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ABSTRACT	
  
	
  
Metabolomics	
   is	
   the	
   comprehensive	
   assessment	
   of	
   low	
   molecular	
   weight	
  
organic	
   metabolites	
   within	
   biological	
   system.	
   The	
   identification	
   and	
  
characterization	
  of	
  several	
  chemical	
  species,	
  or	
  metabolic	
  fingerprinting,	
  is	
  an	
  
emergent	
  approach	
  in	
  metabolomics	
  field	
  that	
  provides	
  a	
  valuable	
  “snapshot”	
  
of	
   metabolic	
   profiles.	
   This	
   approach	
   is	
   finding	
   an	
   increasing	
   number	
   of	
  
applications	
  in	
  many	
  areas	
  including	
  cancer	
  research,	
  drug	
  discovery	
  and	
  food	
  
science.	
   The	
   combined	
  use	
  of	
  NMR	
  spectroscopy,	
  data	
  pre-­‐processing	
   tools,	
  
and	
   multivariate	
   statistical	
   data	
   analysis	
   allows	
   to	
   go	
   through	
   into	
   the	
  
metabolite	
   “signature”	
   of	
   various	
   samples.	
   The	
   PhD	
   project	
   focused	
   on	
   the	
  
use	
   of	
   metabolic	
   NMR	
   fingerprinting	
   as	
   an	
   exploratory	
   and	
   predictive	
   tool.	
  
The	
   first	
   study	
   tested	
   the	
   potentiality	
   of	
   Nuclear	
   Magnetic	
   Resonance	
  
spectroscopy	
   as	
   “magnetic	
   tongue”:	
   the	
   NMR	
   metabolomic	
   signature	
   can	
  
differentiate	
   canned	
   tomato	
   samples,	
   on	
   the	
   basis	
   of	
   their	
   chemical	
  
composition	
   and	
   can	
   be	
   correlate	
   to	
   the	
   sensory	
   descriptors.	
   Orthogonal	
  
projection	
  to	
  latent	
  structures	
  (OPLS)	
  models	
  were	
  performed	
  to	
  demonstrate	
  
the	
   NMR	
   potentiality	
   to	
   predict	
   the	
   sensory	
   descriptors.	
   The	
   second	
   study	
  
showed	
   the	
   applicability	
   of	
   this	
   methodology	
   to	
   measure	
   and	
   to	
   predict	
  
sensory	
  descriptors	
  in	
  extra-­‐virgin	
  olive	
  oil.	
  The	
  third	
  study	
  demonstrated	
  that	
  
the	
   combined	
   use	
   of	
   NMR	
   spectroscopy	
   and	
   chemometrics	
   can	
   provide	
   a	
  
cocaine	
  seizures	
  profiling,	
  improving	
  police	
  investigation	
  strategies	
  about	
  the	
  
cocaine	
  trafficking	
  routes	
  and	
  distribution	
  network.	
  	
  
The	
  last	
  study	
  of	
  the	
  PhD	
  project,	
  performed	
  at	
  the	
  University	
  of	
  Copenhagen	
  
(Department	
  of	
  Food	
  Science,	
  Faculty	
  of	
  Life	
  Science),	
  concerns	
  the	
  analysis	
  of	
  
metabolomic	
  profiles	
  of	
  human	
  colon	
   cancer	
   cell	
   lines.	
   The	
   study	
   includes	
  a	
  
development	
   of	
   the	
   experimental	
   protocol	
   for	
   an	
   efficient	
   harvesting,	
  
quenching	
  and	
  extraction	
  of	
  cellular	
  metabolites	
  of	
  HTC-­‐116	
  human	
  adherent	
  
cancer	
   cell	
   lines	
   in	
   order	
   to	
   analyze	
   colon	
   cancer	
   cells	
   metabolome	
   and	
   to	
  
understand	
  in	
  vitro	
  actions	
  of	
  novel	
  anticancer	
  drugs.	
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1	
  INTRODUCTION	
  
	
  
	
  
Data	
  does	
  not	
  equal	
  information;	
  information	
  does	
  not	
  equal	
  knowledge;	
  and,	
  

most	
  importantly	
  of	
  all,	
  knowledge	
  does	
  not	
  equal	
  wisdom.	
  	
  

We	
  have	
  oceans	
  of	
  data,	
  rivers	
  of	
  information,	
  small	
  puddles	
  of	
  knowledge,	
  

and	
  the	
  odd	
  drop	
  of	
  wisdom.	
  

Henry	
  Nix,	
  1990	
  

Data,	
   information	
   and	
   knowledge	
   represent	
   the	
   keywords	
   in	
   metabolomics	
  

field.	
  Metabolomics	
   –	
   the	
   dynamic	
   portrait	
   of	
   the	
  metabolic	
   status	
   of	
   living	
  

system	
   –	
   is	
   a	
   strongly	
   developing	
   field	
   as	
   evident	
   from	
   the	
   exponentially	
  

growing	
  number	
  of	
  papers.	
  Over	
  the	
  past	
  decades,	
  metabolomics	
  approaches	
  

have	
  been	
  widely	
  adopted	
  in	
  many	
  areas,	
  such	
  as	
  in	
  cancer	
  research,	
  in	
  drug	
  

discovery	
  and	
  in	
  food	
  science.	
  Studies	
  of	
  the	
  metabolome	
  include	
  the	
  analysis	
  

of	
   a	
   large	
   range	
   of	
   several	
   chemical	
   species,	
   providing	
   challenges	
   to	
   all	
  

analytical	
   technologies	
   employed	
   in	
   metabolomics	
   strategies.	
   Nowadays,	
  

proton	
   Nuclear	
   Magnetic	
   Resonance	
   (1H-­‐NMR),	
   Gas	
   Chromatography-­‐Mass	
  

Spectrometry	
   (GC-­‐MS)	
   and	
   Liquid	
   Chromatography-­‐Mass	
   Spectrometry	
   (LC-­‐

MS)	
   are	
   well-­‐established	
   powerful	
   analytical	
   methods	
   for	
   generating	
  

metabolomics	
   profiles.	
   In	
   particular,	
   developments	
   in	
   NMR	
   offer	
   distinct	
  

advantages	
   for	
   performing	
   untargeted	
   metabolomic	
   studies	
   because	
   of	
   its	
  

specificity	
  and	
  quantitative	
  reproducibility.	
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1.1	
  Focus	
  and	
  aim	
  of	
  the	
  project	
  
	
  

In	
   this	
   thesis,	
   a	
  metabolomic	
   fingerprinting	
   approach	
   was	
   used	
   in	
   order	
   to	
  

differentiate	
   canned	
   tomato	
   samples,	
   on	
   the	
   basis	
   of	
   their	
   chemical	
  

composition	
  and	
  then	
  to	
  correlate	
  the	
  fingerprints	
  to	
  the	
  sensory	
  descriptors.	
  

To	
   evaluate	
   the	
   applicability	
   of	
   this	
   methodology,	
   the	
   same	
   strategies	
   and	
  

study	
   design	
   were	
   applied	
   to	
   measure	
   and	
   predict	
   sensory	
   descriptors	
   in	
  

extra-­‐virgin	
  olive	
  oil.	
  

	
  

The	
  primary	
  aim	
  of	
   this	
  PhD	
  projects	
  was	
   to	
   test	
   the	
  potentiality	
  of	
  Nuclear	
  

Magnetic	
  Resonance	
  spectroscopy	
  as	
  “magnetic	
  tongue”	
  to	
  measure	
  sensory	
  

descriptors	
   of	
   food	
   samples,	
   applying	
   the	
   metabolomic	
   fingerprinting	
  

approach.	
   We	
   will	
   try	
   to	
   demonstrate	
   that	
   NMR	
   could	
   be	
   a	
   powerful	
  

predictive	
  tool	
  for	
  the	
  characterization	
  of	
  sensory	
  features.	
  

The	
  same	
  approach	
  was	
  applied	
   in	
   forensic	
   science	
   field	
   in	
  order	
   to	
   identify	
  

the	
   chemical	
   “fingerprint”	
   of	
   cocaine	
   samples	
   and	
   to	
   test	
   the	
   NMR	
  

potentialities,	
  in	
  combination	
  with	
  multivariate	
  data	
  analysis,	
  to	
  improve	
  and	
  

support	
  police	
  investigations.	
  

During	
  last	
  PhD	
  year	
  at	
  the	
  University	
  of	
  Copenhagen,	
  I	
  focused	
  my	
  attention	
  

on	
  the	
  analysis	
  of	
  metabolic	
  profiles	
  of	
  human	
  colon	
  cancer	
  cell	
  lines	
  –	
  using	
  

NMR	
   spectroscopy-­‐based	
   metabolomics	
   –	
   in	
   order	
   to	
   provide	
   important	
  

information	
  on	
   in	
  vitro	
  actions	
  of	
  drugs,	
  pointing	
   in	
  their	
  rapid	
   incorporation	
  

into	
   novel	
   therapeutic	
   settings.	
   This	
   study	
   aimed	
   to	
   develop	
   an	
   optimized	
  

experimental	
  protocol	
  for	
  NMR	
  metabolomics	
  study	
  of	
  HTC	
  116	
  human	
  colon	
  

cancer	
  cell	
  lines.	
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1.2 	
  Thesis	
  outline	
  
	
  
The	
  thesis	
  is	
  subdivided	
  as	
  follow:	
  
	
  
Chapter	
   2:	
   presents	
   a	
   general	
   description	
   of	
  metabolomics	
   science	
   focusing	
  

the	
  attention	
  on	
   the	
  untargeted	
  approach;	
   the	
  analytical	
  platform	
  used	
  and	
  

the	
  multivariate	
  data	
  models	
  performed	
  are	
  briefly	
  described.	
  	
  

Chapter	
  3:	
  presents	
  an	
  overview	
  of	
  the	
  results	
  and	
  discussion	
  from	
  paper	
  I,	
  II	
  

and	
  II.	
  

Chapter	
  4:	
  presents	
  unpublished	
  data	
  about	
  the	
  project	
  that	
   I	
  carried	
  out	
  at	
  

the	
   University	
   of	
   Copenhagen,	
   Food	
   Science	
   department,	
   as	
   PhD	
   vising	
  

student,	
   under	
   the	
   supervision	
   of	
   Assoc.	
   Prof.	
   Francesco	
   Savorani	
   and	
   Prof.	
  

Søren	
  Balling	
  Engelsen.	
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2	
  WHAT	
  IS	
  METABOLOMICS?	
  

	
  

2.1	
  System	
  Biology:	
  Metabolomics	
  and	
  Metabonomics	
  

	
  

The	
  term	
  metabolomics	
  was	
  introduced	
  for	
  the	
  first	
  time	
  in	
  the	
  early	
  2000s	
  by	
  

Oliver	
  Fiehn	
  as	
   “the	
   identification	
  and	
  quantification	
  of	
  all	
  metabolites”	
   in	
  a	
  

biological	
  system	
  [1].	
  	
  

Few	
   years	
   before,	
   in	
   the	
   1999,	
   Jeremy	
   Nicholson	
   and	
   colleagues	
   formally	
  

defined	
   a	
   similar	
   term	
  metabonomics	
   as	
   “the	
   quantitative	
  measurement	
   of	
  

the	
   dynamic	
   multiparametric	
   metabolic	
   response	
   of	
   living	
   systems	
   to	
  

pathophysiological	
   stimuli	
   or	
   genetic	
  modification”[2],	
   but	
   this	
   concept	
  was	
  

born	
  with	
  the	
  first	
  simultaneous	
  analysis	
  of	
  metabolites	
  present	
   in	
  biological	
  

fluids	
  through	
  1H	
  NMR	
  spectroscopy	
  in	
  the	
  1980s	
  [3].	
  

Therefore	
   historically,	
   the	
   metabonomics	
   approach	
   was	
   one	
   of	
   the	
   first	
  

methods	
  to	
  apply	
  the	
  scope	
  of	
  systems	
  biology	
  to	
  studies	
  of	
  metabolism.	
  	
  

There	
  has	
  been	
   some	
  disagreement	
  over	
   the	
  exact	
  differences	
  between	
   the	
  

two	
   terms	
   metabolomics	
   and	
   metabonomics.	
   The	
   distinction	
   is	
   mainly	
  

philosophical,	
   rather	
   than	
   technical;	
   although	
   there	
   are	
   some	
   differences	
   in	
  

concept,	
  in	
  practice,	
  the	
  analytical	
  and	
  modeling	
  procedures	
  are	
  the	
  same	
  and	
  

the	
  two	
  terms	
  are	
  often	
  used	
  interchangeably	
  by	
  scientists	
  and	
  organizations	
  

[4].	
  

Metabolomics	
  represents	
  the	
  dynamic	
  portrait	
  of	
  the	
  metabolome,	
  that	
  is	
  the	
  

collection	
  of	
  metabolites	
  (low-­‐molecular-­‐weight	
  molecules-­‐intermediates	
  and	
  

the	
   end	
   products	
   of	
   metabolic	
   reactions)	
   belonging	
   to	
   many	
   classes	
   of	
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compounds,	
  such	
  as	
  amino	
  acids,	
  organic	
  acids,	
  lipids,	
  nucleotides,	
  etc,	
  within	
  

a	
  biological	
  system.	
  	
  

The	
   estimated	
   size	
   of	
   the	
  metabolome	
   is	
   large:	
   S.	
   cerevisiae	
   approximately	
  

600	
   metabolites	
   [5],	
   plant	
   kingdom	
   up	
   to	
   200	
   000	
   metabolites	
   [6],	
   and	
  

analysis	
  of	
   the	
  human	
  metabolome	
  reveals	
  greater	
  complexity.	
   In	
  particular,	
  

as	
   released	
   by	
   The	
   Human	
  Metabolome	
   Database	
   (HMDB)	
   (www.hmdb.ca),	
  

the	
   	
  number	
  of	
  annotated	
  metabolite	
  entries	
  has	
  grown	
  	
   from	
  6500	
  to	
  more	
  

than	
   40000,	
   including	
   “detected”	
   metabolites	
   (with	
   experimental	
  

confirmation	
   of	
   their	
   existence)	
   and	
   “expected”	
   metabolites	
   (for	
   which	
  

biochemical	
  patways	
  are	
  known	
  but	
  the	
  compound	
  has	
  yet	
  to	
  be	
  detected	
  in	
  

the	
  body)	
  [7].	
  

Metabolomics	
   is	
   the	
   newest	
   “omics”	
   science.	
   The	
   suffix	
   “-­‐omics”	
   has	
   been	
  

added	
   to	
   the	
  names	
  of	
  many	
   fields	
   to	
  denote	
   studies	
  undertaken	
  on	
  a	
   very	
  

large-­‐scale	
   data	
   collection	
   and	
   analysis,	
   i.e.	
   measuring/profiling	
   a	
   large	
  

number	
  of	
  variables	
  simultaneously.	
  	
  

Metabolomics	
  can	
  represent	
  the	
  final	
  product	
  of	
   the	
  “omics”	
  cascade	
  of	
   the	
  

interactions	
   between	
   genes,	
   proteins	
   and	
   metabolites	
   with	
   cellular	
  

environment,	
   adding	
   the	
  end	
  point	
  of	
   the	
  building	
  blocks	
  of	
   System	
  biology	
  

(Genomics,	
   Transcriptomics,	
   Proteomics)	
   (Fig.1).	
   Therefore	
   changes	
   in	
   the	
  

metabolome	
  are	
   the	
  ultimate	
   answer	
  of	
   an	
  organism	
   to	
   genetic	
   alterations,	
  

disease,	
  or	
  environmental	
  influences	
  [8].	
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Fig.1	
  The	
  “omics”	
  cascade	
  (modified	
  from	
  Gary	
  J.	
  Patti	
  et	
  al.,	
  2012).	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

One	
  problem	
  with	
  the	
  metabolomics	
  approach	
  is	
  given	
  by	
  different	
  timescales	
  

of	
   “omics”events	
   (gene	
   expression,	
   protein	
   expression	
   and	
   metabolites	
  

generation).	
   The	
   transcript	
  machinery	
   responds	
   fast	
   to	
   an	
   external	
   stimulus	
  

(seconds	
  to	
  minutes),	
  the	
  proteins	
  may	
  be	
  expressed	
  within	
  minutes	
  to	
  hours	
  

and	
  metabolites	
  vary	
  significantly	
  during	
  the	
  day	
  [9].	
  Therefore,	
  metabolomics	
  

is	
   more	
   time	
   sensitive	
   than	
   the	
   other	
   “omics”.	
   Since	
   environmental	
   and	
  

lifestyle	
   factors	
   influence	
  metabolism,	
   it’s	
   difficult	
   to	
   separate	
   these	
   effects	
  

from	
   gene-­‐related	
   effects	
   [4].	
   Metabolomics	
   overcomes	
   these	
   problems	
   by	
  

monitoring	
   the	
   global	
   outcome	
   of	
   all	
   the	
   influencing	
   factors	
   in	
   a	
   holistic	
  

approach,	
   without	
   making	
   assumptions	
   about	
   the	
   effect	
   of	
   any	
   single	
  

contribution	
  to	
  that	
  outcome	
  [4].	
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2.2	
  Designing	
  a	
  metabolomic	
  experiment:	
  Targeted	
  and	
  Untargeted	
  

metabolomics	
  

The	
  first	
  step	
  in	
  performing	
  metabolomics	
  is	
  to	
  decide	
  which	
  type	
  of	
  approach	
  

needs	
  to	
  use	
  on	
  the	
  strength	
  of	
  the	
  aim	
  of	
  study	
  and	
  the	
  kind	
  of	
  information	
  

to	
  obtain	
   from	
  the	
  metabolomic	
  analysis	
   (Fig.2).	
   In	
  some	
  cases,	
   it	
  may	
  be	
  of	
  

interest	
  to	
  examine	
  a	
  defined	
  set	
  of	
  metabolites	
  by	
  using	
  a	
  targeted	
  approach.	
  

On	
  the	
  other	
  hand,	
  an	
  untargeted	
  or	
  global	
  approach	
  may	
  be	
  taken	
  in	
  which	
  

as	
   many	
   metabolites	
   as	
   possible	
   are	
   measured	
   and	
   compared	
   between	
  

samples	
  [10].	
  

	
  

	
  

Fig.2	
  Strategies	
  for	
  metabolomic	
  investigations.	
  

	
  

Targeted	
   analysis	
   focuses	
   on	
   the	
   absolute	
   quantification	
   of	
   a	
   small	
   set	
   of	
  

metabolites,	
   identified	
   in	
   advance,	
   that	
   are	
   highly	
   related	
   to	
   a	
   specific	
  

pathway	
  or	
  intersecting	
  pathways,	
  after	
  an	
  appropriate	
  sample	
  preparation	
  to	
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separate	
  metabolites	
  from	
  sample	
  matrix	
  [11].	
  	
  

This	
   kind	
   of	
   analysis	
   –	
   in	
   literature	
   also	
   known	
   as	
   targeted	
   profiling	
   or	
  

quantitative	
   metabolomics	
   –	
   is	
   characterized	
   as	
   an	
   hypothesis-­‐driven	
  

approach	
  rather	
  than	
  an	
  hypothesis-­‐generating.	
  However,	
  targeted	
  analysis	
  is	
  

not	
  used	
  in	
  this	
  PhD	
  study	
  and	
  will	
  not	
  be	
  discussed	
  further.	
  

