  areas,	  such	  as	  in	  cancer	  research,	  in	  drug	  

discovery	  and	  in	  food	  science.	  Studies	  of	  the	  metabolome	  include	  the	  analysis	  

of	   a	   large	   range	   of	   several	   chemical	   species,	   providing	   challenges	   to	   all	  

analytical	   technologies	   employed	   in	   metabolomics	   strategies.	   Nowadays,	  

proton	   Nuclear	   Magnetic	   Resonance	   (1H-‐NMR),	   Gas	   Chromatography-‐Mass	  

Spectrometry	   (GC-‐MS)	   and	   Liquid	   Chromatography-‐Mass	   Spectrometry	   (LC-‐

MS)	   are	   well-‐established	   powerful	   analytical	   methods	   for	   generating	  

metabolomics	   profiles.	   In	   particular,	   developments	   in	   NMR	   offer	   distinct	  

advantages	   for	   performing	   untargeted	   metabolomic	   studies	   because	   of	   its	  

specificity	  and	  quantitative	  reproducibility.	  	  
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1.1	  Focus	  and	  aim	  of	  the	  project	  
	  

In	   this	   thesis,	   a	  metabolomic	   fingerprinting	   approach	   was	   used	   in	   order	   to	  

differentiate	   canned	   tomato	   samples,	   on	   the	   basis	   of	   their	   chemical	  

composition	  and	  then	  to	  correlate	  the	  fingerprints	  to	  the	  sensory	  descriptors.	  

To	   evaluate	   the	   applicability	   of	   this	   methodology,	   the	   same	   strategies	   and	  

study	   design	   were	   applied	   to	   measure	   and	   predict	   sensory	   descriptors	   in	  

extra-‐virgin	  olive	  oil.	  

	  

The	  primary	  aim	  of	   this	  PhD	  projects	  was	   to	   test	   the	  potentiality	  of	  Nuclear	  

Magnetic	  Resonance	  spectroscopy	  as	  “magnetic	  tongue”	  to	  measure	  sensory	  

descriptors	   of	   food	   samples,	   applying	   the	   metabolomic	   fingerprinting	  

approach.	   We	   will	   try	   to	   demonstrate	   that	   NMR	   could	   be	   a	   powerful	  

predictive	  tool	  for	  the	  characterization	  of	  sensory	  features.	  

The	  same	  approach	  was	  applied	   in	   forensic	   science	   field	   in	  order	   to	   identify	  

the	   chemical	   “fingerprint”	   of	   cocaine	   samples	   and	   to	   test	   the	   NMR	  

potentialities,	  in	  combination	  with	  multivariate	  data	  analysis,	  to	  improve	  and	  

support	  police	  investigations.	  

During	  last	  PhD	  year	  at	  the	  University	  of	  Copenhagen,	  I	  focused	  my	  attention	  

on	  the	  analysis	  of	  metabolic	  profiles	  of	  human	  colon	  cancer	  cell	  lines	  –	  using	  

NMR	   spectroscopy-‐based	   metabolomics	   –	   in	   order	   to	   provide	   important	  

information	  on	   in	  vitro	  actions	  of	  drugs,	  pointing	   in	  their	  rapid	   incorporation	  

into	   novel	   therapeutic	   settings.	   This	   study	   aimed	   to	   develop	   an	   optimized	  

experimental	  protocol	  for	  NMR	  metabolomics	  study	  of	  HTC	  116	  human	  colon	  

cancer	  cell	  lines.	  
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1.2 	  Thesis	  outline	  
	  
The	  thesis	  is	  subdivided	  as	  follow:	  
	  
Chapter	   2:	   presents	   a	   general	   description	   of	  metabolomics	   science	   focusing	  

the	  attention	  on	   the	  untargeted	  approach;	   the	  analytical	  platform	  used	  and	  

the	  multivariate	  data	  models	  performed	  are	  briefly	  described.	  	  

Chapter	  3:	  presents	  an	  overview	  of	  the	  results	  and	  discussion	  from	  paper	  I,	  II	  

and	  II.	  

Chapter	  4:	  presents	  unpublished	  data	  about	  the	  project	  that	   I	  carried	  out	  at	  

the	   University	   of	   Copenhagen,	   Food	   Science	   department,	   as	   PhD	   vising	  

student,	   under	   the	   supervision	   of	   Assoc.	   Prof.	   Francesco	   Savorani	   and	   Prof.	  

Søren	  Balling	  Engelsen.	  
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2	  WHAT	  IS	  METABOLOMICS?	  

	  

2.1	  System	  Biology:	  Metabolomics	  and	  Metabonomics	  

	  

The	  term	  metabolomics	  was	  introduced	  for	  the	  first	  time	  in	  the	  early	  2000s	  by	  

Oliver	  Fiehn	  as	   “the	   identification	  and	  quantification	  of	  all	  metabolites”	   in	  a	  

biological	  system	  [1].	  	  

Few	   years	   before,	   in	   the	   1999,	   Jeremy	   Nicholson	   and	   colleagues	   formally	  

defined	   a	   similar	   term	  metabonomics	   as	   “the	   quantitative	  measurement	   of	  

the	   dynamic	   multiparametric	   metabolic	   response	   of	   living	   systems	   to	  

pathophysiological	   stimuli	   or	   genetic	  modification”[2],	   but	   this	   concept	  was	  

born	  with	  the	  first	  simultaneous	  analysis	  of	  metabolites	  present	   in	  biological	  

fluids	  through	  1H	  NMR	  spectroscopy	  in	  the	  1980s	  [3].	  

Therefore	   historically,	   the	   metabonomics	   approach	   was	   one	   of	   the	   first	  

methods	  to	  apply	  the	  scope	  of	  systems	  biology	  to	  studies	  of	  metabolism.	  	  

There	  has	  been	   some	  disagreement	  over	   the	  exact	  differences	  between	   the	  

two	   terms	   metabolomics	   and	   metabonomics.	   The	   distinction	   is	   mainly	  

philosophical,	   rather	   than	   technical;	   although	   there	   are	   some	   differences	   in	  

concept,	  in	  practice,	  the	  analytical	  and	  modeling	  procedures	  are	  the	  same	  and	  

the	  two	  terms	  are	  often	  used	  interchangeably	  by	  scientists	  and	  organizations	  

[4].	  

Metabolomics	  represents	  the	  dynamic	  portrait	  of	  the	  metabolome,	  that	  is	  the	  

collection	  of	  metabolites	  (low-‐molecular-‐weight	  molecules-‐intermediates	  and	  

the	   end	   products	   of	   metabolic	   reactions)	   belonging	   to	   many	   classes	   of	  
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compounds,	  such	  as	  amino	  acids,	  organic	  acids,	  lipids,	  nucleotides,	  etc,	  within	  

a	  biological	  system.	  	  

The	   estimated	   size	   of	   the	  metabolome	   is	   large:	   S.	   cerevisiae	   approximately	  

600	   metabolites	   [5],	   plant	   kingdom	   up	   to	   200	   000	   metabolites	   [6],	   and	  

analysis	  of	   the	  human	  metabolome	  reveals	  greater	  complexity.	   In	  particular,	  

as	   released	   by	   The	   Human	  Metabolome	   Database	   (HMDB)	   (www.hmdb.ca),	  

the	   	  number	  of	  annotated	  metabolite	  entries	  has	  grown	  	   from	  6500	  to	  more	  

than	   40000,	   including	   “detected”	   metabolites	   (with	   experimental	  

confirmation	   of	   their	   existence)	   and	   “expected”	   metabolites	   (for	   which	  

biochemical	  patways	  are	  known	  but	  the	  compound	  has	  yet	  to	  be	  detected	  in	  

the	  body)	  [7].	  

Metabolomics	   is	   the	   newest	   “omics”	   science.	   The	   suffix	   “-‐omics”	   has	   been	  

added	   to	   the	  names	  of	  many	   fields	   to	  denote	   studies	  undertaken	  on	  a	   very	  

large-‐scale	   data	   collection	   and	   analysis,	   i.e.	   measuring/profiling	   a	   large	  

number	  of	  variables	  simultaneously.	  	  

Metabolomics	  can	  represent	  the	  final	  product	  of	   the	  “omics”	  cascade	  of	   the	  

interactions	   between	   genes,	   proteins	   and	   metabolites	   with	   cellular	  

environment,	   adding	   the	  end	  point	  of	   the	  building	  blocks	  of	   System	  biology	  

(Genomics,	   Transcriptomics,	   Proteomics)	   (Fig.1).	   Therefore	   changes	   in	   the	  

metabolome	  are	   the	  ultimate	   answer	  of	   an	  organism	   to	   genetic	   alterations,	  

disease,	  or	  environmental	  influences	  [8].	  	  
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Fig.1	  The	  “omics”	  cascade	  (modified	  from	  Gary	  J.	  Patti	  et	  al.,	  2012).	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

One	  problem	  with	  the	  metabolomics	  approach	  is	  given	  by	  different	  timescales	  

of	   “omics”events	   (gene	   expression,	   protein	   expression	   and	   metabolites	  

generation).	   The	   transcript	  machinery	   responds	   fast	   to	   an	   external	   stimulus	  

(seconds	  to	  minutes),	  the	  proteins	  may	  be	  expressed	  within	  minutes	  to	  hours	  

and	  metabolites	  vary	  significantly	  during	  the	  day	  [9].	  Therefore,	  metabolomics	  

is	   more	   time	   sensitive	   than	   the	   other	   “omics”.	   Since	   environmental	   and	  

lifestyle	   factors	   influence	  metabolism,	   it’s	   difficult	   to	   separate	   these	   effects	  

from	   gene-‐related	   effects	   [4].	   Metabolomics	   overcomes	   these	   problems	   by	  

monitoring	   the	   global	   outcome	   of	   all	   the	   influencing	   factors	   in	   a	   holistic	  

approach,	   without	   making	   assumptions	   about	   the	   effect	   of	   any	   single	  

contribution	  to	  that	  outcome	  [4].	  
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2.2	  Designing	  a	  metabolomic	  experiment:	  Targeted	  and	  Untargeted	  

metabolomics	  

The	  first	  step	  in	  performing	  metabolomics	  is	  to	  decide	  which	  type	  of	  approach	  

needs	  to	  use	  on	  the	  strength	  of	  the	  aim	  of	  study	  and	  the	  kind	  of	  information	  

to	  obtain	   from	  the	  metabolomic	  analysis	   (Fig.2).	   In	  some	  cases,	   it	  may	  be	  of	  

interest	  to	  examine	  a	  defined	  set	  of	  metabolites	  by	  using	  a	  targeted	  approach.	  

On	  the	  other	  hand,	  an	  untargeted	  or	  global	  approach	  may	  be	  taken	  in	  which	  

as	   many	   metabolites	   as	   possible	   are	   measured	   and	   compared	   between	  

samples	  [10].	  

	  

	  

Fig.2	  Strategies	  for	  metabolomic	  investigations.	  

	  

Targeted	   analysis	   focuses	   on	   the	   absolute	   quantification	   of	   a	   small	   set	   of	  

metabolites,	   identified	   in	   advance,	   that	   are	   highly	   related	   to	   a	   specific	  

pathway	  or	  intersecting	  pathways,	  after	  an	  appropriate	  sample	  preparation	  to	  
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separate	  metabolites	  from	  sample	  matrix	  [11].	  	  

This	   kind	   of	   analysis	   –	   in	   literature	   also	   known	   as	   targeted	   profiling	   or	  

quantitative	   metabolomics	   –	   is	   characterized	   as	   an	   hypothesis-‐driven	  

approach	  rather	  than	  an	  hypothesis-‐generating.	  However,	  targeted	  analysis	  is	  

not	  used	  in	  this	  PhD	  study	  and	  will	  not	  be	  discussed	  further.	  

In	   contrast,	   Metabolite	   profiling,	   probably	   the	   mostly	   applied	   untargeted	  

approach,	  involves	  rapid	  analysis,	  often	  not	  quantitative,	  of	  a	  large	  number	  of	  

different	  metabolites	   with	   the	   objective	   of	   identifying	   a	   specific	  metabolite	  

profile	   that	   characterizes	   a	   given	   sample.	   Therefore,	   untargeted	   approach	  

applies	   different	   analytical	   platforms	   such	   as	   NMR,	   GC-‐MS,	   LC-‐MS.	   This	  

approach	  can	  be	  subdivided	  into	  metabolomic	  fingerprinting	  and	  metabolomic	  

footprinting	  [11]	  (see	  Chapter	  4).	  

Metabolomic	   fingerprinting	   is	   a	   global	   analysis	   of	   crude	   samples	   or	   sample	  

extracts	   with	   minimal	   preparation,	   for	   sample	   classification	   or	   screening	   of	  

samples.	  Usually	   in	   this	  approach	  not	  all	  metabolites	  must	  be	   identified	  and	  

quantified,	   since	   its	   attention	   is	   focused	   on	   giving	   a	   rapid	   snapshot,	   or	  

fingerprint,	  of	  phenotypes	  [12].	  	  

This	   PhD	   thesis	   describes	  metabolomic	   fingerprinting	   as	   an	   exploratory	   and	  

predictive	  tool	  for	   investigation	  and	  discrimination	  of	  samples	  from	  different	  

origins	  by	  using	  NMR	  as	  analytical	  platform.	  
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2.3	  Analytical	  platform:	  1H	  NMR	  

Nuclear	   magnetic	   resonance	   (NMR)	   spectroscopy	   is	   a	   valuable	   analytical	  

technique	   in	   modern	   chemical	   research.	   It	   is	   a	   non-‐	   destructive	   and	   non-‐	  

invasive	   analytical	   method	   requires	   minimal	   or	   no	   sample	   preparation	   and	  

doesn’t	   alter	   the	   sample	   composition.	   NMR	   is	   frequently	   used	   in	   the	  

qualitative	   and	   quantitative	   analysis	   of	   small	   organic	   compounds	   as	  well	   as	  

structure	   analysis	   and	   interpretation.	   Thus,	   1H	   NMR	   represents	   a	   powerful	  

tool	  in	  numerous	  applications,	  especially	  in	  metabolomics	  research	  and	  also	  in	  

food	   science	   and	   technology	   field.	   The	   main	   disadvantage	   of	   NMR	  

spectroscopy,	   if	   compared	   to	  MS,	   is	   the	   low	   sensitivity,	   but	  with	   current	   1H	  

NMR	  spectroscopy	   instruments	  with	  higher	  magnetic	   field	  strength	  and	  cool	  

cryogenic	  probes,	  this	  method	  is	  widely	  used	  in	  non-‐targeted	  metabolomics.	  

	  

In	   this	   PhD	   study	   1H	   NMR	   spectra	   were	   acquired	   at	   25°C	   with	   a	   700	   MHz	  

Varian	   Unity	   Inova	   spectrometer	   using	   a	   5mm1H{13C/15N}	   triple	   resonance	  

probe.	  The	  1H-‐NMR	  measurements	  were	  carried	  out	  with	  1000	  transients	  and	  

32	   K	   complex	   data	   point.	   In	   order	   to	   retrieve	   quantitative	   information,	   the	  

recycle	  time	  was	  set	  to	  5	  s,	  and	  a	  45°	  pulse	  angle	  was	  used.	  

The	   spectra	   were	   processed	   using	   iNMR	   software	   (www.inmr.net).	   An	  

exponential	  line	  broadening	  of	  0.5	  Hz	  was	  applied	  to	  the	  free-‐induction	  decay	  

prior	   to	   Fourier	   transformation.	   All	   spectra	   were	   referenced	   relative	   to	  

external	   sodium	   2,2-‐dimethyl-‐2-‐silapentane-‐5-‐sulfonate	   (DSS),	   manually	  

phased	  and	  automatically	  baseline	  corrected	  (Fig.3).	  
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	  	  	  	  	  Fig.3	  NMR	  spectrum	  of	  a	  representative	  sample	  of	  extra-‐virgin	  olive	  oil.	  (Paper	  II)	  

	  

In	   the	   last	   project	   carried	   out	   at	   University	   of	   Copenhagen	   (Department	   of	  

Food	  Science),	  Carr-‐Purcell-‐Meiboom-‐Gill	  (CPMG)	  and	  1D	  Nuclear	  Overhauser	  

Effect	  Spectroscopy	  (NOESY)	  experiments	  were	  performed	  for	  acquiring	  NMR	  

spectra	   of	   hydrophilic/lipophilic	   cancer	   cell	   extracts	   and	   the	   growth	   culture	  

media.	  	  

In	  this	  section	  the	  differences	  between	  two	  experiments	  will	  be	  described.	  A	  

detailed	  description	  of	  the	  data	  acquisition	  is	  reported	  in	  the	  Chapter	  4.	  

The	  1H	  NMR	  spectra	  of	  aqueous	  extracts	  are	  measured	  using	  a	  specified	  water	  

suppression	   pulse	   sequence	   such	   as	   1D	   NOESY–presat,	   which	   employs	   the	  

first	   increment	  of	  a	  NOESY	  pulse	  sequence	  with	  water	   irradiation	  during	  the	  

relaxation	   delay	   and	   also	   during	   the	   mixing	   time.	   This	   experiment	   reduces	  

contributions	   from	   regions	   of	   the	   active	   volume	   that	   experience	   an	  

incomplete	  90°C	  pulse,	  thus	  reducing	  the	  residual	  water	  resonance	  [13].	  
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The	   CPMG-‐presat	   pulse	   sequence	   is	   used	   in	   order	   to	   discriminate	   between	  

metabolites	  of	  low	  molecular	  weight	  (typically	  <1000	  Da)	  and	  macromolecular	  

species	   in	   the	   sample,	   such	   as	   proteins	   or	   lipoproteins.	   Macromolecules	  

produce	  broad	   resonances,	  due	   to	   reduced	   rotational	  diffusion	  and	   short	   T2	  

relaxation	   times,	   which	   confound	   spectral	   interpretation.	   Commonly	   and	   in	  

this	   study	   (see	   chapter	   4)	   T2	   editing	   via	   the	   CPMG	   experiment	   is	   used	   to	  

reduce	   the	   contribution	   of	   high	   molecular	   weight	   species	   in	   the	   resulting	  

spectra	  [14].	  
	  

2.4	  Data	  pre-‐processing	  

After	   acquiring	   the	   NMR	   data,	   it	   is	   important	   to	   use	   an	   appropriate	   data	  

pretreatment	   methods	   prior	   starting	   data	   analysis.	   Different	   data	  

preprocessing	   steps	   [15]	   are	   applied	   in	  order	   to	   generate	   “clean”	  data,	   that	  

will	  represent	  the	  input	  for	  data	  analysis.	  	  

In	  all	   investigations,	   the	  NMR	  spectral	   regions	   including	   the	   residual	   solvent	  

signal,	   or	   signals	   strongly	   affected	   by	   it,	   were	   removed	   in	   order	   not	   to	  

compromise	   the	  analysis.	  The	  high	  and	   low-‐field	  ends	  of	   the	  spectrum	  were	  

also	   removed	   because	   they	   include	   only	   noise,	   which	   does	   not	   provide	  

relevant	  information.	  

In	   my	   PhD	   study	   pre-‐processing	   methods	   were	   applied:	   spectra	   alignment,	  

binning,	  normalization.	  
	  

2.4.1.	  Alignment	  

In	  metabolomic	  NMR	  data	  analysis	  solving	  signal	  alignment	  problems	  could	  be	  

a	  powerful	  tool	  for	  multivariate	  exploratory	  investigations	  aimed	  at	  biomarker	  

profiling	  or	  pattern	  recognition	  studies.	  	  
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In	   the	   paper	   II	   and	   in	   the	   project	   “NMR	   metabolomic	   of	   cancer	   cell	   lines”	  

(chapter	   4),	   the	   spectra	   were	   corrected	   for	  misalignments	   in	   chemical	   shift	  

due	   to	   pH	   sensitive	   signals	   using	   the	   interval-‐based	   icoshift	   algorithm	   (the	  

Matlab	   code	   including	   documentation	   can	   be	   downloaded	   from	  

www.models.life.ku.dk)	  [16].	  

In	   the	  paper	   I	   the	   spectra	  were	   aligned	   by	   the	   segmented	  warping	  method	  

correlation	  optimized	  warping	  (COW)	  using	  mP	  =	  50	  and	  nP	  =	  2	  [17].	  
	  

2.4.2.	  Binning	  

The	  standard	  approach	  to	  solve	  problems	  of	  unmanageable	  dimensionality	  of	  

the	  data	  and	  the	  inter-‐individual	  differences	  in	  peak	  locations	  is	  the	  division	  of	  

each	  spectrum	  in	  equally	  sized	  bins,	  integration	  of	  the	  intensity	  values	  in	  each	  

bin,	  and	  annotation	  of	  this	  value	  to	  the	  bin	  [15].	  

In	   the	   paper	   I,	   II	   and	   III	   data	   reduction	   was	   accomplished	   by	   dividing	   the	  

spectrum	  into	  bins	  (0.01	  ppm-‐paper	  I,	  0.005	  ppm-‐paper	  II	  and	  III)	  over	  which	  

the	  signal	  was	  integrated	  to	  obtain	  the	  signal	  intensity.	  

In	  the	  project	  “NMR	  metabolomic	  of	  cancer	  cell	  lines”	  the	  spectra	  alignment,	  

using	   icoshift	   algorithm,	   solved	   peak	   misalignment	   problems.	   For	   a	   more	  

detailed	  description	  see	  Chapter	  4.	  
	  

2.4.3.	  Normalization	  

In	   metabolomics,	   data	   are	   usually	   presented	   as	   a	   table	   where	   each	   row	  

relates	  to	  a	  given	  sample	  and	  each	  column	  corresponds	  to	  individual	  spectral	  

peak	   intensities.	   NMR	   spectroscopy	   is	   a	   technique	   that	   allows	   quantitative	  

analysis.	   Thus	   the	   signal	   intensities	   should	   be	   correlated	   to	   the	  metabolites	  

concentration.	   Unfortunately,	   technical	   variations	   originated	   from	   sampling,	  
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general	  instrumental	  sensitivity	  effects	  can	  affect	  the	  signal	  intensities.	  

Sample	  normalization	  is	  a	  row	  operation	  that	  is	  applied	  to	  the	  data	  from	  each	  

sample	   and	   comprises	  methods	   to	  make	   the	   data	   from	   all	   samples	   directly	  

comparable	  with	  each	  other	  [18].	  

In	  paper	  I	  the	  integrals	  were	  normalized	  to	  a	  total	  intensity	  to	  suppress	  trivial	  

separation	  based	  on	  variations	  in	  the	  amount	  of	  sample.	  

In	  paper	   II,	   the	   integrals	  were	  normalized	   to	   the	   integral	  of	   the	   triplet	  at	  δH	  

0.86	  ppm	  (CH3	  of	  triacylglycerols)	  and	  in	  paper	  III	  using	  the	  cocaine	  triplet	  at	  

δH	  7.65	  ppm	  (H40).	  

	  

2.5	  Multivariate	  Data	  Analysis	  	  

First	  of	  all,	  why	  multivariate	  data	  analysis?	  	  

To	   understand	   the	   world	   around	   us	   we	   need	   to	   measure	   many	   variables,	  

many	  properties	  of	  the	  systems	  we	  investigate.	  Data	  collected	  in	  science	  and	  

technology	   fields	   are	   multivariate,	   with	   multiple	   variables	   on	   multiple	  

samples.	  

Multivariate	   data,	   accurately	   measured	   on	   selected	   observations	   and	  

variables,	   contain	  much	  more	   information	   than	   univariate	   data.	   In	   order	   to	  

obtain	  insight	  into	  the	  system	  studied,	  the	  first	  step	  in	  analyzing	  set	  of	  data	  is	  

the	  raw	  data	  exploration.	  Plotting	  the	  data	  could	  be	  a	  good	  approach	  in	  order	  

to	   visualize	   different	   features	   of	   the	   data:	   phase-‐	   baseline	   correction	  

problems	   (in	   the	  case	  of	  NMR	  data	  sets),	   sample	  with	  peculiar	  deviations	  of	  

the	  data,	  outlying	  samples	  and	  expected	  biomarkers	  [19].	  

However,	  in	  order	  to	  extract	  hidden	  information	  and	  obtain	  relations	  between	  

variables	  is	  not	  enough	  to	  just	  look	  at	  the	  raw	  data.	  	  

Explorative	   unsupervised	   and	   classification	   multivariate	   methods	  
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(chemometrics)	   are	   useful	   to	   investigate	   the	   data	   and	   identify	   meaningful	  

patterns	  in	  the	  data.	  

Prior	   to	   multivariate	   data	   analysis,	   data	   are	   often	   pre-‐treated,	   in	   order	   to	  

transform	  the	  data	  into	  a	  form	  suitable	  for	  analysis.	   In	  this	  section	  centering	  

and	  scaling	  of	  data	  are	  described.	  

	  

2.5.1.	  Centering	  and	  scaling	  

In	  NMR	  metabolomics	  data,	  the	  feature	  intensities	  vary	  for	  metabolite	  signals;	  

not	   always	   the	   abundant	   compounds	   are	   more	   important	   than	   the	   lower	  

ones.	   Moreover,	   using	   Principal	   Component	   Analysis	   (PCA)	   which	   is	   a	  

maximum	  variance	  projection	  method,	  a	  variable	  with	  a	  large	  variance	  is	  more	  

likely	   to	   be	   expressed	   in	   the	   modeling	   than	   a	   low-‐variance	   variable.	   ,	   For	  

instance,	   NMR	   spectral	   regions	   including	   intense	   signals	   will	   have	   more	  

importance	   in	   the	  model	   than	   the	   regions	  with	   lower	   ones.	   Thus	   using	   the	  

combination	  of	  centering	  and	  scaling	  is	  recommended.	  

Centering	  removes	  the	  offset	  from	  the	  data	  between	  high	  and	  low	  abundant	  

metabolites.	  In	  my	  studies	  mean-‐centering	  was	  used	  in	  order	  to	  improve	  the	  

interpretability	  of	  the	  models.	  	  

𝑥𝑥    =   𝑥𝑥 −   𝑥𝑥 	  

	  

With	  mean-‐centering	  the	  average	  value	  of	  each	  variable	  is	  calculated	  and	  then	  

subtracted	  from	  the	  data.	  
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Among	   scaling	   types,	   Pareto	   scaling	   was	   applied	   in	   all	   papers	   prior	  

chemometric	  analysis.	  	  

𝑥𝑥 =   
𝑥𝑥 −   𝑥𝑥

𝑠𝑠
	  

	  

It	   gives	   each	   variable	   a	   variance	   numerically	   equal	   to	   its	   initial	   standard	  

deviation,	  reducing	  the	  relative	  importance	  of	   large	  values,	  but	  keeping	  data	  

structure	  partially	  intact	  [20].	  

	  

In	   this	  PhD	  study	  some	  chemometric	   tools	  were	  used	  to	  extract	   information	  

from	  NMR	  data	  and	  they	  are	  briefly	  described	  below.	  

	  

	  

2.5.2.	  Principal	  Component	  Analysis	  (PCA)	  

	  

PCA	  was	  first	  formulated	  in	  statistics	  by	  Pearson,	  who	  described	  the	  analysis	  

as	  finding	  lines	  and	  planes	  of	  closest	  fit	  to	  systems	  of	  points	  in	  space	  [21].	  PCA	  

is	   a	   multivariate	   projection	   method	   designed	   for	   an	   exploratory	  

(unsupervised)	  data	  analysis	   in	  order	   to	  display	   the	  systematic	  variation	   in	  a	  

data	  matrix	  ,	  extracting	  hidden	  information.	  	  

Statistically,	   PCA	   finds	   lines,	   planes,	   hyperplanes	   in	   the	   K-‐dimensional	   space	  

that	   approximate	   the	   data	   as	  well	   as	   possible	   in	   the	   least	   squares	   sense.	   It	  

finds	  the	  directions	  in	  multivariate	  space	  that	  represent	  the	  largest	  sources	  of	  

variations,	  the	  so	  called	  principal	  components	  (PC’s).	  
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Graphically,	  PCA	  models	  build	  a	  score	  and	  a	  loading	  plot.	  The	  score	  plot	  shows	  

how	   the	  observations	   are	  projected	  onto	   this	   planes,	  while	   the	   loading	  plot	  

displays	  the	  relationships	  among	  the	  variables	  (Fig.4).	  
	  

	  

	  
Fig.4	  Score	  (A)	  and	  loading	  (B)	  plots	  of	  the	  PCA	  performed	  on	  sensory	  data.	  

In	  metabolomic	  studies,	  PCA	  is	  used	  as	  a	  tool	  for	  an	  exploratory	  approach	  to	  

unknown	  data.	  It	  allows	  to	  find	  peculiar	  data	  trends,	  outliers	  and	  similarities	  

or	  dissimilarities	  among	  samples.	  	  

This	  unsupervised	  data	  analysis	  was	  applied	  to	  NMR	  data	  from	  all	  papers,	  

including	  the	  unpublished	  data	  in	  Chapter	  4.	  
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2.5.3.	  Hierarchical	  Cluster	  Analysis	  (HCA)	  

	  

Hierarchical clustering is a method of cluster analysis which seeks to build a 

hierarchy of clusters [22]. The HCA algorithm connects objects to form 

clusters based on their distance. The inputs required are similarity measures or 

data from which similarities can be computed using different distance 

functions. The main property of HCA is to highlight grouping of samples on 

the basis of similarities or distances (dissimilarities) with the general idea that 

objects are more related to nearby objects than to objects farther away.  

The results of hierarchical clustering are presented in a dendrogram, in which 

the y-axis marks the distance among clusters, while the objects are placed 

along the x-axis (Fig.5). 

 

 
	  

Fig.5	  HCA	  dendrogram	  showing	  the	  similarities	  between	  products	  based	  on	  QDA	  (Paper	  I) 
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In the paper I, HCA was carried out	  using the	  Euclidean distance between the 

PLS scores for each canned tomato sample, in order to group samples with 

similar sensory features. 

In paper II, HCA was performed on quantitative descriptive analysis (QDA) 

means, in order to group extra virgin olive oil samples sharing similar sensory 

features. 

In paper III, it was carried out by using the Ward clustering method [22], in 

order to group cocaine samples with different periods and areas of the cocaine 

consignments. 

	  

2.5.4.	  Partial	  Least	  Squares-‐Discriminant	  Analysis	  (PLS-‐DA)	  

	  

In	   metabolomics,	   Partial	   Least	   Squares-‐Discriminant	   Analysis	   (PLS-‐DA)	   is	  

commonly	  used	  for	  classification	  in	  multivariate	  data	  analysis.	  	  

PLS-‐DA	   is	   a	   regression	   model	   that	   describes	   the	   maximum	   separation	  

between	  pre-‐defined	  classes	  [23].	  The	  objective	  of	  PLS-‐DA	  is	  to	  find	  a	  model	  

that	  separates	  classes	  of	  samples	  on	  the	  basis	  of	  their	  variables.	  

In	  PLS-‐DA,	  the	  X-‐matrix	  consists	  of	  sample	  variables	  (features)	  and,	  in	  order	  to	  

encode	  a	   class	   identity,	   the	   response	  Y	   is	  a	  matrix	  of	  dummy	  variables.	  This	  

artificial	  matrix	   is	  defined	  by	  creating	  a	  vector	   for	  each	  class,	  where	  each	  Y-‐	  

variable	  has	  value	  of	  0	  for	  all	  samples	  in	  the	  first	  class,	  of	  1	  for	  all	  samples	  in	  

the	  second	  class	  and	  so	  on.	  Then,	  the	  PLS-‐DA	  algorithm	  can	  find	  a	  discriminant	  

plane	  in	  X-‐space	  in	  which	  the	  projected	  samples	  are	  well	  separated	  according	  

to	  class.	  
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In	  paper	   III,	  PLS-‐DA	  was	  performed	  using	  Simca-‐P	  12.0	   (Umetrics)	   to	  explore	  

the	  ability	  of	  the	  NMR	  data	  to	  discriminate	  between	  classes	  of	  samples.	  The	  

quality	  of	  the	  models	  was	  described	  by	  R2	  and	  Q2	  values.	  R2	  is	  defined	  as	  the	  

proportion	  of	  variance	  in	  the	  data	  explained	  by	  the	  models	  and	  indicates	  the	  

goodness	   of	   fit.	   Q2	   is	   defined	   as	   the	   proportion	   of	   variance	   in	   the	   data	  

predictable	   by	   the	   model	   and	   indicates	   predictability	   [24].	   The	   model	  

validation	  was	  performed	  using	  the	  permutation	  test	  [25],	  in	  which	  a	  total	  of	  

400	  models	  were	   calculated	   by	   randomizing	   the	   order	   of	   Y	   variables	   in	   the	  

corresponding	  PLS-‐DA	  models.	  	  

After	   the	   interpretation	   of	   multivariate	   data	   analysis	   models,	   the	   last	   and	  

more	  challenging	  step	   in	  metabolomic	  studies	   is	  the	  NMR	  assignment	  of	  the	  

selected	  biomarkers.	   In	   the	  next	   chapter	  more	  detailed	   results	   are	   reported	  

for	  each	  case	  study.	  
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3	  CASE	  STUDIES	  

	  

3.1	  NMR	  Metabolomic	  fingerprinting:	  a	  tool	  for	  prediction	  of	  
sensory	  descriptors	  in	  canned	  tomatoes	  
	  

Sensory	   perception	   appears	   so	   deceptively	   easy	   and	   straightforward	   that	   it	  

may	   seem	   to	   be	   a	   simple	   detection	   process	   merely	   “capturing”	   the	  

environmental	  signals	  and	  feeding	  them	  into	  the	  brain.	  But the	  perception	  of	  
odor	   and	   flavor	   of	   food	   is	   a	   complex	   physiological	   and	   also	   psychological	  

process	  that	  cannot	  be	  explained	  by	  simple	  models.	  	  

The	  sensory	  food	  impression	  is	  mainly	  determined	  by	  the	  chemical	  senses	  of	  

taste	  and	  smell.	  Both	  are	  detected	  through	  sensory	  cells	  of	  the	  tongue	  (taste)	  

and	  of	  the	  nasal	  cavity	  (smell)	  [1],	  on	  the	  base	  of	  different	  molecules	  or	  ions.	  	  

Nowadays	  understanding	  consumer’s	  expectations,	  habits,	  and	  preferences	  is	  

really	  important	  especially	  for	  a	  food	  company	  in	  order	  to	  ensure	  the	  product	  

success	   on	   the	   market.	   Of	   course	   brand,	   label,	   packaging,	   advertising	   are	  

critical	   factors	   in	  product	  choice	  matter,	  but	  the	  success	   is	  tightly	  connected	  

to	   the	  products’	   features.	  Unfortunately	  consumers	  are	  not	  able	   to	  describe	  

technical	   information	   useful	   to	   enhance	   product	   features,	   thus	   food	   and	  

beverages	   companies	   take	   advantage	   of	   Quantitative	   Descriptive	   Analysis	  

(QDA)	  [2]	  [3].	  

Since	  taste	   is	  not	  objective,	  compared	  to	  the	  sight	   for	  example,	  but	  partially	  

subjective	   and	   affecting	   by	   the	   mood	   of	   the	   taster,	   objective	   analytical	  

techniques	  have	  been	  used	  to	  support	  or,	  in	  some	  cases,	  replace	  the	  classical	  

QDA,	  such	  as	  Electronic	  noise	  and	  electronic	  tongue	  [4].	  
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Therefore	  the	  availability	  of	  a	  number	  of	  instrumental	  techniques	  has	  opened	  

up	   the	   possibility	   to	   calibrate	   the	   sensory	   perception.	   Analytical	   techniques	  

like	  mass	   spectrometry	   (MS)	   [5]	   [6]	   and	   gas	   chromatography	   (GC)	   [7]	   have	  

been	   used,	   but	   very	   specific	   sample	   preparations	   are	   required	   (e.g.	   sample	  

derivatization	  or	  volatilization).	  	  

In	   this	   study	   (Paper	   I)	   we	   tested	   the	   potentiality	   of	   Nuclear	   Magnetic	  

Resonance	   spectroscopy	   as	   “magnetic	   tongue”	   to	   measure	   sensory	  

descriptors	  of	  canned	  tomato	  samples,	  since	  NMR	  spectroscopy	  is	  one	  of	  the	  

most	  fast,	  accurate	  and	  not	  expensive	  analytical	  technique.	  	  	  

In	  particular,	  we	  used	  a	  metabolomic	  NMR	  fingerprinting	  approach	  in	  order	  to	  

differentiate	  the	  samples	  on	  the	  basis	  of	  their	  chemical	  composition	  and	  then	  

correlate	   the	   fingerprints	   to	   the	   sensory	   descriptors.	   Final	   results	   will	  

demonstrate	   that	   NMR	   spectroscopy	   might	   be	   a	   very	   useful	   tool	   for	   the	  

characterization	  of	  sensory	  features	  of	  tomatoes.	  

	  

In	  this	  section	  the	  project	  workflow	  and	  final	  results	  are	  reported.	  
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3.1.1	  Project	  workflow 
 
The	  metabolomic	  fingerprinting	  approach	  of	  this	  project	  involves	  several	  steps	  

in	  order	  to	  find	  the	  answer	  to	  our	  specific	  research	  question.	  

The	  workflow	  followed	  for	  this	  project	  is	  summarized	  in	  Figure	  1.	  

	  

 

Fig.1	  Illustration	  of	  Project	  workflow.	  

 
This	   study	   started	  as	  a	   “pilot”	  project	  with	   the	  aim	   to	  explore	   the	  analytical	  

potentiality	  of	  the	  NMR	  spectroscopy	  as	  ‘‘magnetic	  tongue’’	  in	  the	  analysis	  of	  

eighteen	  canned	  tomato	  products	  of	  different	  brands	  purchased	   in	  different	  

markets	  in	  Napoli	  (Italy).	  	  Sensory	  assessments	  were	  carried	  out	  by	  a	  panel	  of	  

trained	   assessors,	   who	   developed	   a	   specific	   profile	   protocol	   for	   QDA	  

containing	   14	   descriptors.	   1H	   NMR	   analysis	   was	   performed	   on	   the	   same	  
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samples	   and	   the	   resulting	   data	   matrixes	   were	   analyzed	   using	   chemometric	  

tools	   in	  order	   to	   identify	   the	  chemical	   signatures	  of	   sensory	  descriptors	  and	  

predict	  the	  descriptors	  independently	  from	  quantitative	  descriptive	  analysis.	  	  

	  

3.1.2	  Methods	  and	  results	  discussion	  
	  
Quantitative	  descriptive	  method	  

The	   QDA	   method	   aims	   to	   define	   a	   product’s	   sensory	   profile,	   describing	  

products	   in	   terms	  of	   sensory	   features	  as	  perceivable	   through	   five	   senses.	   In	  

QDA	   descriptors	   were	   evaluated	   on	   a	   continuous,	   unlabeled,	   0-‐10	   intensity	  

scale	  and	  then	  turned	   into	  numeric	  variables	   (a	  number	  between	  0	  and	  10).	  

Three	  replicates	  per	  sample	  were	  performed	  to	  minimize	  random	  errors	  and	  

in	   particular,	   each	   subsequent	   replicate	   after	   one	   week	   from	   the	   previous	  

one.	  	  

During	  each	  session	  a	  maximum	  of	  three	  samples	  were	  presented,	  according	  a	  

balanced	   rotation	   plan.	   Then,	   the	   same	   samples	  were	   subjected	   to	   1H-‐NMR	  

analysis,	  using	  parameters	  already	  described	  in	  the	  previous	  chapter.	  

	  

Hierarchical	  Cluster	  Analysis	  

A	  Hierarchical	  cluster	  analysis	  (HCA)	  was	  performed	  on	  mean	  QDA	  parameters	  

and	   on	   NMR	   data	   to	   identify	   similar	   products	   sharing	   similar	   sensory	  

properties	   and	   to	   eventually	   find	   correlations	   among	   the	   different	   data	   set	  

(Fig.2).	  

	  

	  

	  

	  



Chapter	  3.	  Case	  studies	  

	  28	  

	  
	  

Fig.2	  Dendrograms	  showing	  the	  similarities	  between	  products	  based	  on	  (A)	  QDA	  and	  (B)	  NMR.	  Products	  
falling	  within	  the	  same	  group	  in	  the	  NMR	  classification	  are	  indicated	  with	  the	  same	  color.	  

	  

	  

The	   dendrograms	   describing	   the	   sensory	   analysis	   were	   based	   on	   unscaled	  

sensory	   data,	   while	   the	   NMR-‐based	   dendrograms	   were	   based	   on	   PLS-‐DA	  

scores	  of	  VAST	  scaled	  [8]	  NMR	  data	  calculated	  using	  Simca-‐P	  11.5	  (Umetrics,	  

Umea,	  Sweden)	  as	  input.	  

Despite	   the	   fact	   that,	   the	  two	  HCAs	  refer	   to	  data	  collected	  by	  very	  different	  

analytical	   techniques,	   it	   can	   be	   seen	   that	   there	   is	   a	   good	   global	   agreement	  

between	   the	   different	  measurements:	   products	   of	   group	   1B	   (2	   and	   14)	   are	  

also	  present	  in	  group	  1A,	  all	  products	  except	  one	  in	  group	  2B	  are	  also	  present	  

in	  group	  2A,	  and	  all	  products	  in	  group	  3A	  are	  also	  present	  in	  group	  3B.	  

	  

Principal	  Component	  Analysis	  

An	   exploratory	   and	   unsupervised	   analysis	   was	   conducted	   performing	   PCA	  

models	  in	  parallel	  on	  unscaled	  sensory	  data	  and	  on	  VAST-‐scaled	  NMR	  data.	  	  

The	  PCA	  resulting	  plot	  has	  shown	  the	  QDA	  ability	  to	  define	  a	  sensory	  map	  of	  

products	   positioning,	   within	   an	   overall	   picture,	   products	   in	   terms	   of	   their	  

sensory	  properties.	  
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Fig.3	   Score	   (A)	   and	   loading	   (B)	   plots	   of	   the	   PCA	   performed	   on	   sensory	   data.	   Products	   are	   colored	  
according	   to	   NMR	   HCA	   analysis	   in	   Figure	   2B.	   Note	   that	   none	   of	   the	   sensory	   descriptors	   are	   well	  
described	  by	  this	  PCA	  model	  (|R|	  >	  0.5	  for	  all	  descriptors).	  
	  

In	   particular,	   the	   scores	   (Fig.3A)	   allowed	   us	   to	   identify	   the	  most	   important	  

sensory	   descriptors	   for	   products	   differentiation.	   This	   analysis	   indicates	   that	  

the	  groups	  identified	  by	  the	  HCA	  share	  the	  same	  features	  and	  that	  there	  is	  no	  

strong	  separation	  between	  the	  different	  groups	  identified.	  

Interpreting	   the	   loading	   plot	   (Fig.3B),	   it’s	   clear	   that	   products	   belonging	   to	  

group	  1A	  are	  characterized	  by	  sweetness,	  by	  tomato	  taste	  and	  saltiness	  and	  

by	   tomato	   flavor.	   Group	   2A	   is	   instead	   characterized	   by	   a	   more	   marked	  

redness	   and	   sourness.	   On	   the	   other	   hand,	   group	   3A	   is	   characterized	   by	  

bitterness	  and	  metal	  taste,	  having	  a	  light	  redness.	  
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PCA	   has	   also	   been	   performed	   on	   the	   NMR	   data	   set	   (Fig.4),	   providing	  

information	  about	  samples	  distribution	  based	  on	  their	  sensory	  descriptors.	  

	  

	  
Fig.4.	  Score	  (A	  and	  B)	  and	  loading	  (C_E)	  plots	  of	  the	  PCA	  performed	  on	  NMR	  data.	  Panels	  A	  and	  B	  
show	  the	  PC1_PC2	  and	  PC1_PC3	  score	  plots,	  and	  panels	  C_E	  show	  the	  PC1_PC3	  loadings.	  Products	  
are	  colored	  according	  to	  NMR	  HCA	  analysis	  in	  Figure	  1B.	  	  
Error	  bars	  correspond	  to	  one	  SE	  (SE	  =	  SD/N1/2).	  
	  

Interestingly	   the	   general	   distribution	  of	   the	  products	   in	   the	   score	  plots	   (Fig.	  

4A,B)	  in	  a	  way	  recall	  the	  one	  observed	  in	  the	  sensory	  data	  set	  (Fig.	  3A).	  
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Moreover,	   PC1,	   PC2,	   and	   PC3	   vary	   significantly	   between	   the	   different	  

products.	  As	   judged	   from	  the	   loading	  plots	   (Fig.	  4C-‐E),	   the	   first	  PC	  describes	  

the	   distribution	   of	   the	   samples	   based	   on	   their	   sweetness.	   In	   fact,	   negative	  

values	  can	  be	  observed	  for	  signals	  belonging	  to	  sugars	  like	  saccharose	  and	  α-‐	  

and	  β-‐D-‐glucose.	  At	  the	  same	  time,	  positive	  correlations	  can	  be	  observed	  for	  

signals	   belonging	   to	   bitter	   amino	   acids	   like	   tyrosine,	   phenylalanine,	  

tryptophane,	   and	   isoleucine.	   The	   noisy	   look	   of	   the	   second	   PC	   describes	   the	  

formation	  of	  sharper	  NMR	  signals	  due	  to	  a	  decrease	  in	  viscosity.	  The	  third	  PC	  

seems	   instead	   related	   to	   an	   increase	   of	   saccharose,	   isoleucine,	   and	   acetate	  

and	  a	  decrease	  of	  tyrosine,	  α-‐D-‐glucose,	  malate,	  and	  glutamate.	  

	  

The	   similarities	   in	   the	   structures	   of	   the	   sensory	   and	   NMR	   data	   were	   very	  

encouraging	  and	  allowed	  us	  to	  carry	  on	  with	  the	  crucial	  step	  of	  the	  study.	  	  

In	   order	   to	   answer	   to	  our	   research	  question	   about	   how	  well	  NMR	  data	   can	  

predict	   the	   sensory	   descriptors,	   were	   performed	   Orthogonal	   projection	   to	  

latent	   structures	   (OPLS)	   [9]	  models	  using	  Simca-‐P	  12.0	   (Umetrics).	  OPLS	  was	  

carried	  out	  using	  each	  sensory	  descriptor	  as	  the	  y-‐variable	  and	  the	  data	  were	  

scaled	  to	  obtain	  unit	  variance	  and	  then	  centered.	  	  

Using	  this	  protocol,	  we	  were	  able	  to	  get	  good	  predictions	  [Q2(cum)	  >0.5]	  for	  

bitterness,	  redness,	  density,	  and	  metal	  and	  tomato	  taste.	  

Finally,	   to	   determine	   the	   chemical	   components	   responsible	   for	   a	   given	  

sensory	  descriptor,	  we	  have	   looked	  for	  all	  possible	  correlations	  between	  the	  

NMR	  signals	  and	  the	  analyzed	  sensory	  descriptors	  using	  OPLS	  models.	  	  

NMR	   signals	   that	   showed	   a	   strong	   correlation	   (R2>0.5)	   with	   the	   OPLS	  

predictive	  scores	  for	  the	  sensory	  descriptors	  were	  considered	  as	  markers	  for	  

the	  sensory	  descriptors.	  
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Using	   this	   approach	   was	   possible	   to	   correlate	   the	   NMR	   fingerprinting	   of	  

canned	  tomato	  samples	  to	  relative	  sensory	  descriptors.	  

For	   instance,	   sweet	   perception	   was	   positively	   correlated	   with	   saccharose	  

(5.41	   ppm)	   in	   spite	   of	   its	   low	   concentration,	   whereas	   it	   was	   negatively	  

correlated	  with	  tyrosine	  (H-‐α	  3.94	  ppm),	  which	  is	  a	  known	  bitter	  amino	  acid.	  

It	  was	   interesting	   to	   note	   that	   the	   sensation	   of	   sweetness	   cannot	   solely	   be	  

explained	   by	   the	   sugar	   content,	   accordingly	   to	   other	   data	   in	   literature	   [10]	  

that	   reveal	   a	   strong	   relationship	   between	   the	   sensation	   the	   sensation	   of	  

sweetness	  and	  the	  glucose/citric	  acid	  interaction.	  

Very	   surprisingly,	   redness	   was	   positively	   correlated	   with	   the	   presence	   of	  

tryptophan	   (H4,	   H5,	   and	   H6	   at	   7.75,	   7.17,	   and	   7.29	   ppm,	   respectively)	   and	  

tyrosine	  (H3/H5	  at	  6.90	  and	  H-‐βs	  at	  3.06	  and	  3.18	  ppm).	  

Finally,	  a	  number	  of	  signals	  in	  the	  region	  between	  4.30	  and	  4.60	  ppm	  and	  at	  

4.03	  ppm	  display	  negative	   correlations	  with	  density.	  Unfortunately	  we	  were	  

not	  able	   to	  unambiguously	  assign	   these	   signals,	   even	   if	   their	   chemical	   shifts	  

strongly	  suggest	  that	  they	  could	  be	  attributed	  to	  sugars.	  
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3.2	  Application	  of	  “magnetic	  tongue”	  to	  the	  sensory	  evaluation	  of	  
extra	  virgin	  olive	  oil	  
	  

The	   results	   obtained	   in	   the	   previous	   study	   suggested	   that	   the	  metabolomic	  

NMR	   fingerprinting	   represents	   a	   very	   useful	   tool	   to	   explore	   and	   predict	  

sensory	   features	   of	   food	   samples.	   To	   evaluate	   the	   applicability	   of	   this	  

methodology,	   the	   same	   strategies	   and	   study	  design	  were	   applied	   to	  predict	  

and	   to	   measure	   sensory	   descriptors	   in	   extra-‐virgin	   olive	   oil,	   with	   particular	  

attention	   to	   the	   quantitative	   measure	   of	   minor	   compounds	   related	   to	   the	  

sensory	  description	  (Paper	  II).	  

Extra-‐virgin	  olive	  oil	  (EVOO)	  has	  received	  increasing	  attention	  over	  the	  world	  

for	   their	   unique	   nutritional	   and	   healthy	   properties	   and	   extraordinary	   flavor	  

and	  taste.	  

In	  the	  last	  decade,	  NMR	  spectroscopy	  was	  used	  to	  analyze	  extra	  virgin	  olive	  oil	  

in	   several	   applications.	   In	   2001	   Mannina	   L.	   and	   coworkers	   evaluated	   the	  

potential	   contribution	  of	   this	   technique	   to	   the	  geographical	   characterization	  

of	   olive	   oils	   [10].	   Furthermore,	   other	   analytical	   techniques,	   such	   as	   the	  

electronic	   nose	   and	   the	   electronic	   tongue,	   in	   combination	  with	  multivariate	  

analysis,	  have	  been	  used	  to	  verify	  the	  geographical	  origin	  and	  the	  uniqueness	  

of	   specific	   extra	   virgin	   olive	   oils	   [11].	   The	   recent	   development	   of	   NMR	  

spectrometers	  (high	  field,	  cold-‐probe)	  and	  their	  performance	  in	  term	  of	  both	  

resolution	   and	   sensitivity	   open	   new	   perspectives	   in	   the	   application	   of	   this	  

powerful	  analytical	  technique	  in	  the	  analysis	  of	  extra	  virgin	  olive	  oil,	  especially	  

in	  combination	  with	  multivariate	  data	  analysis.	  

In	   this	   section	   an	   overview	   of	   all	   results	   is	   reported,	   considering	   that	   was	  

applied	  the	  same	  approach	  of	  the	  previous	  study.	  	  
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The	   EVOO	   analyzed	   products	   were	   given	   from	   different	   companies	   in	  

Campania	   region	   (Italy)	   within	   the	   EXTRABIO	   2008,	   which	   is	   a	   quality	   prize	  

organized	  by	  the	  Chamber	  of	  Commerce	  of	  Naples	  for	  olive	  oils	  from	  organic	  

agriculture.	  

	  

3.2.1.	  Methods	  and	  results	  discussion	  
	  

Sensory	  profiles	  of	   the	  18	  samples	  were	  determined	  by	  the	  olive	  oil	   sensory	  

panel	   of	   the	   ‘‘Laboratorio	   Chimico	   Merceologico’’	   of	   the	   Chamber	   of	  

Commerce	  of	  Naples	  (Italy)	  and	  eleven	  descriptors	  have	  been	  defined:	  fruity,	  

leaf,	   grassy,	   bitter,	   pungent,	   sweet,	   almond,	   artichoke,	   apple,	   tomato	   and	  

rosemary	  tastes.	  Then	  samples	  were	  prepared	  for	  1H-‐NMR	  analysis	  following	  	  

The	  procedure	  reported	  by	  Segre	  and	  Mannina	  [12].	  

	  

Hierarchical	  Cluster	  Analysis	  

A	  Hierarchical	  cluster	  analysis	  (HCA)	  was	  performed	  on	  mean	  QDA	  parameters	  

and	   on	   NMR	   data,	   using	   Ward	   clustering	   method	   [13]	   in	   order	   to	   group	  

products	  sharing	  similar	  sensory	  features	  (Fig.5).	  

Analogously	   to	   the	   HCA	   performed	   on	   sensory	   data,	   the	   HCA	   analysis	  

performed	  on	  the	  NMR	  data	  revealed	  three	  main	  groups	  (Fig.	  5B):	  there	  is	  an	  

excellent	   global	   agreement	   between	   the	   different	   measurements	   but	   only	  

sample	  5,	  11	  and	  18	  are	  not	  grouped	   in	   the	  same	  way	  using	  QDA	  and	  NMR	  

data.	  
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Fig.5.	   Dendrograms	   showing	   similarities	   between	   products	   based	   on	   QDA	   (A)	   and	   NMR	   (B).	   The	  
dendrograms	  were	  based	  on	  the	  two	  first	  PCs	  after	  PCA	  of	  QDA	  (A)	  and	  NMR	  (B)	  data,	  respectively.	  (For	  
interpretation	  of	  the	  references	  to	  colour	  in	  this	  figurelegend,	  the	  reader	  is	  referred	  to	  the	  web	  version	  
of	  this	  article.)	  
	  
	  

Principal	  Component	  Analysis	  

PCA	  models	  were	  performed	  on	  sensory	  data	  and	  also	  on	  the	  NMR	  data,	  using	  

Simca-‐P	   13.0	   software	   (Umetrics,	   Umea,	   Sweden)	   (Fig.6).	   The	   sensory	   data	  

were	   autoscaled	  while	  NMR	   data	  were	   pareto-‐scaled,	   since	   these	   data	   pre-‐

treatments	  seems	  to	  perform	  better	  with	  regard	  to	  expectations.	  

Two	   principal	   components	   accounting	   for	   65%	   of	   the	   variation	   were	  

identified.	   The	   plot	   of	   their	   scores	   (Fig.	   6A)	   shows	   the	   positioning	   of	   the	  

products	  according	  to	  their	  sensory	  attributes	  and	  allowed	  the	   identification	  

of	  the	  most	  important	  sensory	  descriptors	  for	  products	  differentiation.	  

Interestingly,	   a	   number	   of	   descriptors	   shows	   a	   significant	   correlation	  	  	  

(Q2(cum)	  >	  0.4)	  with	  the	  model,	  indicating	  a	  high	  level	  of	  correlation	  between	  

the	  sensory	  descriptors	  (Table	  S2	  in	  supporting	  material	  ).	  	  
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Fig.6.	  Score	  (A)	  and	  loading	  (B)	  plots	  of	  the	  PCA	  performed	  on	  sensory	  data.	  
Products	  are	  coloured	  according	  to	  QDA	  HCA	  analysis	  in	  Fig.	  5.	  

	  

	  

According	  to	  the	  loading	  plot	  (Fig.	  6B),	  the	  transition	  from	  the	  left	  to	  the	  right	  

of	  the	  map	  shows	  the	  simultaneous	  decrease	  of	  the	  sweet	  taste	  and	  increase	  

of	   the	   bitter,	   pungent,	   fruity	   and	   artichoke	   tastes.	   Moreover,	   this	   plot	  

suggests	   a	   covariance	   between	   different	   tastes:	   a	   higher	   sweetness	   is	  

generally	  associated	  with	  a	  lower	  bitterness.	  	  

	  



	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Chapter	  3.	  Case	  studies	  
	  

	   37	  

Regarding	   the	   PCA	   performed	   on	   the	   NMR	   data,	   two	   PCs	   were	   identified,	  

explaining	  the	  83.6%	  of	  the	  variation,	  The	  general	  distribution	  of	  the	  products	  

in	   the	   score	   plots	   (Fig.	   7A)	   in	   a	  way	   recall	   the	   one	   observed	   in	   the	   sensory	  

dataset	  (Fig.	  6A).	  

	  
Fig.7.	  Score	  (A)	  and	  loading	  (B	  and	  C)	  plots	  of	  the	  PCA	  performed	  on	  NMR	  data.	  (B	  
and	  C)	  show	  the	  PC1	  and	  PC2	  loadings.	  Products	  are	  coloured	  according	  to	  Fig.	  5.	  

	  

For	   example,	   Group1B	   and	   Group	   3B	   are	   mapped	   opposite	   to	   each	   other,	  

suggesting	   that	   PC2	   in	   the	   PCA	   computed	   with	   the	   NMR	   data	   is	   in	   a	   way	  

related	  to	  the	  sweetness/bitterness	  of	  the	  samples.	  On	  the	  other	  hand	  group	  

2B	   is	   very	  well	   separated	   from	   the	   other	   two	   groups	   along	   PC1,	   suggesting	  

that	  this	  PC	  is	  related	  to	  apple,	  rosemary	  and	  leaf	  tastes.	  	  
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Samples	  contained	  in	  this	  group	  are	  characterized	  by	  higher	  concentration	  of	  

molecules	  having	  signals	  at	  δH	  9.58,	  9.31,	  7.88,	  6.97,	  6.69	  and	  6.63	  ppm,	  and	  

low	  concentration	  of	  molecules	  having	  signals	  at	  δH	  9.45,	  9.09,	  9.05,	  6.82	  and	  

6.58	  ppm,	  relative	  to	  Groups	  1B	  and	  3B.	  

Looking	  at	  the	  loading	  plot	  of	  second	  principal	  component	  (Fig.	  7C),	  it	  is	  clear	  

that	  Group	  1B	  contains	  higher	  concentrations	  of	  molecules	  having	  signals	  at	  

δH	  9.45	   (the	  aldehyde	  proton	  of	   the	   trans-‐2-‐hexenal),	   9.09,	   9.05,	   6.82,	   6.58,	  

whereas	   lower	   concentrations	   of	   those	  molecules	   are	   present	   in	   the	  Group	  

3B.	  

Signals	   around	   δH	   9.10	   could	   also	   be	   tentatively	   assigned	   to	   protons	   of	   the	  

dialdehyde	  form	  of	  secoiridoids,	  and	  signals	  at	  δH	  6.5–6.8	  to	  phenyl	  alcohols	  

moieties	   (tyrosol	   and	   hydroxytyrosol)	   of	   oleuropein	   and	   ligstroside	   aglycons	  

[14].	  Unfortunately	  other	  signals	  were	  not	  unambiguously	  assigned.	  	  

In	  order	  to	  determine	  which	  chemical	  components	  are	  responsible	  for	  a	  given	  

sensory	  descriptor,	  we	  have	   looked	  for	  all	  possible	  correlations	  between	  the	  

NMR	   signals	   (in	   the	   considered	   spectral	   regions)	   and	   the	   analyzed	   sensory	  

descriptors	  using	  OPLS	  models.	  
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Fig.8	  Loading	  plot	  of	  the	  predictive	  component	  of	  OPLS	  models	  with	  Q2	  >	  0.4.	  
	  

If	  we	   have	   a	   look	   at	   the	   loading	   plots	   of	   the	   predictive	   component	   of	   each	  

OPLS	   model	   with	   Q2	   >	   0.4	   (Fig.8),	   bitter,	   pungent	   and	   artichoke	   tastes	   are	  

highly	  correlated	  (R	  >	  0.63)	  and	  display	  a	  very	  similar	  profile.	  They	  all	  show	  a	  

strong	  anti-‐correlation	  to	  sweet	   taste	   (R	  <	   -‐0.6),	  while	   tomato	  and	  rosemary	  

tastes	  display	  inverse	  profiles	  relative	  to	  each	  other.	  	  

Inspecting	   in	   depth	   the	   OPLS	   data,	   especially	   regarding	   the	   less	   intense	  

signals,	  we	  noticed	  that	  the	  lack	  of	  hexenal	  seems	  to	  increase	  sweet,	  tomato,	  

grassy	  and	  fruity	  tastes,	  whereas	  the	  increment	  of	  its	  concentration	  increases	  

the	   perception	   of	   leaf	   and	   rosemary	   tastes.	   Secoiridoids	   (signals	   around	   δH	  

9.10),	  trans-‐alk-‐2-‐enals	  (δH	  6.84)	  and	  4-‐hydroxy-‐trans-‐alk-‐2-‐enal	  (signals	  at	  δH	  

9.58)	  are	  related	  to	  the	  sweet/bitter	  relationship	  of	  the	  EVOO.	  

Finally,	   in	  according	  to	  other	  papers	  in	  literature	  [15]	  the	  trans-‐2-‐hexenal	  (δH	  

9.45	  ppm)	  correlates	  to	  fruity	  taste	  of	  the	  olive	  oil.	  	  
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3.3	  NMR	  profiling	  of	  cocaine	  seizures	  
	  
Nowadays,	  there	  are	  hundreds	  of	  drugs	  that	  are	  commonly	  abused,	  and	  many	  

of	  these	  are	  legally	  sanctioned	  by	  many	  countries.	  	  

One	  of	  the	  most	  widely	  illicit	  drug	  used	  is	  cocaine;	  it	  is	  an	  extract	  of	  the	  leaves	  

of	  the	  coca	  plant,	  where	  it	  is	  found	  as	  the	  main	  natural	  alkaloid.	  

In	   addition	   to	   cocaine,	   coca	   paste	   contains	   also	   small	   percentages	   of	   other	  

compounds,	  mostly	  alkaloids	  [16],	  which	  can	  be	  considered	  a	  “fingerprint”	  of	  

the	   sample.	   The	   coca	   samples	   chemical	   “fingerprint”	   can	  depend	  on	   several	  

factors:	  which	  kind	  of	  plant	  minor	  compounds	  were	  extracted	  from,	  where	  it	  

was	   cultivated,	   and	   which	   procedures	   were	   used	   for	   extraction	   and	  

purification.	   Thus	   the	   presence	   of	   these	   minor	   compounds	   in	   cocaine	   can	  

provide	  information	  about	  the	  geographic	  origin,	  but	  also	  about	  the	  area	  and	  

the	  period	  of	  the	  cocaine	  traffic.	  	  

A	  recent	  search	  of	  the	  books	  for	  sale	  on	  the	  topic	  of	  drug	  and	  pharmaceutical	  

analysis	   at	   Amazon.com	   had	   more	   than	   300	   entries.	   Indeed	   forensic	   drug	  

analyst	   and	   toxicologists	   utilize	   methods	   and	   techniques	   that	   continue	   to	  

develop	   rapidly.	   In	   particular,	   the	   GC–MS	   technique	   currently	   dominates	  

forensic	   analysis	   [17].	   Since	   NMR	   represents	   a	   unique	   methodology	   for	  

performing	   chemical	   identification	   and	   quantification,	   that	   does	   not	   require	  

specific	   sample	   preparation	   or	   the	   use	   of	   other	   analytical	   technique	   (e.g.	  

chromatographic	  analysis),	  here	  a	  strategy	  based	  on	  1H	  NMR	  spectral	  analysis	  

in	   conjunction	   with	   multivariate	   analysis	   is	   presented.	   This	   project	   aims	   to	  

identify	   the	   chemical	   ‘‘fingerprint’’	   of	   cocaine	   samples	   seized	   at	   different	  

times	   and	   in	   different	   places	   in	   Naples.	   Thus,	   using	   NMR	   fingerprinting	  

approach	  we	  could	  be	  able	  to	  improve	  investigation	  strategies.	  
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3.3.1.	  Methods	  and	  results	  discussion	  
	  

In	   this	   study	   we	   performed	   an	   NMR	   analysis	   of	   54	   chlorohydrate	   cocaine	  

samples	   seized	   by	   the	   Police	   Department	   of	   Naples	   in	   different	   areas	   of	  

Naples,	  during	  the	  year	  2006.	  

	  

	  
Fig.9	  Comparison	  of	  an	  expanded	  region	  of	  four	  samples	  of	  seized	  cocaine.	  (a)	  Example	  of	  a	  sample	  of	  
pure	  cocaine.	  Asterisks	  indicate	  cocaine	  signals.	  (b)	  Sample	  having	  lidocaine	  as	  cutting	  agent.	  (c)	  Sample	  
having	  procaine	  as	  cutting	  agent.	  (d)	  Sample	  having	  procaine	  and	  phenacetin	  as	  cutting	  agents.	  

	  

In	   the	   spectra	   the	  main	   signals	   belong	   to	   the	   cocaine	   hydrogens	   (complete	  

assignment	   is	   reported	   in	   the	   table	   S1	   in	   Supplemental	  Material),	   but	   other	  

signals	  are	  observed,	  such	  as	  cutting	  agents	  (adulterant/diluent)	  that	  could	  be	  

mixed	   to	   the	   cocaine	   samples	  before	  drug	  dealing	   (Fig.9).	   It	  was	  possible	   to	  

identify	  all	  the	  signals	  of	  cocaine	  and	  cutting	  agents	  with	  the	  help	  of	  literature	  

data	  [11].	  
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Moreover,	   cutting	   compounds	   were	   easily	   detected	   and	   quantified	   by	   a	  

simple	   1H	   NMR	   spectrum	   and	   can	   be	   used	   as	   an	   investigative	   support	   to	  

determine	  a	  common	  origin	  and	  a	  distribution	  channel	  of	  the	  illicit	  drug.	  

But	   the	   mail	   goal	   of	   this	   study	   is	   to	   analyze	   the	   “fingerprint”	   of	   cocaine	  

samples	   in	   order	   to	   identify	   the	   areas	   and	   period	   in	   which	   a	   given	  

consignment	  of	  drug	  has	  been	  trafficked.	  

For	   this	   reason	   we	   operated	   a	   selection	   of	   the	   spectral	   regions	   including	  

information	  related	  only	  to	  the	  minor	  compounds,	  without	  interference	  from	  

cocaine	  and	  adulterant/cutting	  agent	  signals.	  

	  

Statistical	  Total	  Correlation	  Spectroscopy	  (STOCSY)	  

STOCSY	  technique	  was	  used	  for	  determining	  metabolic	  connectivity	  between	  

different	   molecules	   as	   well	   as	   for	   structural	   assignment	   in	   NMR	   spectra	   of	  

complex	   mixtures	   [18]	   (see	   figure	   S1	   in	   Supporting	   material).	   STOCSY	   was	  

performed	  on	  NMR	  data	   set	   (54	   1H	  NMR	   spectra)	   to	   generate	   a	   pseudo-‐2D	  

NMR	   spectrum,	   which	   displays	   correlation	   among	   the	   intensities	   of	   various	  

peaks	   across	   the	   whole	   spectrum.	   In	   order	   to	   perform	   this	   technique	   the	  

spectra	  were	  divided	  in	  equally	  sized	  bins	  (0.005	  ppm),	  reducing	  the	  data	  set	  

number	  of	  variables	  and	  the	  STOCSY	  time	  for	  calculation.	  	  

In	   the	   STOCSY	   plot	   correlations	   among	   following	   agents	   were	   detected:	  

lidocaine,	   phenacetin,	   diltiazem,	   sugars,	   procaine,	   MDMA	   (3,4-‐

methylenedioxy-‐	  N-‐methylamphetamine),	  paracetamol	  and	  caffeine	  and	  then	  

all	  the	  spectral	  regions	  in	  which	  those	  signals	  were	  present	  were	  excluded.	  	  

Thus,	  7	   spectral	   intervals	   that	  only	   contain	   signals	  of	   the	  minor	   (fingerprint)	  

components	  were	  considered	  in	  the	  multivariate	  data	  analysis.	  
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Prior	   data	   analysis,	   this	   spectral	   intervals	   of	   each	   sample	   were	   normalized	  

with	  respect	  to	  the	  area	  of	  a	  reference	  cocaine	  peak,	  since	  the	  amount	  of	  the	  

minor	  components	  is	  somehow	  related	  to	  the	  amount	  of	  cocaine. Particularly,	  

the	  cocaine	  triplet	  at	  δH	  7.65	  ppm	  (H40)	  has	  been	  used,	  since	  it	  is	  an	  isolated	  

peak	  in	  all	  54	  samples.	  