In	
   contrast,	
   Metabolite	
   profiling,	
   probably	
   the	
   mostly	
   applied	
   untargeted	
  

approach,	
  involves	
  rapid	
  analysis,	
  often	
  not	
  quantitative,	
  of	
  a	
  large	
  number	
  of	
  

different	
  metabolites	
   with	
   the	
   objective	
   of	
   identifying	
   a	
   specific	
  metabolite	
  

profile	
   that	
   characterizes	
   a	
   given	
   sample.	
   Therefore,	
   untargeted	
   approach	
  

applies	
   different	
   analytical	
   platforms	
   such	
   as	
   NMR,	
   GC-­‐MS,	
   LC-­‐MS.	
   This	
  

approach	
  can	
  be	
  subdivided	
  into	
  metabolomic	
  fingerprinting	
  and	
  metabolomic	
  

footprinting	
  [11]	
  (see	
  Chapter	
  4).	
  

Metabolomic	
   fingerprinting	
   is	
   a	
   global	
   analysis	
   of	
   crude	
   samples	
   or	
   sample	
  

extracts	
   with	
   minimal	
   preparation,	
   for	
   sample	
   classification	
   or	
   screening	
   of	
  

samples.	
  Usually	
   in	
   this	
  approach	
  not	
  all	
  metabolites	
  must	
  be	
   identified	
  and	
  

quantified,	
   since	
   its	
   attention	
   is	
   focused	
   on	
   giving	
   a	
   rapid	
   snapshot,	
   or	
  

fingerprint,	
  of	
  phenotypes	
  [12].	
  	
  

This	
   PhD	
   thesis	
   describes	
  metabolomic	
   fingerprinting	
   as	
   an	
   exploratory	
   and	
  

predictive	
  tool	
  for	
   investigation	
  and	
  discrimination	
  of	
  samples	
  from	
  different	
  

origins	
  by	
  using	
  NMR	
  as	
  analytical	
  platform.	
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2.3	
  Analytical	
  platform:	
  1H	
  NMR	
  

Nuclear	
   magnetic	
   resonance	
   (NMR)	
   spectroscopy	
   is	
   a	
   valuable	
   analytical	
  

technique	
   in	
   modern	
   chemical	
   research.	
   It	
   is	
   a	
   non-­‐	
   destructive	
   and	
   non-­‐	
  

invasive	
   analytical	
   method	
   requires	
   minimal	
   or	
   no	
   sample	
   preparation	
   and	
  

doesn’t	
   alter	
   the	
   sample	
   composition.	
   NMR	
   is	
   frequently	
   used	
   in	
   the	
  

qualitative	
   and	
   quantitative	
   analysis	
   of	
   small	
   organic	
   compounds	
   as	
  well	
   as	
  

structure	
   analysis	
   and	
   interpretation.	
   Thus,	
   1H	
   NMR	
   represents	
   a	
   powerful	
  

tool	
  in	
  numerous	
  applications,	
  especially	
  in	
  metabolomics	
  research	
  and	
  also	
  in	
  

food	
   science	
   and	
   technology	
   field.	
   The	
   main	
   disadvantage	
   of	
   NMR	
  

spectroscopy,	
   if	
   compared	
   to	
  MS,	
   is	
   the	
   low	
   sensitivity,	
   but	
  with	
   current	
   1H	
  

NMR	
  spectroscopy	
   instruments	
  with	
  higher	
  magnetic	
   field	
  strength	
  and	
  cool	
  

cryogenic	
  probes,	
  this	
  method	
  is	
  widely	
  used	
  in	
  non-­‐targeted	
  metabolomics.	
  

	
  

In	
   this	
   PhD	
   study	
   1H	
   NMR	
   spectra	
   were	
   acquired	
   at	
   25°C	
   with	
   a	
   700	
   MHz	
  

Varian	
   Unity	
   Inova	
   spectrometer	
   using	
   a	
   5mm1H{13C/15N}	
   triple	
   resonance	
  

probe.	
  The	
  1H-­‐NMR	
  measurements	
  were	
  carried	
  out	
  with	
  1000	
  transients	
  and	
  

32	
   K	
   complex	
   data	
   point.	
   In	
   order	
   to	
   retrieve	
   quantitative	
   information,	
   the	
  

recycle	
  time	
  was	
  set	
  to	
  5	
  s,	
  and	
  a	
  45°	
  pulse	
  angle	
  was	
  used.	
  

The	
   spectra	
   were	
   processed	
   using	
   iNMR	
   software	
   (www.inmr.net).	
   An	
  

exponential	
  line	
  broadening	
  of	
  0.5	
  Hz	
  was	
  applied	
  to	
  the	
  free-­‐induction	
  decay	
  

prior	
   to	
   Fourier	
   transformation.	
   All	
   spectra	
   were	
   referenced	
   relative	
   to	
  

external	
   sodium	
   2,2-­‐dimethyl-­‐2-­‐silapentane-­‐5-­‐sulfonate	
   (DSS),	
   manually	
  

phased	
  and	
  automatically	
  baseline	
  corrected	
  (Fig.3).	
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  Fig.3	
  NMR	
  spectrum	
  of	
  a	
  representative	
  sample	
  of	
  extra-­‐virgin	
  olive	
  oil.	
  (Paper	
  II)	
  

	
  

In	
   the	
   last	
   project	
   carried	
   out	
   at	
   University	
   of	
   Copenhagen	
   (Department	
   of	
  

Food	
  Science),	
  Carr-­‐Purcell-­‐Meiboom-­‐Gill	
  (CPMG)	
  and	
  1D	
  Nuclear	
  Overhauser	
  

Effect	
  Spectroscopy	
  (NOESY)	
  experiments	
  were	
  performed	
  for	
  acquiring	
  NMR	
  

spectra	
   of	
   hydrophilic/lipophilic	
   cancer	
   cell	
   extracts	
   and	
   the	
   growth	
   culture	
  

media.	
  	
  

In	
  this	
  section	
  the	
  differences	
  between	
  two	
  experiments	
  will	
  be	
  described.	
  A	
  

detailed	
  description	
  of	
  the	
  data	
  acquisition	
  is	
  reported	
  in	
  the	
  Chapter	
  4.	
  

The	
  1H	
  NMR	
  spectra	
  of	
  aqueous	
  extracts	
  are	
  measured	
  using	
  a	
  specified	
  water	
  

suppression	
   pulse	
   sequence	
   such	
   as	
   1D	
   NOESY–presat,	
   which	
   employs	
   the	
  

first	
   increment	
  of	
  a	
  NOESY	
  pulse	
  sequence	
  with	
  water	
   irradiation	
  during	
  the	
  

relaxation	
   delay	
   and	
   also	
   during	
   the	
   mixing	
   time.	
   This	
   experiment	
   reduces	
  

contributions	
   from	
   regions	
   of	
   the	
   active	
   volume	
   that	
   experience	
   an	
  

incomplete	
  90°C	
  pulse,	
  thus	
  reducing	
  the	
  residual	
  water	
  resonance	
  [13].	
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The	
   CPMG-­‐presat	
   pulse	
   sequence	
   is	
   used	
   in	
   order	
   to	
   discriminate	
   between	
  

metabolites	
  of	
  low	
  molecular	
  weight	
  (typically	
  <1000	
  Da)	
  and	
  macromolecular	
  

species	
   in	
   the	
   sample,	
   such	
   as	
   proteins	
   or	
   lipoproteins.	
   Macromolecules	
  

produce	
  broad	
   resonances,	
  due	
   to	
   reduced	
   rotational	
  diffusion	
  and	
   short	
   T2	
  

relaxation	
   times,	
   which	
   confound	
   spectral	
   interpretation.	
   Commonly	
   and	
   in	
  

this	
   study	
   (see	
   chapter	
   4)	
   T2	
   editing	
   via	
   the	
   CPMG	
   experiment	
   is	
   used	
   to	
  

reduce	
   the	
   contribution	
   of	
   high	
   molecular	
   weight	
   species	
   in	
   the	
   resulting	
  

spectra	
  [14].	
  
	
  

2.4	
  Data	
  pre-­‐processing	
  

After	
   acquiring	
   the	
   NMR	
   data,	
   it	
   is	
   important	
   to	
   use	
   an	
   appropriate	
   data	
  

pretreatment	
   methods	
   prior	
   starting	
   data	
   analysis.	
   Different	
   data	
  

preprocessing	
   steps	
   [15]	
   are	
   applied	
   in	
  order	
   to	
   generate	
   “clean”	
  data,	
   that	
  

will	
  represent	
  the	
  input	
  for	
  data	
  analysis.	
  	
  

In	
  all	
   investigations,	
   the	
  NMR	
  spectral	
   regions	
   including	
   the	
   residual	
   solvent	
  

signal,	
   or	
   signals	
   strongly	
   affected	
   by	
   it,	
   were	
   removed	
   in	
   order	
   not	
   to	
  

compromise	
   the	
  analysis.	
  The	
  high	
  and	
   low-­‐field	
  ends	
  of	
   the	
  spectrum	
  were	
  

also	
   removed	
   because	
   they	
   include	
   only	
   noise,	
   which	
   does	
   not	
   provide	
  

relevant	
  information.	
  

In	
   my	
   PhD	
   study	
   pre-­‐processing	
   methods	
   were	
   applied:	
   spectra	
   alignment,	
  

binning,	
  normalization.	
  
	
  

2.4.1.	
  Alignment	
  

In	
  metabolomic	
  NMR	
  data	
  analysis	
  solving	
  signal	
  alignment	
  problems	
  could	
  be	
  

a	
  powerful	
  tool	
  for	
  multivariate	
  exploratory	
  investigations	
  aimed	
  at	
  biomarker	
  

profiling	
  or	
  pattern	
  recognition	
  studies.	
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In	
   the	
   paper	
   II	
   and	
   in	
   the	
   project	
   “NMR	
   metabolomic	
   of	
   cancer	
   cell	
   lines”	
  

(chapter	
   4),	
   the	
   spectra	
   were	
   corrected	
   for	
  misalignments	
   in	
   chemical	
   shift	
  

due	
   to	
   pH	
   sensitive	
   signals	
   using	
   the	
   interval-­‐based	
   icoshift	
   algorithm	
   (the	
  

Matlab	
   code	
   including	
   documentation	
   can	
   be	
   downloaded	
   from	
  

www.models.life.ku.dk)	
  [16].	
  

In	
   the	
  paper	
   I	
   the	
   spectra	
  were	
   aligned	
   by	
   the	
   segmented	
  warping	
  method	
  

correlation	
  optimized	
  warping	
  (COW)	
  using	
  mP	
  =	
  50	
  and	
  nP	
  =	
  2	
  [17].	
  
	
  

2.4.2.	
  Binning	
  

The	
  standard	
  approach	
  to	
  solve	
  problems	
  of	
  unmanageable	
  dimensionality	
  of	
  

the	
  data	
  and	
  the	
  inter-­‐individual	
  differences	
  in	
  peak	
  locations	
  is	
  the	
  division	
  of	
  

each	
  spectrum	
  in	
  equally	
  sized	
  bins,	
  integration	
  of	
  the	
  intensity	
  values	
  in	
  each	
  

bin,	
  and	
  annotation	
  of	
  this	
  value	
  to	
  the	
  bin	
  [15].	
  

In	
   the	
   paper	
   I,	
   II	
   and	
   III	
   data	
   reduction	
   was	
   accomplished	
   by	
   dividing	
   the	
  

spectrum	
  into	
  bins	
  (0.01	
  ppm-­‐paper	
  I,	
  0.005	
  ppm-­‐paper	
  II	
  and	
  III)	
  over	
  which	
  

the	
  signal	
  was	
  integrated	
  to	
  obtain	
  the	
  signal	
  intensity.	
  

In	
  the	
  project	
  “NMR	
  metabolomic	
  of	
  cancer	
  cell	
  lines”	
  the	
  spectra	
  alignment,	
  

using	
   icoshift	
   algorithm,	
   solved	
   peak	
   misalignment	
   problems.	
   For	
   a	
   more	
  

detailed	
  description	
  see	
  Chapter	
  4.	
  
	
  

2.4.3.	
  Normalization	
  

In	
   metabolomics,	
   data	
   are	
   usually	
   presented	
   as	
   a	
   table	
   where	
   each	
   row	
  

relates	
  to	
  a	
  given	
  sample	
  and	
  each	
  column	
  corresponds	
  to	
  individual	
  spectral	
  

peak	
   intensities.	
   NMR	
   spectroscopy	
   is	
   a	
   technique	
   that	
   allows	
   quantitative	
  

analysis.	
   Thus	
   the	
   signal	
   intensities	
   should	
   be	
   correlated	
   to	
   the	
  metabolites	
  

concentration.	
   Unfortunately,	
   technical	
   variations	
   originated	
   from	
   sampling,	
  



	
   	
   Chapter	
  2.	
  What	
  is	
  Metabolomics?	
  

	
  

 13 

general	
  instrumental	
  sensitivity	
  effects	
  can	
  affect	
  the	
  signal	
  intensities.	
  

Sample	
  normalization	
  is	
  a	
  row	
  operation	
  that	
  is	
  applied	
  to	
  the	
  data	
  from	
  each	
  

sample	
   and	
   comprises	
  methods	
   to	
  make	
   the	
   data	
   from	
   all	
   samples	
   directly	
  

comparable	
  with	
  each	
  other	
  [18].	
  

In	
  paper	
  I	
  the	
  integrals	
  were	
  normalized	
  to	
  a	
  total	
  intensity	
  to	
  suppress	
  trivial	
  

separation	
  based	
  on	
  variations	
  in	
  the	
  amount	
  of	
  sample.	
  

In	
  paper	
   II,	
   the	
   integrals	
  were	
  normalized	
   to	
   the	
   integral	
  of	
   the	
   triplet	
  at	
  δH	
  

0.86	
  ppm	
  (CH3	
  of	
  triacylglycerols)	
  and	
  in	
  paper	
  III	
  using	
  the	
  cocaine	
  triplet	
  at	
  

δH	
  7.65	
  ppm	
  (H40).	
  

	
  

2.5	
  Multivariate	
  Data	
  Analysis	
  	
  

First	
  of	
  all,	
  why	
  multivariate	
  data	
  analysis?	
  	
  

To	
   understand	
   the	
   world	
   around	
   us	
   we	
   need	
   to	
   measure	
   many	
   variables,	
  

many	
  properties	
  of	
  the	
  systems	
  we	
  investigate.	
  Data	
  collected	
  in	
  science	
  and	
  

technology	
   fields	
   are	
   multivariate,	
   with	
   multiple	
   variables	
   on	
   multiple	
  

samples.	
  

Multivariate	
   data,	
   accurately	
   measured	
   on	
   selected	
   observations	
   and	
  

variables,	
   contain	
  much	
  more	
   information	
   than	
   univariate	
   data.	
   In	
   order	
   to	
  

obtain	
  insight	
  into	
  the	
  system	
  studied,	
  the	
  first	
  step	
  in	
  analyzing	
  set	
  of	
  data	
  is	
  

the	
  raw	
  data	
  exploration.	
  Plotting	
  the	
  data	
  could	
  be	
  a	
  good	
  approach	
  in	
  order	
  

to	
   visualize	
   different	
   features	
   of	
   the	
   data:	
   phase-­‐	
   baseline	
   correction	
  

problems	
   (in	
   the	
  case	
  of	
  NMR	
  data	
  sets),	
   sample	
  with	
  peculiar	
  deviations	
  of	
  

the	
  data,	
  outlying	
  samples	
  and	
  expected	
  biomarkers	
  [19].	
  

However,	
  in	
  order	
  to	
  extract	
  hidden	
  information	
  and	
  obtain	
  relations	
  between	
  

variables	
  is	
  not	
  enough	
  to	
  just	
  look	
  at	
  the	
  raw	
  data.	
  	
  

Explorative	
   unsupervised	
   and	
   classification	
   multivariate	
   methods	
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(chemometrics)	
   are	
   useful	
   to	
   investigate	
   the	
   data	
   and	
   identify	
   meaningful	
  

patterns	
  in	
  the	
  data.	
  

Prior	
   to	
   multivariate	
   data	
   analysis,	
   data	
   are	
   often	
   pre-­‐treated,	
   in	
   order	
   to	
  

transform	
  the	
  data	
  into	
  a	
  form	
  suitable	
  for	
  analysis.	
   In	
  this	
  section	
  centering	
  

and	
  scaling	
  of	
  data	
  are	
  described.	
  

	
  

2.5.1.	
  Centering	
  and	
  scaling	
  

In	
  NMR	
  metabolomics	
  data,	
  the	
  feature	
  intensities	
  vary	
  for	
  metabolite	
  signals;	
  

not	
   always	
   the	
   abundant	
   compounds	
   are	
   more	
   important	
   than	
   the	
   lower	
  

ones.	
   Moreover,	
   using	
   Principal	
   Component	
   Analysis	
   (PCA)	
   which	
   is	
   a	
  

maximum	
  variance	
  projection	
  method,	
  a	
  variable	
  with	
  a	
  large	
  variance	
  is	
  more	
  

likely	
   to	
   be	
   expressed	
   in	
   the	
   modeling	
   than	
   a	
   low-­‐variance	
   variable.	
   ,	
   For	
  

instance,	
   NMR	
   spectral	
   regions	
   including	
   intense	
   signals	
   will	
   have	
   more	
  

importance	
   in	
   the	
  model	
   than	
   the	
   regions	
  with	
   lower	
   ones.	
   Thus	
   using	
   the	
  

combination	
  of	
  centering	
  and	
  scaling	
  is	
  recommended.	
  

Centering	
  removes	
  the	
  offset	
  from	
  the	
  data	
  between	
  high	
  and	
  low	
  abundant	
  

metabolites.	
  In	
  my	
  studies	
  mean-­‐centering	
  was	
  used	
  in	
  order	
  to	
  improve	
  the	
  

interpretability	
  of	
  the	
  models.	
  	
  

𝑥𝑥    =    𝑥𝑥 −  𝑥𝑥 	
  

	
  

With	
  mean-­‐centering	
  the	
  average	
  value	
  of	
  each	
  variable	
  is	
  calculated	
  and	
  then	
  

subtracted	
  from	
  the	
  data.	
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Among	
   scaling	
   types,	
   Pareto	
   scaling	
   was	
   applied	
   in	
   all	
   papers	
   prior	
  

chemometric	
  analysis.	
  	
  

𝑥𝑥 =   
𝑥𝑥 −  𝑥𝑥

𝑠𝑠
	
  

	
  

It	
   gives	
   each	
   variable	
   a	
   variance	
   numerically	
   equal	
   to	
   its	
   initial	
   standard	
  

deviation,	
  reducing	
  the	
  relative	
  importance	
  of	
   large	
  values,	
  but	
  keeping	
  data	
  

structure	
  partially	
  intact	
  [20].	
  

	
  

In	
   this	
  PhD	
  study	
  some	
  chemometric	
   tools	
  were	
  used	
  to	
  extract	
   information	
  

from	
  NMR	
  data	
  and	
  they	
  are	
  briefly	
  described	
  below.	
  

	
  

	
  

2.5.2.	
  Principal	
  Component	
  Analysis	
  (PCA)	
  

	
  

PCA	
  was	
  first	
  formulated	
  in	
  statistics	
  by	
  Pearson,	
  who	
  described	
  the	
  analysis	
  

as	
  finding	
  lines	
  and	
  planes	
  of	
  closest	
  fit	
  to	
  systems	
  of	
  points	
  in	
  space	
  [21].	
  PCA	
  

is	
   a	
   multivariate	
   projection	
   method	
   designed	
   for	
   an	
   exploratory	
  

(unsupervised)	
  data	
  analysis	
   in	
  order	
   to	
  display	
   the	
  systematic	
  variation	
   in	
  a	
  

data	
  matrix	
  ,	
  extracting	
  hidden	
  information.	
  	
  

Statistically,	
   PCA	
   finds	
   lines,	
   planes,	
   hyperplanes	
   in	
   the	
   K-­‐dimensional	
   space	
  

that	
   approximate	
   the	
   data	
   as	
  well	
   as	
   possible	
   in	
   the	
   least	
   squares	
   sense.	
   It	
  

finds	
  the	
  directions	
  in	
  multivariate	
  space	
  that	
  represent	
  the	
  largest	
  sources	
  of	
  

variations,	
  the	
  so	
  called	
  principal	
  components	
  (PC’s).	
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Graphically,	
  PCA	
  models	
  build	
  a	
  score	
  and	
  a	
  loading	
  plot.	
  The	
  score	
  plot	
  shows	
  

how	
   the	
  observations	
   are	
  projected	
  onto	
   this	
   planes,	
  while	
   the	
   loading	
  plot	
  

displays	
  the	
  relationships	
  among	
  the	
  variables	
  (Fig.4).	
  
	
  

	
  

	
  
Fig.4	
  Score	
  (A)	
  and	
  loading	
  (B)	
  plots	
  of	
  the	
  PCA	
  performed	
  on	
  sensory	
  data.	
  

In	
  metabolomic	
  studies,	
  PCA	
  is	
  used	
  as	
  a	
  tool	
  for	
  an	
  exploratory	
  approach	
  to	
  

unknown	
  data.	
  It	
  allows	
  to	
  find	
  peculiar	
  data	
  trends,	
  outliers	
  and	
  similarities	
  

or	
  dissimilarities	
  among	
  samples.	
  	
  

This	
  unsupervised	
  data	
  analysis	
  was	
  applied	
  to	
  NMR	
  data	
  from	
  all	
  papers,	
  

including	
  the	
  unpublished	
  data	
  in	
  Chapter	
  4.	
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2.5.3.	
  Hierarchical	
  Cluster	
  Analysis	
  (HCA)	
  

	
  

Hierarchical clustering is a method of cluster analysis which seeks to build a 

hierarchy of clusters [22]. The HCA algorithm connects objects to form 

clusters based on their distance. The inputs required are similarity measures or 

data from which similarities can be computed using different distance 

functions. The main property of HCA is to highlight grouping of samples on 

the basis of similarities or distances (dissimilarities) with the general idea that 

objects are more related to nearby objects than to objects farther away.  

The results of hierarchical clustering are presented in a dendrogram, in which 

the y-axis marks the distance among clusters, while the objects are placed 

along the x-axis (Fig.5). 

 

 
	
  

Fig.5	
  HCA	
  dendrogram	
  showing	
  the	
  similarities	
  between	
  products	
  based	
  on	
  QDA	
  (Paper	
  I) 
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In the paper I, HCA was carried out	
  using the	
  Euclidean distance between the 

PLS scores for each canned tomato sample, in order to group samples with 

similar sensory features. 

In paper II, HCA was performed on quantitative descriptive analysis (QDA) 

means, in order to group extra virgin olive oil samples sharing similar sensory 

features. 

In paper III, it was carried out by using the Ward clustering method [22], in 

order to group cocaine samples with different periods and areas of the cocaine 

consignments. 

	
  

2.5.4.	
  Partial	
  Least	
  Squares-­‐Discriminant	
  Analysis	
  (PLS-­‐DA)	
  

	
  

In	
   metabolomics,	
   Partial	
   Least	
   Squares-­‐Discriminant	
   Analysis	
   (PLS-­‐DA)	
   is	
  

commonly	
  used	
  for	
  classification	
  in	
  multivariate	
  data	
  analysis.	
  	
  

PLS-­‐DA	
   is	
   a	
   regression	
   model	
   that	
   describes	
   the	
   maximum	
   separation	
  

between	
  pre-­‐defined	
  classes	
  [23].	
  The	
  objective	
  of	
  PLS-­‐DA	
  is	
  to	
  find	
  a	
  model	
  

that	
  separates	
  classes	
  of	
  samples	
  on	
  the	
  basis	
  of	
  their	
  variables.	
  

In	
  PLS-­‐DA,	
  the	
  X-­‐matrix	
  consists	
  of	
  sample	
  variables	
  (features)	
  and,	
  in	
  order	
  to	
  

encode	
  a	
   class	
   identity,	
   the	
   response	
  Y	
   is	
  a	
  matrix	
  of	
  dummy	
  variables.	
  This	
  

artificial	
  matrix	
   is	
  defined	
  by	
  creating	
  a	
  vector	
   for	
  each	
  class,	
  where	
  each	
  Y-­‐	
  

variable	
  has	
  value	
  of	
  0	
  for	
  all	
  samples	
  in	
  the	
  first	
  class,	
  of	
  1	
  for	
  all	
  samples	
  in	
  

the	
  second	
  class	
  and	
  so	
  on.	
  Then,	
  the	
  PLS-­‐DA	
  algorithm	
  can	
  find	
  a	
  discriminant	
  

plane	
  in	
  X-­‐space	
  in	
  which	
  the	
  projected	
  samples	
  are	
  well	
  separated	
  according	
  

to	
  class.	
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In	
  paper	
   III,	
  PLS-­‐DA	
  was	
  performed	
  using	
  Simca-­‐P	
  12.0	
   (Umetrics)	
   to	
  explore	
  

the	
  ability	
  of	
  the	
  NMR	
  data	
  to	
  discriminate	
  between	
  classes	
  of	
  samples.	
  The	
  

quality	
  of	
  the	
  models	
  was	
  described	
  by	
  R2	
  and	
  Q2	
  values.	
  R2	
  is	
  defined	
  as	
  the	
  

proportion	
  of	
  variance	
  in	
  the	
  data	
  explained	
  by	
  the	
  models	
  and	
  indicates	
  the	
  

goodness	
   of	
   fit.	
   Q2	
   is	
   defined	
   as	
   the	
   proportion	
   of	
   variance	
   in	
   the	
   data	
  

predictable	
   by	
   the	
   model	
   and	
   indicates	
   predictability	
   [24].	
   The	
   model	
  

validation	
  was	
  performed	
  using	
  the	
  permutation	
  test	
  [25],	
  in	
  which	
  a	
  total	
  of	
  

400	
  models	
  were	
   calculated	
   by	
   randomizing	
   the	
   order	
   of	
   Y	
   variables	
   in	
   the	
  

corresponding	
  PLS-­‐DA	
  models.	
  	
  

After	
   the	
   interpretation	
   of	
   multivariate	
   data	
   analysis	
   models,	
   the	
   last	
   and	
  

more	
  challenging	
  step	
   in	
  metabolomic	
  studies	
   is	
  the	
  NMR	
  assignment	
  of	
  the	
  

selected	
  biomarkers.	
   In	
   the	
  next	
   chapter	
  more	
  detailed	
   results	
   are	
   reported	
  

for	
  each	
  case	
  study.	
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3	
  CASE	
  STUDIES	
  

	
  

3.1	
  NMR	
  Metabolomic	
  fingerprinting:	
  a	
  tool	
  for	
  prediction	
  of	
  
sensory	
  descriptors	
  in	
  canned	
  tomatoes	
  
	
  

Sensory	
   perception	
   appears	
   so	
   deceptively	
   easy	
   and	
   straightforward	
   that	
   it	
  

may	
   seem	
   to	
   be	
   a	
   simple	
   detection	
   process	
   merely	
   “capturing”	
   the	
  

environmental	
  signals	
  and	
  feeding	
  them	
  into	
  the	
  brain.	
  But the	
  perception	
  of	
  
odor	
   and	
   flavor	
   of	
   food	
   is	
   a	
   complex	
   physiological	
   and	
   also	
   psychological	
  

process	
  that	
  cannot	
  be	
  explained	
  by	
  simple	
  models.	
  	
  

The	
  sensory	
  food	
  impression	
  is	
  mainly	
  determined	
  by	
  the	
  chemical	
  senses	
  of	
  

taste	
  and	
  smell.	
  Both	
  are	
  detected	
  through	
  sensory	
  cells	
  of	
  the	
  tongue	
  (taste)	
  

and	
  of	
  the	
  nasal	
  cavity	
  (smell)	
  [1],	
  on	
  the	
  base	
  of	
  different	
  molecules	
  or	
  ions.	
  	
  

Nowadays	
  understanding	
  consumer’s	
  expectations,	
  habits,	
  and	
  preferences	
  is	
  

really	
  important	
  especially	
  for	
  a	
  food	
  company	
  in	
  order	
  to	
  ensure	
  the	
  product	
  

success	
   on	
   the	
   market.	
   Of	
   course	
   brand,	
   label,	
   packaging,	
   advertising	
   are	
  

critical	
   factors	
   in	
  product	
  choice	
  matter,	
  but	
  the	
  success	
   is	
  tightly	
  connected	
  

to	
   the	
  products’	
   features.	
  Unfortunately	
  consumers	
  are	
  not	
  able	
   to	
  describe	
  

technical	
   information	
   useful	
   to	
   enhance	
   product	
   features,	
   thus	
   food	
   and	
  

beverages	
   companies	
   take	
   advantage	
   of	
   Quantitative	
   Descriptive	
   Analysis	
  

(QDA)	
  [2]	
  [3].	
  

Since	
  taste	
   is	
  not	
  objective,	
  compared	
  to	
  the	
  sight	
   for	
  example,	
  but	
  partially	
  

subjective	
   and	
   affecting	
   by	
   the	
   mood	
   of	
   the	
   taster,	
   objective	
   analytical	
  

techniques	
  have	
  been	
  used	
  to	
  support	
  or,	
  in	
  some	
  cases,	
  replace	
  the	
  classical	
  

QDA,	
  such	
  as	
  Electronic	
  noise	
  and	
  electronic	
  tongue	
  [4].	
  



	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Chapter	
  3.	
  Case	
  studies	
  
	
  

	
   25	
  

Therefore	
  the	
  availability	
  of	
  a	
  number	
  of	
  instrumental	
  techniques	
  has	
  opened	
  

up	
   the	
   possibility	
   to	
   calibrate	
   the	
   sensory	
   perception.	
   Analytical	
   techniques	
  

like	
  mass	
   spectrometry	
   (MS)	
   [5]	
   [6]	
   and	
   gas	
   chromatography	
   (GC)	
   [7]	
   have	
  

been	
   used,	
   but	
   very	
   specific	
   sample	
   preparations	
   are	
   required	
   (e.g.	
   sample	
  

derivatization	
  or	
  volatilization).	
  	
  

In	
   this	
   study	
   (Paper	
   I)	
   we	
   tested	
   the	
   potentiality	
   of	
   Nuclear	
   Magnetic	
  

Resonance	
   spectroscopy	
   as	
   “magnetic	
   tongue”	
   to	
   measure	
   sensory	
  

descriptors	
  of	
  canned	
  tomato	
  samples,	
  since	
  NMR	
  spectroscopy	
  is	
  one	
  of	
  the	
  

most	
  fast,	
  accurate	
  and	
  not	
  expensive	
  analytical	
  technique.	
  	
  	
  

In	
  particular,	
  we	
  used	
  a	
  metabolomic	
  NMR	
  fingerprinting	
  approach	
  in	
  order	
  to	
  

differentiate	
  the	
  samples	
  on	
  the	
  basis	
  of	
  their	
  chemical	
  composition	
  and	
  then	
  

correlate	
   the	
   fingerprints	
   to	
   the	
   sensory	
   descriptors.	
   Final	
   results	
   will	
  

demonstrate	
   that	
   NMR	
   spectroscopy	
   might	
   be	
   a	
   very	
   useful	
   tool	
   for	
   the	
  

characterization	
  of	
  sensory	
  features	
  of	
  tomatoes.	
  

	
  

In	
  this	
  section	
  the	
  project	
  workflow	
  and	
  final	
  results	
  are	
  reported.	
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3.1.1	
  Project	
  workflow 
 
The	
  metabolomic	
  fingerprinting	
  approach	
  of	
  this	
  project	
  involves	
  several	
  steps	
  

in	
  order	
  to	
  find	
  the	
  answer	
  to	
  our	
  specific	
  research	
  question.	
  

The	
  workflow	
  followed	
  for	
  this	
  project	
  is	
  summarized	
  in	
  Figure	
  1.	
  

	
  

 

Fig.1	
  Illustration	
  of	
  Project	
  workflow.	
  

 
This	
   study	
   started	
  as	
  a	
   “pilot”	
  project	
  with	
   the	
  aim	
   to	
  explore	
   the	
  analytical	
  

potentiality	
  of	
  the	
  NMR	
  spectroscopy	
  as	
  ‘‘magnetic	
  tongue’’	
  in	
  the	
  analysis	
  of	
  

eighteen	
  canned	
  tomato	
  products	
  of	
  different	
  brands	
  purchased	
   in	
  different	
  

markets	
  in	
  Napoli	
  (Italy).	
  	
  Sensory	
  assessments	
  were	
  carried	
  out	
  by	
  a	
  panel	
  of	
  

trained	
   assessors,	
   who	
   developed	
   a	
   specific	
   profile	
   protocol	
   for	
   QDA	
  

containing	
   14	
   descriptors.	
   1H	
   NMR	
   analysis	
   was	
   performed	
   on	
   the	
   same	
  



	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Chapter	
  3.	
  Case	
  studies	
  
	
  

	
   27	
  

samples	
   and	
   the	
   resulting	
   data	
   matrixes	
   were	
   analyzed	
   using	
   chemometric	
  

tools	
   in	
  order	
   to	
   identify	
   the	
  chemical	
   signatures	
  of	
   sensory	
  descriptors	
  and	
  

predict	
  the	
  descriptors	
  independently	
  from	
  quantitative	
  descriptive	
  analysis.	
  	
  

	
  

3.1.2	
  Methods	
  and	
  results	
  discussion	
  
	
  
Quantitative	
  descriptive	
  method	
  

The	
   QDA	
   method	
   aims	
   to	
   define	
   a	
   product’s	
   sensory	
   profile,	
   describing	
  

products	
   in	
   terms	
  of	
   sensory	
   features	
  as	
  perceivable	
   through	
   five	
   senses.	
   In	
  

QDA	
   descriptors	
   were	
   evaluated	
   on	
   a	
   continuous,	
   unlabeled,	
   0-­‐10	
   intensity	
  

scale	
  and	
  then	
  turned	
   into	
  numeric	
  variables	
   (a	
  number	
  between	
  0	
  and	
  10).	
  

Three	
  replicates	
  per	
  sample	
  were	
  performed	
  to	
  minimize	
  random	
  errors	
  and	
  

in	
   particular,	
   each	
   subsequent	
   replicate	
   after	
   one	
   week	
   from	
   the	
   previous	
  

one.	
  	
  

During	
  each	
  session	
  a	
  maximum	
  of	
  three	
  samples	
  were	
  presented,	
  according	
  a	
  

balanced	
   rotation	
   plan.	
   Then,	
   the	
   same	
   samples	
  were	
   subjected	
   to	
   1H-­‐NMR	
  

analysis,	
  using	
  parameters	
  already	
  described	
  in	
  the	
  previous	
  chapter.	
  

	
  

Hierarchical	
  Cluster	
  Analysis	
  

A	
  Hierarchical	
  cluster	
  analysis	
  (HCA)	
  was	
  performed	
  on	
  mean	
  QDA	
  parameters	
  

and	
   on	
   NMR	
   data	
   to	
   identify	
   similar	
   products	
   sharing	
   similar	
   sensory	
  

properties	
   and	
   to	
   eventually	
   find	
   correlations	
   among	
   the	
   different	
   data	
   set	
  

(Fig.2).	
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Fig.2	
  Dendrograms	
  showing	
  the	
  similarities	
  between	
  products	
  based	
  on	
  (A)	
  QDA	
  and	
  (B)	
  NMR.	
  Products	
  
falling	
  within	
  the	
  same	
  group	
  in	
  the	
  NMR	
  classification	
  are	
  indicated	
  with	
  the	
  same	
  color.	
  

	
  

	
  

The	
   dendrograms	
   describing	
   the	
   sensory	
   analysis	
   were	
   based	
   on	
   unscaled	
  

sensory	
   data,	
   while	
   the	
   NMR-­‐based	
   dendrograms	
   were	
   based	
   on	
   PLS-­‐DA	
  

scores	
  of	
  VAST	
  scaled	
  [8]	
  NMR	
  data	
  calculated	
  using	
  Simca-­‐P	
  11.5	
  (Umetrics,	
  

Umea,	
  Sweden)	
  as	
  input.	
  

Despite	
   the	
   fact	
   that,	
   the	
  two	
  HCAs	
  refer	
   to	
  data	
  collected	
  by	
  very	
  different	
  

analytical	
   techniques,	
   it	
   can	
   be	
   seen	
   that	
   there	
   is	
   a	
   good	
   global	
   agreement	
  

between	
   the	
   different	
  measurements:	
   products	
   of	
   group	
   1B	
   (2	
   and	
   14)	
   are	
  

also	
  present	
  in	
  group	
  1A,	
  all	
  products	
  except	
  one	
  in	
  group	
  2B	
  are	
  also	
  present	
  

in	
  group	
  2A,	
  and	
  all	
  products	
  in	
  group	
  3A	
  are	
  also	
  present	
  in	
  group	
  3B.	
  

	
  

Principal	
  Component	
  Analysis	
  

An	
   exploratory	
   and	
   unsupervised	
   analysis	
   was	
   conducted	
   performing	
   PCA	
  

models	
  in	
  parallel	
  on	
  unscaled	
  sensory	
  data	
  and	
  on	
  VAST-­‐scaled	
  NMR	
  data.	
  	
  

The	
  PCA	
  resulting	
  plot	
  has	
  shown	
  the	
  QDA	
  ability	
  to	
  define	
  a	
  sensory	
  map	
  of	
  

products	
   positioning,	
   within	
   an	
   overall	
   picture,	
   products	
   in	
   terms	
   of	
   their	
  

sensory	
  properties.	
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Fig.3	
   Score	
   (A)	
   and	
   loading	
   (B)	
   plots	
   of	
   the	
   PCA	
   performed	
   on	
   sensory	
   data.	
   Products	
   are	
   colored	
  
according	
   to	
   NMR	
   HCA	
   analysis	
   in	
   Figure	
   2B.	
   Note	
   that	
   none	
   of	
   the	
   sensory	
   descriptors	
   are	
   well	
  
described	
  by	
  this	
  PCA	
  model	
  (|R|	
  >	
  0.5	
  for	
  all	
  descriptors).	
  
	
  

In	
   particular,	
   the	
   scores	
   (Fig.3A)	
   allowed	
   us	
   to	
   identify	
   the	
  most	
   important	
  

sensory	
   descriptors	
   for	
   products	
   differentiation.	
   This	
   analysis	
   indicates	
   that	
  

the	
  groups	
  identified	
  by	
  the	
  HCA	
  share	
  the	
  same	
  features	
  and	
  that	
  there	
  is	
  no	
  

strong	
  separation	
  between	
  the	
  different	
  groups	
  identified.	
  

Interpreting	
   the	
   loading	
   plot	
   (Fig.3B),	
   it’s	
   clear	
   that	
   products	
   belonging	
   to	
  

group	
  1A	
  are	
  characterized	
  by	
  sweetness,	
  by	
  tomato	
  taste	
  and	
  saltiness	
  and	
  

by	
   tomato	
   flavor.	
   Group	
   2A	
   is	
   instead	
   characterized	
   by	
   a	
   more	
   marked	
  

redness	
   and	
   sourness.	
   On	
   the	
   other	
   hand,	
   group	
   3A	
   is	
   characterized	
   by	
  

bitterness	
  and	
  metal	
  taste,	
  having	
  a	
  light	
  redness.	
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PCA	
   has	
   also	
   been	
   performed	
   on	
   the	
   NMR	
   data	
   set	
   (Fig.4),	
   providing	
  

information	
  about	
  samples	
  distribution	
  based	
  on	
  their	
  sensory	
  descriptors.	
  