The	   normalized	   data	   matrix	   was	   then	   used	   for	   hierarchical	   cluster	   analysis	  

(HCA),	  which	  shows	  5	  main	  groups	  that	  can	  be	  considered	  as	  5	  different	  drug	  

consignments	  	  (Fig.10).	  

	  

	  

	  
	  

Fig.10	   HCA	   dendrogram	   based	   on	   NMR	   data,	   showing	   similarities	   between	   samples.	   Samples	   falling	  
within	  the	  same	  group	  are	  indicated	  with	  the	  same	  color.	  Area	  (A,	  B,	  C	  and	  D)	  and	  quarter	  of	  the	  year	  (I,	  
II,	  II	  and	  IV)	  of	  seizure	  are	  also	  reported.	  	  
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Principal	  component	  analysis	  

	  PCA	  was	  also	  performed	  on	  the	  same	  dataset	  (Fig.	  11)	  in	  order	  to	  get	  insights	  

about	  the	  reasons	  for	  this	  clustering.	  

Scores	   plots	   (Fig.	   11	   a	   and	   b)	   show	   the	  

positioning	   of	   the	   samples	   according	   to	   their	  

chemical	   characteristics	   and	   allowed	   the	  

identification	   of	   the	   most	   important	   NMR	  

signals	   for	   sample	   differentiation.	   In	  

particular,	  group	  1	  (green)	  substantially	  differs	  

from	  groups	  2,	  3,	  4	  and	  5	  along	  PC1	  mainly	  for	  

the	   presence	   of	   tropacocaine,	   whose	  

hydrogens	  resonate	  at	  δH	  7.32	  ppm	  (Fig.	  11c).	  

The	   PC2	   loading	   plot	   indicates	   that	   these	  

groups	  mainly	  differ	  for	  the	  content	  of	  cis-‐	  (δH	  

7.62	   and	   5.91	   ppm)	   and	   trans-‐

cinnamoylcocaine	  (δH	  6.50	  ppm).	  

Thus,	   the	   samples	   showing	   high	   PC2	   scores	  

are	  characterized	  by	  higher	  concentrations	  of	  

cis-‐	   and	   trans-‐cinnamoylcocaine,	   and	   of	   the	  

molecule	   having	   signal	   at	   δH	   0.90	   ppm,	   and	  

lower	   concentrations	   of	   molecules	   having	  

signals	  at	  δH	  0.95	  and	  0.93	  ppm	  (unfortunately	  

unassigned). PC3	  is	  also	  governed	  by	  the	  same	  

resonances.	  

	  
Fig.11	  PCA	  score	  (panels	  a	  and	  b)	  and	  
loading	  (panels	  c–e)	  plots.	  
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Projection	  to	  Latent	  Structures	  Discriminant	  Analysis	  

PLS-‐DA	  models	  were	  performed	  in	  order	  to	  determine	  how	  well	  the	  identified	  

consignments	  of	  drug	  can	  be	  predicted	  by	  NMR.	  	  

The	  validation	  of	  the	  PLS-‐DA	  models	  was	  obtained	  using	  the	  permutation	  test	  

(Simca-‐P	  13.0,	  Umea,	  Sweden)	  in	  which	  a	  total	  of	  400	  models	  were	  calculated	  

using	  randomly	  permuted	  Y	  variables	  (Fig.	  S2	  in	  supporting	  material).	  

The	   resulting	   Q2	   and	   R2	   values,	   describing	   the	   predictive	   ability	   and	   the	  

reliability	  of	  the	  fitting,	  respectively,	  were	  plotted	  and	  compared	  with	  the	  Q2	  

and	  R2	  values	  obtained	  from	  the	  real	  model.	  The	  substantial	  decrease	  of	  both	  

parameters	   Q2	   and	   R2	   (vertical	   axis	   interception	   point	   of	   the	   Q2	   and	   R2	  

regression	   line	   resulted	   both	   with	   negative	   values)	   enforced	   the	   statistical	  

validity	  of	  the	  obtained	  PLS-‐DA	  model.	  

	  

	  
Fig.12	  PCA	  score-‐plots	  annotated	  with	  (panel	  a)	  year	  quarter	  and	  (panel	  b)	  area	  of	  seizure.	  

	  
	  

In	  the	  plot	  on	  the	  left	  all	  samples	  are	  labeled	  according	  to	  the	  quarter	  of	  the	  

year	   in	  which	  cocaine	  samples	  were	  seized	   (I,	   II,	   II	   and	   IV)	   (Fig.	  12a),	  on	   the	  

right	   according	   to	   four	  macro	   areas	   of	   seizure	   (Fig.	   12b).	  Macro	   areas	  were	  

defined	  based	  on	  information	  from	  Naples	  Police	  Department,	  which	  assigned	  
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each	   area	   to	   a	   single	   criminal	   organization	   or	   clan,	   responsible	   of	   cocaine	  

seizure.	  

Samples	  of	  group	  1	  (green)	  have	  been	  seized	  mainly	  in	  area	  D	  of	  the	  county.	  

Analogously,	   samples	  of	  groups	  2	   (blue),	  3	   (red),	  4	   (yellow)	  and	  5	   (cyan)	  are	  

seized	  mainly	  in	  areas	  A,	  A/C,	  C,	  and	  B,	  respectively.	  

This	  suggests	  that	  each	  clan	  stocks	  up	  with	  drug	  consignments	  independently	  

from	   the	   others	   and	   that	   it	   actually	   controls	   a	   given	   area	   in	   an	   exclusive	  

manner.	   It	   is	   also	   possible	   to	   monitor	   the	   samples	   that,	   for	   some	   reason,	  

move	  from	  the	  area	  where	  most	  of	  the	  consignment	  to	  which	  they	  belong	  has	  

been	  sold.	  	  

Finally,	   it	   was	   also	   possible	   to	   identify	   the	   consignments	   for	   this	   drug	  

trafficked	   in	   different	   period.	   For	   instance,	   group	   1	   (green)	   have	   been	   sold	  

mainly	   in	   the	   first	   (I)	   quarter,	   groups	  2,	   3	   and	  4	  have	  been	   trafficked	   in	   the	  

third	  (III)	  group	  5	  (blue)	  has	  been	  sold	  all	  year	  long.	  
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3.4	  Conclusions	  
	  
The	   results	   obtained	   in	   all	   three	   case	   studies	   suggest	   that	   NMR	   could	   be	   a	  

very	  an	  exploratory	  and	  predictive	  useful	  tool	  for	  the	  characterization	  of	  some	  

sensory	  features	  of	  canned	  tomato	  and	  extra	  virgin	  olive	  oil,	  or	  generally	  for	  

food	  samples.	  We	  were	  able	  to	  correlate	  the	  NMR	  metabolomic	   fingerprints	  

recorded	   for	   canned	   tomato	   samples	   to	   the	   sensory	   descriptors	   bitterness,	  

sweetness,	  sourness,	  saltiness,	  tomato	  and	  metal	  taste,	  redness,	  and	  density	  

and	   NMR	   metabolomic	   fingerprints	   of	   extra	   virgin	   olive	   oil	   to	   the	   sensory	  

descriptors:	   tomato,	  bitter,	  pungent,	   rosemary,	   artichoke,	   sweet,	   grassy	  and	  

leaf.	  

The	  reported	  results	  are	  very	  promising	  and	  pave	  the	  way	  to	  a	  more	  careful	  

analysis	  on	  a	  wider	  number	  of	  samples.	  

Furthermore,	   the	   potentiality	   of	   NMR	   spectroscopy,	   in	   combination	   to	  

multivariate	   data	   analysis,	   has	   also	   demonstrated	   to	   improve	   and	   support	  

police	   investigations.	   In	   particular,	   the	   NMR	   fingerprinting	   approach	   of	  

cocaine	   samples	   analysis	   allowed	  us	   to	   identify	   the	   spectral	   regions	   that,	   at	  

least	  in	  this	  investigation,	  can	  be	  used	  for	  grouping	  of	  seized	  cocaine	  samples.	  

These	  regions	  were	  very	  useful	  especially	  in	  providing	  information	  about	  place	  

and	  date	  of	  trafficking.	  Moreover,	  the	  statistical	  multivariate	  analysis	  allowed	  

the	  identification	  of	  key	  minor	  components	  responsible	  of	  this	  grouping.	  The	  

results	  indicate	  that	  this	  study	  strategy	  can	  assist	  tactically	  (evidential/judicial)	  

and	  strategically	  (intelligence)	  the	  investigators.	  
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4	  NMR	  METABOLOMICS	  OF	  HUMAN	  CANCER	  CELL	  LINES	  

	  

This	   section	   describes	   the	   preliminary	   results,	   not	   yet	   published,	   of	   a	   study	  

carried	   out	   at	   the	   University	   of	   Copenhagen,	   Department	   of	   Food	   Science,	  

Faculty	   of	   Life	   Science,	   under	   the	   supervision	   of	   Assoc.	   Prof.	   Francesco	  

Savorani	  and	  Prof.	  Søren	  Balling	  Engelsen.	  	  

This	   study	   deals	   with	   the	   analysis	   of	   the	   metabolomic	   profiles	   of	   human	  

cancer	  cell	  lines,	  using	  NMR	  spectroscopy	  combined	  with	  chemometrics	  tools.	  

The	  aim	  of	  the	  study	  was	  to	  develop	  an	  experimental	  protocol	  for	  an	  efficient	  

harvesting,	   quenching	   and	  extraction	  of	   cellular	  metabolites	   of	   the	  HTC-‐116	  

human	   adherent	   cancer	   cells.	   The	   analysis	   of	   the	   metabolome	   has	   been	  

focused	  to	  understand	  the	  in	  vitro	  actions	  of	  novel	  anticancer	  drugs.	  

The	  experimental	  protocol	  was	  developed	   in	  collaboration	  with	  Dr.	  Pasquale	  

Zizza	   and	   Dr.	   Annamaria	   Biroccio	   (Experimental	   Chemotherapy	   Laboratory,	  

Regina	  Elena	  Cancer	  Institute,	  Rome,	  Italy).	  

	  

4.1	  Introduction	  

	  

In	  the	  last	  decade,	  metabolomics	  studies	  have	  been	  performed	  on	  different	  

biofluids	  (e.g.	  plasma,	  serum,	  urine	  and	  cerebrospinal	  fluid)	  with	  successful	  

results,	  showing	  applications	  in	  many	  areas,	  such	  as	  biomarker	  discovery,	  

clinical	  studies,	  drug	  efficacy	  and	  toxicity	  evaluations,	  disease	  diagnosis	  

[1][2][3].	  However,	  recent	  developments	  in	  the	  use	  of	  metabolomics	  involve	  

the	  characterization	  and	  interpretation	  of	  the	  cell	  metabolome,	  starting	  from	  

prokaryotes	  (especially	  Escherichia	  Coli)	  to	  eukaryotes	  cell	  lines	  (yeast	  or	  

mammalian	  cells)	  [4][5].
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Complementary	   to	   the	   classic	   biofluid	   analyses,	   for	   in	   vivo	   models	   the	  

metabolomic	   profiles	   of	   cells	   represent	   a	   very	   powerful	   tool	   to	   understand	  

how	  the	   local	  metabolism	  and	  biochemical	  pathways	  could	  be	   influenced	  by	  

pathologies	   or	   external	   or	   internal	   stimuli.	   For	   the	   more	   simple	   in	   vitro	  

models,	   such	   as	   cell	   culture,	   the	   analysis	   of	   the	   cellular	  metabolome	   could	  

also	   provide	   important	   information	   for	   the	   development	   of	   models	   of	  

biological	   pathways	   and	  networks.	   In	   vitro	   cell	  metabolomics	   analysis	   offers	  

several	   advantages:	   experimental	   variables	   are	   easier	   to	   control,	   greater	  

reproducibility,	   less	  expensive	  and	  easier	  to	  interpret	  than	  analysis	  of	  animal	  

models	  and	  human	  subjects	  [6].	  

The	   use	   of	  mammalian	   cells	   is	   emerging	   in	   the	  metabolomics	   field	   and	   it	   is	  

worthwhile	   to	  understand	   the	  molecular	  mechanism	  of	  disease	  progression,	  

the	   cellular	   response	   to	  drug	   treatments	   [7]	   and	   the	   cell	   culture	  monitoring	  

[8].	  	  

In	   particular,	   the	   identification	   and	   characterization	   of	   cancer	   cell	  

metabolomic	  signatures	  could	  play	  an	  important	  role	  in	  the	  early	  diagnosis	  as	  

well	   as	   in	   following	   therapeutic	   response,	  making	   possible	   to	  map	   the	   drug	  

action	  into	  metabolic	  pathways	  [9].	  	  

Colon	  carcinoma	   is	   the	   third	  most	   commonly	  diagnosed	  cancer	   in	   the	  world	  

and	  the	  second	  most	  common	  cause	  of	  death	  from	  cancer	  [10].	  The	  analysis	  

of	   metabolic	   profiles	   of	   human	   colon	   cancer	   cell	   lines	   –	   using	   NMR	  

spectroscopy-‐based	   metabolomics	   –	   aims	   to	   provide	   a	   comprehensive	  

assessment	   of	   the	   alterations	   in	   the	   metabolite	   levels	   in	   cells	   and	   could	  

produce	   important	   information	  on	   in	   vitro	   actions	  of	   drugs	  pointing	   in	   their	  

rapid	  incorporation	  into	  novel	  therapeutic	  settings.	  	  
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For	   a	   holistic	   understanding	   of	   cancer	   cells	   metabolome,	   the	   choice	   of	   the	  

right	  protocol	   is	   crucial	   for	   efficient	  harvesting,	   quenching	  and	  extraction	  of	  

cellular	  metabolites.	  This	  study	  reports	  the	  development	  of	  an	  optimized	  and	  

standardized	  protocol	  for	  NMR	  metabolomics	  study	  of	  HTC	  116	  human	  colon	  

cancer	  cell	  lines.	  

	  

4.2	  Methodology	  of	  sample	  preparation	  and	  extraction	  

	  

Cell	  metabolomic	  experiments	  can	  be	  divided	  into	  different	  step:	  cell	  growth,	  

quenching	  and	  metabolites	  extraction.	  	  

To	  prepare	  cells	  for	  metabolomics	  investigations,	  quenching	  aims	  to	  inactivate	  

intracellular	   enzymes	   and	   arrest	  metabolic	   activity	   as	   rapidly	   as	   possible	   to	  

avoid	  metabolite	  degradation	  and	  alteration	  of	  the	  sample	  composition,	  since	  

a	   number	   of	   metabolic	   reactions	   occur	   in	   seconds.	   This	   method	   stops	  

metabolism	  by	  rapid	  deep	  cooling	  of	  the	  cells;	  the	  lower	  the	  temperature	  the	  

slower	   the	   turnover	   rate	   of	   all	   the	   enzymes	   within	   the	   cell	   and	   hence	   the	  

more	   efficient	   the	   quenching	   process.	   A	   variety	   of	   studies	   involving	   low	  

temperature	  quenching	  are	   reported	   in	   literature.	  Cell	  quenching	  process	  of	  

mammalian	  cells	  can	  be	  achieved	  in	  cold-‐methanol	  on	  its	  own	  [11]	  or	  buffered	  

with	  reagents	  like	  ammonium	  bicarbonate	  (AMBIC)	  as	  described	  by	  Sellick	  et	  

al.	  [12].	  	  

The	   choice	   of	   the	   method	   for	   quenching	   depends	   from	   the	   cellular	  

composition	   (cell	   membrane	   and	   cell	   wall	   structure)	   and	   cell	   size	   also	  may	  

influence	   the	   efficiency	   of	   quenching	   and	   the	   rate	   of	   metabolite	   leakage.	  

Indeed,	   methanol-‐based	   solutions	   damage	   the	   cell	   membrane	   and	   induce	  

leakage	  of	  intracellular	  metabolites	  from	  bacteria	  and	  yeast	  [13]	  [14].	  
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This	   effect	   is	  more	  marked	   in	  mammalian	   cells,	   since	   they	   are	  more	   fragile	  

than	  bacteria	  or	  yeast	  due	  to	  the	  lack	  of	  a	  cell	  wall.	  In	  contrast,	  Dietmair	  et	  al.	  

proposed	   quenching	  with	   cold	   NaCl;	   this	  method	   did	   not	   damage	   cells	   and	  

effectively	  halted	  conversion	  of	  ATP	  to	  ADP	  and	  AMP,	  indicative	  of	  metabolic	  

arrest	  [15].	  However,	  in	  the	  case	  of	  adherent	  cells,	   liquid	  nitrogen	  freezing	  is	  

considered	   an	   optimal	   way	   to	   stop	   enzymatic	   activity,	   seeking	   to	   avoid	   the	  

leakage	  of	  intracellular	  metabolites	  and	  to	  maintain	  cell	  integrity	  [16].	  

The	   less	   reproducible	   step	   among	   sample	   preparation	   procedures	   is	  

intracellular	   metabolites	   extraction.	   According	   to	   the	   holistic	   metabolomic	  

view,	   the	   extraction	   procedure	   must	   be	   adequate	   in	   order	   to	   ensure	   the	  

simultaneous	   detection	   of	   a	   large	   number	   of	   metabolites.	   Generally	   polar	  

organic	   solvents	   extract	   polar	   compounds,	  whereas	   non-‐polar	   solvents	   such	  

as	   chloroform	   or	   dichloromethane	   allow	   the	   extraction	   of	   lipids	   and	   other	  

hydrophobic	   compounds.	   Sometimes,	   a	   mixture	   of	   polar	   and	   non-‐polar	  

solvents	   conveniently	   allows	   the	   extraction	   of	   both	   classes	   of	   metabolites.	  

Several	   different	   extraction	   methods	   have	   been	   reported	   in	   literature	  

including	   cold	   solvents	   (50-‐60%	   methanol,	   100%	   methanol,	  

methanol/chloroform),	   hot	   solvents	   (methanol,	   ethanol)	   and	   solvents	   with	  

extreme	  pH	  values	  (KOH	  and	  perchloric	  acid)	  [17]	  [18]	  [19].	  	  

For	   the	   complete	   analysis	   of	   a	   cell	   culture,	   it	   is	   important	   to	  measure	   both	  

extracellular	   (footprint)	   and	   intracellular	   (fingerprint)	   metabolic	   profiles.	  

Metabolic	   footprinting	   (exo-‐metabolome	   analysis)	   is	   technically	   simple	  

because	   it	   only	   requires	   centrifugation	   to	   separate	   culture	   media	   and	   cells	  

before	   the	   analysis.	   Metabolic	   fingerprinting	   (endo-‐metabolome	   analysis),	  

although	  much	  more	   technically	   challenging	   because	   it	   requires	   metabolite	  

extraction	   from	   cells,	   provides	   more	   complete	   information	   about	   cellular	  
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metabolic	  processes	  [5].	  

In	   this	   study	   a	   non-‐selective,	   non-‐destructive	   and	   efficient	   extraction	  

procedure	  has	  been	  developed	  considering	  the	  metabolomics	  study	  objective	  

in	   an	  untargeted	  NMR	  analysis.	  NMR	   spectroscopy	  permits	   the	  detection	  of	  

hydrophilic	   and	   lipophilic	   intracellular	  metabolites	  with	   an	   adequate	   sample	  

preparation.	   On	   the	   other	   hand,	   not	   all	   procedures	   are	   suitable	   for	   NMR	  

metabolomics	   study.	  Therefore,	   the	  use	  of	  aqueous	  mixtures	  with	  methanol	  

and	   chloroform	   as	   extraction	   solvents,	   has	   allowed	   detecting	   as	   many	  

metabolites	  as	  possible	  by	  NMR	  analysis.	  	  

The	  aim	  of	  this	  study	  was	  to	  develop	  a	  sample	  preparation	  protocol,	  including	  

cell	   growth,	   separation	   of	   cells	   from	   medium,	   quenching	   and	   intracellular	  

metabolites	   extraction	   for	   HTC-‐116	   human	   adherent	   cancer	   cells.	   Different	  

amount	   of	   cells,	   metabolites	   quenching	   with	   liquid	   N2	   and	   cold	   methanol,	  

Methanol/chloroform/H2O	  metabolites	   extraction	  method	   were	   tested.	   The	  

metabolites’	   leakages	   induced	  by	  quenching	  procedures	  were	  compared	  and	  

the	   extraction	   efficacy	   was	   evaluated	   using	   Nuclear	   Magnetic	   Resonance	  

spectroscopy.	   The	   developed	   experimental	   protocol	   was	   used	   to	   perform	  

colon	   cancer	   cell	   metabolic	   profiling	   and	   to	   understand	   in	   vitro	   actions	   of	  

novel	  anticancer	  drugs.	  

	  

4.3	  Anticancer	  drugs	  and	  DNA	  G-‐quadruplex	  binders	  

	  

Three	   different	   drugs	   were	   tested	   on	   HTC-‐116	   colon	   cancer	   cell	   lines:	   the	  

Adriamycin,	   a	   popular	   antineoplastic	   agent	   and	   commonly	   used	   in	  

chemotherapy,	   RHPS4	   and	   Compound	   3,	   novel	   anticancer	   drugs	   which	   are	  

DNA	  quadruplex	  ligands,	  which	  can	  induce	  tumor-‐cell	  death.	  
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The	   anthracycline	   antibiotic	   doxorubicin	   (trade	   name:	   Adriamycin)	   (Fig.1),	  

originally	   isolated	   from	   the	   fungus	   Streptomyces	   peucetius	   [20]	   is	   a	  

chemotherapeutic	  agent	  with	   strong	  activity	  against	  a	  wide	   range	  of	  human	  

malignant	   neoplasms	   including	   acute	   leukemia,	   non-‐Hodgkin	   lymphomas,	  

breast	  cancer,	  Hodgkin's	  disease	  and	  sarcomas	  [21].	  

	  

	  
Fig.1	  Chemical	  Structures	  of	  Adriamycin	  

	  

Adriamycin	   acts	   through	   DNA	   duplex	   intercalation	   (Fig.2)	   and	   inhibition	   of	  

macromolecular	   biosynthesis	   [22][23].	   Furthermore,	   it	   inhibits	   the	  

progression	  of	  the	  enzyme	  topoisomerase	  II,	  which	  relaxes	  supercoils	  in	  DNA	  

for	   transcription	   [24].	   Apart	   from	   side-‐effects	   that	   are	   common	   to	   many	  

cancer	   chemotherapeutics,	   i.e.	   hematopoietic	   suppression,	   nausea	   and	  

vomiting	  and	  alopecia,	  the	  clinical	  usefulness	  of	  doxorubicin	  is	  limited	  largely	  

by	   a	   cumulative	   dose-‐related	   cardiomyopathy	   that	   manifests	   itself	   as	  

congestive	  heart	  failure	  [21].	  	  
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Fig.2	  Cartoon	  diagram	  of	  two	  doxorubicin	  molecules	  

intercalating	  the	  DNA	  duplex.	  

In	   the	   last	   decade,	   targeting	   of	   DNA	   secondary	   structures,	   such	   as	   G-‐

quadruplexes,	   has	   been	   considered	   an	   appealing	   opportunity	   for	   drug	  

intervention	   in	  anticancer	   therapy	   [25].	  Recent	   findings	  have	  unambiguously	  

demonstrated	  that	  DNA	  G-‐rich	  sequences	  can	  adopt	  a	  G-‐quadruplex	  folding	  in	  

living	  cells,	  thus	  further	  validating	  them	  as	  crucial	  targets	  for	  the	  treatment	  of	  

human	  disorders	  such	  as	  cancers	  [26].	  

G-‐quadruplex	   DNA	   (G4-‐DNA)	   structures	   are	   four-‐stranded	   helical	   DNA	   (or	  

RNA)	   structures,	   comprising	   stacks	   of	   G-‐tetrads,	   which	   are	   the	   outcome	   of	  

planar	   association	   of	   four	   guanines	   in	   a	   cyclic	  Hoogsteen	   hydrogen-‐bonding	  

arrangement.	  From	  the	  biological	  point	  of	  view,	  G4-‐DNAs	  are	  widespread	   in	  

the	  genome	  and	  it	  seems	  they	  play	  a	  role	   in	  a	  number	  of	  processes,	  such	  as	  

replication,	   recombination	   transcription	   and	   translation	   [27]	   and	   are	   also	  

found	  in	  telomeric	  regions	  [28].	  	  

Telomeric	  DNA	  consists	  of	  tandem	  repeats	  of	  simple	  short	  sequences,	  rich	  in	  

guanine	   residues,	   which	   can	   form	   G-‐quadruplexes.	   Telomeres	   protect	   the	  

ends	   of	   the	   chromosome	   from	   damage	   and	   recombination,	   and	   their	  

shortening	  is	  implicated	  in	  cellular	  senescence.	  
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The	  elongation	  of	   telomeric	  DNA	  operated	  by	   the	  enzyme	   telomerase	   leads	  

cancer	  cells	  to	  an	  infinite	  lifetime.	  

The	  inhibition	  of	  telomerase,	  which	  is	  over-‐expressed	  in	  about	  85%	  of	  tumors,	  

represents	  the	  forefront	  of	  research	  for	  new	  effective	  anticancer	  drugs. Since	  

this	  enzyme	  requires	  a	  single	  stranded	  telomeric	  primer,	  the	  formation	  of	  G-‐

quadruplex	  complexes	  by	  telomeric	  DNA	  inhibits	  the	  telomerase	  activity.  

Thus,	   cells	   stop	   replicating	   and	   enter	   a	   senescence	   phase	   which	   precedes	  

apoptosis.	  

In	   this	   respect,	   it	   has	   been	   found	   that	   small	   molecules	   that	   stabilize	   G-‐

quadruplex	   structures	   are	   effective	   telomerase	   inhibitors	   and	   can	   be	  

considered	  as	  novel	  drugs	  in	  anticancer	  therapy	  [29].	  

In	   order	   to	   discover	   G4	   binders	   displaying	   good	   drug-‐like	   profiles	   and	   the	  

ability	   to	   induce	   a	   DNA-‐damage	   response	   at	   telomeres	   of	   cancer	   cells,	   a	  

receptor-‐based	   virtual	   screening	   (VS)	   campaign	   approach	   was	   carried	   out,	  

using	  the	  human	  telomeric	  G-‐quadruplex	  (Tel24)	  as	  target.	  

As	   result	   of	   this	   inspection,	   Compound	   3	   (Fig.3)	   displayed	   impressive	   G4	  

binding	  and	  stabilizing	  properties.	  	  

	  

	  
	  

Fig.3	  Chemical	  Structures	  of	  the	  Compound	  3,	  newly	  identified	  Human	  Telomeric	  G4	  Binding	  Agents	  
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Furthermore,	   specific	   biological	   assays	   (Fig.4)	   showed	   that	   Compound	   3	   is	  

potent	  in	  inducing	  selective	  DNA-‐damage	  at	  telomeres	  of	  cancer	  cells	  and	  not	  

in	  normal	  ones	  [30].	  	  

	  

	  
	  

Fig.4	  Groove	  binding	  mode	  of	  the	  Compound3	  to	  Tel24.	  On	  the	  right	  an	  enlarged	  view	  of	  telomere-‐
dysfunction	  induced	  foci	  (TIFs)	  concluding	  that	  the	  tested	  compound	  caused	  telomere	  damage.	  

	  

	  

A	  challenge	  for	  the	  development	  of	  G-‐quadruplex	  interacting	  molecules	  is	  the	  

relatively	   poor	   selectivity	   for	   binding	   to	   quadruplex	   versus	   duplex	   DNA,	  

causing	   acute	   cell	   kill.	   The	   pentacyclic	   acridine,	   RHPS4	   (Fig.5)	   has	   a	   high	  

selectivity	  for	  quadruplex	  DNA	  structure	  [31].	  	  

RHPS4	   inhibits	   telomerase	   at	   sub-‐micromolar	   levels	   and	   exhibits	   a	   wide	  

differential	  between	  telomerase	  inhibition	  and	  acute	  cytotoxicity	  [32].	  	  
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Fig.5	  Chemical	  Structures	  of	  the	  pentacyclic	  acridine,	  RHPS4.	  

	  

In	   the	   last	   decade	   several	   studies	   have	   been	   conducted	   on	   the	   fluorinated	  

polycyclic	   methylacridinium	   salt,	   which	   describe	   the	   interaction	   and	  

stabilization	  of	  quadruplex	  DNA	  and	  show	  RHPS4	  enhanced	  binding	  to	  higher	  

ordered	  DNA	  structures	  (triplex/quadruplex)	  over	  duplex	  and	  single-‐stranded	  

DNA	  [33][34][35].	  

Therefore,	   in	   this	   study	   Adriamycin,	   as	   well	   known	   DNA	   duplex	   anticancer	  

drug,	   was	   tested	   on	   HTC-‐116	   human	   colon	   cancer	   cell	   lines	   and	   compared	  

with	  RHPS4	  and	  Compound	  3,	  as	  novel	  human	  telomeric	  G4	  selective	  binding	  

agents.	  	  
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These	   two	  anticancer	  drugs	   interacts	  both	  with	   the	   same	   target,	   but	  RHPS4	  

acts	  by	   telomeric	  DNA	  G-‐quadruplex	   end-‐stacking	   (Fig.6),	  while	  Compound	  3	  

by	  groove	  binding	  [30].	  

	  

	  
Fig.6	  Binding	  mode	  of	  RHPS4	  (A)	  and	  of	  Compound	  3	  (B).	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

A B 
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4.4	  Experimental	  design	  

	  

Two	  groups	  of	  samples	  were	  analyzed	  in	  this	  study	  (Fig.7):	  

 Control	   group	   –	   HTC-‐116	   human	   colon	   cancer	   lines	   not	   treated	   with	  

anticancer	  drugs	  (10	  samples).	  

 Treatment	   group	   –	   the	   same	   cell	   lines	   treated	   with	   three	   different	  

anticancer	   drugs	   (6	   Adriamycin	   samples,	   6	   Compound	   3	   and	   6	   RHPS4	  

samples).	  The	  most	  efficient	  dose	  and	  drug	  exposure	  duration	  time	  of	  cell	  

culture,	  showing	  therapeutic	  effect	  were	  chosen	  for	  each	  drug	  treatment.	  	  

Fig.7	  Overview	  of	  the	  experimental	  study.	  

	  

	  

	  

CTL1 CTL2 CTL3 

C3-1 C3-2 C3-3 

A1 A2 A3 
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Since	   it	   is	   important	   to	   ensure	   reproducibility	   when	   carrying	   out	  

metabolomics	   experiments	   to	   glean	   biologically	   meaningful	   information,	   all	  

experiments	  were	  carried	  out	  in	  triplicates	  to	  test	  the	  experimental	  variability.	  

Three	  batches	  of	  sample	  growth	  and	  treatment	  were	  collected	  to	  perform	  a	  

statistically	  significant	  analysis,	  including	  inter-‐batch	  control	  samples,	  in	  order	  

to	  monitor	  the	  variability	  among	  the	  batches	  (Fig.8).	  

For	   the	   endo-‐metabolome	   analysis,	   metabolites	   extraction	   from	   cells	   was	  

carried	   out.	   Thus,	   hydrophilic	   and	   lipophilic	   metabolites	   profiles	   were	  

analyzed	  for	  each	  sample	  (28	  samples	  for	  the	  hydrophilic	  extract,	  28	  samples	  

for	  the	  lipophilic	  extract)	  

For	  the	  exo-‐metabolome	  analysis,	  growth	  media	  samples,	  separated	  from	  the	  

cell	  culture	  by	  centrifugation,	  were	  analyzed	  (28	  samples	  in	  total)	  in	  order	  to	  

study	   the	   result	   of	   an	   interchange	   of	   metabolites	   between	   cells	   and	   the	  

culture	  medium	  (uptake	  of	  substrates,	  excretion	  of	  metabolic	  products).	  

	  

Fig.8	  Scheme	  of	  the	  experimental	  study	  with	  samples	  size	  details.	  For	  each	  sample	  hydrophilic	  extract	  
(H),	  lipophilic	  extract	  (L),	  cellular	  growth	  medium (M)	  were	  collected.	  Different	  batches	  of	  samples	  are	  

indicated	  with	  letters	  A	  (first	  batch),	  B	  (second	  batch);	  C	  (third	  batch).	  
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4.5	  Materials	  and	  methods	  

	  

Chemicals	  

Dulbecco’s	   Modified	   Eagle’s	   medium,	   high	   glucose	   (DMEM/HIGH	   Glucose)	  

with	   L-‐Glutamine	   were	   purchased	   from	   Euroclone	   (MI,	   Italy),	   penicillin	   and	  

streptomycin	  solution	  for	  cell	  culture	  were	  purchased	  from	  Gibco	  (NY,	  USA).	  

Fetal	  bovine	  serum	  (FBS)	  was	  purchased	  from	  Thermo	  Scientific	  (HycloneTM).	  	  

Crystal	  PBS	  BUFFER	   (0.01	  M	  Phosphate	  buffer,	  0.0027	  M	  KCl	  e	  0.14	  M	  NaCl,	  

pH	  7.4	  at	  25	  °C)	  was	  purchased	  from	  Bioline	  (TR,	  Italy).	  

All	  other	   reagents	  were	  of	  analytical	   grade.	  Deuterium	  oxide	   (D2O,	  99.8%D)	  

and	  deuterated	  Chloroform	  (CDCl3,	  99.8%D)	  was	  obtained	  from	  Sigma-‐Aldrich	  

(St.	  Louis,	  MO).	  

	  

Cell	  Culture	  	  

Human	   colon	   cancer	   cell	   lines	  HCT116	  were	  purchased	   from	  American	  Type	  

Culture	   Collection	   (ATCC	   –	   Manassas,	   VA,	   USA).	   Cells	   were	   grown	   as	  

monolayer	   cultures	   in	   High	   glucose	   (4.5	   g/l	   )	   Dulbecco’s	   Modified	   Eagle’s	  

Medium	  (DMEM)	  supplemented	  with	  10%	  FBS,	  L-‐Glutamine	  (2	  mM),	  penicillin	  

(1	  U/ml)	  and	  streptomycin	   (1	  mg/ml)	  at	  37°C	   in	  a	  humidified	  atmosphere	  of	  

5%	  CO2.	  

For	   exo-‐metabolome	   analysis,	   cells	   (30×106)	  were	   seeded	   in	   150	  mm	   tissue	  

culture	   dishes	   (Fig.9).	   About	   96h	   after	   seeding,	   the	   culture	  medium	   (15	  ml)	  

was	   recovered	   and	   centrifuged	   at	   300	   x	   g	   for	   10	   min.	   The	   resulting	  

supernatant	  was	  aliquoted,	  frozen	  in	  liquid	  nitrogen	  and	  stored	  at	  -‐80°C	  until	  

the	  analysis.	  