	
  

	
  
Fig.4.	
  Score	
  (A	
  and	
  B)	
  and	
  loading	
  (C_E)	
  plots	
  of	
  the	
  PCA	
  performed	
  on	
  NMR	
  data.	
  Panels	
  A	
  and	
  B	
  
show	
  the	
  PC1_PC2	
  and	
  PC1_PC3	
  score	
  plots,	
  and	
  panels	
  C_E	
  show	
  the	
  PC1_PC3	
  loadings.	
  Products	
  
are	
  colored	
  according	
  to	
  NMR	
  HCA	
  analysis	
  in	
  Figure	
  1B.	
  	
  
Error	
  bars	
  correspond	
  to	
  one	
  SE	
  (SE	
  =	
  SD/N1/2).	
  
	
  

Interestingly	
   the	
   general	
   distribution	
  of	
   the	
  products	
   in	
   the	
   score	
  plots	
   (Fig.	
  

4A,B)	
  in	
  a	
  way	
  recall	
  the	
  one	
  observed	
  in	
  the	
  sensory	
  data	
  set	
  (Fig.	
  3A).	
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Moreover,	
   PC1,	
   PC2,	
   and	
   PC3	
   vary	
   significantly	
   between	
   the	
   different	
  

products.	
  As	
   judged	
   from	
  the	
   loading	
  plots	
   (Fig.	
  4C-­‐E),	
   the	
   first	
  PC	
  describes	
  

the	
   distribution	
   of	
   the	
   samples	
   based	
   on	
   their	
   sweetness.	
   In	
   fact,	
   negative	
  

values	
  can	
  be	
  observed	
  for	
  signals	
  belonging	
  to	
  sugars	
  like	
  saccharose	
  and	
  α-­‐	
  

and	
  β-­‐D-­‐glucose.	
  At	
  the	
  same	
  time,	
  positive	
  correlations	
  can	
  be	
  observed	
  for	
  

signals	
   belonging	
   to	
   bitter	
   amino	
   acids	
   like	
   tyrosine,	
   phenylalanine,	
  

tryptophane,	
   and	
   isoleucine.	
   The	
   noisy	
   look	
   of	
   the	
   second	
   PC	
   describes	
   the	
  

formation	
  of	
  sharper	
  NMR	
  signals	
  due	
  to	
  a	
  decrease	
  in	
  viscosity.	
  The	
  third	
  PC	
  

seems	
   instead	
   related	
   to	
   an	
   increase	
   of	
   saccharose,	
   isoleucine,	
   and	
   acetate	
  

and	
  a	
  decrease	
  of	
  tyrosine,	
  α-­‐D-­‐glucose,	
  malate,	
  and	
  glutamate.	
  

	
  

The	
   similarities	
   in	
   the	
   structures	
   of	
   the	
   sensory	
   and	
   NMR	
   data	
   were	
   very	
  

encouraging	
  and	
  allowed	
  us	
  to	
  carry	
  on	
  with	
  the	
  crucial	
  step	
  of	
  the	
  study.	
  	
  

In	
   order	
   to	
   answer	
   to	
  our	
   research	
  question	
   about	
   how	
  well	
  NMR	
  data	
   can	
  

predict	
   the	
   sensory	
   descriptors,	
   were	
   performed	
   Orthogonal	
   projection	
   to	
  

latent	
   structures	
   (OPLS)	
   [9]	
  models	
  using	
  Simca-­‐P	
  12.0	
   (Umetrics).	
  OPLS	
  was	
  

carried	
  out	
  using	
  each	
  sensory	
  descriptor	
  as	
  the	
  y-­‐variable	
  and	
  the	
  data	
  were	
  

scaled	
  to	
  obtain	
  unit	
  variance	
  and	
  then	
  centered.	
  	
  

Using	
  this	
  protocol,	
  we	
  were	
  able	
  to	
  get	
  good	
  predictions	
  [Q2(cum)	
  >0.5]	
  for	
  

bitterness,	
  redness,	
  density,	
  and	
  metal	
  and	
  tomato	
  taste.	
  

Finally,	
   to	
   determine	
   the	
   chemical	
   components	
   responsible	
   for	
   a	
   given	
  

sensory	
  descriptor,	
  we	
  have	
   looked	
  for	
  all	
  possible	
  correlations	
  between	
  the	
  

NMR	
  signals	
  and	
  the	
  analyzed	
  sensory	
  descriptors	
  using	
  OPLS	
  models.	
  	
  

NMR	
   signals	
   that	
   showed	
   a	
   strong	
   correlation	
   (R2>0.5)	
   with	
   the	
   OPLS	
  

predictive	
  scores	
  for	
  the	
  sensory	
  descriptors	
  were	
  considered	
  as	
  markers	
  for	
  

the	
  sensory	
  descriptors.	
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Using	
   this	
   approach	
   was	
   possible	
   to	
   correlate	
   the	
   NMR	
   fingerprinting	
   of	
  

canned	
  tomato	
  samples	
  to	
  relative	
  sensory	
  descriptors.	
  

For	
   instance,	
   sweet	
   perception	
   was	
   positively	
   correlated	
   with	
   saccharose	
  

(5.41	
   ppm)	
   in	
   spite	
   of	
   its	
   low	
   concentration,	
   whereas	
   it	
   was	
   negatively	
  

correlated	
  with	
  tyrosine	
  (H-­‐α	
  3.94	
  ppm),	
  which	
  is	
  a	
  known	
  bitter	
  amino	
  acid.	
  

It	
  was	
   interesting	
   to	
   note	
   that	
   the	
   sensation	
   of	
   sweetness	
   cannot	
   solely	
   be	
  

explained	
   by	
   the	
   sugar	
   content,	
   accordingly	
   to	
   other	
   data	
   in	
   literature	
   [10]	
  

that	
   reveal	
   a	
   strong	
   relationship	
   between	
   the	
   sensation	
   the	
   sensation	
   of	
  

sweetness	
  and	
  the	
  glucose/citric	
  acid	
  interaction.	
  

Very	
   surprisingly,	
   redness	
   was	
   positively	
   correlated	
   with	
   the	
   presence	
   of	
  

tryptophan	
   (H4,	
   H5,	
   and	
   H6	
   at	
   7.75,	
   7.17,	
   and	
   7.29	
   ppm,	
   respectively)	
   and	
  

tyrosine	
  (H3/H5	
  at	
  6.90	
  and	
  H-­‐βs	
  at	
  3.06	
  and	
  3.18	
  ppm).	
  

Finally,	
  a	
  number	
  of	
  signals	
  in	
  the	
  region	
  between	
  4.30	
  and	
  4.60	
  ppm	
  and	
  at	
  

4.03	
  ppm	
  display	
  negative	
   correlations	
  with	
  density.	
  Unfortunately	
  we	
  were	
  

not	
  able	
   to	
  unambiguously	
  assign	
   these	
   signals,	
   even	
   if	
   their	
   chemical	
   shifts	
  

strongly	
  suggest	
  that	
  they	
  could	
  be	
  attributed	
  to	
  sugars.	
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3.2	
  Application	
  of	
  “magnetic	
  tongue”	
  to	
  the	
  sensory	
  evaluation	
  of	
  
extra	
  virgin	
  olive	
  oil	
  
	
  

The	
   results	
   obtained	
   in	
   the	
   previous	
   study	
   suggested	
   that	
   the	
  metabolomic	
  

NMR	
   fingerprinting	
   represents	
   a	
   very	
   useful	
   tool	
   to	
   explore	
   and	
   predict	
  

sensory	
   features	
   of	
   food	
   samples.	
   To	
   evaluate	
   the	
   applicability	
   of	
   this	
  

methodology,	
   the	
   same	
   strategies	
   and	
   study	
  design	
  were	
   applied	
   to	
  predict	
  

and	
   to	
   measure	
   sensory	
   descriptors	
   in	
   extra-­‐virgin	
   olive	
   oil,	
   with	
   particular	
  

attention	
   to	
   the	
   quantitative	
   measure	
   of	
   minor	
   compounds	
   related	
   to	
   the	
  

sensory	
  description	
  (Paper	
  II).	
  

Extra-­‐virgin	
  olive	
  oil	
  (EVOO)	
  has	
  received	
  increasing	
  attention	
  over	
  the	
  world	
  

for	
   their	
   unique	
   nutritional	
   and	
   healthy	
   properties	
   and	
   extraordinary	
   flavor	
  

and	
  taste.	
  

In	
  the	
  last	
  decade,	
  NMR	
  spectroscopy	
  was	
  used	
  to	
  analyze	
  extra	
  virgin	
  olive	
  oil	
  

in	
   several	
   applications.	
   In	
   2001	
   Mannina	
   L.	
   and	
   coworkers	
   evaluated	
   the	
  

potential	
   contribution	
  of	
   this	
   technique	
   to	
   the	
  geographical	
   characterization	
  

of	
   olive	
   oils	
   [10].	
   Furthermore,	
   other	
   analytical	
   techniques,	
   such	
   as	
   the	
  

electronic	
   nose	
   and	
   the	
   electronic	
   tongue,	
   in	
   combination	
  with	
  multivariate	
  

analysis,	
  have	
  been	
  used	
  to	
  verify	
  the	
  geographical	
  origin	
  and	
  the	
  uniqueness	
  

of	
   specific	
   extra	
   virgin	
   olive	
   oils	
   [11].	
   The	
   recent	
   development	
   of	
   NMR	
  

spectrometers	
  (high	
  field,	
  cold-­‐probe)	
  and	
  their	
  performance	
  in	
  term	
  of	
  both	
  

resolution	
   and	
   sensitivity	
   open	
   new	
   perspectives	
   in	
   the	
   application	
   of	
   this	
  

powerful	
  analytical	
  technique	
  in	
  the	
  analysis	
  of	
  extra	
  virgin	
  olive	
  oil,	
  especially	
  

in	
  combination	
  with	
  multivariate	
  data	
  analysis.	
  

In	
   this	
   section	
   an	
   overview	
   of	
   all	
   results	
   is	
   reported,	
   considering	
   that	
   was	
  

applied	
  the	
  same	
  approach	
  of	
  the	
  previous	
  study.	
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The	
   EVOO	
   analyzed	
   products	
   were	
   given	
   from	
   different	
   companies	
   in	
  

Campania	
   region	
   (Italy)	
   within	
   the	
   EXTRABIO	
   2008,	
   which	
   is	
   a	
   quality	
   prize	
  

organized	
  by	
  the	
  Chamber	
  of	
  Commerce	
  of	
  Naples	
  for	
  olive	
  oils	
  from	
  organic	
  

agriculture.	
  

	
  

3.2.1.	
  Methods	
  and	
  results	
  discussion	
  
	
  

Sensory	
  profiles	
  of	
   the	
  18	
  samples	
  were	
  determined	
  by	
  the	
  olive	
  oil	
   sensory	
  

panel	
   of	
   the	
   ‘‘Laboratorio	
   Chimico	
   Merceologico’’	
   of	
   the	
   Chamber	
   of	
  

Commerce	
  of	
  Naples	
  (Italy)	
  and	
  eleven	
  descriptors	
  have	
  been	
  defined:	
  fruity,	
  

leaf,	
   grassy,	
   bitter,	
   pungent,	
   sweet,	
   almond,	
   artichoke,	
   apple,	
   tomato	
   and	
  

rosemary	
  tastes.	
  Then	
  samples	
  were	
  prepared	
  for	
  1H-­‐NMR	
  analysis	
  following	
  	
  

The	
  procedure	
  reported	
  by	
  Segre	
  and	
  Mannina	
  [12].	
  

	
  

Hierarchical	
  Cluster	
  Analysis	
  

A	
  Hierarchical	
  cluster	
  analysis	
  (HCA)	
  was	
  performed	
  on	
  mean	
  QDA	
  parameters	
  

and	
   on	
   NMR	
   data,	
   using	
   Ward	
   clustering	
   method	
   [13]	
   in	
   order	
   to	
   group	
  

products	
  sharing	
  similar	
  sensory	
  features	
  (Fig.5).	
  

Analogously	
   to	
   the	
   HCA	
   performed	
   on	
   sensory	
   data,	
   the	
   HCA	
   analysis	
  

performed	
  on	
  the	
  NMR	
  data	
  revealed	
  three	
  main	
  groups	
  (Fig.	
  5B):	
  there	
  is	
  an	
  

excellent	
   global	
   agreement	
   between	
   the	
   different	
   measurements	
   but	
   only	
  

sample	
  5,	
  11	
  and	
  18	
  are	
  not	
  grouped	
   in	
   the	
  same	
  way	
  using	
  QDA	
  and	
  NMR	
  

data.	
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Fig.5.	
   Dendrograms	
   showing	
   similarities	
   between	
   products	
   based	
   on	
   QDA	
   (A)	
   and	
   NMR	
   (B).	
   The	
  
dendrograms	
  were	
  based	
  on	
  the	
  two	
  first	
  PCs	
  after	
  PCA	
  of	
  QDA	
  (A)	
  and	
  NMR	
  (B)	
  data,	
  respectively.	
  (For	
  
interpretation	
  of	
  the	
  references	
  to	
  colour	
  in	
  this	
  figurelegend,	
  the	
  reader	
  is	
  referred	
  to	
  the	
  web	
  version	
  
of	
  this	
  article.)	
  
	
  
	
  

Principal	
  Component	
  Analysis	
  

PCA	
  models	
  were	
  performed	
  on	
  sensory	
  data	
  and	
  also	
  on	
  the	
  NMR	
  data,	
  using	
  

Simca-­‐P	
   13.0	
   software	
   (Umetrics,	
   Umea,	
   Sweden)	
   (Fig.6).	
   The	
   sensory	
   data	
  

were	
   autoscaled	
  while	
  NMR	
   data	
  were	
   pareto-­‐scaled,	
   since	
   these	
   data	
   pre-­‐

treatments	
  seems	
  to	
  perform	
  better	
  with	
  regard	
  to	
  expectations.	
  

Two	
   principal	
   components	
   accounting	
   for	
   65%	
   of	
   the	
   variation	
   were	
  

identified.	
   The	
   plot	
   of	
   their	
   scores	
   (Fig.	
   6A)	
   shows	
   the	
   positioning	
   of	
   the	
  

products	
  according	
  to	
  their	
  sensory	
  attributes	
  and	
  allowed	
  the	
   identification	
  

of	
  the	
  most	
  important	
  sensory	
  descriptors	
  for	
  products	
  differentiation.	
  

Interestingly,	
   a	
   number	
   of	
   descriptors	
   shows	
   a	
   significant	
   correlation	
  	
  	
  

(Q2(cum)	
  >	
  0.4)	
  with	
  the	
  model,	
  indicating	
  a	
  high	
  level	
  of	
  correlation	
  between	
  

the	
  sensory	
  descriptors	
  (Table	
  S2	
  in	
  supporting	
  material	
  ).	
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Fig.6.	
  Score	
  (A)	
  and	
  loading	
  (B)	
  plots	
  of	
  the	
  PCA	
  performed	
  on	
  sensory	
  data.	
  
Products	
  are	
  coloured	
  according	
  to	
  QDA	
  HCA	
  analysis	
  in	
  Fig.	
  5.	
  

	
  

	
  

According	
  to	
  the	
  loading	
  plot	
  (Fig.	
  6B),	
  the	
  transition	
  from	
  the	
  left	
  to	
  the	
  right	
  

of	
  the	
  map	
  shows	
  the	
  simultaneous	
  decrease	
  of	
  the	
  sweet	
  taste	
  and	
  increase	
  

of	
   the	
   bitter,	
   pungent,	
   fruity	
   and	
   artichoke	
   tastes.	
   Moreover,	
   this	
   plot	
  

suggests	
   a	
   covariance	
   between	
   different	
   tastes:	
   a	
   higher	
   sweetness	
   is	
  

generally	
  associated	
  with	
  a	
  lower	
  bitterness.	
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Regarding	
   the	
   PCA	
   performed	
   on	
   the	
   NMR	
   data,	
   two	
   PCs	
   were	
   identified,	
  

explaining	
  the	
  83.6%	
  of	
  the	
  variation,	
  The	
  general	
  distribution	
  of	
  the	
  products	
  

in	
   the	
   score	
   plots	
   (Fig.	
   7A)	
   in	
   a	
  way	
   recall	
   the	
   one	
   observed	
   in	
   the	
   sensory	
  

dataset	
  (Fig.	
  6A).	
  

	
  
Fig.7.	
  Score	
  (A)	
  and	
  loading	
  (B	
  and	
  C)	
  plots	
  of	
  the	
  PCA	
  performed	
  on	
  NMR	
  data.	
  (B	
  
and	
  C)	
  show	
  the	
  PC1	
  and	
  PC2	
  loadings.	
  Products	
  are	
  coloured	
  according	
  to	
  Fig.	
  5.	
  

	
  

For	
   example,	
   Group1B	
   and	
   Group	
   3B	
   are	
   mapped	
   opposite	
   to	
   each	
   other,	
  

suggesting	
   that	
   PC2	
   in	
   the	
   PCA	
   computed	
   with	
   the	
   NMR	
   data	
   is	
   in	
   a	
   way	
  

related	
  to	
  the	
  sweetness/bitterness	
  of	
  the	
  samples.	
  On	
  the	
  other	
  hand	
  group	
  

2B	
   is	
   very	
  well	
   separated	
   from	
   the	
   other	
   two	
   groups	
   along	
   PC1,	
   suggesting	
  

that	
  this	
  PC	
  is	
  related	
  to	
  apple,	
  rosemary	
  and	
  leaf	
  tastes.	
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Samples	
  contained	
  in	
  this	
  group	
  are	
  characterized	
  by	
  higher	
  concentration	
  of	
  

molecules	
  having	
  signals	
  at	
  δH	
  9.58,	
  9.31,	
  7.88,	
  6.97,	
  6.69	
  and	
  6.63	
  ppm,	
  and	
  

low	
  concentration	
  of	
  molecules	
  having	
  signals	
  at	
  δH	
  9.45,	
  9.09,	
  9.05,	
  6.82	
  and	
  

6.58	
  ppm,	
  relative	
  to	
  Groups	
  1B	
  and	
  3B.	
  

Looking	
  at	
  the	
  loading	
  plot	
  of	
  second	
  principal	
  component	
  (Fig.	
  7C),	
  it	
  is	
  clear	
  

that	
  Group	
  1B	
  contains	
  higher	
  concentrations	
  of	
  molecules	
  having	
  signals	
  at	
  

δH	
  9.45	
   (the	
  aldehyde	
  proton	
  of	
   the	
   trans-­‐2-­‐hexenal),	
   9.09,	
   9.05,	
   6.82,	
   6.58,	
  

whereas	
   lower	
   concentrations	
   of	
   those	
  molecules	
   are	
   present	
   in	
   the	
  Group	
  

3B.	
  

Signals	
   around	
   δH	
   9.10	
   could	
   also	
   be	
   tentatively	
   assigned	
   to	
   protons	
   of	
   the	
  

dialdehyde	
  form	
  of	
  secoiridoids,	
  and	
  signals	
  at	
  δH	
  6.5–6.8	
  to	
  phenyl	
  alcohols	
  

moieties	
   (tyrosol	
   and	
   hydroxytyrosol)	
   of	
   oleuropein	
   and	
   ligstroside	
   aglycons	
  

[14].	
  Unfortunately	
  other	
  signals	
  were	
  not	
  unambiguously	
  assigned.	
  	
  

In	
  order	
  to	
  determine	
  which	
  chemical	
  components	
  are	
  responsible	
  for	
  a	
  given	
  

sensory	
  descriptor,	
  we	
  have	
   looked	
  for	
  all	
  possible	
  correlations	
  between	
  the	
  

NMR	
   signals	
   (in	
   the	
   considered	
   spectral	
   regions)	
   and	
   the	
   analyzed	
   sensory	
  

descriptors	
  using	
  OPLS	
  models.	
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Fig.8	
  Loading	
  plot	
  of	
  the	
  predictive	
  component	
  of	
  OPLS	
  models	
  with	
  Q2	
  >	
  0.4.	
  
	
  

If	
  we	
   have	
   a	
   look	
   at	
   the	
   loading	
   plots	
   of	
   the	
   predictive	
   component	
   of	
   each	
  

OPLS	
   model	
   with	
   Q2	
   >	
   0.4	
   (Fig.8),	
   bitter,	
   pungent	
   and	
   artichoke	
   tastes	
   are	
  

highly	
  correlated	
  (R	
  >	
  0.63)	
  and	
  display	
  a	
  very	
  similar	
  profile.	
  They	
  all	
  show	
  a	
  

strong	
  anti-­‐correlation	
  to	
  sweet	
   taste	
   (R	
  <	
   -­‐0.6),	
  while	
   tomato	
  and	
  rosemary	
  

tastes	
  display	
  inverse	
  profiles	
  relative	
  to	
  each	
  other.	
  	
  

Inspecting	
   in	
   depth	
   the	
   OPLS	
   data,	
   especially	
   regarding	
   the	
   less	
   intense	
  

signals,	
  we	
  noticed	
  that	
  the	
  lack	
  of	
  hexenal	
  seems	
  to	
  increase	
  sweet,	
  tomato,	
  

grassy	
  and	
  fruity	
  tastes,	
  whereas	
  the	
  increment	
  of	
  its	
  concentration	
  increases	
  

the	
   perception	
   of	
   leaf	
   and	
   rosemary	
   tastes.	
   Secoiridoids	
   (signals	
   around	
   δH	
  

9.10),	
  trans-­‐alk-­‐2-­‐enals	
  (δH	
  6.84)	
  and	
  4-­‐hydroxy-­‐trans-­‐alk-­‐2-­‐enal	
  (signals	
  at	
  δH	
  

9.58)	
  are	
  related	
  to	
  the	
  sweet/bitter	
  relationship	
  of	
  the	
  EVOO.	
  

Finally,	
   in	
  according	
  to	
  other	
  papers	
  in	
  literature	
  [15]	
  the	
  trans-­‐2-­‐hexenal	
  (δH	
  

9.45	
  ppm)	
  correlates	
  to	
  fruity	
  taste	
  of	
  the	
  olive	
  oil.	
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3.3	
  NMR	
  profiling	
  of	
  cocaine	
  seizures	
  
	
  
Nowadays,	
  there	
  are	
  hundreds	
  of	
  drugs	
  that	
  are	
  commonly	
  abused,	
  and	
  many	
  

of	
  these	
  are	
  legally	
  sanctioned	
  by	
  many	
  countries.	
  	
  

One	
  of	
  the	
  most	
  widely	
  illicit	
  drug	
  used	
  is	
  cocaine;	
  it	
  is	
  an	
  extract	
  of	
  the	
  leaves	
  

of	
  the	
  coca	
  plant,	
  where	
  it	
  is	
  found	
  as	
  the	
  main	
  natural	
  alkaloid.	
  

In	
   addition	
   to	
   cocaine,	
   coca	
   paste	
   contains	
   also	
   small	
   percentages	
   of	
   other	
  

compounds,	
  mostly	
  alkaloids	
  [16],	
  which	
  can	
  be	
  considered	
  a	
  “fingerprint”	
  of	
  

the	
   sample.	
   The	
   coca	
   samples	
   chemical	
   “fingerprint”	
   can	
  depend	
  on	
   several	
  

factors:	
  which	
  kind	
  of	
  plant	
  minor	
  compounds	
  were	
  extracted	
  from,	
  where	
  it	
  

was	
   cultivated,	
   and	
   which	
   procedures	
   were	
   used	
   for	
   extraction	
   and	
  

purification.	
   Thus	
   the	
   presence	
   of	
   these	
   minor	
   compounds	
   in	
   cocaine	
   can	
  

provide	
  information	
  about	
  the	
  geographic	
  origin,	
  but	
  also	
  about	
  the	
  area	
  and	
  

the	
  period	
  of	
  the	
  cocaine	
  traffic.	
  	
  

A	
  recent	
  search	
  of	
  the	
  books	
  for	
  sale	
  on	
  the	
  topic	
  of	
  drug	
  and	
  pharmaceutical	
  

analysis	
   at	
   Amazon.com	
   had	
   more	
   than	
   300	
   entries.	
   Indeed	
   forensic	
   drug	
  

analyst	
   and	
   toxicologists	
   utilize	
   methods	
   and	
   techniques	
   that	
   continue	
   to	
  

develop	
   rapidly.	
   In	
   particular,	
   the	
   GC–MS	
   technique	
   currently	
   dominates	
  

forensic	
   analysis	
   [17].	
   Since	
   NMR	
   represents	
   a	
   unique	
   methodology	
   for	
  

performing	
   chemical	
   identification	
   and	
   quantification,	
   that	
   does	
   not	
   require	
  

specific	
   sample	
   preparation	
   or	
   the	
   use	
   of	
   other	
   analytical	
   technique	
   (e.g.	
  

chromatographic	
  analysis),	
  here	
  a	
  strategy	
  based	
  on	
  1H	
  NMR	
  spectral	
  analysis	
  

in	
   conjunction	
   with	
   multivariate	
   analysis	
   is	
   presented.	
   This	
   project	
   aims	
   to	
  

identify	
   the	
   chemical	
   ‘‘fingerprint’’	
   of	
   cocaine	
   samples	
   seized	
   at	
   different	
  

times	
   and	
   in	
   different	
   places	
   in	
   Naples.	
   Thus,	
   using	
   NMR	
   fingerprinting	
  

approach	
  we	
  could	
  be	
  able	
  to	
  improve	
  investigation	
  strategies.	
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3.3.1.	
  Methods	
  and	
  results	
  discussion	
  
	
  

In	
   this	
   study	
   we	
   performed	
   an	
   NMR	
   analysis	
   of	
   54	
   chlorohydrate	
   cocaine	
  

samples	
   seized	
   by	
   the	
   Police	
   Department	
   of	
   Naples	
   in	
   different	
   areas	
   of	
  

Naples,	
  during	
  the	
  year	
  2006.	
  

	
  

	
  
Fig.9	
  Comparison	
  of	
  an	
  expanded	
  region	
  of	
  four	
  samples	
  of	
  seized	
  cocaine.	
  (a)	
  Example	
  of	
  a	
  sample	
  of	
  
pure	
  cocaine.	
  Asterisks	
  indicate	
  cocaine	
  signals.	
  (b)	
  Sample	
  having	
  lidocaine	
  as	
  cutting	
  agent.	
  (c)	
  Sample	
  
having	
  procaine	
  as	
  cutting	
  agent.	
  (d)	
  Sample	
  having	
  procaine	
  and	
  phenacetin	
  as	
  cutting	
  agents.	
  

	
  

In	
   the	
   spectra	
   the	
  main	
   signals	
   belong	
   to	
   the	
   cocaine	
   hydrogens	
   (complete	
  

assignment	
   is	
   reported	
   in	
   the	
   table	
   S1	
   in	
   Supplemental	
  Material),	
   but	
   other	
  

signals	
  are	
  observed,	
  such	
  as	
  cutting	
  agents	
  (adulterant/diluent)	
  that	
  could	
  be	
  

mixed	
   to	
   the	
   cocaine	
   samples	
  before	
  drug	
  dealing	
   (Fig.9).	
   It	
  was	
  possible	
   to	
  

identify	
  all	
  the	
  signals	
  of	
  cocaine	
  and	
  cutting	
  agents	
  with	
  the	
  help	
  of	
  literature	
  

data	
  [11].	
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Moreover,	
   cutting	
   compounds	
   were	
   easily	
   detected	
   and	
   quantified	
   by	
   a	
  

simple	
   1H	
   NMR	
   spectrum	
   and	
   can	
   be	
   used	
   as	
   an	
   investigative	
   support	
   to	
  

determine	
  a	
  common	
  origin	
  and	
  a	
  distribution	
  channel	
  of	
  the	
  illicit	
  drug.	
  

But	
   the	
   mail	
   goal	
   of	
   this	
   study	
   is	
   to	
   analyze	
   the	
   “fingerprint”	
   of	
   cocaine	
  

samples	
   in	
   order	
   to	
   identify	
   the	
   areas	
   and	
   period	
   in	
   which	
   a	
   given	
  

consignment	
  of	
  drug	
  has	
  been	
  trafficked.	
  

For	
   this	
   reason	
   we	
   operated	
   a	
   selection	
   of	
   the	
   spectral	
   regions	
   including	
  

information	
  related	
  only	
  to	
  the	
  minor	
  compounds,	
  without	
  interference	
  from	
  

cocaine	
  and	
  adulterant/cutting	
  agent	
  signals.	
  

	
  

Statistical	
  Total	
  Correlation	
  Spectroscopy	
  (STOCSY)	
  

STOCSY	
  technique	
  was	
  used	
  for	
  determining	
  metabolic	
  connectivity	
  between	
  

different	
   molecules	
   as	
   well	
   as	
   for	
   structural	
   assignment	
   in	
   NMR	
   spectra	
   of	
  

complex	
   mixtures	
   [18]	
   (see	
   figure	
   S1	
   in	
   Supporting	
   material).	
   STOCSY	
   was	
  

performed	
  on	
  NMR	
  data	
   set	
   (54	
   1H	
  NMR	
   spectra)	
   to	
   generate	
   a	
   pseudo-­‐2D	
  

NMR	
   spectrum,	
   which	
   displays	
   correlation	
   among	
   the	
   intensities	
   of	
   various	
  

peaks	
   across	
   the	
   whole	
   spectrum.	
   In	
   order	
   to	
   perform	
   this	
   technique	
   the	
  

spectra	
  were	
  divided	
  in	
  equally	
  sized	
  bins	
  (0.005	
  ppm),	
  reducing	
  the	
  data	
  set	
  

number	
  of	
  variables	
  and	
  the	
  STOCSY	
  time	
  for	
  calculation.	
  	
  

In	
   the	
   STOCSY	
   plot	
   correlations	
   among	
   following	
   agents	
   were	
   detected:	
  

lidocaine,	
   phenacetin,	
   diltiazem,	
   sugars,	
   procaine,	
   MDMA	
   (3,4-­‐

methylenedioxy-­‐	
  N-­‐methylamphetamine),	
  paracetamol	
  and	
  caffeine	
  and	
  then	
  

all	
  the	
  spectral	
  regions	
  in	
  which	
  those	
  signals	
  were	
  present	
  were	
  excluded.	
  	
  

Thus,	
  7	
   spectral	
   intervals	
   that	
  only	
   contain	
   signals	
  of	
   the	
  minor	
   (fingerprint)	
  

components	
  were	
  considered	
  in	
  the	
  multivariate	
  data	
  analysis.	
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Prior	
   data	
   analysis,	
   this	
   spectral	
   intervals	
   of	
   each	
   sample	
   were	
   normalized	
  

with	
  respect	
  to	
  the	
  area	
  of	
  a	
  reference	
  cocaine	
  peak,	
  since	
  the	
  amount	
  of	
  the	
  

minor	
  components	
  is	
  somehow	
  related	
  to	
  the	
  amount	
  of	
  cocaine. Particularly,	
  

the	
  cocaine	
  triplet	
  at	
  δH	
  7.65	
  ppm	
  (H40)	
  has	
  been	
  used,	
  since	
  it	
  is	
  an	
  isolated	
  

peak	
  in	
  all	
  54	
  samples.	
  

The	
   normalized	
   data	
   matrix	
   was	
   then	
   used	
   for	
   hierarchical	
   cluster	
   analysis	
  

(HCA),	
  which	
  shows	
  5	
  main	
  groups	
  that	
  can	
  be	
  considered	
  as	
  5	
  different	
  drug	
  

consignments	
  	
  (Fig.10).	
  

	
  

	
  

	
  
	
  

Fig.10	
   HCA	
   dendrogram	
   based	
   on	
   NMR	
   data,	
   showing	
   similarities	
   between	
   samples.	
   Samples	
   falling	
  
within	
  the	
  same	
  group	
  are	
  indicated	
  with	
  the	
  same	
  color.	
  Area	
  (A,	
  B,	
  C	
  and	
  D)	
  and	
  quarter	
  of	
  the	
  year	
  (I,	
  
II,	
  II	
  and	
  IV)	
  of	
  seizure	
  are	
  also	
  reported.	
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Principal	
  component	
  analysis	
  

	
  PCA	
  was	
  also	
  performed	
  on	
  the	
  same	
  dataset	
  (Fig.	
  11)	
  in	
  order	
  to	
  get	
  insights	
  

about	
  the	
  reasons	
  for	
  this	
  clustering.	
  

Scores	
   plots	
   (Fig.	
   11	
   a	
   and	
   b)	
   show	
   the	
  

positioning	
   of	
   the	
   samples	
   according	
   to	
   their	
  

chemical	
   characteristics	
   and	
   allowed	
   the	
  

identification	
   of	
   the	
   most	
   important	
   NMR	
  

signals	
   for	
   sample	
   differentiation.	
   In	
  

particular,	
  group	
  1	
  (green)	
  substantially	
  differs	
  

from	
  groups	
  2,	
  3,	
  4	
  and	
  5	
  along	
  PC1	
  mainly	
  for	
  

the	
   presence	
   of	
   tropacocaine,	
   whose	
  

hydrogens	
  resonate	
  at	
  δH	
  7.32	
  ppm	
  (Fig.	
  11c).	
  

The	
   PC2	
   loading	
   plot	
   indicates	
   that	
   these	
  

groups	
  mainly	
  differ	
  for	
  the	
  content	
  of	
  cis-­‐	
  (δH	
  

7.62	
   and	
   5.91	
   ppm)	
   and	
   trans-­‐

cinnamoylcocaine	
  (δH	
  6.50	
  ppm).	
  

Thus,	
   the	
   samples	
   showing	
   high	
   PC2	
   scores	
  

are	
  characterized	
  by	
  higher	
  concentrations	
  of	
  

cis-­‐	
   and	
   trans-­‐cinnamoylcocaine,	
   and	
   of	
   the	
  

molecule	
   having	
   signal	
   at	
   δH	
   0.90	
   ppm,	
   and	
  

lower	
   concentrations	
   of	
   molecules	
   having	
  

signals	
  at	
  δH	
  0.95	
  and	
  0.93	
  ppm	
  (unfortunately	
  

unassigned). PC3	
  is	
  also	
  governed	
  by	
  the	
  same	
  

resonances.	
  

	
  
Fig.11	
  PCA	
  score	
  (panels	
  a	
  and	
  b)	
  and	
  
loading	
  (panels	
  c–e)	
  plots.	
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Projection	
  to	
  Latent	
  Structures	
  Discriminant	
  Analysis	
  

PLS-­‐DA	
  models	
  were	
  performed	
  in	
  order	
  to	
  determine	
  how	
  well	
  the	
  identified	
  

consignments	
  of	
  drug	
  can	
  be	
  predicted	
  by	
  NMR.	
  	
  

The	
  validation	
  of	
  the	
  PLS-­‐DA	
  models	
  was	
  obtained	
  using	
  the	
  permutation	
  test	
  

(Simca-­‐P	
  13.0,	
  Umea,	
  Sweden)	
  in	
  which	
  a	
  total	
  of	
  400	
  models	
  were	
  calculated	
  

using	
  randomly	
  permuted	
  Y	
  variables	
  (Fig.	
  S2	
  in	
  supporting	
  material).	
  

The	
   resulting	
   Q2	
   and	
   R2	
   values,	
   describing	
   the	
   predictive	
   ability	
   and	
   the	
  

reliability	
  of	
  the	
  fitting,	
  respectively,	
  were	
  plotted	
  and	
  compared	
  with	
  the	
  Q2	
  

and	
  R2	
  values	
  obtained	
  from	
  the	
  real	
  model.	
  The	
  substantial	
  decrease	
  of	
  both	
  

parameters	
   Q2	
   and	
   R2	
   (vertical	
   axis	
   interception	
   point	
   of	
   the	
   Q2	
   and	
   R2	
  

regression	
   line	
   resulted	
   both	
   with	
   negative	
   values)	
   enforced	
   the	
   statistical	
  

validity	
  of	
  the	
  obtained	
  PLS-­‐DA	
  model.	
  

	
  

	
  
Fig.12	
  PCA	
  score-­‐plots	
  annotated	
  with	
  (panel	
  a)	
  year	
  quarter	
  and	
  (panel	
  b)	
  area	
  of	
  seizure.	
  

	
  
	
  

In	
  the	
  plot	
  on	
  the	
  left	
  all	
  samples	
  are	
  labeled	
  according	
  to	
  the	
  quarter	
  of	
  the	
  

year	
   in	
  which	
  cocaine	
  samples	
  were	
  seized	
   (I,	
   II,	
   II	
   and	
   IV)	
   (Fig.	
  12a),	
  on	
   the	
  

right	
   according	
   to	
   four	
  macro	
   areas	
   of	
   seizure	
   (Fig.	
   12b).	
  Macro	
   areas	
  were	
  

defined	
  based	
  on	
  information	
  from	
  Naples	
  Police	
  Department,	
  which	
  assigned	
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each	
   area	
   to	
   a	
   single	
   criminal	
   organization	
   or	
   clan,	
   responsible	
   of	
   cocaine	
  

seizure.	
  

Samples	
  of	
  group	
  1	
  (green)	
  have	
  been	
  seized	
  mainly	
  in	
  area	
  D	
  of	
  the	
  county.	
  

Analogously,	
   samples	
  of	
  groups	
  2	
   (blue),	
  3	
   (red),	
  4	
   (yellow)	
  and	
  5	
   (cyan)	
  are	
  

seized	
  mainly	
  in	
  areas	
  A,	
  A/C,	
  C,	
  and	
  B,	
  respectively.	
  

This	
  suggests	
  that	
  each	
  clan	
  stocks	
  up	
  with	
  drug	
  consignments	
  independently	
  

from	
   the	
   others	
   and	
   that	
   it	
   actually	
   controls	
   a	
   given	
   area	
   in	
   an	
   exclusive	
  

manner.	
   It	
   is	
   also	
   possible	
   to	
   monitor	
   the	
   samples	
   that,	
   for	
   some	
   reason,	
  

move	
  from	
  the	
  area	
  where	
  most	
  of	
  the	
  consignment	
  to	
  which	
  they	
  belong	
  has	
  

been	
  sold.	
  	