After	  medium	  removal,	  the	  cells	  were	  collected	  by	  scraping	  in	  10	  ml	  PBS	  and	  
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used	  for	  the	  endo-‐metabolome	  analysis.	  

All	   the	   experiments	  were	   carried	   out	   in	   triplicates	   to	   test	   the	   experimental	  

variability.	  

	  

Anticancer	  drug	  treatments	  

RHPS4	  and	  Compound	  3	  were	  added	  to	  cell	  cultures	  24	  h	  after	  seeding.	  Cells	  

were	  exposed	  to	  the	  drug	  treatment	  for	  72h	  with	  1µM	  final	  concentration.	  	  

Doxorubicin	  was	  added	  to	  cell	  cultures	  80h	  after	  seeding.	  The	  drug	  exposure	  

of	  cell	  cultures	  was	  16h,	  with	  0.1	  µM	  as	  final	  concentration.	  	  

	  

Liquid	  N2	  quenching	  	  

The	  falcon	  tube	  containing	  scraped	  cells	  (see	  above)	  was	  immersed	  into	  liquid	  

nitrogen	  upon	  complete	  freezing	  of	  the	  sample	  and	  then	  slowly	  thawed	  in	  an	  

ice	   bath.	   Afterwards	   the	   cells	   were	   washed	   twice	   in	   10	   ml	   of	   phosphate-‐

buffered	  saline	  (PBS,	  pH	  7.4),	  counted	  and	   the	  final	  volume	  was	  adjusted	  to	  

obtain	  30	  x	  106	  cells	  into	  5.4	  ml	  PBS.	  Finally,	  the	  quenched	  cells	  were	  lysed	  by	  
sonication	  to	  destroy	  the	  cell	  membrane	  and	  release	  intracellular	  metabolites.	  

	  

Metabolites	  extraction	  for	  NMR	  analysis	  

Intracellular	   metabolites	   were	   extracted	   using	   a	   dual	   phase	   extraction	  

procedure	  introduced	  by	  Bligh	  and	  Dyer	  in	  1959	  [36]	  with	  slight	  modifications.	  

Adding	  6	  ml	  of	  cold	  methanol	   (-‐20°C)	  and	  6	  ml	  of	  chloroform	  to	  the	  original	  

solution	   (5.4	   ml)	   containing	   quenched	   cells,	   briefly	   a	   mixture	   of	   water,	  

methanol	   and	   chloroform	   in	   the	   volume	   ratio	   of	   0.9:1:1	   was	   obtained,	  

corresponding	   to	   a	   total	   volume	   of	   17.4	   ml.	   Afterwards,	   this	   mixture	  

containing	   quenched	   cells	   was	   incubated	   for	   20	   min	   on	   ice	   and	   vortexed	  
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frequently	   to	   facilitate	   the	  extraction.	  After	   the	  metabolites	  extraction	   step,	  

cell	  extracts	  were	  centrifuged	  at	  14000	  rpm	  at	  4°C	  for	  20	  min.	  This	  extraction	  

procedure	  generated	  a	  two	  phase	  extract	  that	  can	  be	  described	  as	  follow:	  the	  

aqueous	  upper	  phase	  contains	  water	   soluble	   intracellular	  metabolites,	  while	  

apolar	  metabolites	  as	  lipid	  molecules	  are	  in	  the	  organic	  lower	  phase.	  Proteins	  

and	  macromolecules	   are	   trapped	   in	   the	   layer	   between	   the	   two	  phases.	   The	  

upper	  and	  lower	  phase	  were	  separated	  and	  carefully	  transferred	  into	  different	  

falcon	   tubes.	   Eventually,	   solvents	   were	   completely	   removed	   from	   both	  

fraction	   using	   a	   vacuum	   concentrator	   (aqueous	   phase)	   and	   under	   a	   gentle	  

flow	  of	  N2	  gas	  (organic	  phase).	  

Successively,	   in	   this	   study	   hydrophilic	   (methanol	   extracts)	   and	   lipophilic	  

(chloroform	   extracts)	   intracellular	   metabolites	   were	   analyzed	   by	   NMR	  

spectroscopy.	  	  

	  

	  
Fig.9	  Illustration	  of	  the	  experimental	  protocol	  tested	  for	  NMR	  metabolomic	  analysis	  of	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

HTC-‐116	  cancer	  cell	  lines	  
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4.6	   Experimental	   protocol	   optimization	   for	   NMR	   metabolomic	   analysis	   of	  

HTC-‐116	  cell	  lines	  

	  

HTC-‐116	   cells	  were	   grown	   in	   the	   absence	   or	   in	   the	   presence	   of	   treatments	  

following	  the	  previously	  described	  culture	  conditions	  (see	  above)	  and	  testing	  

a	  different	  amount	  of	  cells	  (15×106).	  

In	   order	   to	   improve	   the	   yield	   of	   the	   metabolites	   extraction	   a	   fundamental	  

variation	   was	   introduced	   on	   the	   previous	   experimental	   protocol:	   after	   the	  

culture	   medium	   removal,	   cells	   were	   washed	   with	   15	   ml	   PBS	   before	   cell	  

scraping	  and	  quenching	  steps	  in	  order	  to	  avoid	  the	  loss	  of	  metabolites	  for	  cell	  

leakage	  (Fig.10).	  

In	   addition,	   since	   this	   kind	   of	   cells	   grows	   as	   monolayer	   culture,	   four	   cell	  

washing	   steps	   with	   PBS	   were	   needed	   to	   ensure	   the	   complete	   removal	   of	  

residual	  culture	  medium.	  	  

Then,	  the	  last	  cell	  washing	  PBS	  was	  removed	  by	  aspiration,	  5.4	  ml	  of	  clean	  PBS	  

were	   added	   to	   the	   culture	   dish	   and	   cells	  were	  mechanically	   scraped,	   finally	  

ready	  for	  harvesting	  and	  quenching	  steps.	  
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Fig.10	  Illustration	  of	  the	  optimized	  experimental	  protocol	  tested	  for	  NMR	  metabolomic	  analysis	  of	  	  	  	  	  	  
HTC-‐116	  cancer	  cell	  lines.	  

	  

Cell	  metabolome	  quenching	  

Two	   different	   quenching	   procedures	  were	   tested	   on	   the	   scraped	   cells:	   cold	  

aqueous	  methanol	  (-‐20°C)	  and	  liquid	  N2.

 Cold	  methanol	  quenching	  

Cells	  were	  quenched	  using	  6	  ml	  of	   cold	  methanol	   (-‐20°C)	   and	  5.4	  ml	  of	   ice-‐
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the	  culture	  dish	  using	  a	  cell	  lifter.	  	  

 Liquid	  N2	  quenching	  

The	   falcon	   tube	   containing	   scraped	   cells	   was	   immersed	   into	   liquid	   nitrogen	  

and	  then	  slowly	  thawing	  the	  sample	   in	  an	   ice	  bath.	  The	  detached	  cells	  were	  

suspended	   in	   10	  ml	   of	   PBS	   in	   a	   falcon	   tube	   and	   then	   counted.	   Finally,	   the	  
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release	  intracellular	  metabolites.	  

	  

Metabolites	  extraction	  for	  NMR	  analysis	  

The	  solutions	  of	  quenched	  cells	  obtained	  from	  the	  two	  quenching	  procedures	  

were	   separately	   suspended	   in	   6	   ml	   of	   chloroform	   (for	   methanol	   quenched	  

cells)	  or	  6	  ml	  of	  methanol	  +	  6	  ml	  of	  chloroform	  (for	  liquid	  N2	  quenched	  cells).	  	  

For	  both	  solutions,	  the	  metabolites	  extraction	  was	  performed	  using	  the	  same	  

protocol	  as	  previously	  described.	  	  Samples	  were	  stored	  at	  -‐80°C	  until	  the	  NMR	  

analysis.	  	  
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4.7	  NMR	  sample	  preparation	  

	  

Prior	   to	   endo-‐metabolome	   NMR	   analysis,	   each	   aqueous	   cell	   extract	   was	  

thawed	  and	  then	  reconstituted	  in	  540	  μl	  of	  D20	  together	  with	  60	  μl	  of	  a	  D20	  

solution	   containing	   the	   sodium	   salt	   of	   (trimethylsilyl)	   propanoic-‐2,2,3,3-‐d4	  

acid	  (TSP)	   ,	  as	  an	  internal	  chemical	  shift	  reference	  (δ	  1H	  0.00),	  to	  give	  a	  final	  

concentration	  of	  0.6	  mM	  in	  the	  NMR	  tube.	  Samples	  were	  vortexed	  briefly	  and	  

transferred	  into	  a	  5-‐mm	  NMR	  tube.	  

The	   organic	   extracts	   were	   re-‐suspended	   in	   700	   μl	   of	   deuterated	   CDCl3	  

containing	  0.03%	  v/v	  tetramethylsilane	  (TMS)	  as	  chemical	  shift	  reference	  for	  

organic	  solvent,	  then	  vortexed	  and	  transferred	  into	  a	  5-‐mm	  NMR	  tube.	  

Before	  the	  exo-‐metabolome	  NMR	  analysis,	  630	  μl	  of	  the	  cell	  medium	  removed	  

from	  the	  culture	  dish	  was	  added	  70	  μl	  of	  a	  D20	   solution	  containing	  TSP	  and	  

transferred	  into	  a	  5-‐mm	  NMR	  tube.	  Culture	  media	  samples	  were	  only	  briefly	  

vortexed	   in	   order	   to	   minimize	   the	   bubbles	   formation	   attributable	   to	   high-‐

abundance	  of	  serum	  proteins.	  

	  

	  

4.8	  1H	  NMR	  Data	  acquisition	  

	  

All	   NMR	   spectra	   were	   acquired	   at	   300K	   on	   a	   Bruker	   Avance	   III	   600	   MHz	  

ultrashielded	   spectrometer	   (Bruker	   Biospin	   Gmbh,	   Rheinstetten,	   Germany)	  

operating	   at	   600,13	  MHz	   for	   protons	   (14.09	   Tesla)	   equipped	  with	   a	   double	  

tuned	  cryo-‐probe	  (TCI)	  set	  for	  5	  mm	  sample	  tubes.	  	  
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1H	  NMR	  spectra	  of	  hydrophilic	  and	  lipophilic	  cell	  extracts	  were	  acquired	  using	  

a	   1D	   NOESY-‐presat	   pulse	   sequence	   (RD-‐90°-‐t-‐90°-‐tm-‐90°-‐ACQ).	   A	   pre-‐

saturation	  of	  the	  water	  resonance	  during	  the	  recycle	  delay	  is	  followed	  by	  a	  90	  

degree	   pulse	  with	   an	   acquisition	   time	   of	   2.726	   s,	   a	   relaxation	   delay	   of	   4	   s,	  

mixing	  time	  of	  10	  ms,	  receiver	  gain	  of	  181,	  128	  scans,	  128	  K	  data	  points	  and	  a	  

spectral	  width	  of	  18029	  Hz	  (30.041	  ppm)	  
1H	  NMR	  spectra	  of	  cell	  culture	  media	  were	  acquired	  using	  a	  1D	  Carr-‐Purcell-‐

Meiboom-‐Gill	   (CPMG)	   pulse	   sequence	   (RD-‐90°-‐{τ-‐180°-‐τ}n-‐ACQ)	   with	  

presaturation	   for	   suppression	  of	  high	  molecular	  weight	  molecules	  signals	  on	  

the	   basis	   of	   T2	   editing	   (300	   μs	   delay	   and	   repeated	   14	   times).	   128	   free	  

induction	  decays	  (FIDs)	  were	  collected	  into	  128	  K	  data	  points,	  using	  a	  spectral	  

width	   of	   12019	   Hz	   (20.028	   ppm),	   acquisition	   time	   of	   3.067	   s,	   with	   a	   4	   s	  

relaxation	  delay	   between	  pulses,	  mixing	   time	  of	   10	  ms	   and	   receiver	   gain	   of	  

40.3.	   All	   samples	   were	   individually	   tuned,	   matched	   and	   shimmed.	   Prior	   to	  

Fourier	  transformation,	  each	  free	  induction	  decay	  (FID)	  was	  zero-‐filled	  to	  128	  

K	  points	  and	  multiplied	  by	  an	  exponential	  function	  equivalent	  to	  a	  1.0	  Hz	  line-‐

broadening.	   The	   resulting	   spectra	   were	   phase-‐	   and	   baseline-‐corrected	  

automatically	   using	   TOPSPINTM	   (Bruker	   Biospin)	   and	   the	   ppm	   scale	   was	  

referenced	  towards	  the	  TSP	  peak	  at	  0.00	  ppm	  for	  aqueous	  solvents,	  the	  TMS	  

peak	  at	  0.00	  ppm	  for	  organic	  solvent.	  	  
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4.9	  NMR	  Data	  Analysis	  and	  selection	  of	  experimental	  protocol	  

	  

Despite	  mammalian	  cell	  metabolomics	  has	  being	  an	  increasing	  research	  field,	  

the	   number	   of	   studies	   concerning	   quenching	   and	   extraction	   methods	   for	  

adherent	   mammalian	   cells	   reported	   in	   the	   literature	   is	   still	   low.	   Different	  

experimental	   protocols	   described	   in	   other	   papers	   were	   evaluated	   and	  

adapted	  for	  HTC-‐116	  cell	  lines	  NMR	  metabolomics	  study.	  

Initially	   we	   tested	   the	   metabolite	   extraction	   efficacy	   starting	   from	   30×106	  

cells,	  washed	  with	  PBS	  after	  the	  scraping	  and	  quenching	  steps	  (as	  previously	  

described	  in	  paragraph	  3.5).	  Inspecting	  the	  1D-‐NOESY	  spectrum	  (Fig.11)	  of	  the	  

hydrophilic	   cell	   extract,	   it	   showed	  a	  quite	   low	  number	  of	  metabolite	   signals	  

and	  the	  extraction	  yield	  resulted not	  sufficiently	  high.	  This NMR	  spectrum	  was	  

acquired	  with	  1024	  scans	  number	  and	  took	  about	  1	  hour	  acquisition	  time.	  	  

	  

	  
Fig.11	  1D-‐NOESY	  spectrum	  of	  hydrophilic	  cell	  extract	  (control	  sample	  30×106	  cells,	  ns=1024,aq.	  t=	  1h)	  	  

	  

In	  order	  to	  improve	  the	  yield	  of	  metabolite	  extraction,	  we	  slightly	  changed	  the	  

experimental	   protocol	   anticipating	   PBS	   cell	   washing	   before	   scraping	   and	  
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quenching,	  as	  described	  in	  section	  3.6.	  Starting	  from	  a	  lower	  number	  of	  cells	  

(15×106),	  washed	  with	  PBS	  before	  the	  cell	  scraping	  and	  quenching	  steps	  and	  

acquiring	  the	  1D-‐NOESY	  spectrum	  (Fig.12)	  with	  only	  128	  number	  of	  scans,	  we	  

noticed	  a	  considerable	  increase	  of	  the	  extraction	  yield.	  This	  was	  the	  proof	  that	  

the	  PBS	   cell	  washing	  after	   the	  quenching	   step	  was	   the	  main	   responsible	   for	  

the	  metabolites	  loss.	  	  

	  
Fig.12 1D-‐NOESY	  spectrum	  of	  hydrophilic	  cell	  extract	  (control	  sample,15×106 cells,ns=128,aq.	  t=15	  min)	  

	  

Moreover,	  using	  the	  same	  experimental	  conditions,	  we	  also	  tested	  the	  cold-‐

methanol	  quenching	  method	  and	  compared	  it	  with	  the	  liquid	  nitrogen	  one.	  

Accordingly	  to	  the	  literature	  describing	  experimental	  protocols	  in	  the	  case	  of	  

adherent	   cells,	   the	   liquid	   nitrogen	   freezing	   represented	   the	   optimal	   way	   to	  

stop	   HTC-‐116	   cells	   enzymatic	   activity	   with	   respect	   to	   using	   methanol	   that	  

instead	  induced	  a	  strong	  leakage	  of	   intracellular	  metabolites.	  As	  a	  result,	  we	  

noticed	   that	   some	   leakage	   was	   anyhow	   unavoidable	   and	   that	   the	   selected	  

experimental	   protocol	   involving	   the	   liquid	  N2	  quenching	   represented	   a	   good	  

tradeoff	  among	  metabolome	  alteration,	  metabolites	  leakage	  and	  all	  analytical	  

measurement	  difficulties	  in	  our	  study.	  	  

[ppm]  8   6   4   2  [ppm]  8   6   4   2  
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4.10	  Pre-‐Processing	  of	  the	  NMR	  spectra	  and	  Multivariate	  Data	  Analysis	  

	  

Before	   conducting	   multivariate	   data	   analysis,	   the	   NMR	   spectra	   had	   to	   be	  

cleaned	  and	  corrected	  from	  problems	  that	  usually	  affect	  this	  type	  of	  data.	  The	  

NMR	  regions	  between	  12.72	  and	  9.43	  ppm,	  between	  4.75	  and	  4.615	  ppm	  and	  

from	  0.8	  to	  -‐10.32	  ppm	  were	  removed	  because	  they	  only	  contain	  noise	  or	  the	  

residual	  deuterated	  water	  signal	  as	  well	  as	  the	  reference	  signal	  at	  0.00.	  

A	  preliminary	  explorative	  (unsupervised)	  data	  analysis	  was	  performed	  on	  the	  

full	  features	  hydrophilic	  NMR	  data	  set,	  using	  only	  the	  samples	  from	  the	  same	  

batch	   The	   result	   is	   shown	   in	   Fig.13,	   where	   a	   PCA	   scores	   plot	   of	   batch	   B	   is	  

illustrated.	  

	  

	  
	  

Fig.13	  PCA	  model	  performed	  on	  the	  full	  features	  hydrophilic	  data.	  	  
Samples	  of	  batches	  B	  are	  plotted.	  

	  

Latentix	   2.12	   (www.latentix.com,	   Copenhagen,	   Denmark)	   was	   used	   to	  

calculate	  the	  Principal	  Component	  Analysis	  (PCA)	  model.	  	  
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In	  Figure	  13	  a	  clear	  separation	  among	  the	  control	  and	  the	  treatments	  groups	  

is	   showed.	   Thereby,	   each	   treatment	   affects	   the	   HTC-‐116	   cancer	   cells	  

metabolism	  differently.	  	  

Moreover,	  the	  PCA	  model	  highlighted	  a	  considerable	  intra-‐batch	  experimental	  

reproducibility,	   allowing	   us	   to	   make	   comparisons	   between	   samples	   groups	  

and	  to	  understand	  the	  peculiarities	  of	  the	  treatments	  with	  respect	  to	  control	  

samples.	  

In	  order	  to	  help	  pointing	  out	  how	  the	  different	  anticancer	  drugs	  act	  in	  vitro	  on	  

the	   cellular	  metabolism,	   an	  overlay	  of	   the	   sample	   spectral	   average	   for	   each	  

treatment	  from	  the	  batch	  B	  is	  shown	  in	  Figure	  14	  for	  a	  restricted	  region	  using	  

different	  colors.	  

	  

	  
Fig.14	  NMR	  spectra	  overlay	  of	  one	  sample	  for	  each	  drug	  treatment	  from	  the	  batch	  B.	  Zoom	  in	  the	  

spectral	  region	  from	  2.9	  to	  3.3	  ppm.	  
	  

Looking	  at	  the	  NMR	  spectrum	  of	  the	  sample	  treated	  with	  RHPS4,	  it	  is	  evident	  

that	   globally,	   all	   spectral	   regions	   are	   interested	   with	   a	   substantial	   overall	  

decrease	   in	   signal	   intensities.	   This	   presumably	   means	   that	   RHPS4	   is	  
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responsible	   of	   a	   strong	   cellular	   metabolism	   inhibition	   with	   respect	   to	   the	  

other	  two	  drugs.	  Indeed,	  in	  the	  PCA	  model	  (Fig.13)	  RHPS4	  treated	  group	  was	  

separated	  from	  all	  the	  other	  groups	  by	  means	  of	  PC1,	  as	  proof	  of	  the	  RHPS4	  

diversity.	  Differently	  from	  Adriamycin	  and	  Compound	  3,	  and	  in	  contrast	  with	  

the	  overall	  tendency	  of	  lower	  metabolite	  production,	  a	  considerable	  increase	  

in	  lactate	  formation	  was	  also	  showed	  for	  RHPS4	  treatment.	  

Moreover,	   NMR	   signals	   such	   as	   those	   at	   2.385,	   3.04	   and	   8.35	   ppm	   –

unfortunately	  not	  yet	  assigned	  –	  are	  characteristic	  only	  for	  RHPS4,	  allowing	  us	  

to	  understand	   that	   the	   treatment	  with	  RHPS4	  determines	   the	  production	  of	  

peculiar	  metabolites.	  	  

In	   order	   to	   check	   the	   inter-‐batch	   reproducibility,	   a	   Principal	   Component	  

Analysis	   (PCA)	  was	  performed	  on	   the	   full	   features	  NMR	  data	  of	   the	  samples	  

from	  the	  first	   (only	  control	  samples)	  and	  second	  batch	  (respectively	  A	  and	  B	  

batch)	  (Fig.15).	  

	  
Fig.15	  PCA	  model	  performed	  on	  the	  full	  features	  hydrophilic	  data.	  	  

Samples	  of	  batches	  A	  and	  B	  are	  plotted.	  
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The	  PCS	   scores	  plot	  of	   the	   resulting	  model	   showed	  an	   important	   separation	  

between	  intra-‐batches	  control	  samples.	  This	  undesirable	  result	  might	  be	  due	  

to	   different	   cellular	   generations	   of	   the	   same	   cell	   type	   which	   are	   used	   for	  

preparing	  the	  samples	  of	  the	  two	  batches.	  Even	  though	  the	  cells	  used	  for	  the	  

second	  batch	  are	  propagated	  from	  those	  used	  for	  the	  first	  one,	  their	  genotype	  

and	   therefore	   their	   metabolome	   profile	   may	   be	   affected	   by	   generational	  

changes.	  

From	  a	  data	  mining	  point	  of	  view,	  in	  order	  to	  overcome	  this	  problem	  and	  to	  

minimize	  the	  difference	  between	  the	  different	  batches,	  a	  solution	  could	  be	  to	  

use	   variable	   selection	   or	   data	   orthogonalization	   with	   respect	   to	   batch	  

variation,	   but	   these	   approaches	   are	   tricky	   and	   may	   result	   in	   loss	   of	  

information	  with	  respect	  to	  the	  original	  data.	  

Data	   normalization	  methods	  were	   also	   tested	   in	   this	   respect	   but	   they	  were	  

not	  able	  to	  reduce	  the	  intra-‐batch	  variability.	  

Furthermore,	  since	  NMR	  spectra	  showed	  misalignments	  in	  chemical	  shift	  due	  

to	  pH-‐sensitive	  peaks,	  the	  spectra	  were	  initially	  divided	  in	  equally	  sized	  (0.02	  

ppm)	  bins	  trying	  to	  minimize	  the	  inter-‐individual	  differences	  in	  peak	  positions.	  	  

Principal	   Component	   Analysis	   (PCA)	   was	   performed	   on	   the	   binned	   data	  

(Fig.16)	  for	  the	  hydrophilic	  extract	  samples	  again	  belonging	  to	  the	  first	  (A)	  and	  

second	  batch	  (B).	  
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Fig.16	  PCA	  model	  performed	  on	  the	  hydrophilic	  bin	  data	  (0.02	  ppm).	  	  

Samples	  of	  batches	  A	  and	  B	  are	  plotted.	  

	  

Comparing	  the	  PCA	  scores	  plot	  of	  this	  model	  with	  that	  of	  the	  previous	  one	  in	  

Fig.15,	   the	   NMR	   spectra	   binning	   made	   the	   two	   control	   groups	   very	  

comparable.	  	  

Thus,	   the	   spectral	   binning	   improved	   the	   grouping	   of	   the	   control	   samples	   of	  

the	  two	  batches,	  indicating	  that	  a	  signal	  alignment	  is	  beneficial	  for	  improving	  

the	  significance	  of	  the	  data.	   It	  must	  be	  highlighted	  that	  the	  binning	  method,	  

although	  still	  widely	  used,	  always	  results	  in	  the	  loss	  of	  a	  considerable	  amount	  

of	   information	   originally	   contained	   in	   the	   original	   spectra	   and	   should	   be	  

avoided	  when	  other	  solutions	   that	  do	  not	   require	  drastic	  data	  reduction	  are	  

available.	  	  

Therefore,	   in	   order	   to	   overcome	   the	   peak	   shift	   problem,	   the	   full	   resolution	  

data	   matrix	   was	   corrected	   for	   errors	   in	   chemical	   shift	   misalignments	  

concerning	   pH-‐dependent	   signals	   using	   the	   interval	   correlation	   optimized	  

shifting	  algorithm	  (icoshift).	  	  
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In	  the	  Fig.	  17	  an	  example	  of	  icoshift	  algorithm	  application	  is	  showed,	  zooming	  

in	   the	   lactate	  quartet	  spectral	   region.	   	   Instead	  of	  bucketing	  method,	   icoshift	  

does	   not	   involve	   a	   data	   reduction	   and	   the	   spectral	   resolution	   is	  maintained	  

[37].	  

	  

	  
Fig.17	  A	  comparison	  between	  raw	  (first	  plot)	  and	  icoshift	  aligned	  Lactate	  quartet	  (second	  plot)	  

	  

Hence,	   all	   PCA	   models	   were	   performed	   on	   the	   aligned	   pareto-‐scaled	   data	  

matrix.	  The	  pareto-‐scaling	  technique	  reduces	  the	  relative	  importance	  of	  large	  

values	   (high	   intensities	   as	   for	   lactate)	   but	   keeps	   the	   data	   structure	   partially	  

intact,	  assigning	   importance	  to	  the	  less	   intense	  signals,	  as	  for	  example	  those	  

of	  the	  spectral	  aromatic	  region	  [38].	  
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Fig.18	  PCA	  model	  performed	  on	  the	  hydrophilic	  aligned	  data	  matrix.	  	  
Samples	  of	  batches	  A	  -‐	  B	  and	  C	  are	  plotted.	  

	  

	  

Fig.	  18	  shows	  the	  scores	  plot	  of	  the	  PCA	  model	  performed	  on	  the	  aligned	  data	  

matrix	   including	   samples	   from	   all	   batches;	   therefore	   also	   batch	   c	   that	   has	  

both	  control	  samples	  and	  treated	  ones.	  It	  results	  clear	  that,	  even	  with	  a	  higher	  

number	   of	   samples	   treated	   the	   same	   way,	   PC1	  mainly	   describes	   the	   batch	  

differences	  and	  the	  treated	  samples	  are	  well	  grouped	  only	  batch	  wise.	  Thus,	  

the	   spectral	   data	   alignment	   was	   not	   sufficient	   to	   minimize	   the	   intra-‐batch	  

differences,	   but	   it	   reduced	   the	   shift	   effect	   that	   was	   disturbing	   sample	  

grouping.	  Once	  again	   the	  effect	  of	  RHPS4	  on	   the	  metabolome,	  described	  by	  

PC1,	  is	  dominant	  and	  it	  even	  overcomes	  the	  batch	  effect.	  
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Fig.19	  PCA	  model	  performed	  on	  the	  hydrophilic	  aligned	  data	  matrix.	  	  

Samples	  of	  batches	  A	  -‐	  B	  and	  C	  without	  RHPS4	  are	  plotted.	  

	  

Recalculating	   the	  model	  without	  RHPS4	  treated	  samples	  and	  plotting	   the	  PC	  

score1	   against	   PC	   score3	   and	   4,	   the	   samples	   resulted	   separated	   to	   a	   good	  

extent	  on	  the	  basis	  of	  the	  anticancer	  drug	  treatment	  and	  not	  anymore	  of	  the	  

different	  batches	  (Fig.	  19).	  	  

It	  must	  be	  pointed	  out	  that	  PCA	  analysis	  has	  a	  solely	  explorative	  purpose	  and	  

it	   is	  not	  supervised	  as	  for	  classification	  tools	   like	  PLS-‐DA	  or	  ECVA.	  Therefore,	  

the	   non-‐perfect	   clusterizations	   obtained	   are	   anyhow	   indicative	   of	   a	  

statistically	  robust	  difference	  among	  the	  different	  drug	  treatments.	  Hence,	   it	  

can	  be	  stated	   that	  cell	  NMR	  metabolomics	  can	  be	   reliably	  used	   for	   studying	  

the	   way	   the	   different	   anticancer	   drugs	   affect	   the	   cell	   metabolism,	   directly	  

fulfilling	  the	  main	  hypothesis	  of	  the	  investigation.	  However,	  still	  a	  lot	  of	  work	  

is	  required	  for	  interpreting	  the	  obtained	  results	  form	  a	  biological	  point	  of	  view	  

and	  part	  of	  it	  has	  been	  initiated	  and	  described	  in	  the	  following	  chapter	  4.11.	  
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A	   preliminary	   explorative	   analysis	   approach	   was	   also	   carried	   out	   on	   the	  

lipophilic	  extract	  and	  growth	  media	  samples	  data	  matrices.	  Both	  PCA	  models	  

performed	   on	   the	   samples	   belonging	   to	   the	   same	   batches	   showed	   a	  

significant	   difference	   among	   drug	   treatments	   (Fig.	   20-‐21),	   but	   further	  

investigations	   will	   aim	   to	   assess	   also	   the	   intra-‐batch	   variability	   for	   the	  

lipophilic	  metabolome	  and	  the	  exo-‐metabolome.	  

	  
Fig.20	  PCA	  model	  performed	  on	  the	  lipophilic	  non-‐aligned	  data	  matrix.	  	  

Samples	  of	  batches	  B	  are	  plotted.	  

	  
Fig.21	  PCA	  model	  performed	  on	  the	  media	  non-‐aligned	  data	  matrix.	  	  

Samples	  of	  batches	  B	  are	  plotted.	  
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It	   is	   interesting	   to	   note	   that	   the	   effect	   of	   RHPS4,	   described	   by	   PC1,	   is	   also	  

dominant	   on	   the	   lipophilic	   metabolome	   and	   on	   the	   exo-‐metabolome.	   In	  

particular,	   in	   order	   to	   understand	   which	   metabolites	   are	   interested	   by	  

anticancer	   drug	   actions,	   we	   had	   a	   look	   at	   the	   NMR	   spectra	   overlay	   of	  

lipophilic	   cellular	  extract	   (control	   and	   treated	  group)	   (Fig.22).	   It	   is	   clear	   that	  

only	   the	   spectral	   region	   comprised	   from	   1.3	   ppm	   and	   1.8	   ppm	   (where	  

lipoproteins	  use	   to	   resonate)	   is	   reasonably	   affected	  by	  drug	   treatment.	   This	  

observation	   will	   be	   used	   to	   better	   describe	   the	   effect	   of	   each	   drug	   from	   a	  

biological	  point	  of	  view.	  However,	  the	  exo-‐metabolome	  and	  the	  lipophilic	  cell	  

extract	  profile	  still	  need	  to	  be	  further	  investigated.	  

	  

	  

	  
Fig.22	  NMR	  spectra	  overlay	  of	  lipophilic	  cellular	  extract	  profile.	  
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4.11	  Metabolites	  identification	  	  

	  

NMR	   hydrophilic	   metabolites	   identification	   in	   this	   project	   was	   achieved	   by	  

comparison	   with	   the	   chemical	   shifts	   of	   the	   metabolites	   in	   the	   Human	  

Metabolome	   Database	   (HMDB)	   (http://www.hmdb.ca)	   [39]	   and	   in	   the	  

literature	  data	  [40]	  [41]	  [42].	  

Moreover,	   Statistical	   Total	   Correlation	   Spectroscopy	   (STOCSY)	   analysis	   was	  

performed	  on	  the	  NMR	  (1D-‐	  NOESY)	  bined	  (0.02	  ppm)	  data	  set	  of	  all	  samples	  

belonging	   to	   the	  hydrophilic	  extracts	   (Fig.	  23),	   for	  obtaining	   the	  correlations	  

among	   the	  metabolite	   signals,	   using	   a	   treshold	   value	   r	   >	   0.9	   for	   correlation	  

coefficient.	  

	  
Fig.23	  STOCSY	  correlation	  matrix	  plot.	  1D-‐NOESY	  bin	  data	  (0.02ppm),	  hydrophilic	  extract	  samples	  were	  

used	  to	  perform	  this	  analysis.	  
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The	  resulting	  plot	  can	  be	  interpreted	  as	  a	  bidimensional	  NMR	  TOCSY	  spectrum	  

where	  peaks	  on	  the	  diagonal	  are	  characterized	  by	  an	  autocorrelation	  value	  of	  

1.	  Highly	  correlated	  peak	  intensities	  represent	  protons	  belonging	  to	  the	  same	  

molecule,	   whereas	   lower	   (or	   negative)	   correlations	   could	   lead	   to	   proton	  

signals	   from	   different	   compounds	   but	   involved	   in	   the	   same	   metabolic	  

pathway.	  	  

	  
Fig.24	  STOCSY	  zoom	  in	  the	  region	  showing	  the	  correlation	  crosspeak	  among	  lactate	  protons	  at	  δH	  1.32	  

ppm	  and	  δH	  4.115	  

	  

For	  instance,	  a	  high	  correlation	  was	  observed	  among	  resonances	  δH	  1.32	  ppm	  

and	  δH	  4.115	   (Fig.24),	  which	  corresponds	   to	   the	   lactate	  doublet	  and	  quartet	  

respectively.	  
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Hence,	  in	  Table	  1	  are	  presented	  the	  chemical	  shift	  and	  the	  signals	  multiplicity	  

determined	  for	  each	  metabolite	  that	  have	  been	  unambiguously	  assigned.	  	  

	  

	  
Tab.1	  Chemical	  shift	  and	  signals	  multiplicity	  for	  HTC-‐116	  cancer	  cell	  lines	  metabolites.	  Chemical	  shifts	  
are	  reported	  with	  reference	  to	  TSP	  singlet	  resonance	  at	  0.000	  ppm,	  and	  multiplicity	  definitions	  are:	  s,	  

singlet;	  d,	  doublet;	  dd,	  doublet	  of	  doublets;	  t,	  triplet;	  q,	  quartet;	  m,	  other	  multiplet.	  
	  

	  

	  

	  

	  

Compound( Multiplicity( Shift((ppm)(in(D2O(
Acetate& s& 1.92&

Alanine&
d&
q&

1.49&
3.80&

D6Glucose&
d&
dd&

5.24&(α6anomer)&
3.863.3&(overlap)&

Glycine& s& 3.575&

Glutamate&

m&
t&
m&
m&

2.03&
3.78&
2.35&
2.30&

Glutamine&

m&
t&
m&
m&

2.08&
3.8&(overlap)&

2.54&
2.57&

Isoleucine&
d&
t&

1.01&
0.96&

Lactate&
d&
q&

1.32&
4.115&

Leucine&
d&
d&

0.95&
0.93&

Phenylalanine&

d&
m&
m&
dd&
dd&
dd&

7.34&
7.39&
7.44&
3.95&
3.048&
3.235&

Pyruvate& s& 2.383&

Threonine&
d&
m&
d&

1.33&
4.27&
3.62&

Valine&
d&
d&

1.05&
0.995&

&
&

& & & & & & & & & &
& & & & & & . . & & &
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4.12	  Conclusions	  and	  future	  perspectives	  	  

	  

Despite	   mammalian	   cell	   metabolomics	   is	   an	   increasing	   research	   field,	   the	  

number	  of	  studies	  reported	  in	  the	  literature	  for	  adherent	  mammalian	  cells	  is	  

still	   quite	   low.	  For	  a	  holistic	  understanding	  of	   cancer	   cells	  metabolome,	   it	   is	  

crucial	  the	  choice	  of	  the	  right	  protocol	  for	  efficient	  harvesting,	  quenching	  and	  

extraction	   of	   cellular	  metabolites.	   In	   this	   study	  we	   identified	   and	   optimized	  

the	  experimental	  protocol	  for	  HTC-‐	  116	  human	  colon	  cancer	  cell	  lines	  for	  NMR	  

metabolomics	  study.	  	  

From	  a	  general	  point	  of	  view,	  this	  project	  has	  relevant	  importance	  since	  colon	  

carcinoma	  is	  the	  third	  most	  commonly	  diagnosed	  cancer	  in	  the	  world	  and	  the	  

second	  most	  common	  cause	  of	  death	  from	  cancer.	  

The	  NMR	  analysis	  of	  metabolic	  profiles	  of	  human	  colon	  cancer	  cell	  lines	  aimed	  

to	  provide	  important	  information	  on	  in	  vitro	  actions	  of	  drugs,	  pointing	  at	  their	  

rapid	   incorporation	   into	   novel	   therapeutic	   settings.	   In	   particular,	   the	   PCA	  

models	   calculated	   on	   the	   samples	   belonging	   to	   the	   same	   batch	   showed	  

excellent	  results	  about	  the	  differentiation	  among	  the	  drug	  treatments	  and	  the	  

intra-‐batch	  reproducibility.	  

Considering	  the	  exploratory	  characteristic	  of	  PCA	  analysis,	  which	  represents	  a	  

non	   supervised	   approach	   to	   sample	   clustering,	   even	   the	   non-‐perfect	  

groupings	  obtained	  are	  undoubtly	  indicative	  of	  a	  statistically	  robust	  difference	  

among	   the	   different	   drug	   treatments.	   Thus,	   it	   can	   be	   safely	   stated	   that	   cell	  

NMR	   metabolomics	   represents	   a	   powerful	   tool	   for	   investigating	   how	   the	  

different	  anticancer	  drugs	  affect	   the	  cell	  metabolism.	  This	   result	   fulfilled	  the	  

main	  hypothesis	  of	  this	  investigation,	  but	  it	  only	  represents	  the	  starting	  point	  

towards	  the	  understanding	  of	  cancer	  cell	  metabolism	  when	  anticancer	  drugs	  
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are	  utilized.	  

In	  order	  to	  increase	  the	  statistical	  power	  of	  the	  study,	  we	  had	  to	  increase	  the	  

number	  of	  investigated	  samples	  and,	  in	  order	  to	  do	  so,	  we	  collected	  samples	  

from	  three	  cell	  production/treatment	  batches.	  The	  PCA	  models	  performed	  on	  

the	  resulting	  data	  highlighted	  a	  substantial	  inter-‐batch	  variability.	  We	  tried	  to	  

minimize	   this	   variation	   applying	   pre-‐processing	   methods,	   unfortunately	  

without	  noticeable	  results.	  

Chemometric	  methods,	  such	  as	  any	  kind	  of	  variable	  selection	  tools	  and	  data	  

orthogonalization	   could	   be	  used	   to	  minimize	   the	  batch	   effect,	   but	   a	   further	  

study	  should	  be	  aimed	  at	  understanding	  the	  variability	  source	  and	  correct	  for	  

it	   in	   order	   to	   guarantee	   that	   the	   selected	   protocol	   provides	   comparable	  

results,	  avoiding	  the	  alteration	  of	  the	  original	  data.	  

In	  the	  next	  future	  we	  will	  try	  to	  go	  through	  the	  actions	  of	  the	  different	  drugs	  

on	   the	   cellular	   metabolome	   (endo-‐	   and	   exo-‐metabolome),	   unequivocally	  

assigning	   the	   metabolite	   NMR	   signals	   responsible	   for	   the	   differentiation	  

among	   the	   treatments	   through	   advanced	   multivariate	   data	   analysis	   for	  

biomarker	  profiling.	  

Eventually,	   we	   will	   map	   the	   profile	   of	   the	   identified	   metabolites	   into	  

metabolic	   pathways	   to	   gain	   a	   biological	   overview	   of	   the	   mechanisms	  

regulating	  drug-‐driven	  cell	  apoptosis	  and	  the	  selectivity	  with	  respect	  to	  cancer	  

cells.	  

	  

The	   interesting	   and	   exciting	   stimuli	   that	   I	   received	   during	   my	   PhD	   visiting	  

period	   at	   the	   University	   of	   Copenhagen,	   animate	   my	   motivations	   for	   my	  

future	  research	  efforts.	  
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ABSTRACT: The perception of odor and flavor of food is a complicated physiological and psychological process that cannot be
explained by simple models. Quantitative descriptive analysis is a technique used to describe sensory features. Nevertheless, the
availability of a number of instrumental techniques has opened up the possibility to calibrate the sensory perception. In this frame,
we have tested the potentiality of nuclear magnetic resonance spectroscopy as a predictive tool to measure sensory descriptors. In
particular, we have used an NMR metabolomic approach that allowed us to differentiate the analyzed samples based on their
chemical composition. We were able to correlate the NMR metabolomic fingerprints recorded for canned tomato samples to the
sensory descriptors bitterness, sweetness, sourness, saltiness, tomato and metal taste, redness, and density, suggesting that NMR
might be a very useful tool for the characterization of sensory features of tomatoes.

KEYWORDS: NMR, multivariate analysis, sensory analysis, canned tomatoes

’ INTRODUCTION

It is crucial to know consumers' expectations, habits, and
preferences to ensure product success on themarket. Brand, label
information (such as geographic origin, technology, etc.), price,
packaging, factory image, product concept, and effective com-
munication are all critical factors. However, when the consumer
decides whether to buy the product again or not, success is tightly
connected to the products' features.

It is therefore extremely important to understand how much
consumers' preferences are driven by differences in sensory features
between products. Traditional consumer research helps determine
acceptable versus unacceptable. It is helpful when an overall, syn-
thetic understanding of the product's acceptance is needed. How-
ever, it is not of any help when an explanation, in terms of sensory
descriptors, is needed to provide R&D with technical information
useful to enhance product features. Such information can only be
provided through analytical products evaluation, of which consu-
mers are not capable.

A detailed sensory description, in fact, requires the ability to
decompose each sensory feature, requires selective attention, and
thus requires people specifically trained to the application of
sensory analysis (quantitative descriptive analysis, QDA).1 Sen-
sory analysis is a discipline through which the sensory analyst
evokes, measures, analyzes, and interprets human responses to
stimuli as perceived through the senses. Human sensory tests are
regularly employed in the food and beverages industries, and they
are sometimes integrated by a number of techniques, including

the electronic nose2 and the electronic tongue.2 The most
common types of sensors used are based on electrochemical
techniques, such as potentiometry and voltammetry.3�5 Other
sensing methods include optical6 and acoustic techniques.7 Further-
more, techniques like mass spectrometry (MS)8 and gas chromatog-
raphy (GC)9 have also been used. 1H nuclear magnetic resonance
(NMR) spectroscopy also has been used to investigate the taste of
wine.10Here,we investigate the utility of 1HNMRas a tool to analyze
the taste of canned tomato without any other chemical analysis.

’MATERIALS AND METHODS

Materials. Eighteen canned tomato products of different brands
were purchased in different markets in the city of Napoli (Italy) (Table
S1 in the Supporting Information).
Sensory Assessment. A panel of trained 12 assessors (six females

and six males) was selected based on the ability to recognize, describe,
and quantify basic tastes, odors, and texture properties. The panel
developed a specific profile protocol for QDA containing 14 descriptors:
redness, synaeresis, dimension, residual peel, consistency, density, toma-
to flavor, saltiness, sourness, bitterness, sweetness, tomato taste, cooked
taste, and metal taste. Descriptors were evaluated on a continuous,
unlabeled, 0�10 intensity scale and then turned into numeric variables
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(a number between 0 and 10). Three replicates per sample were
performed, to minimize random errors (each subsequent replicate after
1 week from the previous one). The 18 samples were presented blinded
in a flat plastic plate uncooked and at a controlled temperature (30 �C).
A maximum of three samples were presented during each session
according a balanced rotation plan.
Sample Preparation for 1H NMR Analysis. Each sample was

blended and centrifuged at 2200g for 30 min. Four aliquots (500 μL) of
supernatant of each sample was diluted with 100 μL of D2O and
analyzed independently. No buffer was used.
Chemicals and Reagents. Deuterium oxide (D2O, 99.9 atom %)

was purchased from Cambridge Isotope Laboratories, Inc.
NMR Spectrometry. 1H NMR spectra were acquired at 25 �Cwith

a 700MHzVarianUnity Inova spectrometer using a 5mm 1H{13C/15N}
triple resonance probe. The 1H NMR measurements were carried out
with 128 transients and 16K complex data point. The recycle timewas set
to 5 s, and a 45� pulse angle was used. The water signal was suppressed
using presaturation.
NMR Data Reduction and Processing. The spectra were pro-

cessed using iNMR (www.inmr.net). An exponential line-broadening of
0.5 Hz was applied to the free-induction decay prior to Fourier transforma-
tion. All spectra were referenced relative to external sodium 2,2-dimethyl-2-
silapentane-5-sulfonate (DSS), phased, and baseline corrected. Four ali-
quots of each product were studied by one-dimensional 1H NMR. In total,
72 spectrawere acquired. The spectrawere aligned by correlation optimized
warping11 using mP = 50 and nP = 2. Data reduction was accomplished by
dividing the spectrum into 0.01 ppm regions (bins) over which the signal
was integrated to obtain the signal intensity. The region around the residual

water signal (5.0�4.7 ppm) was removed in order not to compromise the
analysis. The high- and low-field ends of the spectrum, containing no signal,
were also removed (i.e., leaving data between9.5 and 0.5 ppm). At the end, a
total of 870 variables were analyzed for each spectrum. The integrals were
normalized to a total intensity to suppress trivial separation based on
variations in the amount of sample.

The dendrograms describing the sensory analysis were based on
unscaled sensory data. The NMR-based dendrograms were based on
PLS-DA scores of VAST scaled12 NMR data calculated using Simca-P
11.5 (Umetrics, Ume�a, Sweden) as input. In VAST scaling,12 each region/
bin is divided by the average standard deviation of the integral of that region
within each product. This scaling reduces the weight of random variations
between “identical” samples, and the analysis is not biased toward com-
pounds present at high concentrations. The number of axes for the PLS-DA
model was determined by leave one out cross-validation, where all of the
samples from each of the 18 products were left out for one product at a time
to determine the quality of the model. Themodel used was estimated using
all 18 products. Hierarchical cluster analysis (HCA) was then carried out
using complete linkages in R (http://www.r-project.org) by using the
Euclidean distance between the PLS scores for each product.

Principal component analysis (PCA) was carried out on unscaled sensory
data. VAST-scaled12 NMR data were used. The PCA was performed using
Simca-P 11.5 (Umetrics). The number of principal components (PCs) was
determined by leave one out cross-validation as described above. To test
which PCs that varied significantly between products, the PC scores for
the NMR data were subjected to one-way analysis of variance using
sequential Bonferroni correction for multiple testing (significance
level, 0.05). The fact that the variations between the samples from the

Figure 1. Spider web plot of the sensory descriptors for the 18 tested samples. The mean QDA parameters are listed in Table S2 in the Supporting
Information.



	  

 97 
	  

10833 dx.doi.org/10.1021/jf203803q |J. Agric. Food Chem. 2011, 59, 10831–10838

Journal of Agricultural and Food Chemistry ARTICLE

same can were taken as the variation within the product might result in
an overestimation of the significance. Standard errors (SEs) were
calculated as SE = SD/N1/2 where SD is the standard deviation and N
is the number of samples from that product.

Orthogonal projection to latent structures, OPLS, separates the
variance in x correlated with y (y-predictive) with the orthogonal
(noncorrelated; y-orthogonal) variance.13 In contrast to regular PLS, a
single y will result in only one predictive component. OPLS was carried
out using each sensory descriptor as the y-variable. Data were scaled to
obtain unit variance and then centered. OPLS was performed using
Simca-P 12.0 (Umetrics). Cross-validation was obtained as described
above. Markers for the sensory descriptors were identified from the
NMR signals that showed a strong correlation (R2 > 0.5) with the OPLS
predictive scores for the sensory descriptors.

’RESULTS AND DISCUSSION

Sensory Analysis.QDAmean results are reported in Figure 1.
To group products sharing similar sensory features, HCA was
performed on QDA means. The resulting dendrogram is shown
in Figure 2A. Three main groups were identified, consisting
of products 14, 13, 8, and 2 (group 1A); products 5, 18, 16, 12,
15, 9, and 10 (group 2A); and products 11, 17, 6, 1, 7, 4, and 3
(group 3A).
PCA was also performed on the same data set (Figure 3).

Two PCs accounting for 60% of the variation were identified.
A plot of their scores (Figure 3A) shows the positioning of the
products according to their sensory attributes and allowed the
identification of the most important sensory descriptors for
products differentiation. This analysis indicates that the groups
identified by the HCA share the same features and that there is
no strong separation between the different groups identified.
According to the loading plot (Figure 3B), the transition from
the upper-left corner to the bottom-right corner of the map
shows the simultaneous decrease of the bitterness and metal
taste and increase of the sweetness and saltiness. Tomato flavor,
saltiness, and tomato tastes are positioned on the bottom-right
side of the map. Redness, consistency, dimension, density,
residual peel, sourness, and cooked taste are positioned in the
upper-right quadrant. In general, products belonging to group
1A are characterized by sweetness, by tomato taste and salti-
ness, and by tomato flavor. Group 2A is instead characterized by a
more marked redness and sourness. On the other hand, group 3A
is characterized by bitterness and metal taste, having a light

redness. However, none of the descriptors shows a high
correlation (|R| > 0.5) with the model (Figure 3B).
To characterize the correlations between different sensory

descriptors, the correlation coefficients were calculated (Table 1).

Figure 2. Dendrograms showing the similarities between products based on (A) QDA and (B) NMR. Products falling within the same group in the
NMR classification are indicated with the same color.

Figure 3. Score (A) and loading (B) plots of the PCA performed on
sensory data. Products are colored according to NMR HCA analysis
in Figure 2B. Note that none of the sensory descriptors are well
described by this PCA model (|R| > 0.5 for all descriptors).
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We can see, for example, a strong negative correlation of sweetness
with bitterness but not with metal taste or sourness, as suggested by
the loadings plot (Figure 3B).
NMR Analysis. The same products tested in the QDA were

analyzed by NMR. The superimposition of two representative 1H
NMR spectra is reported in Figure 4. It should be noticed that for
each product, all of the NMR samples were taken from the same
can. The data might thus underestimate the spread of the chemical
properties within each product. Analogously to the HCA per-
formed on sensory data, theHCA analysis performed on theNMR
data revealed threemain groups (Figure 2B): 14 and 2 (group 1B);
13, 10, 9, 18, and 16 (group 2B); and 15, 17, 5, 11, 6, 1, 4, 3, 7, 8,
and 12 (group 3B). Despite the fact that the two HCAs refer to
data collected by very different analytical techniques, it can be seen
that there is a good global agreement between the different
measurements: All products of group 1B (products 2 and 14)
are also present in group 1A, all products except one in group 2B
(products 9, 10, 16, and 18) are also present in group 2A, and all
products in group 3A (products 1, 4, 6, 7, 11, and 17) are also
present in group 3B.
PCA has also been performed on the NMR data set. Fourteen

PCs were identified, of which PC1, PC2, and PC3 vary signifi-
cantly between the different products. These three PCs account
for 57% of the variation. The general distribution of the products
in the score plots (Figure 5A,B) in a way recall the one observed
in the sensory data set (Figure 3A). For example, considering the
PC1�PC2 plot, products 3 and 4 are mapped close to each other
and, at the same time, far away from the products 9, 10, 16, 15,
and 18. Similarly, these latter samples are far way from products 2
and 14. Finally, the products 1, 6, 7, 8, 12, and 17, whichwere placed
in the very center of the plot of the sensory data (Figure 3A), are
placed in the center of NMR PC1�PC2 plot as well. As judged
from the loading plots (Figure 5C�E), the first PC describes the
distribution of the samples based on their sweetness. In fact,
negative values can be observed for signals belonging to sugars
like saccharose and α- and β-D-glucose. At the same time, posi-
tive correlations can be observed for signals belonging to bitter
amino acids like tyrosine, phenylalanine, tryptophane, and iso-
leucine (see Chemical Signatures of Sensory Descriptors). The
noisy look of the second PC describes the formation of sharper
NMR signals due to a decrease in viscosity. The third PC seems
instead related to an increase of saccharose, isoleucine, and acetate
and a decrease of tyrosine, α-D-glucose, malate, and glutamate.

The loading plots also contain a number of signals that could not
be assigned unambiguously.
Prediction of Sensory Descriptors. Although it is encoura-

ging that there are similarities in the structures of the sensory and
NMR data, the important question is how well the sensory
descriptors can be predicted by NMR. To resolve that question,
we made predictive models for the different sensory descriptors
using orthogonal-projection to latent structures, OPLS.13 Using
this protocol, we were able to get good predictions [Q2(cum) >
0.5] for bitterness, redness, density, and metal and tomato taste
(Table 2). After inspection of the remaining models and identi-
fication of outliers in those, we were able to get goodmodels for all
but two brands for saltiness, sweetness, and sourness (Table 2). In
five cases out of six, the removed products showed extreme values
for saltiness (2 of 2), sweetness (2 of 2), and sourness (1 of 2).
It thus seems that these extra strong features depend on other
factors than those under more normal conditions. The remaining

Table 1. Correlation Coefficients (|R| > 0.5) between Sensory Descriptorsa

redness dimension synaeresis density tomato flavor saltiness sourness sweetness bitterness tomato taste cooked taste consistency

redness 0.60 0.76 0.56 0.55

dimension 0.60 0.55 0.51 0.87

synaeresis �0.60

density 0.76 0.55 �0.60 0.71 0.57 0.59 0.56

tomato flavor 0.71 0.52 0.86

saltiness 0.57 0.52 0.58 �0.52 0.57 0.71

sourness 0.54

sweetness 0.58 �0.69 0.52

bitterness �0.52 0.54 �0.69

tomato taste 0.59 0.86 0.57 0.52 0.58

cooked taste 0.56 0.51 0.71

consistency 0.55 0.87 0.56 0.58
a Sensory descriptors showing |R| < 0.5 to all other sensory descriptors are excluded.

Figure 4. Annotated 1H NMR spectra of two typical canned tomato
samples. Product 2 (solid black line) is characterized by the presence of
saccharose (see signals at 5.41 ppm) and a low viscosity, while product
15 (dashed gray line) is characterized by the absence of saccharose and a
high viscosity. Note that the y-axis scale of the upper panel is increased
40� compared to the lower.
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descriptors were related to the physical rather than chemical
properties of the products.
Chemical Signatures of Sensory Descriptors.To determine

the chemical components responsible for a given sensory de-
scriptor, we have looked for all possible correlations between the
NMR signals and the analyzed sensory descriptors using OPLS
models. Specifically, the origin of signals displaying correlation
above R2 > 0.5 with the OPLS scores for the sensory descriptors
with a Q2 > 0.5 was identified. In this procedure, a multitude of

chemical components were identified for several of the sensory
descriptors14 (see also Table 3).
It was possible to identify only very few compounds that have a

relationship with sweetness. Particularly, sweet perception was
positively correlated with saccharose (5.41 ppm) in spite of its
low concentration, whereas it was negatively correlated with
tyrosine (H-α 3.94 ppm), which is a known bitter amino acid. No
correlation was found with citrate, while a negative correlation
with the malate signal at 4.29 ppm was found. This is an interesting
result since malate and citrate seem to have very similar sensory
properties (see below).15 The characteristic sweet�sour taste of
tomato and its overall flavor intensity are mainly due to reducing
sugars, free acids, and free amino acids, minerals, and volatile
substances. Overall, the character and intensity of taste are greatly
affected by the salts present and by the buffer effect of the various
cations and anions. About 50% of the dry matter in tomatoes is
made of sugars, primarily glucose and fructose. There is frequently
saccharose as well, but its quantity rarely exceeds 0.1% of the fresh
mass.16,17 It is interesting to note that the sensation of sweetness
cannot solely be explained by the sugar content. In fact, Jones and
Scott did not find a close correlation between sugar content and
sweetness.18 Similarly, Watada and Aulenbach did not find correla-
tion between sweetness and dry matter content either.19 All of this
means that other components affect the perceived sweetness.
Interestingly, Stevens and co-workers found a relationship between
the sensation of sweetness and the glucose/citric acid interaction.20

Particularly, they have found that glucose affects sweetness more
than fructosewith high citric acid concentration. Furthermore, when
the sugar concentration is low, citric acid reduces perceived
sweetness, while with high sugar concentration, it increases sweet
perception. It has been estimated that the relative composition in

Figure 5. Score (A and B) and loading (C�E) plots of the PCA
performed on NMR data. Panels A and B show the PC1�PC2 and
PC1�PC3 score plots, and panels C�E show the PC1�PC3 loadings.
Products are colored according to NMR HCA analysis in Figure 1B.
Error bars correspond to one SE (SE = SD/N1/2).

Table 2. Description and Statistical Summary of the OPLS
Models Constructed Based on NMR Data

variable Aa Nb R2X(cum)c R2Y(cum)c Q2(cum)d

bitterness 7 66 0.70 0.99 0.87e

redness 5 66 0.65 0.98 0.86e

density 2 66 0.37 0.80 0.68e

metal taste 1 66 0.31 0.85 0.67e

tomato taste 2 66 0.42 0.87 0.58e

saltiness 1 66 0.27 0.71 0.33

products 5 and 18 excluded 5 58 0.66 0.99 0.91e

sweetness 2 66 0.40 0.84 0.30

products 2 and 3 excluded 7 58 0.72 0.99 0.78e

tomato flavor 2 66 0.34 0.74 0.23

residual peel 1 66 0.30 0.56 0.14

consistensy 2 66 0.43 0.73 0.07

2 62 0.37 0.79 0.26

sourness 0 66 0.23 0.31 0.04

products 3 and 10 excluded 5 58 0.65 0.96 0.83e

syneraesis 1 66 0.29 0.59 0.02

dimension 0 66 0.21 0.36 0.02

cooked taste 0 66 0.21 0.32 �0.01
aA number of orthogonal components. bNumber of samples included in
the model. c R2X(cum) and R2Y(cum) = the cumulated fraction of the
variance in the parameter explained by the model. d Q2Y(cum) = the
cumulative predicted fraction of the variation of the parameter as
determined by cross-validation. e Q2Y(cum) values above 0.5 are con-
sidered as good predictors.
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glucose, fructose, and citric acid can explain about 80% of the
variation in sweetness.20

In contrast to sweetness, bitter taste was negatively correlated
with glucose and saccharose signals and positively correlated with
a number of bitter amino acids21 like isoleucine (H-β, H-γ1,
H-γ2, and Me-γ at 1.98, 1.46, 1.26, and 0.93 ppm, respectively),
tryptophan (H4, H5, and H6 at 7.75, 7.17, and 7.29 ppm,
respectively), tyrosine (H3/H5 and H2/H6 at 6.90 and 7.18
ppm, respectively), valine (H-β at 2.53 ppm), and phenylalanine
(H3/H5 and H2/H6 at 7.40 and 7.30 ppm, respectively). The
correlation with glucose suggests that even if glucose did not
correlate with sweet taste, it has a strong masking effect on the
bitter taste. Sweetness and bitterness show a relatively strong
anticorrelation (R = �0.69; Table 2). Interestingly, bitter taste
was also positively correlated with glutamate signals (H-β1,
H-β2, and H-γ at 2.52, 1.62, and 32 ppm, respectively), acetate
(1.91 ppm), andmalate (2.37 and 2.66 ppm), all compounds that
do not possess a bitter taste themselves. However, the taste-
enhancing effect of the glutamic acid, one of the most abundant
amino acid in tomato, was proven,22�24 and we cannot exclude a
similar effect also for acetate and malate.
The sour taste of tomato can be ascribed mainly to the organic

acids, rather than to the hydrogen ion concentration. Organic
acids form more than 10% of the dry content of tomatoes.25,26

The two main acidic components are citric and malic acid, where
malic acid is more sour than citric acid even if present in lower
concentration. In our case, we found that sourness is positively
correlated with both of these components. Moreover, it is known
that sourness is also affected by the presence of free amino
acids.27 We found positive correlations with amino acids having
taste-enhancing properties like glutamate, glutamine, aspartate,
and asparagine and with amino acids having a bitter taste like
tryptophan, tyrosine, phenylalanine, valine, and isoleucine. Inter-
estingly, sour taste was negatively correlated to the presence of
α- and β-D-glucose. All of these data strongly suggest that sour taste
is closely correlated to bitter taste. As shown in Table 2, the
correlation coefficient between the two was 0.54 in this study.
Furthermore, tomato taste and saltiness were all positively

correlated (Table 2) and were negatively correlated to isoleucine
(H-γ and Me-γ at 1.26 and 0.93 ppm, respectively) and malate
(4.29 ppm). Metal taste, instead, had positive correlations with

bitter amino acids like isoleucine (Hγ and Meγ at 1.26 and 0.93
ppm, respectively), tyrosine (H3/H5 and H2/H6 at 6.90 and
7.18 ppm), and phenylalanine (H3/H5 and H2/H6 at 7.40 and
7.30 ppm, respectively). On the other hand, a negative correla-
tion was evident with the signal belonging to α- and β-D-glucose
(3.82 and 3.49 ppm) and saccharose (5.41 ppm). Interestingly,
metal taste was also positively correlated to the malate signal
at 4.28 ppm. Metal taste did not show any correlations above
|R| = 0.5 with other sensory descriptors in this study.
Very surprisingly, redness was positively correlated with the

presence of tryptophan (H4, H5, and H6 at 7.75, 7.17, and 7.29
ppm, respectively) and tyrosine (H3/H5 at 6.90 andH-βs at 3.06
and 3.18 ppm). At this stage, we cannot explain this observation.
Finally, a number of signals in the region between 4.30 and 4.60

ppm and at 4.03 ppm display negative correlations with density.
For the time being, we are not able to unambiguously assign these
signals, even if their chemical shifts strongly suggest that they
could be attributed to sugars.
In conclusion, the perception of odor and flavor of food is a

complicated physiological and psychological process that cannot
be explained by simple models. This is because hundreds of com-
pounds simultaneously influence the human olfactory receptors
and because the physiological response is far from linear, and the
overall effects are not just the superimposition of the effect of
single stimuli.
Sensory analysis, and, in particular, the QDA, continues to be

an irreplaceable technique to describe sensory features. Never-
theless, the availability of a number of instrumental techniques
has opened up the possibility to calibrate the sensory perception.
Thus, the tandem approach that uses instrumental and classical
sensory analysis seems to be a valuable strategy. Unfortunately,
the more usual artificial tongue/nose are used to determine very
specific components of the analyzed food. Furthermore, not all
instrumental techniques are able to analyze directly the genuine
mixture interacting with our sense without any extraction/con-
centration procedures. For example, MS and GC require volati-
lization of the analyzed compounds that very often is obtained
with a chemical derivatization. In this frame, we have tried to
test the potentiality of NMR spectroscopy as a predictive tool to
measure sensory descriptors, without performing any comple-
mentary chemical analyses. In particular, we have used an NMR

Table 3. Correlation between Chemical Substances and OPLS Models for Sensory Descriptorsa

redness metal taste saltiness sourness sweetness bitterness tomato taste

acetate (1.91) +

aspartate (2.68, 2.80) + +

asparagine (2.87, 2.95) +

citrate (2.53, 2.66) +

glucose (3.49, 3.82) � � �
glutamate (2.05, 2.16, 2.32) + +

glutamine (2.14, 2.45) +

isoleucine (0.93, 1.26, 1.46, 1.98) + � + + �
malate (2.37, 2.66, 4.29) + � + � + �
phenylalanine (7.30, 7.40) + + +

saccharose (5.41) � + �
tryptophan (7.17, 7.29, 7.75) + + +

tyrosine (3.94, 6.90, 7.18) + + + � +

valine (2.53) + +
a + and � signs indicate positive and negative correlations, respectively. Chemical shift values (ppm) of the used signal are reported in brackets.



	  

 101 
	  

10837 dx.doi.org/10.1021/jf203803q |J. Agric. Food Chem. 2011, 59, 10831–10838

Journal of Agricultural and Food Chemistry ARTICLE

metabolomic approach since it is rapid, sensitive, and relatively
inexpensive. This approach in combination with multivariate
analysis has an advantage over the ordinary sensory test, since it
offers more reliable results for the classification and determina-
tion of some aspect of the sensory attribute of the tomato. The
metabolomic fingerprints recorded for all tested canned tomato
samples allowed us to differentiate all analyzed samples based on
their chemical composition.
Interestingly, the same classification and characterization have

been reached independently from the QDA analysis. In parti-
cular, a number of sensory descriptors can be easily predicted
from the NMR data: bitterness, sweetness, sourness, saltiness,
tomato and metal taste, redness, and density. The presence of a
number of bitter amino acids like isoleucine, tryptophan, tyrosine,
phenylalanine, and valine is correlated with bitterness and surpris-
ingly to sourness. Other amino acids seem also to have a crucial role
as taste enhancers like glutamate, glutamine, aspartate, and aspar-
agine, which amplify the bitter and the sour taste, as well as the
cooked taste. The sugar content is obviously correlated with
sweetness, even if their correlation is not so straightforward. Finally,
other components like citrate, malate, formiate, and acetate are
correlated with sourness. Very interestingly, citrate and particularly
malate seem to be crucial in the defining the taste of tomato. In
general, we have noted that the same substances could be involved in
two (or more) features; these could be counteractive in the sense
that the increase in one leaves less room for the other features; they
could be also affected by a third feature, etc. One drawback with the
methodology presented here is that only the soluble fraction of the
product is measured. In future studies, this can be avoided by using
HR-MAS NMRwhere also the semisolid fractions contribute to the
NMR spectrum. However, the results obtained suggest that NMR
could be a very useful tool for the characterization of some sensory
features of tomato. To evaluate the applicability of this methodology
to other kinds of food, a number of experiments are currently
undertaken in our laboratories.
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LSD 95% = Two products are significantly different for each attribute when the 
difference of mean values are ≥ LSD value. 

 

 

Table S1. Identities of the canned tomatoes used in this study. 

Sample # Sample Brand 

1 Valfrutta - Gran Cubetti di Giornata 

2 De Rica - Polpa Pronta 

3 Primadonna - Polpa di Pomodoro 

4 Annalisa - Polpa di Pomodoro 

5 Santa Rosa Bertolli - I Pezzettoni 

6 Esselunga - Polpa di Pomodoro 

7 Carrefour – Polpa di Pomodoro 

8 Feger – Polpa di Pomodoro 

9 Coop - Polpa di Pomodoro 

10 Delizia del Sole - Polpa di Pomodoro a Pezzetti 

11 Mutti - Polpa 

12 Tesori dell’ Arca - Polpa di Pomodoro 

13 Cirio - PolpaPiu’ 

14 Cirio - Polpadoro 

15 Cirio - Fior di Filetti 

16 Star - Polpabella 

17 De Rica – Polpa di Pomodoro 

18 La Doria – Polpa di Pomodoro 

 

Table S2. QDA mean results. 
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1 5.5 5.3 6.4 4.7 6.5 3.5 3.1 4.8 4.4 2.6 4.3 6.0 4.9 3.4 

2 5.5 4.9 3.8 5.4 6.3 5.5 6.8 2.8 9.0 0.7 6.4 4.5 2.1 3.8 

3 3.4 3.5 4.1 7.1 2.0 3.5 2.7 6.1 1.8 3.2 4.9 4.0 4.3 3.2 

4 2.3 5.2 4.8 5.9 4.0 1.3 1.1 3.1 3.0 2.9 1.4 3.0 4.4 3.4 

5 5.9 7.0 5.7 6.8 5.5 4.3 8.6 5.7 4.8 1.7 5.3 8.2 4.2 6.0 

6 5.4 3.7 5.6 4.0 6.3 4.3 2.2 3.9 3.7 2.7 4.5 3.3 4.6 3.5 

7 3.7 4.5 5.4 6.5 3.7 3.5 5.0 1.5 5.1 2.1 4.3 7.0 4.2 3.4 

8 5.3 6.3 4.0 7.1 5.9 5.5 5.6 3.4 5.2 1.0 6.3 5.5 2.8 5.9 

9 6.5 6.4 4.0 6.8 6.0 5.6 2.3 4.7 3.5 4.7 5.2 4.3 4.9 6.0 

10 6.5 5.4 3.3 5.5 5.3 4.6 3.0 8.3 3.8 3.6 4.4 5.8 5.5 5.0 

11 3.3 0.1 0.4 5.5 0.9 1.3 1.1 2.8 4.2 2.5 1.6 3.3 5.5 0.1 

12 6.3 5.3 4.6 3.5 6.7 3.6 6.0 3.4 4.7 2.3 5.5 5.7 3.7 4.7 

13 6.7 5.0 7.1 4.3 8.8 8.5 6.3 3.2 5.4 1.5 6.6 5.5 4.5 3.8 

14 5.2 3.1 1.4 2.3 7.4 6.8 6.7 3.5 6.1 0.8 7.2 4.7 2.8 4.5 

15 8.6 9.9 1.8 2.2 7.4 4.9 2.8 5.2 4.0 3.8 5.2 6.3 4.6 6.4 

16 9.1 5.8 5.7 4.6 6.9 4.0 5.0 5.3 4.5 4.4 5.0 5.8 5.3 4.7 

17 4.9 5.4 5.5 3.1 6.4 4.3 3.7 3.1 5.2 1.8 5.6 3.7 8.3 4.5 

18 8.7 5.7 5.7 3.6 9.0 4.7 9.0 5.1 4.6 2.7 4.0 8.0 4.5 4.0 

LSD 0.7 0.5 0.7 0.8 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 
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a b s t r a c t

The perception of odour and flavour of foods is a complicated physiological and psychological process
that cannot be explained by simple models. Unfortunately, taste is not objective, but partially subjective
and it depends also on the mood of the taster. Generally, sensory analysis is used to describe sensory fea-
tures. The availability of a number of instrumental techniques has opened up the possibility to calibrate
the sensory perception. Here we have tested the potentiality of nuclear magnetic resonance spectroscopy
as ‘‘magnetic tongue’’ to measure sensory descriptors in extra-virgin olive oil. We were able to correlate
the NMR metabolomic fingerprints of extra-virgin olive oil to the sensory descriptors: tomato, bitter,
pungent, rosemary, artichoke, sweet, grassy and leaf.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The sensory impression of a food is determined mainly by the
chemical senses of taste and smell. They are both sensed through
sensory cells of the tongue (taste) and of the nasal cavity (smell)
(Roper, 2006). Sensory cells are able to differentiate between the
different tastes and smells based on different molecules or ions.