  

Finally,	
   it	
   was	
   also	
   possible	
   to	
   identify	
   the	
   consignments	
   for	
   this	
   drug	
  

trafficked	
   in	
   different	
   period.	
   For	
   instance,	
   group	
   1	
   (green)	
   have	
   been	
   sold	
  

mainly	
   in	
   the	
   first	
   (I)	
   quarter,	
   groups	
  2,	
   3	
   and	
  4	
  have	
  been	
   trafficked	
   in	
   the	
  

third	
  (III)	
  group	
  5	
  (blue)	
  has	
  been	
  sold	
  all	
  year	
  long.	
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3.4	
  Conclusions	
  
	
  
The	
   results	
   obtained	
   in	
   all	
   three	
   case	
   studies	
   suggest	
   that	
   NMR	
   could	
   be	
   a	
  

very	
  an	
  exploratory	
  and	
  predictive	
  useful	
  tool	
  for	
  the	
  characterization	
  of	
  some	
  

sensory	
  features	
  of	
  canned	
  tomato	
  and	
  extra	
  virgin	
  olive	
  oil,	
  or	
  generally	
  for	
  

food	
  samples.	
  We	
  were	
  able	
  to	
  correlate	
  the	
  NMR	
  metabolomic	
   fingerprints	
  

recorded	
   for	
   canned	
   tomato	
   samples	
   to	
   the	
   sensory	
   descriptors	
   bitterness,	
  

sweetness,	
  sourness,	
  saltiness,	
  tomato	
  and	
  metal	
  taste,	
  redness,	
  and	
  density	
  

and	
   NMR	
   metabolomic	
   fingerprints	
   of	
   extra	
   virgin	
   olive	
   oil	
   to	
   the	
   sensory	
  

descriptors:	
   tomato,	
  bitter,	
  pungent,	
   rosemary,	
   artichoke,	
   sweet,	
   grassy	
  and	
  

leaf.	
  

The	
  reported	
  results	
  are	
  very	
  promising	
  and	
  pave	
  the	
  way	
  to	
  a	
  more	
  careful	
  

analysis	
  on	
  a	
  wider	
  number	
  of	
  samples.	
  

Furthermore,	
   the	
   potentiality	
   of	
   NMR	
   spectroscopy,	
   in	
   combination	
   to	
  

multivariate	
   data	
   analysis,	
   has	
   also	
   demonstrated	
   to	
   improve	
   and	
   support	
  

police	
   investigations.	
   In	
   particular,	
   the	
   NMR	
   fingerprinting	
   approach	
   of	
  

cocaine	
   samples	
   analysis	
   allowed	
  us	
   to	
   identify	
   the	
   spectral	
   regions	
   that,	
   at	
  

least	
  in	
  this	
  investigation,	
  can	
  be	
  used	
  for	
  grouping	
  of	
  seized	
  cocaine	
  samples.	
  

These	
  regions	
  were	
  very	
  useful	
  especially	
  in	
  providing	
  information	
  about	
  place	
  

and	
  date	
  of	
  trafficking.	
  Moreover,	
  the	
  statistical	
  multivariate	
  analysis	
  allowed	
  

the	
  identification	
  of	
  key	
  minor	
  components	
  responsible	
  of	
  this	
  grouping.	
  The	
  

results	
  indicate	
  that	
  this	
  study	
  strategy	
  can	
  assist	
  tactically	
  (evidential/judicial)	
  

and	
  strategically	
  (intelligence)	
  the	
  investigators.	
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4	
  NMR	
  METABOLOMICS	
  OF	
  HUMAN	
  CANCER	
  CELL	
  LINES	
  

	
  

This	
   section	
   describes	
   the	
   preliminary	
   results,	
   not	
   yet	
   published,	
   of	
   a	
   study	
  

carried	
   out	
   at	
   the	
   University	
   of	
   Copenhagen,	
   Department	
   of	
   Food	
   Science,	
  

Faculty	
   of	
   Life	
   Science,	
   under	
   the	
   supervision	
   of	
   Assoc.	
   Prof.	
   Francesco	
  

Savorani	
  and	
  Prof.	
  Søren	
  Balling	
  Engelsen.	
  	
  

This	
   study	
   deals	
   with	
   the	
   analysis	
   of	
   the	
   metabolomic	
   profiles	
   of	
   human	
  

cancer	
  cell	
  lines,	
  using	
  NMR	
  spectroscopy	
  combined	
  with	
  chemometrics	
  tools.	
  

The	
  aim	
  of	
  the	
  study	
  was	
  to	
  develop	
  an	
  experimental	
  protocol	
  for	
  an	
  efficient	
  

harvesting,	
   quenching	
   and	
  extraction	
  of	
   cellular	
  metabolites	
   of	
   the	
  HTC-­‐116	
  

human	
   adherent	
   cancer	
   cells.	
   The	
   analysis	
   of	
   the	
   metabolome	
   has	
   been	
  

focused	
  to	
  understand	
  the	
  in	
  vitro	
  actions	
  of	
  novel	
  anticancer	
  drugs.	
  

The	
  experimental	
  protocol	
  was	
  developed	
   in	
  collaboration	
  with	
  Dr.	
  Pasquale	
  

Zizza	
   and	
   Dr.	
   Annamaria	
   Biroccio	
   (Experimental	
   Chemotherapy	
   Laboratory,	
  

Regina	
  Elena	
  Cancer	
  Institute,	
  Rome,	
  Italy).	
  

	
  

4.1	
  Introduction	
  

	
  

In	
  the	
  last	
  decade,	
  metabolomics	
  studies	
  have	
  been	
  performed	
  on	
  different	
  

biofluids	
  (e.g.	
  plasma,	
  serum,	
  urine	
  and	
  cerebrospinal	
  fluid)	
  with	
  successful	
  

results,	
  showing	
  applications	
  in	
  many	
  areas,	
  such	
  as	
  biomarker	
  discovery,	
  

clinical	
  studies,	
  drug	
  efficacy	
  and	
  toxicity	
  evaluations,	
  disease	
  diagnosis	
  

[1][2][3].	
  However,	
  recent	
  developments	
  in	
  the	
  use	
  of	
  metabolomics	
  involve	
  

the	
  characterization	
  and	
  interpretation	
  of	
  the	
  cell	
  metabolome,	
  starting	
  from	
  

prokaryotes	
  (especially	
  Escherichia	
  Coli)	
  to	
  eukaryotes	
  cell	
  lines	
  (yeast	
  or	
  

mammalian	
  cells)	
  [4][5].
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Complementary	
   to	
   the	
   classic	
   biofluid	
   analyses,	
   for	
   in	
   vivo	
   models	
   the	
  

metabolomic	
   profiles	
   of	
   cells	
   represent	
   a	
   very	
   powerful	
   tool	
   to	
   understand	
  

how	
  the	
   local	
  metabolism	
  and	
  biochemical	
  pathways	
  could	
  be	
   influenced	
  by	
  

pathologies	
   or	
   external	
   or	
   internal	
   stimuli.	
   For	
   the	
   more	
   simple	
   in	
   vitro	
  

models,	
   such	
   as	
   cell	
   culture,	
   the	
   analysis	
   of	
   the	
   cellular	
  metabolome	
   could	
  

also	
   provide	
   important	
   information	
   for	
   the	
   development	
   of	
   models	
   of	
  

biological	
   pathways	
   and	
  networks.	
   In	
   vitro	
   cell	
  metabolomics	
   analysis	
   offers	
  

several	
   advantages:	
   experimental	
   variables	
   are	
   easier	
   to	
   control,	
   greater	
  

reproducibility,	
   less	
  expensive	
  and	
  easier	
  to	
  interpret	
  than	
  analysis	
  of	
  animal	
  

models	
  and	
  human	
  subjects	
  [6].	
  

The	
   use	
   of	
  mammalian	
   cells	
   is	
   emerging	
   in	
   the	
  metabolomics	
   field	
   and	
   it	
   is	
  

worthwhile	
   to	
  understand	
   the	
  molecular	
  mechanism	
  of	
  disease	
  progression,	
  

the	
   cellular	
   response	
   to	
  drug	
   treatments	
   [7]	
   and	
   the	
   cell	
   culture	
  monitoring	
  

[8].	
  	
  

In	
   particular,	
   the	
   identification	
   and	
   characterization	
   of	
   cancer	
   cell	
  

metabolomic	
  signatures	
  could	
  play	
  an	
  important	
  role	
  in	
  the	
  early	
  diagnosis	
  as	
  

well	
   as	
   in	
   following	
   therapeutic	
   response,	
  making	
   possible	
   to	
  map	
   the	
   drug	
  

action	
  into	
  metabolic	
  pathways	
  [9].	
  	
  

Colon	
  carcinoma	
   is	
   the	
   third	
  most	
   commonly	
  diagnosed	
  cancer	
   in	
   the	
  world	
  

and	
  the	
  second	
  most	
  common	
  cause	
  of	
  death	
  from	
  cancer	
  [10].	
  The	
  analysis	
  

of	
   metabolic	
   profiles	
   of	
   human	
   colon	
   cancer	
   cell	
   lines	
   –	
   using	
   NMR	
  

spectroscopy-­‐based	
   metabolomics	
   –	
   aims	
   to	
   provide	
   a	
   comprehensive	
  

assessment	
   of	
   the	
   alterations	
   in	
   the	
   metabolite	
   levels	
   in	
   cells	
   and	
   could	
  

produce	
   important	
   information	
  on	
   in	
   vitro	
   actions	
  of	
   drugs	
  pointing	
   in	
   their	
  

rapid	
  incorporation	
  into	
  novel	
  therapeutic	
  settings.	
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For	
   a	
   holistic	
   understanding	
   of	
   cancer	
   cells	
   metabolome,	
   the	
   choice	
   of	
   the	
  

right	
  protocol	
   is	
   crucial	
   for	
   efficient	
  harvesting,	
   quenching	
  and	
  extraction	
  of	
  

cellular	
  metabolites.	
  This	
  study	
  reports	
  the	
  development	
  of	
  an	
  optimized	
  and	
  

standardized	
  protocol	
  for	
  NMR	
  metabolomics	
  study	
  of	
  HTC	
  116	
  human	
  colon	
  

cancer	
  cell	
  lines.	
  

	
  

4.2	
  Methodology	
  of	
  sample	
  preparation	
  and	
  extraction	
  

	
  

Cell	
  metabolomic	
  experiments	
  can	
  be	
  divided	
  into	
  different	
  step:	
  cell	
  growth,	
  

quenching	
  and	
  metabolites	
  extraction.	
  	
  

To	
  prepare	
  cells	
  for	
  metabolomics	
  investigations,	
  quenching	
  aims	
  to	
  inactivate	
  

intracellular	
   enzymes	
   and	
   arrest	
  metabolic	
   activity	
   as	
   rapidly	
   as	
   possible	
   to	
  

avoid	
  metabolite	
  degradation	
  and	
  alteration	
  of	
  the	
  sample	
  composition,	
  since	
  

a	
   number	
   of	
   metabolic	
   reactions	
   occur	
   in	
   seconds.	
   This	
   method	
   stops	
  

metabolism	
  by	
  rapid	
  deep	
  cooling	
  of	
  the	
  cells;	
  the	
  lower	
  the	
  temperature	
  the	
  

slower	
   the	
   turnover	
   rate	
   of	
   all	
   the	
   enzymes	
   within	
   the	
   cell	
   and	
   hence	
   the	
  

more	
   efficient	
   the	
   quenching	
   process.	
   A	
   variety	
   of	
   studies	
   involving	
   low	
  

temperature	
  quenching	
  are	
   reported	
   in	
   literature.	
  Cell	
  quenching	
  process	
  of	
  

mammalian	
  cells	
  can	
  be	
  achieved	
  in	
  cold-­‐methanol	
  on	
  its	
  own	
  [11]	
  or	
  buffered	
  

with	
  reagents	
  like	
  ammonium	
  bicarbonate	
  (AMBIC)	
  as	
  described	
  by	
  Sellick	
  et	
  

al.	
  [12].	
  	
  

The	
   choice	
   of	
   the	
   method	
   for	
   quenching	
   depends	
   from	
   the	
   cellular	
  

composition	
   (cell	
   membrane	
   and	
   cell	
   wall	
   structure)	
   and	
   cell	
   size	
   also	
  may	
  

influence	
   the	
   efficiency	
   of	
   quenching	
   and	
   the	
   rate	
   of	
   metabolite	
   leakage.	
  

Indeed,	
   methanol-­‐based	
   solutions	
   damage	
   the	
   cell	
   membrane	
   and	
   induce	
  

leakage	
  of	
  intracellular	
  metabolites	
  from	
  bacteria	
  and	
  yeast	
  [13]	
  [14].	
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This	
   effect	
   is	
  more	
  marked	
   in	
  mammalian	
   cells,	
   since	
   they	
   are	
  more	
   fragile	
  

than	
  bacteria	
  or	
  yeast	
  due	
  to	
  the	
  lack	
  of	
  a	
  cell	
  wall.	
  In	
  contrast,	
  Dietmair	
  et	
  al.	
  

proposed	
   quenching	
  with	
   cold	
   NaCl;	
   this	
  method	
   did	
   not	
   damage	
   cells	
   and	
  

effectively	
  halted	
  conversion	
  of	
  ATP	
  to	
  ADP	
  and	
  AMP,	
  indicative	
  of	
  metabolic	
  

arrest	
  [15].	
  However,	
  in	
  the	
  case	
  of	
  adherent	
  cells,	
   liquid	
  nitrogen	
  freezing	
  is	
  

considered	
   an	
   optimal	
   way	
   to	
   stop	
   enzymatic	
   activity,	
   seeking	
   to	
   avoid	
   the	
  

leakage	
  of	
  intracellular	
  metabolites	
  and	
  to	
  maintain	
  cell	
  integrity	
  [16].	
  

The	
   less	
   reproducible	
   step	
   among	
   sample	
   preparation	
   procedures	
   is	
  

intracellular	
   metabolites	
   extraction.	
   According	
   to	
   the	
   holistic	
   metabolomic	
  

view,	
   the	
   extraction	
   procedure	
   must	
   be	
   adequate	
   in	
   order	
   to	
   ensure	
   the	
  

simultaneous	
   detection	
   of	
   a	
   large	
   number	
   of	
   metabolites.	
   Generally	
   polar	
  

organic	
   solvents	
   extract	
   polar	
   compounds,	
  whereas	
   non-­‐polar	
   solvents	
   such	
  

as	
   chloroform	
   or	
   dichloromethane	
   allow	
   the	
   extraction	
   of	
   lipids	
   and	
   other	
  

hydrophobic	
   compounds.	
   Sometimes,	
   a	
   mixture	
   of	
   polar	
   and	
   non-­‐polar	
  

solvents	
   conveniently	
   allows	
   the	
   extraction	
   of	
   both	
   classes	
   of	
   metabolites.	
  

Several	
   different	
   extraction	
   methods	
   have	
   been	
   reported	
   in	
   literature	
  

including	
   cold	
   solvents	
   (50-­‐60%	
   methanol,	
   100%	
   methanol,	
  

methanol/chloroform),	
   hot	
   solvents	
   (methanol,	
   ethanol)	
   and	
   solvents	
   with	
  

extreme	
  pH	
  values	
  (KOH	
  and	
  perchloric	
  acid)	
  [17]	
  [18]	
  [19].	
  	
  

For	
   the	
   complete	
   analysis	
   of	
   a	
   cell	
   culture,	
   it	
   is	
   important	
   to	
  measure	
   both	
  

extracellular	
   (footprint)	
   and	
   intracellular	
   (fingerprint)	
   metabolic	
   profiles.	
  

Metabolic	
   footprinting	
   (exo-­‐metabolome	
   analysis)	
   is	
   technically	
   simple	
  

because	
   it	
   only	
   requires	
   centrifugation	
   to	
   separate	
   culture	
   media	
   and	
   cells	
  

before	
   the	
   analysis.	
   Metabolic	
   fingerprinting	
   (endo-­‐metabolome	
   analysis),	
  

although	
  much	
  more	
   technically	
   challenging	
   because	
   it	
   requires	
   metabolite	
  

extraction	
   from	
   cells,	
   provides	
   more	
   complete	
   information	
   about	
   cellular	
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metabolic	
  processes	
  [5].	
  

In	
   this	
   study	
   a	
   non-­‐selective,	
   non-­‐destructive	
   and	
   efficient	
   extraction	
  

procedure	
  has	
  been	
  developed	
  considering	
  the	
  metabolomics	
  study	
  objective	
  

in	
   an	
  untargeted	
  NMR	
  analysis.	
  NMR	
   spectroscopy	
  permits	
   the	
  detection	
  of	
  

hydrophilic	
   and	
   lipophilic	
   intracellular	
  metabolites	
  with	
   an	
   adequate	
   sample	
  

preparation.	
   On	
   the	
   other	
   hand,	
   not	
   all	
   procedures	
   are	
   suitable	
   for	
   NMR	
  

metabolomics	
   study.	
  Therefore,	
   the	
  use	
  of	
  aqueous	
  mixtures	
  with	
  methanol	
  

and	
   chloroform	
   as	
   extraction	
   solvents,	
   has	
   allowed	
   detecting	
   as	
   many	
  

metabolites	
  as	
  possible	
  by	
  NMR	
  analysis.	
  	
  

The	
  aim	
  of	
  this	
  study	
  was	
  to	
  develop	
  a	
  sample	
  preparation	
  protocol,	
  including	
  

cell	
   growth,	
   separation	
   of	
   cells	
   from	
   medium,	
   quenching	
   and	
   intracellular	
  

metabolites	
   extraction	
   for	
   HTC-­‐116	
   human	
   adherent	
   cancer	
   cells.	
   Different	
  

amount	
   of	
   cells,	
   metabolites	
   quenching	
   with	
   liquid	
   N2	
   and	
   cold	
   methanol,	
  

Methanol/chloroform/H2O	
  metabolites	
   extraction	
  method	
   were	
   tested.	
   The	
  

metabolites’	
   leakages	
   induced	
  by	
  quenching	
  procedures	
  were	
  compared	
  and	
  

the	
   extraction	
   efficacy	
   was	
   evaluated	
   using	
   Nuclear	
   Magnetic	
   Resonance	
  

spectroscopy.	
   The	
   developed	
   experimental	
   protocol	
   was	
   used	
   to	
   perform	
  

colon	
   cancer	
   cell	
   metabolic	
   profiling	
   and	
   to	
   understand	
   in	
   vitro	
   actions	
   of	
  

novel	
  anticancer	
  drugs.	
  

	
  

4.3	
  Anticancer	
  drugs	
  and	
  DNA	
  G-­‐quadruplex	
  binders	
  

	
  

Three	
   different	
   drugs	
   were	
   tested	
   on	
   HTC-­‐116	
   colon	
   cancer	
   cell	
   lines:	
   the	
  

Adriamycin,	
   a	
   popular	
   antineoplastic	
   agent	
   and	
   commonly	
   used	
   in	
  

chemotherapy,	
   RHPS4	
   and	
   Compound	
   3,	
   novel	
   anticancer	
   drugs	
   which	
   are	
  

DNA	
  quadruplex	
  ligands,	
  which	
  can	
  induce	
  tumor-­‐cell	
  death.	
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The	
   anthracycline	
   antibiotic	
   doxorubicin	
   (trade	
   name:	
   Adriamycin)	
   (Fig.1),	
  

originally	
   isolated	
   from	
   the	
   fungus	
   Streptomyces	
   peucetius	
   [20]	
   is	
   a	
  

chemotherapeutic	
  agent	
  with	
   strong	
  activity	
  against	
  a	
  wide	
   range	
  of	
  human	
  

malignant	
   neoplasms	
   including	
   acute	
   leukemia,	
   non-­‐Hodgkin	
   lymphomas,	
  

breast	
  cancer,	
  Hodgkin's	
  disease	
  and	
  sarcomas	
  [21].	
  