From a food company point of view, understanding how much
consumers’ preferences are driven by differences in sensory
features between products is extremely important. Traditional con-
sumer research helps determining acceptable versus unacceptable.
It is helpful when an overall, synthetic understanding of the prod-
ucts acceptance is needed. However, it is not of any help when an
explanation, in terms of sensory descriptors, is needed in order to
provide R&D with technical information useful to enhance product
features. Such information can only be provided through analytical
products evaluation, of which consumers are not capable. For these
reasons, food and beverages industries take advantage of quantita-
tive descriptive analysis (QDA) (Noble, 2002; Stone & Sidel, 1998).
This is a discipline through which the sensory analyst evokes,
measures, analyzes and interprets human responses to stimuli as
perceived through the senses. Unfortunately, taste is not objective
like for example the sight, but partially subjective and it also
depends also on the mood of the taster. Thus a number of more
objective analytical techniques have been used to support or, in
some cases, replace the classical QDA. Among these, it is worthy
to mention the electronic nose and the electronic tongue (Deising,

Stone, & Thompson, 2004). Furthermore, techniques like mass
spectrometry (MS) (Aishima, 2004; Zanor et al., 2009) and gas chro-
matography (GC) (Taylor, Rob, & Linforth, 2003) have also been
used. Very recently, we have proposed the use of the 1H nuclear
magnetic resonance (NMR) spectroscopy as ‘‘magnetic tongue’’ to
predict the sensory descriptors of canned tomatoes (Malmendal
et al., 2011). Herein, we intend to widen the applicability of this
technique testing the 1H-NMR spectroscopy to predict the taste of
extra virgin olive oil (EVOO).

2. Materials and methods

2.1. Materials

Eighteen EVOO products of different brands were given from
different companies in the Campania region (Italy) within the
EXTRABIO 2008, a quality prize organised by the Chamber of Com-
merce of Naples for olive oils from organic agriculture.

2.2. Sensory assessment

Sensory profiles of the 18 samples were determined by the olive
oil sensory panel of the ‘‘Laboratorio Chimico Merceologico’’ of the
Chamber of Commerce of Naples (Italy). This panel is particularly
trained to recognise, describe and quantify basic taste and odour
properties. Evaluation took place in individual testing booths
according to the official method (EC Regulation 2568/91). Eleven
descriptors have been defined: fruity, leaf, grassy, bitter, pungent,
sweet, almond, artichoke, apple, tomato and rosemary tastes.

0308-8146/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.foodchem.2012.10.135
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Descriptors were evaluated on a continuous, unlabeled, 0–10
intensity scale, and then turned into numeric variables (a number
between 0 and 10). Oils were served in coloured tasting glasses.
The temperature of the oils was kept constant (28 ± 2 �C). Samples
were labelled with a 3-digit code and served based on a balanced
rotation plan.

2.3. Sample preparation for 1H-NMR analysis

The procedure previously reported by Segre and Mannina
(1997) was followed to prepare the samples: 20 lL EVOO were dis-
solved in 560 lL chloroform-d and 20 lL DMSO-d in 5 mm NMR
tubes.

2.4. NMR spectrometry

1H-NMR spectra were acquired at 25 �C with a 700 MHz Varian
Unity Inova spectrometer using a 5 mm 1H{13C/15N} triple reso-
nance probe. The 1H-NMR measurements were carried out with
1000 transients and 32 K complex data point. In order to retrieve
quantitative information, the recycle time was set to 5 s, and a
45� pulse angle was used.

2.5. NMR data reduction and processing

The spectra were processed using iNMR (www.inmr.net). An
exponential line-broadening of 0.5 Hz was applied to the free-
induction decay prior to Fourier transformation. All spectra were
referenced relative to external sodium 2,2-dimethyl-2-silapen-
tane-5-sulfonate (DSS), phased and baseline corrected. The spectra
were aligned by using the Icoshift algorithm (Savorani, Tomasi, &
Engelsen, 2010). Data reduction was accomplished by dividing
the spectrum into 0.005 ppm regions (bins) over which the signal
was integrated to obtain the signal intensity. Only the spectral re-
gion between 6.55 and 9.75 (excluding the region around the chlo-
roform signal between 7.0 and 7.8 ppm) was considered for the
study (see Section 3). At the end, a total of 480 variables were ana-
lysed for each spectrum. The integrals were normalised to the inte-
gral of the triplet at dH 0.86 ppm (CH3 of triacylglycerols) in order
to suppress trivial separation based on variations in the amount of
sample.

2.6. Statistical analysis

Statistical analysis was performed using Simca-P 13.0 (Umet-
rics, Umeå, Sweden). The number of principal components (PCs)
in the principal component analysis (PCA) (Eriksson, Johansson,
Kettaneh-Wold, & Wold, 2006) was determined by leave one out
cross-validation, where all the samples from each of the 18 prod-
ucts were left out for one product at a time to determine the qual-
ity of the model. The model used was estimated using all 18
products. Sensory data were Unit-Variance (UV) scaled, while
NMR data were pareto-scaled (Eriksson, Johansson, Kettaneh-
Wold, & Wold, 1999), where each value has been divided by the
standard deviation and by the square root of the standard devia-
tion computed around the mean, respectively. Both dataset were
also centred. Two PCs were computed for both sensory and NMR
PCAs.

The dendrograms for the sensory analysis and NMR data were
both based on the PCA scores (PC1 and PC2). Hierarchical cluster
analysis (HCA) was carried out by using Ward clustering method
(Ward, 1963).

Orthogonal projection to latent structures, OPLS, separates the
variance in x correlated with y (y-predictive) with the orthogonal
(non-correlated; y-orthogonal) variance (Trygg & Wold, 2002). In
contrast to regular PLS, a single y will result in only one predictive

component. OPLS was carried out using each sensory descriptor as
the y-variable. As in PCA, sensory data were UV-scaled, while NMR
data were pareto-scaled and both centred. Cross validation was ob-
tained as described above. Markers for the sensory descriptors
were identified from the NMR signals that showed a strong corre-
lation (R2 > 0.5) with the OPLS predictive scores for the sensory
descriptors.

3. Results and discussion

3.1. Sensory analysis

Eighteen samples of EVOO were selected from local industries
of the Campania region in Italy. These samples have been judged
by assessors specifically trained in the application of quantitative
descriptive analysis (QDA) and in the evaluation of EVOO.

The QDA method aims to (i) define a product’s sensory profile
(describing products in terms of sensory features as perceivable
through five senses), (ii) identify similar products sharing similar
sensory properties through cluster analysis, (iii) define a sensory
map of products through principal component analysis (PCA), in
order to position, within an overall picture, products in terms of
their sensory properties. Main sensory descriptors were identified
and selected (as actually describing products and discriminating
among them) during several preliminary sessions. These are: fru-
ity, leaf, grassy, bitter, pungent, sweet, almond, artichoke, apple,
tomato and rosemary tastes.

During the sessions of analysis, assessors determined the inten-
sity of each attribute for each product through objective evalua-
tions. Evaluations were given on a continuous, no labelled, 0–10
scale, and then turned into numeric variables (a number between
0 and 10). Products were tested plain and not cooked. QDA mean
results are reported in Fig. 1 (Table S1 in Supplementary material).
In order to group products sharing similar sensory features, hierar-
chical cluster analysis (HCA) was performed on QDA means. The
resulting dendrogram is shown in Fig. 2A. Basically 3 groups have
been identified: samples 13, 4, 9, 5, 8, 2, 3, 14 (Group 1A); samples
18, 12, 1, 7 (Group 2A); samples 6, 15, 10, 17, 11, 16 (Group 3A).

Principal component analysis (PCA) was also performed on the
same dataset (Fig. 3). Two principal components (PCs) accounting
for 65% of the variation were identified. The plot of their scores
(Fig. 3A) shows the positioning of the products according to their
sensory attributes and allowed the identification of the most
important sensory descriptors for products differentiation. Inter-
estingly, a number of descriptors shows a significant correlation
(Q2(cum) > 0.4) with the model (Table S2), indicating a high level
of correlation between the sensory descriptors. Almond taste is
not predicted by the model (Q2(cum) = �0.07). PCA indicates that
the groups identified by the HCA share the same features, and that
there is no strong separation between the different groups
identified.

According to the loading plot (Fig. 3B), transition from the left to
the right of the map shows the simultaneous decrease of the sweet
taste and increase of the bitter, pungent, fruity and artichoke
tastes. The sensory map is also influenced by apple, tomato, grassy
tastes that stand on the top of the map, opposite to leaf and rose-
mary tastes (on the bottom). In general, Group 1A, which is the
most populated group, contains products that are characterised
by apple, tomato, grassy, artichoke, pungent, fruity and bitter
tastes. On the other hand, Group 3A contains products with more
marked sweet taste. Group 2A, instead, is characterised mostly
by rosemary and leaf tastes.

The loadings plot (Fig. 3B) suggests a covariance between
different tastes. Thus a higher sweetness is generally associated
with a lower bitterness. It seems there is also a strong correlation
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between artichoke, pungent, fruity and bitter tastes and so forth.
To further characterise the correlations between different sensory
descriptors, the correlation coefficients were calculated (Table 1).
Interestingly, there is a strong positive correlation between bitter,
pungent and artichoke tastes. These are, in turn, negatively corre-
lated to sweet taste. There is also a strong correlation between
grassy and fruity tastes. As expected, from the PCA analysis, no sig-
nificant correlation could be calculated for almond taste.

3.2. NMR analysis

The same products tested by QDA were analysed by NMR. The
rationale is to use an NMR metabolomic approach to compare

the constituent of the different EVOO samples, and correlate the
NMR data with the sensory descriptors obtained by the QDA
analysis.

Fig. 4 shows different vertical expansions of the NMR spectrum
of a representative sample of EVOO. Particularly, Fig. 4A show the
NMR spectrum at a regular scale, where the major signals of ali-
phatic and glyceryl protons of triacylglycerols, including allylic
and diallylic resonances of monounsaturated and polyunsaturated
fatty acids, can be easily singled out.

Increasing the vertical scale (Fig. 4B) also diacylglycerols (sn-1,2
and sn-1,3), naturally present in EVO oil at level of about 2–4% (as
molar fraction), methyls of linolenic acid (18:3 n�3) present at
levels less than 1% can be detected.

Fig. 1. Spider-web plot of the sensory descriptors for the 18 tested samples. The mean QDA parameters are listed in Table S1 in the Supplementary information. In order to
group products sharing similar sensory features, hierarchical cluster analysis (HCA) has been performed on QDA means. The resulting dendrogram is shown in Fig. 2A.
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Human sensory cells cannot detect the molecules described so
far and all the EVOO have basically identical composition of these
constituents. Hence, the sensory perception of the EVOO is related
to very minor components. These can be observed by further

increasing the vertical scale of the spectrum (Fig. 4C), which allows
the identification of resonances of very minor components like, for
example, different aldehyde CHO protons (n-alcanals, n-alchenals,
idroxy-alchenals, seicoridoids aglycons) (Sacchi, Addeo, & Paolillo,
1997) in the region around 9 ppm and phenolic ring signals around
6–7 ppm (Christophoridou & Dais, 2009). These last molecules are
commonly attributed the bitter-pungent taste of EVOO, with a
main role of phenol compounds (Andrewes et al., 2003) in combi-
nation to selected volatiles (Caporale, Policastro, & Monteleone,
2004).

Thus, in order to study EVOO from taste point of view, we had to
consider only the spectral regions that were not occupied by the
signals of the taste-free major constituents. Furthermore, it should
also be noted that almost all the analysed samples contain small
amounts of water from the production of the EVOO. The signal of
water in the NMR spectra of olive oil acquired in chloroform and
dimethyl sulfoxide (see Section 2) is very broad and sometime very
intense, and generally resonates between 4 and 6 ppm. This means
that this range cannot be used to compare different EVOO samples
either. Furthermore, the spectral regions containing solvent signals
cannot be taken into account. Thus, in our case, the regions that
can be considered are from 6.55 ppm to 7.00 and from 7.80 to
9.75 ppm. Other smaller regions could also be considered, but they
are dramatically affected by baseline distortion from the very in-
tense triacylglycerol signals that offset the intensity values, thus
resulting in inaccuracy in peak assignment and quantification.

Analogously to the HCA performed on sensory data, the HCA
analysis performed on the NMR data revealed three main groups
(Fig. 2B): 8, 3, 4, 13, 14, 2, 9 (Group 1B); 7, 1, 11, 12 (Group 2B);
18, 15, 5, 17, 10, 6, 16 (Group 3B). Despite the fact that the two
HCAs refer to data collected by very different analytical techniques,
it can be seen that there is an excellent global agreement between
the different measurements: only sample 5, 11 and 18 are not
grouped in the same way using QDA and NMR data.

PCA has also been performed on the NMR dataset. Two PCs were
identified, accounting for 83.6% of the variation. The general distri-
bution of the products in the score plots (Fig. 5A) in a way recall the
one observed in the sensory dataset (Fig. 3A). For example, Group
1B and Group 3B are mapped opposite to each other, suggesting
that PC2 in the PCA computed with the NMR data is in a way re-
lated to the sweetness/bitterness of the samples. On the other hand
Group 2B is very well separated from the other two groups along
PC1, suggesting that this PC is related to apple, rosemary and leaf
tastes.

Fig. 2. Dendrograms showing similarities between products based on QDA (A) and NMR (B). The dendrograms were based on the two first PCs after PCA of QDA (A) and NMR
(B) data, respectively. Products falling within the same group are indicated with the same colour. Most of the products are grouped in the same way using both QDA and NMR
(Group 1A/1B; Group 2A/2B; Group 3A/3B). Products that are not grouped in the same way are coloured in grey. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. Score (A) and loading (B) plots of the PCA performed on sensory data.
Products are coloured according to QDA HCA analysis in Fig. 2. Sample belonging to
Group 1A, 2A and 3A have circle, box and diamond signs, respectively. Variables in
loading plot (B) that are well predicted by the model (Q2(cum) > 0.4) are reported in
bold. Almond, that cannot be predicted and hence has a small impact on the model,
is reported in light grey. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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As judged from the loading plots (Fig. 5B and C), Group 2B
contains higher concentration of molecules having signals at dH
9.58, 9.31, 7.88, 6.97, 6.69 and 6.63 ppm, and low concentration
of molecules having signals at dH 9.45, 9.09, 9.05, 6.82 and
6.58 ppm, relative to Groups 1B and 3B.

However, Groups 1B and 3B are differentiated along PC2. Look-
ing at the loading plot of second principal component (Fig. 5C), it is
clear that Group 1B contains higher concentrations of molecules

having signals at dH 9.45, 9.09, 9.05, 6.82, 6.58, whereas lower con-
centrations of those molecules are present in the Group 3B.

3.3. Prediction of sensory descriptors

In order to determine how well the sensory descriptors can be
predicted by NMR, we made predictive models for the different

Table 1
Correlation coefficients (|R| > 0.5) between sensory descriptors.a

Fruity Leaf Grassy Bitter Pungent Sweet Artichoke Apple Tomato Rosemary

Fruity 0.62 0.77 0.63 0.51 0.63
Leaf 0.62 0.50
Grassy 0.77
Bitter 0.63 0.50 0.75b �0.84 0.63
Pungent 0.51 0.75 �0.70 0.71
Sweet �0.84 �0.70 �0.60
Artichoke 0.63 0.63 0.71 �0.60 0.61
Apple �0.54
Tomato 0.61 �0.75
Rosemary �0.54 �0.75

a Sensory descriptors showing |R| < 0.5 to all other sensory descriptors are excluded.
b The correlation coefficients between bitter, pungent, sweet and artichoke tastes are italics.

Fig. 4. Increasing (from A to C) vertical expansions of the NMR spectrum of a
representative sample of extra-virgin olive oil.

Fig. 5. Score (A) and loading (B and C) plots of the PCA performed on NMR data. (B
and C) show the PC1 and PC2 loadings. Products are coloured according to Fig. 2.
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sensory descriptors using orthogonal-projection to latent struc-
tures, OPLS (Trygg &Wold, 2002). Using this protocol we were able
to get good predictions (Q2(cum) > 0.4) for tomato, bitter, pungent
rosemary and artichoke tastes (Table 3). After further inspection
of all models, and identification of outliers wewere able to get good
models for all but 1, 2, 3 and 4 brands for sweet, grassy, artichoke
and leaf taste, respectively (Table 2). In seven cases out of ten the
removed products showed extreme values for sweet (1 of 1), grassy
(2 of 2), artichoke (2 of 3) and leaf (2 of 4) tastes. It thus seems that
these extra strong features depend on other factors than under
more normal conditions.

3.4. Chemical signatures of sensory descriptors

In order to determine which chemical components are respon-
sible for a given sensory descriptor, we have looked for all possible
correlations between the NMR signals (in the considered spectral
regions) and the analysed sensory descriptors using OPLS models.
In order to have a qualitative view of the correlations, we first
had a look at the loading plots of the predictive component of each
OPLS model having with Q2 > 0.4 (Fig. 6).

Bitter, pungent and artichoke tastes are highly correlated
(R > 0.63) and display a very similar profile. They all show a strong

Table 3
Correlation among NMR signals and OPLS models for sensory descriptors.a

a Sensory descriptors not showing any significant correlation with NMR signal are excluded.
+and � signs indicate positive and negative correlations (R2 > 0.5), respectively.
⁄ppm reported in bold are relative to the most intense signals.
⁄⁄alk stands for alkyl chain.

Table 2
Description and statistical summary of the OPLS models constructed based on NMR data.a

Variable Ab Nc R2X(cum)d R2Y(cum)d Q2(cum)e

Tomato 2 18 0.86 0.95 0.82e

Bitter 4 18 0.91 0.98 0.65e

Pungent 1 18 0.84 0.76 0.52e

Rosemary 5 18 0.92 0.99 0.43e

Artichoke 1 18 0.83 0.56 0.42
Artichoke excluding products 4, 5 and 17 2 15 0.86 0.93 0.71e

Sweet 1 18 0.83 0.73 0.39e

Sweet excluding product 11 1 17 0.82 0.80 0.72e

Grassy 2 18 0.87 0.82 0.39e

Product 1 and 5 excluded 9 16 0.96 1.00 0.72e

Fruity 1 18 0.83 0.55 0.33e

Leaf excluding products 11, 12, 17 and 18f 3 14 0.88 0.93 0.53

a No significant OPLS model could be constructed for almond and apple tastes, that are excluded from the table.
b A number of orthogonal components.
c Number of samples included in the model.
d R2X(cum) and R2Y(cum) = The cumulated fraction of the variance in the parameter explained by the model.
e Q2Y(cum) = the cumulative predicted fraction of the variation of the parameter as determined by cross-validation. Q2Y(cum) values above 0.4 are considered as good

predictors.
f Leaf taste can be well predicted (Q2(cum) > 0.5) only excluding product 11, 12, 17 and 18.
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anticorrelation to sweet taste (R < �0.6), which displays the in-
verse profile. Tomato and rosemary tastes also show a strong anti-
correlation (R = �0.75) and display inverse profiles relative to each
other. Grassy and tomato taste display similar profiles without
being significantly correlated.

In order to more precisely determine which signals are
correlated to which sensory descriptor, the signals displaying cor-
relation above R2 > 0.5 with the OPLS scores for the sensory
descriptors were identified (Table 3).

Unfortunately, not all signals reported in Table 3 could be
unambiguously assigned and for many of those only a tentative
assignment can be done. Thus, signals at dH 9.70 could be assigned
to the hexanal (Mannina, Patumi, Proietti, Bassi, & Segre, 2001;
Sacchi et al., 1997). Signals at dH 9.58, dH 9.55 and dH 6.84 could
be assigned to 4-hydroxy-trans-alk-2-enal molecules (where alk
stands for alkyl chain), alk-2,4-dienals and trans-alk-2-enals,
respectively (Sacchi et al., 1997). Signals around dH 9.10 could also
be tentatively assigned to protons of the dialdehyd form of seco-
iridoids, and signals at dH 6.5–6.8 to phenyl alcohols moieties
(tyrosol and hidroxytyrosol) of oleuropein and ligstroside aglycons
(Christophoridou & Dais, 2009). Finally, the signal at dH 9.45 is the
only one that can be unambiguously assigned to the aldehyde pro-
ton of the trans-2-hexenal (Mannina et al., 2001; Sacchi et al.,
1997).

As expected, this further in-depth inspection of the OPLS data
confirmed the qualitative evaluation and allowed us to retrieve
much more information, especially regarding the less intense sig-
nals. As mentioned above the taste bitter, pungent and artichoke
possess a very similar chemical fingerprint. However, they seem
to be differentiated by the signals at dH 9.21 and 9.31 ppm. Sweet
is basically the inverted image of bitter, pungent and artichoke
tastes except for the signals at dH 9.70, 8.19, 7.88, 6.94, 6.69 and
6.63 ppm. Tomato and grassy are very similar to each other, and
they differ only for the signal at dH 9.55, 9.11, 9.09, 8.95 and
8.91 ppm. Fruity is almost superimposable to grassy taste except
for signals at dH 9.55, 9.39, 9.25, 9.21 and 8.95 ppm.

More in general, as for the tentatively assigned signals, the lack
of hexenal seems to increase sweet, tomato, grassy and fruity
tastes, whereas the increment of its concentration increases the
perception of leaf and rosemary tastes. Secoiridoids, trans-alk-e-
enals and 4-hydroxy-trans-alk-2-enal are in a way related to the
sweet/bitter relationship of the EVOO.

Finally, Morales, Alonso, Rios, and Aparicio (1995) proposed
that the trans-2-hexenal (dH 9.45 ppm) correlates to fruity taste
of the olive oil. Here we find the same correlation. However, we
widen this observation suggesting that this aldehyde is positively
correlated to grassy and tomato tastes as well.

4. Conclusions

Extra-virgin olive oil (EVOO) has received increasing attention
over the world for their unique nutritional and healthy properties
and extraordinary flavor and taste.

Nuclear magnetic resonance spectroscopy (NMR) has been ap-
plied to olive oil analysis since 1987 (Sacchi, Addeo, Giudicianni,
& Paolillo, 1989). In the last 20 years several applications have
been developed mainly applying carbon-13 and proton NMR
(Sacchi et al., 1989–1991, 1996–1998; Sacchi, 2001; Mannina
et al., 2001, 2003; Zamora, Gomez, Dobarganes, & Hidalgo, 2002;
Zamora, Navarro, & Hidalgo, 1994). The recent development of
NMR spectrometers (high field, cold-probe) and their performance
in term of both resolution and sensitivity open new perspectives in
the application of this powerful analytical technique in the analysis
of EVO oil.

The aim of this work was to explore the analytical potentiality
of the NMR spectroscopy as ‘‘magnetic tongue’’ in the analysis of
extra-virgin olive oil (EVOO), with particular attention to the quan-
titative measure of minor compounds related to the sensory
description. Particularly, the phenol and aldehyde NMR signals al-
lowed a first prediction of sensory characteristics of EVOO.

The reported results are very promising and pave the way to a
more careful analysis of other spectral regions on a wider number
of oil samples.
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Supplementary Material 
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Table S1. Quantitative Descriptive Analysis results. 

 fruity leaf grassy bitter pungent sweet almond artichoke apple tomato rosemary 

1 4.5 3.5 1.5 4.5 5.5 3 3 3 1.8 3.3 0 

2 5.5 3 3.8 3.5 5.0 3.5 3.5 3.5 2 4 0 

3 6.0 4.1 5.1 4.4 4.8 4.3 3.5 3.0 3.5 4.5 0 

4 7.0 4.0 5.5 5.3 5.0 3.5 2.8 4.3 3.0 5.5 0 

5 6.1 3.3 5 4 4.5 3.9 4.3 3.3 4.1 0 0 

6 4 2.5 2.2 3.4 3.9 4.2 3.38 1 2 0 2.5 

7 4.8 3.2 3.5 5.0 4.9 3.8 3.5 1.7 3.0 0.0 4.0 

8 6 1.7 4.3 4 4.5 4 4.5 2.5 2.3 4.3 0 

9 5.8 3.5 4.5 6 5 3 3.1 3.1 3 3.5 0 

10 4.7 3.8 3.3 3.4 2.5 3.8 3.5 1.5 3.5 2 0 

11 4 1.3 2.8 3 3.5 5.5 3.5 2.4 1.3 3 0 

12 5.5 4.5 3.5 5.0 4.5 3.0 3.5 2.3 0 0 4.0 

13 7.0 4.5 5.0 6.0 5.2 2.5 2.3 3.5 0 4.2 0 

14 6.1 2.8 4.7 5.6 4.8 2.8 4 2.5 2.5 4 0 

15 4.5 1.3 3.5 2.5 3 5.3 3.5 0 0 0 3 

16 4 1 3.2 3.5 3.6 4.2 3.1 1 2.5 2 0 

17 5.5 3.5 4 3.2 3.9 5.0 3.5 0 3.4 2 0 

18 6.0 5.0 2.3 3.6 3.5 5.0 2.6 2.0 0 0 5.0 

!
!
!
!
!
Table S2. Cumulated R2 and Q2 values for each variable in the PCA model. 

Taste R2(cum)* Q2(cum)** 
fruity 0.67 0.41 
leaf 0.62 0.25 
grassy 0.58 0.22 
bitter 0.80 0.68 
pungent 0.66 0.45 
sweet 0.64 0.40 
almond 0.48 -0.07 
artichoke 0.71 0.54 
apple 0.56 0.12 
tomato 0.64 0.37 
rosemary 0.75 0.32 

*R2(cum) indicate how well the variation of the variable is explained. 
**Q2(cum) indicate how well the variable can be predicted. 
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Use of NMR in profiling of cocaine seizures
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dDepartment of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark

1. Introduction

Cocaine is the purification product of coca paste, an extract of
the leaves of the coca bush, where it is found as a natural alkaloid.
In addition to cocaine, which is the main alkaloid, coca paste
contains also small percentages of other compounds, mostly
alkaloids [1], here named ‘‘minor components’’. The amount and
the kind of these compounds depend on the specific cultivar and on
the environment where the plant has been cultivated. Interesting-
ly, the procedures used for extraction and purification of the
cocaine are not totally efficient, so that small amount of minor
components are found also in trafficked cocaine samples.
Therefore, the presence of these minor compounds is very
dependent of the ‘‘history’’ of the cocaine sample and they can
be considered a ‘‘fingerprint’’ of that sample. A careful analysis of
this fingerprint can provide very important information about
cocaine origin, or more simply allow the identification of a given
consignment as well as the area and period in which that
consignment has been trafficked. Minor components may have
forensic significance, since the origin of cocaine samples can, in
principle, be determined through the analytical determination of
their presence or absence [2].

Although a large array of techniques for the analysis and
identification of cocaine is available, the GC–MS technique
currently dominates forensic analysis [3]. Nevertheless, sometimes
this technique requires a derivatization and a chromatographic
separation. Unfortunately, not all molecules are amenable to
derivatization, and once derivatized, analytes could not be
sufficiently volatile or stable for GC separations. Nuclear magnetic
resonance (NMR) spectroscopy represents one of forensic sciences’
most versatile tools [4], since it represents a unique methodology
for performing identification and quantification at the same time
without any derivatization. In addition, NMR does not require a
high purity reference standard for accurate quantitation of the
target compound and it does not have a medium which can lead to
solute adsorption effects and imprecision of analysis.

The determination of the origin of illicit cocaine samples seized
by law enforcement is always the focus of intense investigation
aimed at identifying the trafficking routes. In fact, drug trafficking
is an acute problem compounded by judicial rules and by
difficulties in the exchange of data, due to data protection
regarding people and investigative processes. However, seized
drugs can be easily compared in order to provide information
without interfering with the normal investigative processes. The
considerable quantities of seized drugs allow data collection that
can form a useful basis for such procedures. The results of such
comparisons may provide key evidence in the investigations.

In the present study, a strategy based on 1H NMR spectral
analysis applied in conjunction with multivariate analysis is
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proposed. This investigation allows determining linkage between
cocaine samples seized at different times and different places in
Naples (Italy) to indicate common origin or distribution channel,
which, combined with traditional information, can improve
investigation strategies.

2. Materials and methods

2.1. Materials

54 chlorohydrate cocaine samples were seized by the Police Department of

Naples in different areas of Naples county during the year 2006.

2.2. NMR spectroscopy

2 mg of each sample were dissolved in 600 mL CD3OD and placed in 5 mm NMR

tubes without any preliminary treatment. 1H NMR spectra were acquired at 25 8C
with a 700 MHz Varian Unity Inova spectrometer using a 5 mm 1H{13C/15N} triple

resonance probe. The 1H NMR measurements were carried out with 1000 transients

and 32k complex data point. In order to retrieve quantitative information, the

recycle time was set to 5 s, and a 458 pulse angle was used.

2.3. GC–MS

Seized samples were dissolved in absolute ethyl alcohol (Carlo Erba Reagenti,

Italy) to a concentration of 1 mg/mL. GC was performed with an Agilent 6890A gas

chromatograph equipped with a quadrupole mass-selective detector (MSD) Agilent

5973N (Agilent Technologies). The MSD was operated in the electron ionization (EI)

mode, with an ionization potential of 70 eV, a scan range of 40–450 amu. The GC

was fitted with a 30 m � 0.25 mm ID fused-silica capillary column coated with

0.25 mm 5% diphenyl–95% dimethylpolysiloxane stationary phase (HP5-ms, J&W).

The oven temperature was programmed as follows: initial temperature, 180 8C;
initial hold, 2 min; program rate, 10 8C/min, 270 8C; hold, 2 min; 10 8C/min; 300 8C
final temperature; hold, 2 min (run time 18 min). Column flow: 1 mL/min. The

injector was operated in the split mode (10:1) at 280 8C. Injection volume 1 ml. The

MSD source was operated at 230 8C.

2.4. NMR data reduction and processing

The spectra were processed using iNMR software (www.inmr.net). An

exponential line broadening of 0.5 Hz was applied to the free-induction decay

prior to Fourier transformation. All spectra were referenced relative to external

sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS), phased and baseline cor-

rected. Data reduction was accomplished by dividing the spectrum into 0.005 ppm

regions (bins) over which the signal was integrated to obtain the signal intensity.

This was done in order to minimize artifacts due to small variations in peak position,

and to reduce the number of variables without loosing spectral information. Only

the spectral region between 0.0 and 8.5 ppm (excluding the region around the

solvent signals between 3.29–3.33 and 4.79–4.83 ppm) was considered for the

study (see Section 3). The integrals were normalized to the integral of the cocaine

triplet at dH 7.65 ppm (H40) in order to suppress trivial separation based on

variations in the amount of sample.

Fig. 1. Comparison of an expanded region of four samples of seized cocaine. (a) Example of a sample of pure cocaine. Asterisks indicate cocaine signals. (b) Sample having

lidocaine as cutting agent. (c) Sample having procaine as cutting agent. (d) Sample having procaine and phenacetin as cutting agents.

Fig. 2. HCA dendrogram based on NMR data, showing similarities between samples. Samples falling within the same group are indicated with the same color. The dendrogram

is calculated with Ward clustering method and sorted by size. Area (A, B, C and D) and quarter of the year (I, II, II and IV) of seizure are also reported. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
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2.5. Statistical analysis

Statistical analysis was performed using Simca-P 13.0 (Umetrics, Umeå,

Sweden). The number of principal components (PCs) in the Principal Component

Analysis (PCA) [5] was determined by cross-validation. The model used was

estimated using all 54 samples. The dataset was pareto-scaled [6], i.e. each of the

values in each bin were divided by the square root of the standard deviation for all

the values in the bin, and centered. Hierarchical cluster analysis (HCA) was carried

out by using the Ward clustering method [7]. Partial least-squares regression

discriminant analysis (PLS-DA) was performed to explore the ability of the NMR

data to discriminate between classes of samples [8]. The quality of the models was

described by R2 and Q2 values. R2 is defined as the proportion of variance in the data

explained by the models and indicates the goodness of fit. Q2 is defined as the

proportion of variance in the data predictable by the model and indicates

predictability [8].

The model validation was performed using the permutation test [9], in which a

total of 400 models were calculated by randomizing the order of Y variables in the

corresponding PLS-DA models. The obtained Q2 and R2 values, describing the

predictive ability and the reliability of the fitting, respectively, were plotted and

compared with the Q2 and R2 values obtained from the real model.

Statistical Total Correlation Spectroscopy (STOCSY) analysis was performed on

the whole 1H NMR data set of the 54 samples, to obtain the correlations among the

constituents, using a cutoff value r > 0.9 for correlation coefficient.

3. Results and discussion

Each seized sample has been analyzed by 1H NMR without any
preliminary treatment. It was easy to detect the main signals
belonging to the cocaine hydrogens (see Table S1 in Supplemental
Materials). Nevertheless, other signals were present in the spectra.
These signals could be attributed to the minor components (i.e.
norcocaine, tropacocaine, cis- and trans-cinnamoylcocaine, ecgo-
nine and ecgonidine methyl esters) coming from the extraction
and purification processes of the cocaine and/or cutting agents
(adulterant/diluent) that could be mixed to the cocaine samples
before drug dealing (Fig. 1). The analysis of cutting agents can be
used as an investigative support, since they can be easily detected
and quantified by a simple 1H NMR spectrum. For example, their
analysis can be used to identify the specific cutting agents being
used in a given area (or period) by clandestine laboratories.
However, since the main goal of this investigation is to propose a
strategy to determine a common origin and/or a distribution
channel of the illicit drug, adulterants or diluents are not useful for
our purpose since different local pushers may have cut the same
cocaine consignment in different ways. On the other hand, as
mentioned above, the entire set of signals belonging to the minor
components can be considered a ‘‘fingerprint’’ of that sample. Thus,
a careful analysis of this fingerprint can provide very important
information about cocaine origin, or more simply allow the
identification of the areas and period in which a given consignment
of drug has been trafficked. Therefore, the first step of the work was
the identification of spectral regions of the 1H NMR spectrum
containing information related only to the minor components,
without interference from cocaine and adulterant/cutting agent
signals.

With this aim, the STOCSY analysis method has been applied
[10]. This technique can be used for determining metabolic
connectivity between different molecules as well as for structural

Table 1
Spectral ranges containing clustering information.

Range ppm

1 0.86–0.96

2 1.50–1.56

3 5.90–5.93

4 6.48–6.52

5 7.31–7.34

6 7.61–7.63

7 7.68–7.72

Fig. 3. PCA score (panels a and b) and loading (panels c–e) plots. Panels (a) and (b)

show the PC1–PC2 and PC1–PC3 score plots. Panels (c), (d) and (e) show the PC1,

PC2 and PC3 loading plots respectively. Samples are colored according to HCA

analysis in Fig. 2.
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assignment in NMR spectra of complex mixtures. STOCSY takes
advantage of the multicollinearity of the intensity variables in a set
of spectra (in this case the 54 1H NMR spectra) to generate a
pseudo-2D NMR spectrum, which displays correlation among the
intensities of various peaks across the whole spectrum. In the
STOCSY plot (see Fig. S1 in Supplemental Materials), correlations
occurring from a single molecule (structural correlations) are
present, as well as the intermolecular ones (non structural
correlations) leading to the identification of substances whose
signal intensities increase and decrease simultaneously with the
first molecule. Here, only the structural correlations were
considered. Thus, it was possible to identify all the signals of
cocaine and cutting agents with the help of literature data [11]. The
signals for the following agents were detected: lidocaine,
phenacetin, diltiazem, sugars, procaine, MDMA (3,4-methylene-
dioxy-N-methylamphetamine), paracetamol and caffeine. Hence,
all the spectral regions in which those signals were present were
excluded, and all the regions that only contain signals of the minor
(fingerprint) components were considered in the analysis. Spectral
regions without signals have also been excluded. Overall, only
seven spectral intervals (Table 1) containing signals of minor
components were identified.

In order to improve the comparability of the spectra, they have
been normalized. Since the amount of the minor components is
somehow related to the amount of cocaine (which is the main
component), the 7 spectral intervals of each sample were
normalized with respect to the area of a reference cocaine peak.
Particularly, the cocaine triplet at dH 7.65 ppm (H40) has been used,
since it does not overlap with other signals of any of the 54
samples. Such normalization provided the relative quantity of the
fingerprint constituents for each sample. The resulting data matrix,
with columns representing the normalized signal intensities and
rows representing the different samples, was then used for the
multivariate analysis.

One of the goals of this investigation is to find similarities
among samples, in order to cluster them and to determine the
number of drug consignments trafficked during a given period of
sampling. Thus, hierarchical cluster analysis (HCA) has been
performed on the data matrix. This analysis finds clusters of
samples based on intensities of the signals present in the selected
spectral regions. Before clustering, all the dataset have been
pareto-scaled and centered. Pareto scaling, i.e. dividing the (mean-
centered) variables (points) by the square root of their standard
deviation, is applied to reduce the weight of the high-intensity
components, while reducing the weight of noise in the model. The
resulting HCA dendrogram (Fig. 2) shows that the 54 samples are
gathered in 5 main groups that can be considered as 5 different
drug consignments. In order to get insights about the reasons for
this clustering, principal component analysis (PCA) was performed

on the same dataset (Fig. 3). Three principal components (PCs)
accounting for 67% (PC1 33%, PC2 19%, PC3 15%) of the variation
were identified. These numbers are in the usual range for NMR
data. The explained variance is not so high because the NMR data
contains noise. The plots of their scores (Fig. 3a and b) show the
positioning of the samples according to their chemical character-
istics and allowed the identification of the most important NMR
signals for sample differentiation. PCA indicates that group 1
substantially differs from groups 2, 3, 4 and 5 along PC1. According
to the PC1 loading plot (Fig. 3c), group 1 differs from the other
groups mainly for the presence of tropacocaine, whose hydrogens
resonate at dH 7.32 ppm [12]. The presence of this minor
component in the samples belonging to group 1 has been also
established by GC–MS analysis performed on the same samples. On
the other hand, groups 2, 3, 4 and 5 are separated along PC2. The
PC2 loading plot indicates that these groups mainly differ for the
content of cis- (dH 7.62 and 5.91 ppm) and trans-cinnamoylcocaine
(dH 6.50 ppm) [13]. Furthermore, the four groups are also
separated by a different content of unassigned molecules having
signals at dH 0.95, 0.93 and 0.90 ppm. The samples with high PC2
scores are characterized by higher concentrations of cis- and trans-
cinnamoylcocaine, and of the molecule having signal at dH
0.90 ppm, and lower concentrations of the molecules having
signals at dH 0.95 and 0.93 ppm. PC3 is also governed by the same
resonances. Indeed, the loading plots of PC2 and PC3 (Fig. 3d and e)
are very similar except that the signal at 0.90 ppm has the same
sign as the signals at 0.93 and 0.95 ppm in PC3.

In order to determine how well the identified consignments of
drug can be predicted by NMR, predictive models for the different
groups were computed, using the Projection to Latent Structures
Discriminant Analysis (PLS-DA) (Fig. S2 (a and b) in Supplemental
Materials). The model gave prediction scores (Q2(cum) > 0.5) for
all five groups (Fig. S2 (c) in Supplemental Materials). The validity
of the PLS-DA model was assessed with the use of the permutation
test, in which a total of 400 models were calculated using randomly
permuted Y variables (Fig. S2 (d) in Supplemental Materials). The
obtained Q2 and R2 values, describing the predictive ability and the
reliability of the fitting, respectively, were plotted and compared
with the Q2 and R2 values obtained from the real model. The
substantial decrease of both parameters Q2 and R2 (vertical axis
interception point of the Q2 and R2 regression line resulted both
with negative values) enforced the statistical validity of the
obtained PLS-DA model. In order to further validate the PCA and
PLS-DA models, five PCAs and five PLS-DAs additional models have
been computed. Each of these models has been computed holding
out 10 randomly selected samples at the time. All models were
characterized by high predictive coefficients (Q2 > 0.5), indicating
that the original models well describe the distribution of the
samples.

Fig. 4. PCA score-plots annotated with (panel a) year quarter and (panel b) area of seizure.
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In order to retrieve investigative information, all the samples
have been labeled according to place (Figs. 2 and 4b) and date
(Figs. 2 and 4a) of seizure. Based on information from Naples Police
Department, four macroareas (A, B, C and D) of Naples county have
been considered, in a way that each macroarea is controlled by a
single criminal organization (clan). The samples have also been
labeled according to the quarter of the year in which they were
seized (I, II, II and IV) (Fig. 4a). These labels reveal a very interesting
structure of the data. For example, samples of group 1 (green) have
been seized mainly in area D of the county. Analogously, samples of
groups 2 (blue), 3 (red), 4 (yellow) and 5 (cyan) are seized mainly in
areas A, A/C, C, and B, respectively. This may suggest that each clan
stocks up with drug consignments independently from the others
and that it actually controls a given area in an almost exclusive
manner. It is also possible to monitor the samples that, for some
reason, move from the area where most of the consignment to
which they belong has been sold. For example, this could be due to
a reselling of the cocaine sample or to a simple moving of a
consumer from the area of purchase to the one of consumption.

The consignments were also trafficked in different periods.
Thus, group 1 (green) have been sold mainly in the first (I) quarter,
with only a couple of samples in the second one (II) (Fig. 4a).
Groups 2, 3 and 4 have been trafficked in the third (III) and forth
(IV) quarters and, finally, group 5 (blue) has been sold all year long.

4. Conclusion

In the course of a police investigation on a cocaine distribution
network, the investigators obtain large amounts of circumstantial
information. On the basis of those data, they infer and define
links that may exist between different persons active within a
distribution network. Linkages revealed using such traditional
methods of investigation can be corroborated and even substanti-
ated by the detection of chemical links, which can, in turn, be used
to reveal previously undetected investigative links. In this frame,
the potentiality of the NMR in combination to the statistical
multivariate analysis is demonstrated to potentially ameliorate for
police investigations. In particular, the spectral regions that, at
least in this investigation, can be used for grouping of seized
cocaine samples have been defined: dH 0.86–0.96, 1.50–1.56, 5.90–
5.93, 6.48–6.52, 7.31–7.34, 7.61–7.63, 7.68–7.72 ppm. These
regions were very useful in providing information about place
and date of trafficking. The statistical multivariate analysis allowed
also the identification of key minor components responsible of this
grouping.

The results reported here indicate that the proposed analysis
can assist tactically (evidential/judicial) and strategically (intelli-
gence) the investigators. This can contribute to the establishment
of distribution and/or trafficking links between multiple seized

samples that have been obtained at different locations or in the
possession of different individuals. Furthermore, the fact that the
relative ratios of the minor components in coca leaf are closely
associated with plant varietal, cultivar and agronomic differences
can be exploited for the assignment of geographical origin, at least
when suitable authentic databases is available.
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Supplemental Materials 
 

 
Fig. S1. STOCSY plot for the 1H NMR spectra of cocaine samples. Correlation matrix is calculated 
from 54 spectra and is plotted as a contour plot with r > 0.9. 
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Fig. S2. (a, b) PC1-PC2 and PC1-PC3 score plots of PLS-DA. (c) Cumulated R2 and Q2 values for 
each variable of the training set (Y for PLS). R2 indicates how well the variation of a variable is 
explained, while Q2 indicates how well a variable can be predicted. The latter is estimated by cross 
validation. (d) Permutation test in which 400 models were calculated by randomizing the order of Y 
variables. The obtained Q2 and R2 values, describing the predictive ability and the reliability of the 
fitting, respectively, were plotted and compared with the Q2 and R2 values obtained from the real 
model. 
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Table S1. 1H and 13C NMR assignments of cocaine. 
 

 
 
position' 1H'(ppm)' 13C'(ppm)'
1' 4.27! 65.2!
2' 3.60! 47.2!
3' 5.59! 64.8!
4' 2.43! 33.7!
5' 4.07! 64.4!
6' 2.25,!2.46! 23.5!
7' 2.23,!2.53! 24.6!
8' 2.92! 39.4!
9' −! 173.6!
10' −! 166.2!
11' 3.66! 53.3!
1’' −! 130.0!
2’' 7.95! 130.1!
3’' 7.50! 129.5!
4’' 7.65! 134.6!
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a b s t r a c t

The growing amount of literature about G-quadruplex DNA clearly demonstrates that such a structure is
no longer viewed as just a biophysical strangeness but it is instead being considered as an important
target for the treatment of various human disorders such as cancers or venous thrombosis. In this
scenario, with the aim of finding brand new molecular scaffolds able to interact with the groove of the
DNA quadruplex [d(TGGGGT)]4, we recently performed a successful structure-based virtual screening
(VS) campaign. As a result, six molecules were found to be somehow groove binders. Herein, we report
the results of novel NMR titration experiments of these VS-derived ligands with modified quadruplexes,
namely [d(TGGBrGGT)]4 and [d(TGGGGBrT)]4. The novel NMR spectroscopy experiments combined with
molecular modelling studies, allow for a more detailed picture of the interaction between each binder
and the quadruplex DNA. Noteworthy, isothermal titration calorimetry (ITC) measurements on the
above-mentioned compounds revealed that 2, 4, and 6 besides their relatively small dimensions bind
the DNA quadruplex [d(TGGGGT)]4 with higher affinity than distamycin A, to the best of our knowledge,
the most potent groove binder identified thus far.

� 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

Telomeres are special structures that adorn the end of all
eukaryotic chromosomes. They are an ensemble of proteins (shel-
terin proteins) and noncoding DNA sequence which consists, in all
vertebrates, of 50-(TTAGGG)n-30 repeats, followed by a G-rich
single-stranded 30-overhang (G-tail) [1]. Telomeres are funda-
mental for the protection of chromosomal ends from unwanted
recombination and degradation and at the same time they allow the
chromosomes ends to be distinguished from chromosome breaks
thus avoiding ‘repair’ processes that would result in chromosome
end-to-end fusions. It is well-known that telomeric DNA in normal
somatic cells progressively shortens at each round of cell division as
a consequence of the inability of DNA polymerase to fully replicate
the 30ends. Thus, when the Hayflick limit is reached, cells stop
replicating and enter a senescence phasewhich precedes apoptosis.

Therefore, telomeric DNA functions also as a biological clock, at least
in healthy cells. Conversely, cancer cells are able to maintain telo-
meric DNA length constant through the expression of telomerase
enzyme which catalyses the synthesis of G-rich repeats at 30 [2].
Telomerase is indeed over-expressed in the majority of human
cancers and now it is a validated target for the search of novel
effective antineoplastic agents [3]. Besides, the well-known telo-
merase inhibitors which are specific for the catalytic subunit,
a novel class of telomerase inhibitors, known as G-quadruplex sta-
bilisers, is emerging [4], and they arise from the evidence that
the G-tail of the telomeric DNA can form unusual structures termed
G-quadruplexes. G-quadruplex structures comprise stacks of
G-tetrads, which are the planar association of four guanines in
a cyclic Hoogsteen hydrogen-bonding arrangement [5]. The
formation of quadruplex structures at telomeric DNA level results in
telomerase inhibition since quadruplex DNA is not recognised by
the single-stranded RNA component of the telomerase enzyme. But,
more importantly, the quadruplex structure can be recognised itself
as DNA damage signal thus instantly invoking apoptosis [6]. At
present, a growing number of quadruplex binders exist and they
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mostly stack on the terminal quartet surface (end-stackers) [7]. The
first evidence that the grooves of a quadruplex structure can be
recognised by an organic molecule came approximately three years
ago from our own NMR work revealing that, distamycin A can bind
in a dimeric form to the two opposite grooves of the quadruplex [8].
Whereas the end-stacker ligands are the major part of all known
quadruplex binders and their number is growing each day, quad-
ruplex groove binders represent a quite unexplored and valuable
field. In fact, grooves in duplex and quadruplex DNA are chemically
and conformationally different, and since groove dimensions differ
according to the type of quadruplex, groove binders can in principle
be selective for a particular quadruplex topology. Thus, with the aim
of finding brand new molecular scaffolds able to interact with the
groove, starting from the quadruplex structure found in complex
with distamycin A, we recently performed an extensive structure-
based virtual screening (VS) campaign [9]. As a result, six mole-
cules (1e6, Fig.1)were found to be somehowgroove binding agents.
Herein, we have performed additional NMR titrations of the six
compounds with modified quadruplexes, namely [d(TGGBrGGT)]4
and [d(TGGGGBrT)]4. These NMR spectroscopy experiments
combined with molecular modelling studies, provided a more
detailed picture of the interactions between each binder and the
quadruplex DNA. Noteworthy, isothermal titration calorimetry (ITC)
measurements on the above-mentioned compounds revealed that
2, 4, and 6 despite their relatively small dimensions, are more
effective in groove binding with respect to distamycin A, to the best
of our knowledge, themost potent groove binder identified thus far.

2. Material and methods

2.1. Oligonucleotide synthesis

The oligonucleotide d(TGGGGT) was synthesised on a Millipore
Cyclone Plus DNA synthesizer using solid phase b-cyanoethyl
phosphoramidite chemistry at 15 mmol scale. Commercially avail-
able 50-DMT-aminoprotected-8-bromodeoxyguanosine-30-phos-
phoramidite was used for the preparation of the modified
oligonucleotides. The oligomers were detached from the support
and deprotected by treatment with concentrated aqueous
ammonia at 55 �C for 12 h. The combined filtrates and washings
were concentrated under reduced pressure, redissolved in H2O,
analysed and purified by high-performance liquid chromatography
(HPLC) on a Nucleogel SAX column (MachereyeNagel, 1000-8/46);
using buffer A: 20 mM KH2PO4/K2HPO4 aqueous solution (pH 7.0),
containing 20% (v/v) CH3CN; buffer B: 1 M KCl, 20 mM KH2PO4/
K2HPO4 aqueous solution (pH 7.0), containing 20% (v/v) CH3CN;
a linear gradient from 0 to 100% B for 30min and flow rate 1ml/min
were used. The fractions of the oligomer were collected and
successively desalted by Sep-pak cartridges (C-18). The isolated
oligomers proved to be >98% pure by NMR.

2.2. Nuclear magnetic resonance experiments

The quadruplex NMR samples were prepared at a concentration
of 2 mM (8 mM single strand concentration), in 0.6 ml (H2O/D2O

Fig. 1. Structure of the newly identified quadruplex binders as resulted from the virtual screening experiment [9].
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9:1) buffer solution having 10 mM KH2PO4, 70 mM KCl, 0.2 mM
EDTA, pH 7.0. NMR spectra were recorded with Varian UnityINOVA
700 MHz spectrometer. 1H chemical shifts were referenced relative
to external sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS).
1D proton spectra of the sample in H2O were recorded using
pulsed-field gradient DPFGSE [10,11] for H2O suppression. Phase-
sensitive NOESY spectra [12] were recorded with mixing times of
100 and 200 ms (T ¼ 25 �C). Pulsed-field gradient DPFGSE [10,11]
sequence was used for NOESY experiments in H2O.

NOESY experiments were recorded using STATES-TPPI [13]
procedure for quadrature detection. The time domain data con-
sisted of 2048 complex points in t2 and 400 fids in t1 dimension. A
relaxation delay of 1.2 s was used. The NMR datawere processed on
iMAC running iNMR software (www.inmr.net).

2.3. Molecular modelling

The binding modes of compounds 1e6 were studied by means
of docking experiments with the aid of Autodock4 (AD4) [14] and
using the [d(TGGGGT)]4 G-quadruplex DNA structure as deposited
in the Protein Data Bank (PDB code 1S45) as macromolecules. The
3D structures of all the compounds were generated with the
Maestro Build Panel [15]. For the purpose of docking each molecule
has been constructed in the protonation state suggested by the
MarvinSketch 5.2.5.1 package (http://www.chemaxon.com) using
a pH 7.0 accordingly with the NMR titrations. The target DNA
structures were prepared through the Protein Preparation Wizard
of the graphical user interface Maestro 9.0.211 [15] and the OPLS-
2001 force field. Water molecules were removed, hydrogen atoms
were added and minimisation was performed until the RMSD of all
heavy atoms was within 0.3 Å of the crystallographically deter-
mined positions. Then the constructed compounds and DNA
structures were converted to AD4 format files using ADTgenerating
automatically all other atom values. In order to allow the ligands to
explore all the possible search space, the docking area has been
centred on themass centre of the quadruplex structure and defined
by a box large enough to comprise the entire macromolecule.
Accordingly, grids points of 84� 84� 84with 0.375 Å spacing were
calculated around the docking area for all the ligand atom types
using AutoGrid4. 100 separate docking calculations were per-
formed for each binder. Each docking calculation consisted of
25 � 106 energy evaluations using the Lamarckian genetic algo-
rithm local search (GALS) method. A low-frequency local search
according to the method of Solis and Wets was applied to docking
trials to ensure that the final solution represents a local minimum.
Each docking runwas performed with a population size of 150, and
300 rounds of Solis and Wets local search were applied with
a probability of 0.06. A mutation rate of 0.02 and a crossover rate of
0.8 were used to generate new docking trials for subsequent
generations. The docking results from each of the 100 calculations
were clustered on the basis of root-mean square deviation (RMSD
2.0 Å) between the Cartesian coordinates of the ligand atoms and
were ranked on the basis of the free energy of binding. All docking
solutions were analysed for the coherency with NMR data and for
each compound, the lowest energy solution more in line with the
experimental data was further considered and subjected to energy
minimisation through the OPLS-2001 force field. All figures were
rendered using Chimera software package [16].

2.4. Isothermal titration calorimetry

The [d(TGGGGT)4] stock solution was prepared by dissolving the
lyophilised compound in 10 mM phosphate buffer with 70 mM KCl,
0.2mMEDTA, pH 7. The solutionwas annealed by heating at 95�C for
5 min and slowly cooling to room temperature. The concentration of

the dissolved oligonucleotide was evaluated by UV measurement at
95 �C, using asmolarextinction coefficient thevalue calculated by the
nearest-neighbour model [17] for the sequence d(TGGGGT). Stock
solutions of the six drugs were prepared by solubilising weighted
amounts in DMSO to a final concentration of 8 mM. The complexes
between the quadruplex and the drugs were prepared diluting the
drug stock solution into the quadruplex solution to get a final
DNA:drug molar ratio of 1:4.1 and a final DMSO concentration of 7%.
Distamycin A was solubilised in the same buffer used for the oligo-
nucleotide containing 7% of DMSO.

The titrations were carried out in 10 mM phosphate buffer,
70 mM, KCl, 0.2 mM EDTA, 7% DMSO, pH 7, at 293 K, using a high-
sensitivity ITC-200 microcalorimeter from Microcal (GE Health-
care). In each experiment, volumes of 2 mL of a 1.2 mM distamycin A
solution were added into a 50 mM solution of quadruplexeDNA
complex, using a computer-controlled 40-mL microsyringe, with
a spacing of 180 s between each injection. Each titration was cor-
rected for heat of dilution by subtracting the measured enthalpies of
the injections following saturation. Integrated heat data obtained for
the titrations were fitted using a non-linear least-squares mini-
misation algorithm to a theoretical titration curve, using the
MicroCal-Origin 7.0 software package from which the binding
parametersDH� (reaction enthalpychange inkcalmol�1),Kb (binding
constant in M�1), and n (stoichiometry) were derived. The entropic
contribution was calculated using the relationships DG� ¼ �RT$lnKb

(R 1.987 cal mol�1 K�1, T 293 K) and DG� ¼ DH��TDS�.

3. Results and discussion

3.1. NMR and molecular modelling studies

Using NMR, six molecules (1e6, Fig. 1) were found to be
potential groove binders: they cause an appreciable shift, amongst
others, of the signals of G3, G4, G5 and T6 of the parallel quadruplex
[d(TGGGGT)]4, indicating that the recognition process involves
mostly the 30 side of the grooves, as also computed by the virtual
screening calculations [9].

In order to get further insights into the binding mode of
compounds 1e6, we have acquired a number of NOESYexperiments
of the complexes of the six compounds with the quadruplex
[d(TGGGGT)]4. Unfortunately, as no diagnostic NOE cross-peak could
be retrieved for any complex, none of the three-dimensional struc-
tures at atomic level could be determined.

Thus,we decided to get amore detailed picture of the interactions
from theNMR titrationofmodifiedquadruplexes and frommolecular
docking calculations. As a result, we designed and synthesised
modified oligonucleotides, namely d(TGGBrGGT), d(TGGGBrGT) and
d(TGGGGBrT),wheredGBr is 8-bromo-20-deoxyguanosine, potentially
capable of forming quadruplex structures and possessing a bulky
group (bromine) at different positions of the grooves (G3,G4 andG5),
as this portion of the DNA should be involved in 1e6 recognition [9].
These modified quadruplexes would then be titrated with the six
molecules 1e6 and the results of the NMR titration profile analysed.
The rationalebehind these experiments derived fromthe assumption
that if these compounds interacted with the quadruplex groove
region, the presence of the bromine group should now prevent (or at
least limit) the ligand/DNA interactions.

Prior to these experiments, we tested the capability of
d(TGGBrGGT), d(TGGGBrGT) and d(TGGGGBrT), to form a quadruplex
structure [18]. Their NMR samples were prepared at a concentration
of 2 mM, in 0.6 ml (H2O/D2O 9:1) buffer solution having 10 mM
KH2PO4, 70 mM KCl, 0.2 mM EDTA, pH 7.0. These samples were then
annealed for 5e10 min at 80 �C and slowly cooled down to room
temperature, then 1H NMR spectra were recorded by using DPFGSE
pulse sequence for H2O suppression [10,11].
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The 1H NMR spectra (700 MHz, T ¼ 25 �C) of d(TGGBrGGT) and
d(TGGGGBrT) show the presence of four well defined singlets in the
region 11e12 ppm, ascribable to imino protons involved in Hoogs-
teen hydrogen bonds of G-quartets, as well as the presence of five
signals belonging to three guanine H8 and to two thymine H6
protons in the aromatic region. This indicates that a single well
defined quadruplex species is present in solution for both mole-
cules, consisting of four G-tetrads and possessing a fourfold
symmetry with all strands parallel to each other. In such a quad-
ruplex, each Br group faces the grooves and points outward. On the
other hand, the 1D 1H NMR spectrum of d(TGGGBrGT) shows the
presence of a great number of signals in the regions of imino and
aromatic protons, suggesting that d(TGGGBrGT) is affected by
structural heterogeneity, thus preventing its use in our experiments.
Hence, only the quadruplexes [d(TGGBrGGT)]4 and [d(TGGGGBrT)]4
were titrated with compounds 1e6 and the titrations monitored by
NMR. A comparison of resonances of protons of the uncomplexed
quadruplex and the complexed one has been performed. In partic-
ular, we report the Dd values (chemical shifts of the complex minus
free DNA) of aromatic, methyl and imino protons.

As far as compound 1 is concerned, the titration with unmodi-
fied quadruplex [d(TGGGGT)]4 led to a general shift of the moni-
tored signals (white bars in Fig. 2). On the other hand, the titration
of [d(TGGBrGGT)]4 causes a slight shift (light-grey bars in Fig. 2) of
the residues at the 30 edge of the quadruplex, namely G5-H8,
T6-H6/Me, and only of T1-H6/Me at 50 edge, whilst no appreciable
shift can be measured for the other signals. This means that the
bromine atom at the very centre of the groove did affect the binding
of compound 1, and that 1 can be confidently considered a groove
binder. Furthermore, the titration of [d(TGGGGBrT)]4 led to a severe
line broadening of all signals, making impossible to retrieve any
information from the spectra. This NMR phenomenon can be
interpreted assuming that the ligand is changing its binding pose
on the NMR time scale.

It is noteworthy that compounds 1e6 have been discovered
from a previous virtual screening campaign and in that study
Autodock4 program was used with a search area large enough to
enclose only one of the four identical grooves to avoid redundant
information [9]. However, this couldn’t cast out the possibility that
one or more of the selected molecules can also be able to bind to
other part of the target. Thus, herein, we present results of new
docking calculations where the search area has been enlarged to
comprise the entire surface of the quadruplex [d(TGGGGT)]4 with
the purpose of checking for the capability of the ligands to extend
their binding out of the groove. Regarding 1, docking calculations
showed that all solutions in the lowest energy families
(DG ¼ �6,2 kcal mol�1), were found to be anchored to the 30 side of
the groove in line with the above-mentioned NMR data (1 was
predicted in a groove binding mode 75 out of 100 time, see
Supporting information). As shown in Fig. 3a (and in Fig. S2a in
Supporting information), the amine group of 1 engages a H-bond
with the 40O of the T6 nucleoside, while the ligand carbonyl group
together with the ortho-hydroxyl group of the phenyl moiety forms
H-bonds with G5 base. Three H-bonds have been also detected
between 1 and the phosphate backbone. The above-described
binding pose has been found 25 out of 100 times (see Supporting
information).

Fig. 2. Dd values of aromatic (H6/H8), methyl (Me) and imino protons (NH) for
[d(TGGGGT)]4 (white bars), [d(TGGBrGGT)]4 (light-grey bars) and [d(TGGGGBrT)]4
(dark-grey bars). Shadowed columns gather resonance variation belonging to the same
residue. Asterisks indicate a severe line broadening of the monitored signals. Arrows
indicate the lack of bars due to the presence of bromine atoms.
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Surprisingly, compound 2 generates almost identical Dd values
in the titration with [d(TGGGGT)]4 and [d(TGGBrGGT)]4 (white and
light-grey bars, respectively, in Fig. 2), having a general perturba-
tion of the signals belonging to the 30 side of the groove. This can be
interpreted by assuming that the bromine atom does not affect the
binding of 2 suggesting that this compound should not preferen-
tially bind the very centre of the groove. On the other hand, the
titration of [d(TGGGGBrT)]4 (dark-grey bars in Fig. 2) led to
a marked shift of T6-H6/Me signals whereas only a slight shift of all
the other monitored signals can be observed. This indicates that 2
prefers to interact with the 30 edge of the quadruplex.

A clearer picture of the ligandequadruplex interaction could be
obtained from docking calculations using again the unmodified
quadruplex [d(TGGGGT)]4 as target. The calculations highly
converged towards one family of conformations (DG ¼ �7.4) (Fig. 3b
and Fig. S2b in Supporting information) in which the benzoisoqui-
nolinedione ring stacks on the surface of the 30 terminal quartet,
particularly between the T6 andG5 rings, and the rest of themolecule
inserts into the groove, where the main anchor point is represented
by the protonated nitrogen of the piperazine ring, which establishes
a charge reinforced H-bond with the phosphate backbone. This
binding mode is in agreement with the new NMR titrations per-
formed in this investigation indicating that 2 is actually characterised
by a mixed binding mode, providing both stacking and groove
binding interactions. A statistical graph of the binding modes
occurrence for compound 2 is reported in Supporting information.

Differently from 1 and 2, titration of compound 3 with
[d(TGGGGT)]4, [d(TGGBrGGT)]4 and [d(TGGGGBrT)]4 led to a general
shift of almost all signal (Fig. 2). However, the resonances of
[d(TGGGGT)]4 (white bars) shiftedmore and those of [d(TGGBrGGT)]4
and [d(TGGGGBrT)]4 less (light- anddark-grey bars, respectively). This
indicates that3does not possess awell definedbindingmode, so that,
when thegroove is unavailable by thepresence of thebromineatoms,
3 slides towards the 30 edge groove of the quadruplex; vice versa, in
the case of [d(TGGGGBrT)]4, the molecule is able to interact only
weakly with the available part of the groove. Docking calculations on
[d(TGGGGT)]4 suggest that the ligand binds the 30-end of the groove

(DG¼�8.2) (3was predicted in a groove bindingmode 87 out of 100
time, see Supporting information). As shown in Fig. 3c (and Fig. S2c in
Supporting information), twoH-bondswere found, the first between
the pyridine nitrogen of 3 and the T6 30OH group and the second
between thehydroxyl groupof the chromenone core and theG3NH2.
Hydrophobic contacts between the pyridine and the T6 rings were
also detected together with a charge reinforced H-bond established
by the protonated nitrogen of the piperazine ringwith the phosphate
backbone. The above-described binding mode has been found by
Autodock program 27 out of 100 time (see Supporting information).

Interestingly, compound 4 displayed different behaviours for the
three quadruplexes tested. With the quadruplex [d(TGGBrGGT)]4
(light-grey bars in Fig. 2), the titration provided higher Dd values for
the residues at the edges of the quadruplex with the respect of
unmodified [d(TGGGGT)]4 (white bars in Fig. 2). On the contrary,
titration of [d(TGGGGBrT)]4 caused major shift for the residue sitting
in the very centre of the groove (dark-grey bars). This means that
compound 4 can interact with the grooves, and, accordingly, when
the very centre of the groove is hindered, 4 binds the end sides of the
grooves, but it is able to bind the very centre of the grooves when
their 30 edges are unavailable. Docking calculations suggest two
binding poses especially in line with NMR data (Fig. 4a and b, and
Fig. S3a in Supporting information), where the molecule can either
interact with 50 residues (binding mode A, DG ¼ �8.2) or with the 30

end (bindingmode B,DG¼�7.9). Specifically, inA, the benzoquinone
ring establishes a pep interactionwith the T1 ring, while an H-bond
between the G2 NH2 group and the carbonyl moiety is detected. In B,
the two carbonyl moieties of the ligand are engaged in H-bonds with
G4 NH2 and T6 NH respectively. In both binding modes a charge
reinforced H-bond is observed between the protonated nitrogen of 4
and the phosphate backbone. Based on thisfinding and on the shift of
NMR signals observed for all residues forming the groove, a sliding
motion of 4 inside the groove can be proposed. Noteworthy, 100 out
of 100 runs propose 4 as groove binder (see Supporting information
for further details).

As far as compound 5 is concerned, the titration of [d(TGGGGT)]4
(Fig. 2, white bars) clearly indicates that 5, like the other selected

Fig. 3. Binding poses calculated by AD4 for compounds 1 (a), 2 (b) and 3 (c) in the quadruplex structure. DNA backbone is represented as white stick bonds. Ligands are depicted as
green sticks. H-bonds are represented as dashed blue lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 4. Two binding poses calculated by AD4 for compound 4 (a and b), and one for compound 5 (c) in the quadruplex structure. DNA backbone is represented as white stick bonds.
Ligands are depicted as green sticks. H-bonds are represented as dashed blue lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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compounds, prefers to bind the 30 edge of the groove. The titration of
[d(TGGBrGGT)]4 displays significant lower Dd values for the imino
protons (Fig. 2, light-grey bars), while the shifts of the signal of G4,
G5 and T6 remain substantially unchanged. On the other hand, the
titration of [d(TGGGGBrT)]4 indicates that 5 is still able to interact
with the 30 edge of the quadruplex probably via end-stacking
interaction. A mixed binding mode is therefore expected for
compound 5. In line with these data, docking calculations suggested
that in 5 the quinolone ring is adapted on the top of the 30-end
sandwiched between the T6 and G5 bases (Fig. 4c and Fig. S3b in
Supporting information), with the imidazo-pyrimidine moiety
extending towards the groove incipience and H-bondingwith the G5
NH2 group (DG ¼ �6.7). The above-described binding mode has
been proposed by the docking program 60 out of 100 times (see
Supporting information for more details).