	
  

	
  
Fig.1	
  Chemical	
  Structures	
  of	
  Adriamycin	
  

	
  

Adriamycin	
   acts	
   through	
   DNA	
   duplex	
   intercalation	
   (Fig.2)	
   and	
   inhibition	
   of	
  

macromolecular	
   biosynthesis	
   [22][23].	
   Furthermore,	
   it	
   inhibits	
   the	
  

progression	
  of	
  the	
  enzyme	
  topoisomerase	
  II,	
  which	
  relaxes	
  supercoils	
  in	
  DNA	
  

for	
   transcription	
   [24].	
   Apart	
   from	
   side-­‐effects	
   that	
   are	
   common	
   to	
   many	
  

cancer	
   chemotherapeutics,	
   i.e.	
   hematopoietic	
   suppression,	
   nausea	
   and	
  

vomiting	
  and	
  alopecia,	
  the	
  clinical	
  usefulness	
  of	
  doxorubicin	
  is	
  limited	
  largely	
  

by	
   a	
   cumulative	
   dose-­‐related	
   cardiomyopathy	
   that	
   manifests	
   itself	
   as	
  

congestive	
  heart	
  failure	
  [21].	
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Fig.2	
  Cartoon	
  diagram	
  of	
  two	
  doxorubicin	
  molecules	
  

intercalating	
  the	
  DNA	
  duplex.	
  

In	
   the	
   last	
   decade,	
   targeting	
   of	
   DNA	
   secondary	
   structures,	
   such	
   as	
   G-­‐

quadruplexes,	
   has	
   been	
   considered	
   an	
   appealing	
   opportunity	
   for	
   drug	
  

intervention	
   in	
  anticancer	
   therapy	
   [25].	
  Recent	
   findings	
  have	
  unambiguously	
  

demonstrated	
  that	
  DNA	
  G-­‐rich	
  sequences	
  can	
  adopt	
  a	
  G-­‐quadruplex	
  folding	
  in	
  

living	
  cells,	
  thus	
  further	
  validating	
  them	
  as	
  crucial	
  targets	
  for	
  the	
  treatment	
  of	
  

human	
  disorders	
  such	
  as	
  cancers	
  [26].	
  

G-­‐quadruplex	
   DNA	
   (G4-­‐DNA)	
   structures	
   are	
   four-­‐stranded	
   helical	
   DNA	
   (or	
  

RNA)	
   structures,	
   comprising	
   stacks	
   of	
   G-­‐tetrads,	
   which	
   are	
   the	
   outcome	
   of	
  

planar	
   association	
   of	
   four	
   guanines	
   in	
   a	
   cyclic	
  Hoogsteen	
   hydrogen-­‐bonding	
  

arrangement.	
  From	
  the	
  biological	
  point	
  of	
  view,	
  G4-­‐DNAs	
  are	
  widespread	
   in	
  

the	
  genome	
  and	
  it	
  seems	
  they	
  play	
  a	
  role	
   in	
  a	
  number	
  of	
  processes,	
  such	
  as	
  

replication,	
   recombination	
   transcription	
   and	
   translation	
   [27]	
   and	
   are	
   also	
  

found	
  in	
  telomeric	
  regions	
  [28].	
  	
  

Telomeric	
  DNA	
  consists	
  of	
  tandem	
  repeats	
  of	
  simple	
  short	
  sequences,	
  rich	
  in	
  

guanine	
   residues,	
   which	
   can	
   form	
   G-­‐quadruplexes.	
   Telomeres	
   protect	
   the	
  

ends	
   of	
   the	
   chromosome	
   from	
   damage	
   and	
   recombination,	
   and	
   their	
  

shortening	
  is	
  implicated	
  in	
  cellular	
  senescence.	
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The	
  elongation	
  of	
   telomeric	
  DNA	
  operated	
  by	
   the	
  enzyme	
   telomerase	
   leads	
  

cancer	
  cells	
  to	
  an	
  infinite	
  lifetime.	
  

The	
  inhibition	
  of	
  telomerase,	
  which	
  is	
  over-­‐expressed	
  in	
  about	
  85%	
  of	
  tumors,	
  

represents	
  the	
  forefront	
  of	
  research	
  for	
  new	
  effective	
  anticancer	
  drugs. Since	
  

this	
  enzyme	
  requires	
  a	
  single	
  stranded	
  telomeric	
  primer,	
  the	
  formation	
  of	
  G-­‐

quadruplex	
  complexes	
  by	
  telomeric	
  DNA	
  inhibits	
  the	
  telomerase	
  activity.  

Thus,	
   cells	
   stop	
   replicating	
   and	
   enter	
   a	
   senescence	
   phase	
   which	
   precedes	
  

apoptosis.	
  

In	
   this	
   respect,	
   it	
   has	
   been	
   found	
   that	
   small	
   molecules	
   that	
   stabilize	
   G-­‐

quadruplex	
   structures	
   are	
   effective	
   telomerase	
   inhibitors	
   and	
   can	
   be	
  

considered	
  as	
  novel	
  drugs	
  in	
  anticancer	
  therapy	
  [29].	
  

In	
   order	
   to	
   discover	
   G4	
   binders	
   displaying	
   good	
   drug-­‐like	
   profiles	
   and	
   the	
  

ability	
   to	
   induce	
   a	
   DNA-­‐damage	
   response	
   at	
   telomeres	
   of	
   cancer	
   cells,	
   a	
  

receptor-­‐based	
   virtual	
   screening	
   (VS)	
   campaign	
   approach	
   was	
   carried	
   out,	
  

using	
  the	
  human	
  telomeric	
  G-­‐quadruplex	
  (Tel24)	
  as	
  target.	
  

As	
   result	
   of	
   this	
   inspection,	
   Compound	
   3	
   (Fig.3)	
   displayed	
   impressive	
   G4	
  

binding	
  and	
  stabilizing	
  properties.	
  	
  

	
  

	
  
	
  

Fig.3	
  Chemical	
  Structures	
  of	
  the	
  Compound	
  3,	
  newly	
  identified	
  Human	
  Telomeric	
  G4	
  Binding	
  Agents	
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Furthermore,	
   specific	
   biological	
   assays	
   (Fig.4)	
   showed	
   that	
   Compound	
   3	
   is	
  

potent	
  in	
  inducing	
  selective	
  DNA-­‐damage	
  at	
  telomeres	
  of	
  cancer	
  cells	
  and	
  not	
  

in	
  normal	
  ones	
  [30].	
  	
  

	
  

	
  
	
  

Fig.4	
  Groove	
  binding	
  mode	
  of	
  the	
  Compound3	
  to	
  Tel24.	
  On	
  the	
  right	
  an	
  enlarged	
  view	
  of	
  telomere-­‐
dysfunction	
  induced	
  foci	
  (TIFs)	
  concluding	
  that	
  the	
  tested	
  compound	
  caused	
  telomere	
  damage.	
  

	
  

	
  

A	
  challenge	
  for	
  the	
  development	
  of	
  G-­‐quadruplex	
  interacting	
  molecules	
  is	
  the	
  

relatively	
   poor	
   selectivity	
   for	
   binding	
   to	
   quadruplex	
   versus	
   duplex	
   DNA,	
  

causing	
   acute	
   cell	
   kill.	
   The	
   pentacyclic	
   acridine,	
   RHPS4	
   (Fig.5)	
   has	
   a	
   high	
  

selectivity	
  for	
  quadruplex	
  DNA	
  structure	
  [31].	
  	
  

RHPS4	
   inhibits	
   telomerase	
   at	
   sub-­‐micromolar	
   levels	
   and	
   exhibits	
   a	
   wide	
  

differential	
  between	
  telomerase	
  inhibition	
  and	
  acute	
  cytotoxicity	
  [32].	
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Fig.5	
  Chemical	
  Structures	
  of	
  the	
  pentacyclic	
  acridine,	
  RHPS4.	
  

	
  

In	
   the	
   last	
   decade	
   several	
   studies	
   have	
   been	
   conducted	
   on	
   the	
   fluorinated	
  

polycyclic	
   methylacridinium	
   salt,	
   which	
   describe	
   the	
   interaction	
   and	
  

stabilization	
  of	
  quadruplex	
  DNA	
  and	
  show	
  RHPS4	
  enhanced	
  binding	
  to	
  higher	
  

ordered	
  DNA	
  structures	
  (triplex/quadruplex)	
  over	
  duplex	
  and	
  single-­‐stranded	
  

DNA	
  [33][34][35].	
  

Therefore,	
   in	
   this	
   study	
   Adriamycin,	
   as	
   well	
   known	
   DNA	
   duplex	
   anticancer	
  

drug,	
   was	
   tested	
   on	
   HTC-­‐116	
   human	
   colon	
   cancer	
   cell	
   lines	
   and	
   compared	
  

with	
  RHPS4	
  and	
  Compound	
  3,	
  as	
  novel	
  human	
  telomeric	
  G4	
  selective	
  binding	
  

agents.	
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These	
   two	
  anticancer	
  drugs	
   interacts	
  both	
  with	
   the	
   same	
   target,	
   but	
  RHPS4	
  

acts	
  by	
   telomeric	
  DNA	
  G-­‐quadruplex	
   end-­‐stacking	
   (Fig.6),	
  while	
  Compound	
  3	
  

by	
  groove	
  binding	
  [30].	
  

	
  

	
  
Fig.6	
  Binding	
  mode	
  of	
  RHPS4	
  (A)	
  and	
  of	
  Compound	
  3	
  (B).	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

A B 
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4.4	
  Experimental	
  design	
  

	
  

Two	
  groups	
  of	
  samples	
  were	
  analyzed	
  in	
  this	
  study	
  (Fig.7):	
  

 Control	
   group	
   –	
   HTC-­‐116	
   human	
   colon	
   cancer	
   lines	
   not	
   treated	
   with	
  

anticancer	
  drugs	
  (10	
  samples).	
  

 Treatment	
   group	
   –	
   the	
   same	
   cell	
   lines	
   treated	
   with	
   three	
   different	
  

anticancer	
   drugs	
   (6	
   Adriamycin	
   samples,	
   6	
   Compound	
   3	
   and	
   6	
   RHPS4	
  

samples).	
  The	
  most	
  efficient	
  dose	
  and	
  drug	
  exposure	
  duration	
  time	
  of	
  cell	
  

culture,	
  showing	
  therapeutic	
  effect	
  were	
  chosen	
  for	
  each	
  drug	
  treatment.	
  	
  

Fig.7	
  Overview	
  of	
  the	
  experimental	
  study.	
  

	
  

	
  

	
  

CTL1 CTL2 CTL3 

C3-1 C3-2 C3-3 

A1 A2 A3 
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Since	
   it	
   is	
   important	
   to	
   ensure	
   reproducibility	
   when	
   carrying	
   out	
  

metabolomics	
   experiments	
   to	
   glean	
   biologically	
   meaningful	
   information,	
   all	
  

experiments	
  were	
  carried	
  out	
  in	
  triplicates	
  to	
  test	
  the	
  experimental	
  variability.	
  

Three	
  batches	
  of	
  sample	
  growth	
  and	
  treatment	
  were	
  collected	
  to	
  perform	
  a	
  

statistically	
  significant	
  analysis,	
  including	
  inter-­‐batch	
  control	
  samples,	
  in	
  order	
  

to	
  monitor	
  the	
  variability	
  among	
  the	
  batches	
  (Fig.8).	
  

For	
   the	
   endo-­‐metabolome	
   analysis,	
   metabolites	
   extraction	
   from	
   cells	
   was	
  

carried	
   out.	
   Thus,	
   hydrophilic	
   and	
   lipophilic	
   metabolites	
   profiles	
   were	
  

analyzed	
  for	
  each	
  sample	
  (28	
  samples	
  for	
  the	
  hydrophilic	
  extract,	
  28	
  samples	
  

for	
  the	
  lipophilic	
  extract)	
  

For	
  the	
  exo-­‐metabolome	
  analysis,	
  growth	
  media	
  samples,	
  separated	
  from	
  the	
  

cell	
  culture	
  by	
  centrifugation,	
  were	
  analyzed	
  (28	
  samples	
  in	
  total)	
  in	
  order	
  to	
  

study	
   the	
   result	
   of	
   an	
   interchange	
   of	
   metabolites	
   between	
   cells	
   and	
   the	
  

culture	
  medium	
  (uptake	
  of	
  substrates,	
  excretion	
  of	
  metabolic	
  products).	
  

	
  

Fig.8	
  Scheme	
  of	
  the	
  experimental	
  study	
  with	
  samples	
  size	
  details.	
  For	
  each	
  sample	
  hydrophilic	
  extract	
  
(H),	
  lipophilic	
  extract	
  (L),	
  cellular	
  growth	
  medium (M)	
  were	
  collected.	
  Different	
  batches	
  of	
  samples	
  are	
  

indicated	
  with	
  letters	
  A	
  (first	
  batch),	
  B	
  (second	
  batch);	
  C	
  (third	
  batch).	
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4.5	
  Materials	
  and	
  methods	
  

	
  

Chemicals	
  

Dulbecco’s	
   Modified	
   Eagle’s	
   medium,	
   high	
   glucose	
   (DMEM/HIGH	
   Glucose)	
  

with	
   L-­‐Glutamine	
   were	
   purchased	
   from	
   Euroclone	
   (MI,	
   Italy),	
   penicillin	
   and	
  

streptomycin	
  solution	
  for	
  cell	
  culture	
  were	
  purchased	
  from	
  Gibco	
  (NY,	
  USA).	
  

Fetal	
  bovine	
  serum	
  (FBS)	
  was	
  purchased	
  from	
  Thermo	
  Scientific	
  (HycloneTM).	
  	
  

Crystal	
  PBS	
  BUFFER	
   (0.01	
  M	
  Phosphate	
  buffer,	
  0.0027	
  M	
  KCl	
  e	
  0.14	
  M	
  NaCl,	
  

pH	
  7.4	
  at	
  25	
  °C)	
  was	
  purchased	
  from	
  Bioline	
  (TR,	
  Italy).	
  

All	
  other	
   reagents	
  were	
  of	
  analytical	
   grade.	
  Deuterium	
  oxide	
   (D2O,	
  99.8%D)	
  

and	
  deuterated	
  Chloroform	
  (CDCl3,	
  99.8%D)	
  was	
  obtained	
  from	
  Sigma-­‐Aldrich	
  

(St.	
  Louis,	
  MO).	
  

	
  

Cell	
  Culture	
  	
  

Human	
   colon	
   cancer	
   cell	
   lines	
  HCT116	
  were	
  purchased	
   from	
  American	
  Type	
  

Culture	
   Collection	
   (ATCC	
   –	
   Manassas,	
   VA,	
   USA).	
   Cells	
   were	
   grown	
   as	
  

monolayer	
   cultures	
   in	
   High	
   glucose	
   (4.5	
   g/l	
   )	
   Dulbecco’s	
   Modified	
   Eagle’s	
  

Medium	
  (DMEM)	
  supplemented	
  with	
  10%	
  FBS,	
  L-­‐Glutamine	
  (2	
  mM),	
  penicillin	
  

(1	
  U/ml)	
  and	
  streptomycin	
   (1	
  mg/ml)	
  at	
  37°C	
   in	
  a	
  humidified	
  atmosphere	
  of	
  

5%	
  CO2.	
  

For	
   exo-­‐metabolome	
   analysis,	
   cells	
   (30×106)	
  were	
   seeded	
   in	
   150	
  mm	
   tissue	
  

culture	
   dishes	
   (Fig.9).	
   About	
   96h	
   after	
   seeding,	
   the	
   culture	
  medium	
   (15	
  ml)	
  

was	
   recovered	
   and	
   centrifuged	
   at	
   300	
   x	
   g	
   for	
   10	
   min.	
   The	
   resulting	
  

supernatant	
  was	
  aliquoted,	
  frozen	
  in	
  liquid	
  nitrogen	
  and	
  stored	
  at	
  -­‐80°C	
  until	
  

the	
  analysis.	
  

After	
  medium	
  removal,	
  the	
  cells	
  were	
  collected	
  by	
  scraping	
  in	
  10	
  ml	
  PBS	
  and	
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used	
  for	
  the	
  endo-­‐metabolome	
  analysis.	
  

All	
   the	
   experiments	
  were	
   carried	
   out	
   in	
   triplicates	
   to	
   test	
   the	
   experimental	
  

variability.	
  

	
  

Anticancer	
  drug	
  treatments	
  

RHPS4	
  and	
  Compound	
  3	
  were	
  added	
  to	
  cell	
  cultures	
  24	
  h	
  after	
  seeding.	
  Cells	
  

were	
  exposed	
  to	
  the	
  drug	
  treatment	
  for	
  72h	
  with	
  1µM	
  final	
  concentration.	
  	
  

Doxorubicin	
  was	
  added	
  to	
  cell	
  cultures	
  80h	
  after	
  seeding.	
  The	
  drug	
  exposure	
  

of	
  cell	
  cultures	
  was	
  16h,	
  with	
  0.1	
  µM	
  as	
  final	
  concentration.	
  	
  

	
  

Liquid	
  N2	
  quenching	
  	
  

The	
  falcon	
  tube	
  containing	
  scraped	
  cells	
  (see	
  above)	
  was	
  immersed	
  into	
  liquid	
  

nitrogen	
  upon	
  complete	
  freezing	
  of	
  the	
  sample	
  and	
  then	
  slowly	
  thawed	
  in	
  an	
  

ice	
   bath.	
   Afterwards	
   the	
   cells	
   were	
   washed	
   twice	
   in	
   10	
   ml	
   of	
   phosphate-­‐

buffered	
  saline	
  (PBS,	
  pH	
  7.4),	
  counted	
  and	
   the	
  final	
  volume	
  was	
  adjusted	
  to	
  

obtain	
  30	
  x	
  106	
  cells	
  into	
  5.4	
  ml	
  PBS.	
  Finally,	
  the	
  quenched	
  cells	
  were	
  lysed	
  by	
  
sonication	
  to	
  destroy	
  the	
  cell	
  membrane	
  and	
  release	
  intracellular	
  metabolites.	
  

	
  

Metabolites	
  extraction	
  for	
  NMR	
  analysis	
  

Intracellular	
   metabolites	
   were	
   extracted	
   using	
   a	
   dual	
   phase	
   extraction	
  

procedure	
  introduced	
  by	
  Bligh	
  and	
  Dyer	
  in	
  1959	
  [36]	
  with	
  slight	
  modifications.	
  

Adding	
  6	
  ml	
  of	
  cold	
  methanol	
   (-­‐20°C)	
  and	
  6	
  ml	
  of	
  chloroform	
  to	
  the	
  original	
  

solution	
   (5.4	
   ml)	
   containing	
   quenched	
   cells,	
   briefly	
   a	
   mixture	
   of	
   water,	
  

methanol	
   and	
   chloroform	
   in	
   the	
   volume	
   ratio	
   of	
   0.9:1:1	
   was	
   obtained,	
  

corresponding	
   to	
   a	
   total	
   volume	
   of	
   17.4	
   ml.	
   Afterwards,	
   this	
   mixture	
  

containing	
   quenched	
   cells	
   was	
   incubated	
   for	
   20	
   min	
   on	
   ice	
   and	
   vortexed	
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frequently	
   to	
   facilitate	
   the	
  extraction.	
  After	
   the	
  metabolites	
  extraction	
   step,	
  

cell	
  extracts	
  were	
  centrifuged	
  at	
  14000	
  rpm	
  at	
  4°C	
  for	
  20	
  min.	
  This	
  extraction	
  

procedure	
  generated	
  a	
  two	
  phase	
  extract	
  that	
  can	
  be	
  described	
  as	
  follow:	
  the	
  

aqueous	
  upper	
  phase	
  contains	
  water	
   soluble	
   intracellular	
  metabolites,	
  while	
  

apolar	
  metabolites	
  as	
  lipid	
  molecules	
  are	
  in	
  the	
  organic	
  lower	
  phase.	
  Proteins	
  

and	
  macromolecules	
   are	
   trapped	
   in	
   the	
   layer	
   between	
   the	
   two	
  phases.	
   The	
  

upper	
  and	
  lower	
  phase	
  were	
  separated	
  and	
  carefully	
  transferred	
  into	
  different	
  

falcon	
   tubes.	
   Eventually,	
   solvents	
   were	
   completely	
   removed	
   from	
   both	
  

fraction	
   using	
   a	
   vacuum	
   concentrator	
   (aqueous	
   phase)	
   and	
   under	
   a	
   gentle	
  

flow	
  of	
  N2	
  gas	
  (organic	
  phase).	
  