Finally, compound 6 displays peculiar titration behaviours.
While the titration of the unmodified [d(TGGGGT)]4 showed
marked shifts of the G2, G3, G4 and G5 residues (Fig. 2, white bars),
the titration of [d(TGGBrGGT)]4 is instead characterised by very low
Dd values for all residues (light-grey bars). Furthermore, the titra-
tion of [d(TGGGGBrT)]4 mainly caused shifts of the residues G2, G3
and T6, along with a severe line broadening of the imino proton
signals (dark-grey bars, Fig. 2). This means that 6 does bind with the
grooves of the quadruplex, and, as in 4, the uniform perturbation of
all groove residues of the quadruplex [d(TGGGGT)]4, with respect to
the limited ligand size, suggests that a fast sliding motion of 6

inside the groove is also possible. Molecular docking calculations
also revealed that two molecules of 6 could in principle simulta-
neously anchor the two opposite ends of the groove although the 50

end is preferred (42 times out of 100) (Fig. 5a and b and Fig S3c in
Supporting information). Notably, in perfect line with the changes
experimentally observed for G2 and G5 aromatic protons signals,
the ligand alternatively forms H-bonds with G2 (DG ¼ �7.5) or G5
(DG ¼ �6.1) bases in the two reported binding modes (Fig. 5).
Finally, the two poses suggested by the docking program, in which
a pep interaction is formed with T1 or T6 ring, could somehow
account for the T6-H6 proton and T1-methyl signals shift.

3.2. Isothermal titration calorimetry measurements

In order to determine the binding affinity of the compounds 1e6
with the quadruplex [d(TGGGGT)]4, ITC titration experiments were
carried out [19].

Previously, we characterised the interaction of distamycin A
with the same quadruplex and revealed that four molecules of the
drug were accommodated in two opposite grooves of the quad-
ruplex; moreover, the thermodynamic signature of the binding
event suggested that the entropic contribution was the one driving
the complex formation [8]. An analogous study however was not
possible for the six new ligands identified with the virtual
screening, because their poor solubility in water prevented us from
performing canonical ITC experiments [19], in which a solution of
the quadruplex is titrated with a concentrated drug solution in the
identical aqueous buffer. As an alternative approach to investigate
the affinity of the new drugs for the DNA quadruplex, we carried
out competition/displacement experiments, by analysing the
ability of distamycin A to bind to the quadruplex in the presence of
another compound [20,21]. Despite the solubility concerns,
mixtures of the quadruplex and each of the six new drugs were
successfully prepared by solubilising the molecules in DMSO and
diluting them in a phosphate solution containing the quadruplex
(as described in the Methods); these complexes were then titrated
with distamycin A, and the outcome followed by ITC.

In Fig. 6 three representative ITC experiments are reported. First,
the interaction of distamycin A with [d(TGGGGT)4] was repeated in

Fig. 5. Two binding poses calculated by AD4 for compound 6. DNA backbone is rep-
resented as white stick bonds. Ligands are depicted as green sticks. H-bonds are
represented as dashed blue lines. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 6. Calorimetric analysis of the interactions of the quadruplex [d(TGGGGT)4] and its complexes with the drugs 5 and 6, with distamycin A. Raw titration data showing the
thermal effect of injecting distamycin A into a calorimetric cell containing the quadruplex alone (A), quadruplex with 5 (C) and quadruplex with 6 (E). The normalised heat for the
titrations, shown in B, D and F respectively, was obtained by integrating the raw data and subtracting the heat of the ligand dilution. The heat effect reveals the typical double step
binding curve of the distamycin A interaction to the quadruplex in B and C, null interaction in F. The red lines in B and D represent the best fit derived by a non-linear least-squares
procedure based on an independent binding sites model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the new buffer used in this study in absence of any other ligand,
clearly showing that in the new experimental conditions this
binding event is identical to what was previously observed (Fig. 6,
Panels A and B and Table 1). The binding occurs in two separate
steps, the first one centred on a stoichiometry of 1:2 in which two
molecules of distamycin A interact with the quadruplex and then
a second event inwhich twomoremolecules bind, leading to a final
stoichiometry of 4 molecules of distamycin A per quadruplex.
Panels C and E report two displacement experiments carried out
titrating with distamycin A the complexes obtained with the drugs
5 and 6 respectively. The two experiments are quite different and
indicative of two distinct phenomena. In the first case, a binding
curve similar to the control experiment is obtained (compare
Fig. 6D and B), indicating that the presence of the drug 5 in the
mixture did not have an effect on the association of distamycin A
with the [d(TGGGGT)4]. Distamycin A still binds in two distinct
events, with stoichiometry and binding constants not significantly
affected by the presence of 5 (Table 1).

Conversely, the ITC titration of distamycin A into the quad-
ruplex/6 complex (Fig. 6E and F) gives a completely different
outcome. In this case, distamycin A appears no longer able to
interact with the DNA, suggesting that 6 binds to the quadruplex
tightly than distamycin A. It is important to highlight that the
competition/displacement experiments do not give any informa-
tion about the stoichiometry of the complex formed between the
quadruplex and the compound competing with the distamycin A. A
summary of the results for all six compounds is reported in Table 1:
1 and 3 behave as 5, whereas the presence of 2 or 4 or 6 abolishes
the binding of distamycin A.

In conclusion the competition ITC experiments represent
a possible strategy to evaluate whether an insoluble groove binder is
stronger or weaker than a soluble drug that could be used as refer-
ence point. In our case, using the distamycin A as reference drug, we
were able to group the six drugs identified with virtual screening in
two extreme classes. The first class contains compounds that bind
rather weakly to the quadruplex (1, 3 and 5), whereas in the second
class the drugs that bind substantially stronger than distamycin A (2,
4 and 6) are clustered.

4. Conclusions

A successful structure-based virtual screening (VS) campaignwas
recently undertaken by our research group and it resulted in the
identification of six small molecules able to interact with the groove
of the quadruplex [d(TGGGGT)]4. Herein, we report NMR spectros-
copy experiments which, combined with extensive molecular dock-
ing studies, allow for a more detailed picture of the interaction
between each VS-derived binder and the quadruplex DNA. Note-
worthy, isothermal titration calorimetry (ITC) measurements
revealed that 2, 4, and 6, despite their relatively small dimensions,
bind substantially stronger than distamycin A, which is, to the best of

our knowledge, the most potent groove binder identified so far.
As it is widely accepted that specificity among the various DNA
G-quadruplexes, thatmight be simultaneously present in the human
genome, is a fundamental requirement for the quadruplex binder to
become a drug, extensive binding tests towards DNA duplex and
different DNA quadruplex topologies will be the next step in our
research program. The future results combined with structural
studies will provide a source of inspiration for the design of next
generationof potent and selective quadruplexDNAdrug-like binders.
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ABSTRACT: Targeting of DNA secondary structures, such as
G-quadruplexes, is now considered an appealing opportunity
for drug intervention in anticancer therapy. So far, efforts made
in the discovery of chemotypes able to target G-quadruplexes
mainly succeeded in the identification of a number of
polyaromatic compounds featuring end-stacking binding
properties. Against this general trend, we were persuaded
that the G-quadruplex grooves can recognize molecular entities with better drug-like and selectivity properties. From this idea, a
set of small molecules was identified and the structural features responsible for G-quadruplex recognition were delineated. These
compounds were demonstrated to have enhanced affinity and selectivity for the G-quadruplex over the duplex structure. Their
ability to induce selective DNA damage at telomeric level and to induction of apoptosis and senescence on tumor cells is herein
experimentally proven.

■ INTRODUCTION

Telomeres are critical chromosomal elements which guarantee
proper replication and protection of chromosome ends.1 They
are made up of 2−20 kb of double-stranded TTAGGG repeats
and feature a 3′ single-stranded overhang of 50−500
nucleotides. Parallel to normal cells proliferation, telomeres
get gradually shorter triggering irreversible growth arrest
(cellular senescence).2 A telomere maintenance mechanism is
provided by the six-membered protein complex called shelterin
and by telomerase. The latter adds copies of the repeated motif
to the end of the single-stranded overhang. This enzyme is
transcriptionally repressed in most differentiated human
somatic cells3 while being overexpressed in about 85% of
cancer cells.4 In the remaining 15% of human tumors, telomere
lengthening is obtained by a different mechanism known as
alternative lengthening of telomere (ALT).5 In both cases,
telomeres are maintained to a stable length with consequent
senescence circumvention and cellular immortalization.6 In this
scenario, it is now widely accepted that telomere maintenance
and protection play a central role in tumorigenesis. Thus,
agents that are able, at any level, to influence telomere
homeostasis are considered now an appealing opportunity for
drug intervention in anticancer therapy. The 3′ single-stranded
overhang of the telomeric DNA in eukaryotic cells can adopt
the peculiar G-quadruplex fold.7 The stabilization of this fold
through the interaction with different ligands alters the G-rich
overhang structure and causes its degradation through a DNA-

damage repair pathway and release of one of shelterin proteins
(i.e., POT1) from telomeres.8 These events lead to a fast
induction of tumor cell senescence and apoptosis. For some of
these compounds the in vivo anticancer activity has been
reported (BRACO-19, RHSP4, and telomestatin).9−11 Un-
fortunately, none of these molecules have progressed beyond
the experimental stage into clinical trial, mainly because of
insufficient druglike properties. Recently, our pursuit of new G-
quadruplex ligands succeeded in the discovery of six leadlike
chemotypes that were proven to effectively interact with the
[d(TGGGGT)]4 G-quadruplex structure.12 Among them,
compound 1a (Table 1) appeared to be the most promising
hit. So far, ligands that selectively recognize G-quadruplex
grooves are few,13 even though quadruplex groove recognition
is likely to provide much more quadruplex-selective ligands.
Interestingly, 1a was proven to span the entire quadruplex
grooves and was demonstrated to interact more tightly than
distamycin A (Dst),14 which was described as the most affine
G-quadruplex groove binder.15 More general considerations
need to be done on the druglike properties of the 1a coumarin
core. This is a naturally occurring structure (mainly in plants)
that is present in a plethora of compounds endowed with
different biologically activities (anti-HIV, CNS-active, antico-
agulant, anti-inflammatory, antitumor).16 Because of the
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number of documented biological activities and its amenability
to combinatorial chemistry, the coumarin scaffold represents a
well-known example of privileged structure.16

In the present study, the promising derivative 1a was used as
a seed for searching similar entities in several commercially
available databases, and NMR experiments allowed identifica-
tion of a small focused library of structural analogues with G-
quadruplex binding properties. By a back and forth approach,
the structural features responsible for G-quadruplex groove
recognition were delineated, while isothermal titration calorim-
etry (ITC) measurements allowed for the identification of
chemotypes featuring a tighter binding than Dst. Different from
Dst, the best binders were also proved to be G-quadruplex
selective over duplex. These results propelled the biological
characterization of the new ligands, demonstrating their ability
to induce selective DNA damage at telomeric level and
induction of apoptosis and senescence on tumor cells.

■ RESULTS AND DISCUSSION
Compound Selection and G-Quadruplex NMR Bind-

ing Assays. Given the relative synthetic accessibility of
coumarin compounds, we first decided to search in commercial
molecular databases if analogues of compound 1a were
available. This approach has the advantage of rapidly providing
a library of structural analogues of the lead compound and also
being highly economically efficient. Therefore, the simplistic
pairwise Tanimoto similarity score was computed between 1a
and the compounds present in the full ZINC database
collection of purchasable compounds (∼7 million compounds)
using a 70% similarity threshold. This resulted in 272
compounds that were visually analyzed revealing that, as
expected, coumarin derivatives were selected (Table 1) as well
as several analogues featuring the regioisomeric chromone
scaffold (Table 2).
With the aim of exploring the influence of the pendant amine

moiety on the quadruplex binding, five of the available
coumarin derivatives derived from the filtered database were

first purchased (1b−f). These were all tested for their ability to
interact with the DNA quadruplex through nuclear magnetic
resonance (NMR) spectroscopy, which is a valuable tool for
studying molecular interactions in solution.17 A number of
DNA quadruplex folding topologies are known, and the kind of
folding is strongly affected by the sequence, buffer, and
molecular crowding conditions. This is particularly true for the
human telomeric sequence.7 In fact, several structures have
been reported having different strand orientations and loop
distributions. Unfortunately, the topology of the quadruplex
structure adopted by the human telomeric sequence in vivo is
unknown, so in analogy to what was done in our previous
investigations,12,15 we have decided to use the highly symmetric
tetramolecular quadruplex [d(TGGGGT)]4. In particular, we
employed the chemical shift perturbation method18 to detect
interaction between a molecular candidate and the G-
quadruplex structure. The signals that can be most easily
monitored are the imino and aromatic protons of all bases and
the methyl protons of thymines, as they all are in the less
crowded region of the NMR spectrum of [d(TGGGGT)]4.
Since we were mainly interested in potential groove binder

analogues, in our inspection we considered quadruplex ligands
all compounds providing a shift of the G3 and G4 signals of at
least 0.05 ppm. Following this criterion, among the five tested
coumarins, compounds 1b−d demonstrated appreciable G-
quadruplex binding while 1e and 1f displayed no DNA
interaction. This indicates that the presence a H-bond donor
(1b) and/or a positively charged group at a distal position (1c−
d) with respect to the coumarin scaffold is critical for DNA
binding.
More structural variability was present when considering the

regioisomeric chromone derivatives (2a−k, Table 2). This
moiety is also regarded as a privileged structure, being present
in different biologically active compounds and prone to
combinatorial synthesis.19 In this case, we first tested the G-
quadruplex binding properties of 2a through NMR titration.
This experiment did not indicate appreciable shift of any signal
of [d(TGGGGT)]4, suggesting that the chromone scaffold is
unable to provide efficient binding for the quadruplex. On the
other hand, the positively charged group in position 8 (R3

substituent) should provide this moiety with a critical
interaction point with the quadruplex (most probably, with
the phosphate backbone atoms), as confirmed by the presence
of detectable interactions of compounds 2b and 2c with the
target. Furthermore, bulky tertiary amines are not tolerated
(2d), while cyclic amines (2e−k) are able to cause substantial
shift of the G3, G4, G5, and T6 signals. In order to probe the
influence of a substituent in position 2 on the chromone
scaffold (R1 in Table 2), 2l−p, featuring H-bond donor groups,
were also tested. Interestingly, while 2l−o still provide
appreciable quadruplex binding, 2p does not interact with the
DNA, suggesting that bulkier amines are detrimental for the
binding regardless of the presence of a H-bond donor in
position 2. Indeed, the latter position seems to directly
influence the G-quadruplex recognition, considering that the
simple substitution with a methyl group (2s−t) abolishes the
ligand binding as demonstrated by NMR experiments. The
same holds true for position 6 (R2) of the chromone ring that
when substituted with a ethyl chain results in compounds 2q−r,
which are incapable of [d(TGGGGT)]4 binding.

Isothermal Titration Calorimetry (ITC) Experiments.
For compounds demonstrating appreciable interaction with the
DNA G-quadruplex (1a,b, 2b,c, 2e−o) displacement iso-

Table 1. Structures of the Selected Coumarin Derivatives
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thermal titration calorimetry (ITC) experiments20 were
performed to investigate their quadruplex binding affinity.
Since it is well-known that multiple conformations of the
human telomeric sequences may coexist in solution and that
such polymorphism could invalidate the data obtained by ITC
measurements, we have decide to use, in analogy to NMR, the
[d(TGGGGT)]4 quadruplex.
Unfortunately, efforts to obtain direct thermodynamic

information from canonical ITC experiments failed because
of solubility issues regarding the ligands at the rather high
concentrations required for such measurements.21 Displace-
ment experiments were then effectively carried out by analyzing
the binding of Dst to the G-quadruplex previously saturated
with each ligand (see Experimental Section). Although the
displacement ITC experiments do not allow direct measure-
ment of the thermodynamic parameters involved in the binding
processes, this strategy represents a valid approach for
evaluating the efficiency of a G-quadruplex (or duplex) binder

compared to Dst. Indeed, when the DNA−ligand complex is
formed, the ligand will inhibit the binding of Dst if its affinity
for the G-quadruplex is higher than the latter; conversely, it will
be displaced by a stronger binder.
Figure 1a and Figure 1b show two representative ITC

displacement experiments carried out by titrating with Dst the
[d(TGGGGT)]4 saturated with compounds 2o and 2l,
respectively. The results obtained in the two experiments
clearly show two different phenomena. In the first case, the ITC
profile for the titration of ligand-saturated G-quadruplex is
essentially identical to the one obtained for the binding of Dst
to the G-quadruplex alone,14 thus indicating that the presence
of 2o does not affect significantly the interaction. On the
contrary, the titration of [d(TGGGGT)]4/2l mixture with Dst
(Figure 1b) gives completely different results. In this case, ITC
data show constant heat release at each injection of Dst, only
due to ligand dilution, proving that it is no longer able to
interact with the G-quadruplex. Overall, ITC experiments

Table 2. Structures of the Selected Chromone Derivatives
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showed that 4 out of 15 compounds (1a, 2c, 2l, and 2m) have
the ability to bind the G-quadruplex more tightly than Dst,
inhibiting its interaction. To evaluate a possible selectivity of
the best ligands for G-quadruplex over duplex, we performed
identical ITC displacement experiments by titrating d-
(CGCGAATTCGCG)2 duplex/ligand mixtures with Dst.
This self-complementary DNA dodecamer was chosen because
it contains the central AATT core, considered being one of the
specific binding sites for Dst.22 Figure 1c shows an example of
raw ITC data and binding isotherm for the titration of
d(CGCGAATTCGCG)2/2l mixture with Dst. As shown, at
each injection of Dst solution, less and less heat release was
measured until constant values were obtained, implying a
saturable process. The binding isotherm shows a typical
sigmoidal binding curve and clearly suggests that the presence
of the compound in the mixture has no effect on the interaction
of Dst with the duplex. Similar results were obtained for 2c and
2m (see Supporting Information), suggesting G-quadruplex
selectivity of these three compounds. On the other hand, 1a
was shown to affect Dst-duplex interaction, thus suggesting a
poor selectivity.
The Newly Identified G-Quadruplex Ligands Induce

DNA Damage and Cell-Cycle Arrest. These encouraging
results propelled the full biological characterization of the new
ligands for investigating the ability of the new ligands to cause
telomere uncapping (Figure 2). To this aim, a two-step analysis
was performed to establish, in the first one, if the compounds
were able to induce DNA damage and, in the second one, if the
DNA damage was localized to the telomeres. By using human
transformed BJ fibroblasts (BJ-HELT), we found that, different
from Dst, all the ligands were able to induce DNA damage (at
least at the higher drug dose, Figure 2a) and deconvolution
microscopy analysis showed that some of the damaged foci
colocalized with TRF1, a good marker for interphase
telomeres23 forming the so-called TIF (telomere dysfunction
induced foci)24 (Figure 2d). Of note, quantitative analysis
identified compounds 2c, 2l, and 2m as the most potent in
inducing telomere damage: the percentage of cells with more
than four γH2AX/TRF1 colocalizations reached about 50%
(Figure 2b), with a mean of about eight TIF per nucleus
(Figure 2c). Such a biological evaluation also confirmed that
the sole chromone structure (2a) was not proved to cause

substantial DNA damage. Interestingly, the whole data are in
perfect consonance with ITC experiments that indicated that
2c, 2l, and 2m are strong, selective G-quadruplex binders. A
further correlation can also be done for compound 1a that, by
promiscuously binding the DNA (see ITC data), is able to
induce high levels of DNA damage but few TIFs.
The above results raised the interesting possibility that

telomere damages induced by the ligands in transformed
fibroblasts may rapidly and efficiently promote growth
inhibition in tumor cells. Treatment of HeLa cells with one
of the most promising selected ligands (2l) triggered a dose-
dependent inhibition of cell survival (Figure 3a) associated with
an early accumulation of cells in the G2/M phase of the cell
cycle, and at 96 h of treatment a fraction of cell population
resided in the sub-G1 compartment, indicative of apoptosis
(Figure 2b).
Apoptosis induction triggered by 2l has been confirmed by

annexin staining (Figure 3c; at 96 h of treatment about 30% of
cells are annexin V-positive/PI negative), and it was also
accompanied by the induction of a senescence phenotype: large

Figure 1. Raw ITC data (top panels) and integrated heat (bottom
panels) for titration of [d(TGGGGT)]4/2o (a), [d(TGGGGT)]4/2l
(b), and d(CGCGAATTCGCG)2/2l (c) mixtures with Dst at 25 °C.
The integrated heat for the titrations (squares) was obtained by
integrating the raw data and subtracting the heat of the ligand dilution.
The lines represent nonlinear least-squares fit of the data to the
appropriate binding model.

Figure 2. DNA damage activation at telomeres. BJ-EHLT fibroblasts
were treated for 24 h with Dst and the indicated ligands at doses 0.1
(light-gray bars) and 0.5 μM (dark-gray bars). Cells were processed for
immunofluorescence (IF) using antibodies against γH2AX and TRF1
to mark DNA damage and telomeres, respectively. Percentages of
γH2AX-positive (a) and TIF-positive (b) treated vs untreated cells are
reported in the histograms. (c) Mean number of TIF in the indicated
samples. Cells with four or more γH2AX/TRF1 foci were scored as
TIF positive. The red bars highlight the most effective ligands. Error
bars indicate the standard deviation. (d) Representative images of IF of
untreated and Dst-, 2c-, 2l-, and 2m-treated BJ-EHLT cells. Enlarged
views of TIFs are reported below the merged images. The images were
acquired with a Leica deconvolution microscope (magnification
100×).
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cell size, vacuolated cytoplasm, and β-galactosidase activity
(Figure 3d).
The Newly Identified G-Quadruplex Ligands Feature

Enhanced Druglikeness. In our inspection, the most
interesting ligands (1a, 2c, 2l, and 2m) were also compared
for their predicted absorption, distribution, metabolism, and
excretion (ADME) properties with respect to other compounds
previously described as G-quadruplex binders (Supporting
Information, Table S3). These calculations were performed
employing the QikProp software (QikProp, version 3.4 (2011);
Schrödinger, LLC, New York, NY). In addition to predicting
molecular properties, QikProp provides ranges for comparing
each compound’s property with those of 95% of known drugs
(these ranges are provided in Supporting Information, Table
S4). This software was also used because it allows for flagging
reactive functional groups that may cause false positives in
biological assays. Results of QikProp calculations are reported
in Supporting Information, Tables S5−S7. According to these
calculations, only 7 out of 32 inspected compounds display no
violations of the ranges recommended for each descriptor or
property. Strikingly, compounds 1a, 2c, 2l, and 2m are among
these most promising ligands.

■ CONCLUSIONS
Targeting of DNA secondary structures such as G-quadruplexes
is now considered an appealing opportunity for drug

intervention in anticancer therapy.25 So far, efforts made in
the discovery of chemotypes able to target G-quadruplexes
mainly succeeded in the identification of a number of
polyaromatic compounds featuring end-stacking binding
properties. Unfortunately, the poor druglike properties of
these compounds turned out to be a main limitation during the
in vivo verification of their antitumor properties. Herein, with
the aim of discovering G-quadruplex groove binders with
enhanced druglike properties, a lead optimization campaign was
undertaken starting from a promising virtual screening hit.
Thus, the physicochemical characterization (NMR and ITC) of
the binding of a set of closely related analogues allowed
identification of novel ligands of the [d(TGGGGT)]4
quadruplex. Interestingly, their biological characterization
demonstrated the ability to induce selective DNA damage at
telomeric level and induction of apoptosis and senescence on
tumor cells. These results substantiate our choice of using the
[d(TGGGGT)]4 structure as a working model to design new
molecular entities endowed with G-quadruplex binding proper-
ties. Furthermore, for the first time, we demonstrate that
selective G-quadruplex binding and telomeric DNA damage can
be elicited by more druglike chemotypes. These findings pave
the way for the design of new potential drugs and shed new
insights into the emerging field of DNA quadruplex.

■ EXPERIMENTAL SECTION
Oligonucleotide Synthesis. The oligonucleotide d(TGGGGT)

was synthesized using standard protocol.26 The oligomer was detached
from the support and deprotected by treatment with concentrated
aqueous ammonia at 55 °C for 12 h. The combined filtrates and
washings were concentrated under reduced pressure, redissolved in
H2O, analyzed, and purified by high-performance liquid chromatog-
raphy (HPLC) on a Nucleogel SAX column (Macherey-Nagel, 1000-
8/46), using buffer A consisting of 20 mM KH2PO4/K2HPO4 aqueous
solution (pH 7.0), containing 20% (v/v) CH3CN, buffer B consisting
of 1 M KCl, 20 mM KH2PO4/K2HPO4 aqueous solution (pH 7.0),
containing 20% (v/v) CH3CN, a linear gradient from 0% to 100% B
for 30 min, and flow rate 1 mL/min. The fractions of the oligomer
were collected and successively desalted by Sep-pak cartridges (C-18).
The isolated oligomer proved to be >99% pure by NMR.

Selected Compounds. The selected compounds where purchased
from the supplier as indicated in Table S1 (see Supporting
Information). The purity of compounds 1a−f and 2a−t was assessed
using reversed-phase high-performance liquid chromatography
(HPLC), using a Shimadzu C18, 5 μm (150 mm × 4.6 mm) column.
The elution was performed with a 1.0 mL/min flow rate using a linear
gradient from 0% to 100% methanol in water over 30 min. The
detection was performed at 210 nm. The purity was also analyzed with
high-performance liquid chromatography−mass spectrometry
(HPLC−MS) performed on an Agilent 1200 series system (Agilent
Technologies, Santa Clara, CA, USA) equipped with an Agilent 6110
series LC/MS quadrupole instrument, using a Phenomenex Luna C18,
5 μm (150 mm × 4.6 mm) column. The elution was performed with a
1.0 mL/min flow rate using a linear gradient from 0% to 90%
acetonitrile in water over 20 min. Detection was performed at 210 nm.
The relative purity of compounds 1a, 1c−e, 2a−d, 2f, 2h, 2i, 2l−n,
and 2p−r was higher than 98.0%. Purity of compounds 1b, 1f, 2e, 2g,
2j, 2k, 2o, 2s, and 2t ranged between 95% and 98%.

Nuclear Magnetic Resonance Experiments. The quadruplex
NMR samples were prepared at 0.1 mM (0.4 mM single strand
concentration) in 0.2 mL (H2O/D2O, 9:1) of buffer solution having
10 mM KH2PO4, 70 mM KCl, 0.2 mM EDTA, pH 7.0. NMR spectra
were recorded with Varian UnityINOVA 700 MHz spectrometer. 1H
chemical shifts were referenced to external sodium 2,2-dimethyl-2-
silapentane-5-sulfonate (DSS). 1D proton spectra of the sample in
H2O were recorded using pulsed-field gradient DPFGSE27,28 for H2O

Figure 3. Biological effects of 2l ligand. (a) Survival curve of the HeLa
cells exposed to different doses of 2l ranging from 0.5 to 5 μM. (b)
Cell cycle analysis and (c) apoptosis evaluation of HeLa cells
processed at the indicated times after exposure with 3.5 μM 2l. (c)
Biparametric dot plots showing PI vs annexin V staining in the
indicated samples. (d) SA-β-gal staining of Hela cells untreated and
treated with 5 μM 2l for 5 days.
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suppression. The NMR data were processed on an iMAC running
iNMR software (www.inmr.net).
Chemical Shift Perturbation Experiments. The quadruplex

[d(TGGGGT)]4 has been titrated with each of the selected
compounds. The samples 1e−f, 2a, 2d, 2p−t were not able to cause
any significant shift of the DNA signals. On the other hand, the
compounds 1b−d, 2b, 2c, 2e−k, 2l−o turned out to be able to bind
the quadruplex. Particularly, for all the titrations of 1b−d, 2b, 2c, 2e−
k, 2l−o, the four DNA strands turned out to be magnetically
equivalent throughout the titration, and no splitting of resonances was
observed at any stage. In order to preliminarily evaluate the binding
site of each analogue, a comparison of resonances of some protons of
the uncomplexed DNA and the complexed one has been done. In
particular, we report the Δδ values (chemical shifts of the complex
minus free DNA) of aromatic, methyl, and imino protons (Supporting
Information, Table S2). Generally, the signals of the protons of the T1
residue shifted the least, whereas the ones of residue T6 shifted more.
In any case, a general shift of the aromatic and imino signals was also
observed for the G2, G3, G4, and G5.
Isothermal Titration Calorimetry. The d(TGGGGT) and

d(CGCGAATTCGCG) oligonucleotide sequences were prepared by
dissolving the lyophilized compound in 10 mM phosphate buffer with
70 mM KCl, 0.2 mM EDTA, pH 7. The solutions were annealed by
heating at 90 °C for 5 min and slowly cooling to room temperature
and then equilibrated at 4 °C for 24 h. The concentration of
oligonucleotides was determined by UV adsorption measurements at
90 °C using molar extinction coefficient values ε(260 nm) of 57 800 and
110 700 M−1 cm−1 for d(TGGGGT) and d(CGCGAATTCGCG),
respectively. The molar extinction coefficients were calculated by the
nearest neighbor model.29 Stock solutions of the investigated
compounds were prepared by solubilizing weighted amounts in
DMSO to a final concentration of 8 mM. The mixtures of the DNA
molecules and the compounds were prepared by diluting the ligand
stock solution into the DNA solution to get a final ligand/DNA molar
ratio of 4:1 and a final DMSO concentration of 7%. Dst was
solubilized in the same buffer used for the mixtures. ITC experiments
were performed at 298 K using a CSC 5300 Nano-ITC micro-
calorimeter from Calorimetry Science Inc. (Lindon, UT) with a cell
volume of 1 mL. The titrations were carried out in 10 mM phosphate
buffer, 70 mM KCl, 0.2 mM EDTA, 7% DMSO, pH 7. In each
experiment, volumes of 5−10 μL of Dst solution (360−720 μM) were
added into a 30 μM solution of DNA or DNA/ligand mixture, using a
computer-controlled 250 μL microsyringe, with a spacing of 200−400
s between each injection. Each titration was corrected by subtracting
the heat of Dst dilution. Where possible, integrated heat data obtained
for the titrations were fitted by employing a nonlinear least-squares
minimization algorithm to a theoretical titration curve, using the
Bindwork software from Calorimetry Science Inc.
Cells and Culture Conditions. Transformed human BJ fibroblasts

expressing hTERT and SV40 early region (BJ-HELT) and human
epithelial carcinoma cell line (HeLa) were obtained as previously
reported8 and grown in Dulbecco modified Eagle medium (D-MEM,
Invitrogen Carlsbad, CA, U.S.) supplemented with 10% fetal calf
serum, 2 mM L-glutamin, and antibiotics.
Immunofluorescence. Immunofluorescence was performed as

previously reported.30 Cells were fixed in 2% formaldehyde and
permeabilized in 0.25% Triton-X100 in PBS for 5 min at room
temperature. For immunolabeling experiments, cells were incubated
with primary antibody, then washed in PBS and incubated with the
secondary antibodies. The following primary antibodies were used:
pAb anti-TRF1 (Abcam Ltd.; Cambridge, U.K.); mAb anti-γH2AX
(Upstate; Lake Placid, NY). The following secondary antibodies were
used: TRITC conjugated goat anti-rabbit, FITC conjugated goat anti-
mouse (The Jackson Laboratory). Fluorescence signals were recorded
by using a Leica DMIRE2 microscope equipped with a Leica DFC
350FX camera and elaborated by a Leica FW4000 deconvolution
software (Leica, Solms, Germany).
Clonogenic Assay. HeLa cells were seeded in 60 mm Petri dishes

(Nunc, MasciaBrunelli, Milan, Italy) at a density of 5 × 102 cells per
dish and 24 h later exposed to different doses (ranging from 0.5 to 5

mM) of 2m. Cell colony-forming ability was determined as previously
described.30 All the experiments were repeated four times in triplicate.

Flow Cytometric Analysis. The cell cycle analysis was performed
by flow cytometry. Cells were washed in PBS and fixed in 70% ethanol
in PBS. 1 × 106 cells were centrifuged and resuspended in a staining
solution (50 μg/mL PI, 75 kU/mL RNase A in PBS) for 30 min at
room temperature in the dark and analyzed by flow cytometry using
FACScalibur (Becton-Dickinson, San Jose, CA, U.S.). For each
analysis 20 000 events were collected. Cell cycle distribution and
percentage of apoptotic cells were analyzed using Cell Quest (BDIS)
and ModFit LT (Verity Software House, Topsham, ME).

Evaluation of Apoptosis. Apoptosis was detected by flow
cytometric analysis of annexin V staining. Annexin V-FITC vs PI
assay (Vibrant apoptosis assay, V-13242, Molecular Probes, Eugene,
OR, U.S.) was performed as previously described.31 Briefly, adherent
cells were harvested and suspended in the annexin-binding buffer (1 ×
106 cells/mL). Thereafter, cells were incubated with annexin V-FITC
and PI for 15 min at room temperature in the dark and immediately
analyzed by flow cytometry. The data are presented as biparametric
dot plots showing PI red fluorescence vs annexin V-FITC green
fluorescence.

Senescence Analysis. Senescence-associated β-galactosidase (SA-
β-gal) staining on HeLa cells was performed as described by Dimri et
al.32 Briefly, after exposure with 3.5 μM 2m for 5 days to cell culture,
the cells were fixed with 2% glutaraldehyde in PBS for 5 min at room
temperature, washed in PBS, and incubated at 37 °C for 24 h in
staining solution: 1 mg/mL 5-bromo-4-chloro-3-indolyl-β-D-galacto-
side (X-gal), 5 mm potassium ferrocyanide, 5 mm potassium
ferricyanide, 2 mm MgCl2 in PBS, pH 6.0. Then cells were analyzed
using an optical microscope.

Statistical Analysis. The experiments have been repeated from
three to five times, and the results obtained are presented as the mean
± SD. Significant changes were assessed by using Student’s t test for
unpaired data, and P < 0.05 was considered significant.
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NMR, nuclear magnetic resonance; ITC, isothermal titration
calorimetry; ALT, alternative lengthening of telomere; TIF,
telomere dysfunction induced foci
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