Successively,	
   in	
   this	
   study	
   hydrophilic	
   (methanol	
   extracts)	
   and	
   lipophilic	
  

(chloroform	
   extracts)	
   intracellular	
   metabolites	
   were	
   analyzed	
   by	
   NMR	
  

spectroscopy.	
  	
  

	
  

	
  
Fig.9	
  Illustration	
  of	
  the	
  experimental	
  protocol	
  tested	
  for	
  NMR	
  metabolomic	
  analysis	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

HTC-­‐116	
  cancer	
  cell	
  lines	
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4.6	
   Experimental	
   protocol	
   optimization	
   for	
   NMR	
   metabolomic	
   analysis	
   of	
  

HTC-­‐116	
  cell	
  lines	
  

	
  

HTC-­‐116	
   cells	
  were	
   grown	
   in	
   the	
   absence	
   or	
   in	
   the	
   presence	
   of	
   treatments	
  

following	
  the	
  previously	
  described	
  culture	
  conditions	
  (see	
  above)	
  and	
  testing	
  

a	
  different	
  amount	
  of	
  cells	
  (15×106).	
  

In	
   order	
   to	
   improve	
   the	
   yield	
   of	
   the	
   metabolites	
   extraction	
   a	
   fundamental	
  

variation	
   was	
   introduced	
   on	
   the	
   previous	
   experimental	
   protocol:	
   after	
   the	
  

culture	
   medium	
   removal,	
   cells	
   were	
   washed	
   with	
   15	
   ml	
   PBS	
   before	
   cell	
  

scraping	
  and	
  quenching	
  steps	
  in	
  order	
  to	
  avoid	
  the	
  loss	
  of	
  metabolites	
  for	
  cell	
  

leakage	
  (Fig.10).	
  

In	
   addition,	
   since	
   this	
   kind	
   of	
   cells	
   grows	
   as	
   monolayer	
   culture,	
   four	
   cell	
  

washing	
   steps	
   with	
   PBS	
   were	
   needed	
   to	
   ensure	
   the	
   complete	
   removal	
   of	
  

residual	
  culture	
  medium.	
  	
  

Then,	
  the	
  last	
  cell	
  washing	
  PBS	
  was	
  removed	
  by	
  aspiration,	
  5.4	
  ml	
  of	
  clean	
  PBS	
  

were	
   added	
   to	
   the	
   culture	
   dish	
   and	
   cells	
  were	
  mechanically	
   scraped,	
   finally	
  

ready	
  for	
  harvesting	
  and	
  quenching	
  steps.	
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Fig.10	
  Illustration	
  of	
  the	
  optimized	
  experimental	
  protocol	
  tested	
  for	
  NMR	
  metabolomic	
  analysis	
  of	
  	
  	
  	
  	
  	
  
HTC-­‐116	
  cancer	
  cell	
  lines.	
  

	
  

Cell	
  metabolome	
  quenching	
  

Two	
   different	
   quenching	
   procedures	
  were	
   tested	
   on	
   the	
   scraped	
   cells:	
   cold	
  

aqueous	
  methanol	
  (-­‐20°C)	
  and	
  liquid	
  N2.

 Cold	
  methanol	
  quenching	
  

Cells	
  were	
  quenched	
  using	
  6	
  ml	
  of	
   cold	
  methanol	
   (-­‐20°C)	
   and	
  5.4	
  ml	
  of	
   ice-­‐

cold	
  PBS.	
  Next,	
   cells	
  were	
  gently	
  detached	
  by	
   scraping	
   lightly	
   the	
  bottom	
  of	
  

the	
  culture	
  dish	
  using	
  a	
  cell	
  lifter.	
  	
  

 Liquid	
  N2	
  quenching	
  

The	
   falcon	
   tube	
   containing	
   scraped	
   cells	
   was	
   immersed	
   into	
   liquid	
   nitrogen	
  

and	
  then	
  slowly	
  thawing	
  the	
  sample	
   in	
  an	
   ice	
  bath.	
  The	
  detached	
  cells	
  were	
  

suspended	
   in	
   10	
  ml	
   of	
   PBS	
   in	
   a	
   falcon	
   tube	
   and	
   then	
   counted.	
   Finally,	
   the	
  

quenched	
   cells	
  were	
   lysed	
   by	
   sonication	
   to	
   destroy	
   the	
   cell	
   membrane	
   and	
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release	
  intracellular	
  metabolites.	
  

	
  

Metabolites	
  extraction	
  for	
  NMR	
  analysis	
  

The	
  solutions	
  of	
  quenched	
  cells	
  obtained	
  from	
  the	
  two	
  quenching	
  procedures	
  

were	
   separately	
   suspended	
   in	
   6	
   ml	
   of	
   chloroform	
   (for	
   methanol	
   quenched	
  

cells)	
  or	
  6	
  ml	
  of	
  methanol	
  +	
  6	
  ml	
  of	
  chloroform	
  (for	
  liquid	
  N2	
  quenched	
  cells).	
  	
  

For	
  both	
  solutions,	
  the	
  metabolites	
  extraction	
  was	
  performed	
  using	
  the	
  same	
  

protocol	
  as	
  previously	
  described.	
  	
  Samples	
  were	
  stored	
  at	
  -­‐80°C	
  until	
  the	
  NMR	
  

analysis.	
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4.7	
  NMR	
  sample	
  preparation	
  

	
  

Prior	
   to	
   endo-­‐metabolome	
   NMR	
   analysis,	
   each	
   aqueous	
   cell	
   extract	
   was	
  

thawed	
  and	
  then	
  reconstituted	
  in	
  540	
  μl	
  of	
  D20	
  together	
  with	
  60	
  μl	
  of	
  a	
  D20	
  

solution	
   containing	
   the	
   sodium	
   salt	
   of	
   (trimethylsilyl)	
   propanoic-­‐2,2,3,3-­‐d4	
  

acid	
  (TSP)	
   ,	
  as	
  an	
  internal	
  chemical	
  shift	
  reference	
  (δ	
  1H	
  0.00),	
  to	
  give	
  a	
  final	
  

concentration	
  of	
  0.6	
  mM	
  in	
  the	
  NMR	
  tube.	
  Samples	
  were	
  vortexed	
  briefly	
  and	
  

transferred	
  into	
  a	
  5-­‐mm	
  NMR	
  tube.	
  

The	
   organic	
   extracts	
   were	
   re-­‐suspended	
   in	
   700	
   μl	
   of	
   deuterated	
   CDCl3	
  

containing	
  0.03%	
  v/v	
  tetramethylsilane	
  (TMS)	
  as	
  chemical	
  shift	
  reference	
  for	
  

organic	
  solvent,	
  then	
  vortexed	
  and	
  transferred	
  into	
  a	
  5-­‐mm	
  NMR	
  tube.	
  

Before	
  the	
  exo-­‐metabolome	
  NMR	
  analysis,	
  630	
  μl	
  of	
  the	
  cell	
  medium	
  removed	
  

from	
  the	
  culture	
  dish	
  was	
  added	
  70	
  μl	
  of	
  a	
  D20	
   solution	
  containing	
  TSP	
  and	
  

transferred	
  into	
  a	
  5-­‐mm	
  NMR	
  tube.	
  Culture	
  media	
  samples	
  were	
  only	
  briefly	
  

vortexed	
   in	
   order	
   to	
   minimize	
   the	
   bubbles	
   formation	
   attributable	
   to	
   high-­‐

abundance	
  of	
  serum	
  proteins.	
  

	
  

	
  

4.8	
  1H	
  NMR	
  Data	
  acquisition	
  

	
  

All	
   NMR	
   spectra	
   were	
   acquired	
   at	
   300K	
   on	
   a	
   Bruker	
   Avance	
   III	
   600	
   MHz	
  

ultrashielded	
   spectrometer	
   (Bruker	
   Biospin	
   Gmbh,	
   Rheinstetten,	
   Germany)	
  

operating	
   at	
   600,13	
  MHz	
   for	
   protons	
   (14.09	
   Tesla)	
   equipped	
  with	
   a	
   double	
  

tuned	
  cryo-­‐probe	
  (TCI)	
  set	
  for	
  5	
  mm	
  sample	
  tubes.	
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1H	
  NMR	
  spectra	
  of	
  hydrophilic	
  and	
  lipophilic	
  cell	
  extracts	
  were	
  acquired	
  using	
  

a	
   1D	
   NOESY-­‐presat	
   pulse	
   sequence	
   (RD-­‐90°-­‐t-­‐90°-­‐tm-­‐90°-­‐ACQ).	
   A	
   pre-­‐

saturation	
  of	
  the	
  water	
  resonance	
  during	
  the	
  recycle	
  delay	
  is	
  followed	
  by	
  a	
  90	
  

degree	
   pulse	
  with	
   an	
   acquisition	
   time	
   of	
   2.726	
   s,	
   a	
   relaxation	
   delay	
   of	
   4	
   s,	
  

mixing	
  time	
  of	
  10	
  ms,	
  receiver	
  gain	
  of	
  181,	
  128	
  scans,	
  128	
  K	
  data	
  points	
  and	
  a	
  

spectral	
  width	
  of	
  18029	
  Hz	
  (30.041	
  ppm)	
  
1H	
  NMR	
  spectra	
  of	
  cell	
  culture	
  media	
  were	
  acquired	
  using	
  a	
  1D	
  Carr-­‐Purcell-­‐

Meiboom-­‐Gill	
   (CPMG)	
   pulse	
   sequence	
   (RD-­‐90°-­‐{τ-­‐180°-­‐τ}n-­‐ACQ)	
   with	
  

presaturation	
   for	
   suppression	
  of	
  high	
  molecular	
  weight	
  molecules	
  signals	
  on	
  

the	
   basis	
   of	
   T2	
   editing	
   (300	
   μs	
   delay	
   and	
   repeated	
   14	
   times).	
   128	
   free	
  

induction	
  decays	
  (FIDs)	
  were	
  collected	
  into	
  128	
  K	
  data	
  points,	
  using	
  a	
  spectral	
  

width	
   of	
   12019	
   Hz	
   (20.028	
   ppm),	
   acquisition	
   time	
   of	
   3.067	
   s,	
   with	
   a	
   4	
   s	
  

relaxation	
  delay	
   between	
  pulses,	
  mixing	
   time	
  of	
   10	
  ms	
   and	
   receiver	
   gain	
   of	
  

40.3.	
   All	
   samples	
   were	
   individually	
   tuned,	
   matched	
   and	
   shimmed.	
   Prior	
   to	
  

Fourier	
  transformation,	
  each	
  free	
  induction	
  decay	
  (FID)	
  was	
  zero-­‐filled	
  to	
  128	
  

K	
  points	
  and	
  multiplied	
  by	
  an	
  exponential	
  function	
  equivalent	
  to	
  a	
  1.0	
  Hz	
  line-­‐

broadening.	
   The	
   resulting	
   spectra	
   were	
   phase-­‐	
   and	
   baseline-­‐corrected	
  

automatically	
   using	
   TOPSPINTM	
   (Bruker	
   Biospin)	
   and	
   the	
   ppm	
   scale	
   was	
  

referenced	
  towards	
  the	
  TSP	
  peak	
  at	
  0.00	
  ppm	
  for	
  aqueous	
  solvents,	
  the	
  TMS	
  

peak	
  at	
  0.00	
  ppm	
  for	
  organic	
  solvent.	
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4.9	
  NMR	
  Data	
  Analysis	
  and	
  selection	
  of	
  experimental	
  protocol	
  

	
  

Despite	
  mammalian	
  cell	
  metabolomics	
  has	
  being	
  an	
  increasing	
  research	
  field,	
  

the	
   number	
   of	
   studies	
   concerning	
   quenching	
   and	
   extraction	
   methods	
   for	
  

adherent	
   mammalian	
   cells	
   reported	
   in	
   the	
   literature	
   is	
   still	
   low.	
   Different	
  

experimental	
   protocols	
   described	
   in	
   other	
   papers	
   were	
   evaluated	
   and	
  

adapted	
  for	
  HTC-­‐116	
  cell	
  lines	
  NMR	
  metabolomics	
  study.	
  

Initially	
   we	
   tested	
   the	
   metabolite	
   extraction	
   efficacy	
   starting	
   from	
   30×106	
  

cells,	
  washed	
  with	
  PBS	
  after	
  the	
  scraping	
  and	
  quenching	
  steps	
  (as	
  previously	
  

described	
  in	
  paragraph	
  3.5).	
  Inspecting	
  the	
  1D-­‐NOESY	
  spectrum	
  (Fig.11)	
  of	
  the	
  

hydrophilic	
   cell	
   extract,	
   it	
   showed	
  a	
  quite	
   low	
  number	
  of	
  metabolite	
   signals	
  

and	
  the	
  extraction	
  yield	
  resulted not	
  sufficiently	
  high.	
  This NMR	
  spectrum	
  was	
  

acquired	
  with	
  1024	
  scans	
  number	
  and	
  took	
  about	
  1	
  hour	
  acquisition	
  time.	
  	
  

	
  

	
  
Fig.11	
  1D-­‐NOESY	
  spectrum	
  of	
  hydrophilic	
  cell	
  extract	
  (control	
  sample	
  30×106	
  cells,	
  ns=1024,aq.	
  t=	
  1h)	
  	
  

	
  

In	
  order	
  to	
  improve	
  the	
  yield	
  of	
  metabolite	
  extraction,	
  we	
  slightly	
  changed	
  the	
  

experimental	
   protocol	
   anticipating	
   PBS	
   cell	
   washing	
   before	
   scraping	
   and	
  

[ppm]  8   6   4   2  [ppm]  8   6   4   2  
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quenching,	
  as	
  described	
  in	
  section	
  3.6.	
  Starting	
  from	
  a	
  lower	
  number	
  of	
  cells	
  

(15×106),	
  washed	
  with	
  PBS	
  before	
  the	
  cell	
  scraping	
  and	
  quenching	
  steps	
  and	
  

acquiring	
  the	
  1D-­‐NOESY	
  spectrum	
  (Fig.12)	
  with	
  only	
  128	
  number	
  of	
  scans,	
  we	
  

noticed	
  a	
  considerable	
  increase	
  of	
  the	
  extraction	
  yield.	
  This	
  was	
  the	
  proof	
  that	
  

the	
  PBS	
   cell	
  washing	
  after	
   the	
  quenching	
   step	
  was	
   the	
  main	
   responsible	
   for	
  

the	
  metabolites	
  loss.	
  	
  

	
  
Fig.12 1D-­‐NOESY	
  spectrum	
  of	
  hydrophilic	
  cell	
  extract	
  (control	
  sample,15×106 cells,ns=128,aq.	
  t=15	
  min)	
  

	
  

Moreover,	
  using	
  the	
  same	
  experimental	
  conditions,	
  we	
  also	
  tested	
  the	
  cold-­‐

methanol	
  quenching	
  method	
  and	
  compared	
  it	
  with	
  the	
  liquid	
  nitrogen	
  one.	
  

Accordingly	
  to	
  the	
  literature	
  describing	
  experimental	
  protocols	
  in	
  the	
  case	
  of	
  

adherent	
   cells,	
   the	
   liquid	
   nitrogen	
   freezing	
   represented	
   the	
   optimal	
   way	
   to	
  

stop	
   HTC-­‐116	
   cells	
   enzymatic	
   activity	
   with	
   respect	
   to	
   using	
   methanol	
   that	
  

instead	
  induced	
  a	
  strong	
  leakage	
  of	
   intracellular	
  metabolites.	
  As	
  a	
  result,	
  we	
  

noticed	
   that	
   some	
   leakage	
   was	
   anyhow	
   unavoidable	
   and	
   that	
   the	
   selected	
  

experimental	
   protocol	
   involving	
   the	
   liquid	
  N2	
  quenching	
   represented	
   a	
   good	
  

tradeoff	
  among	
  metabolome	
  alteration,	
  metabolites	
  leakage	
  and	
  all	
  analytical	
  

measurement	
  difficulties	
  in	
  our	
  study.	
  	
  

[ppm]  8   6   4   2  [ppm]  8   6   4   2  
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4.10	
  Pre-­‐Processing	
  of	
  the	
  NMR	
  spectra	
  and	
  Multivariate	
  Data	
  Analysis	
  

	
  

Before	
   conducting	
   multivariate	
   data	
   analysis,	
   the	
   NMR	
   spectra	
   had	
   to	
   be	
  

cleaned	
  and	
  corrected	
  from	
  problems	
  that	
  usually	
  affect	
  this	
  type	
  of	
  data.	
  The	
  

NMR	
  regions	
  between	
  12.72	
  and	
  9.43	
  ppm,	
  between	
  4.75	
  and	
  4.615	
  ppm	
  and	
  

from	
  0.8	
  to	
  -­‐10.32	
  ppm	
  were	
  removed	
  because	
  they	
  only	
  contain	
  noise	
  or	
  the	
  

residual	
  deuterated	
  water	
  signal	
  as	
  well	
  as	
  the	
  reference	
  signal	
  at	
  0.00.	
  

A	
  preliminary	
  explorative	
  (unsupervised)	
  data	
  analysis	
  was	
  performed	
  on	
  the	
  

full	
  features	
  hydrophilic	
  NMR	
  data	
  set,	
  using	
  only	
  the	
  samples	
  from	
  the	
  same	
  

batch	
   The	
   result	
   is	
   shown	
   in	
   Fig.13,	
   where	
   a	
   PCA	
   scores	
   plot	
   of	
   batch	
   B	
   is	
  

illustrated.	
  

	
  

	
  
	
  

Fig.13	
  PCA	
  model	
  performed	
  on	
  the	
  full	
  features	
  hydrophilic	
  data.	
  	
  
Samples	
  of	
  batches	
  B	
  are	
  plotted.	
  

	
  

Latentix	
   2.12	
   (www.latentix.com,	
   Copenhagen,	
   Denmark)	
   was	
   used	
   to	
  

calculate	
  the	
  Principal	
  Component	
  Analysis	
  (PCA)	
  model.	
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In	
  Figure	
  13	
  a	
  clear	
  separation	
  among	
  the	
  control	
  and	
  the	
  treatments	
  groups	
  

is	
   showed.	
   Thereby,	
   each	
   treatment	
   affects	
   the	
   HTC-­‐116	
   cancer	
   cells	
  

metabolism	
  differently.	
  	
  

Moreover,	
  the	
  PCA	
  model	
  highlighted	
  a	
  considerable	
  intra-­‐batch	
  experimental	
  

reproducibility,	
   allowing	
   us	
   to	
   make	
   comparisons	
   between	
   samples	
   groups	
  

and	
  to	
  understand	
  the	
  peculiarities	
  of	
  the	
  treatments	
  with	
  respect	
  to	
  control	
  

samples.	
  

In	
  order	
  to	
  help	
  pointing	
  out	
  how	
  the	
  different	
  anticancer	
  drugs	
  act	
  in	
  vitro	
  on	
  

the	
   cellular	
  metabolism,	
   an	
  overlay	
  of	
   the	
   sample	
   spectral	
   average	
   for	
   each	
  

treatment	
  from	
  the	
  batch	
  B	
  is	
  shown	
  in	
  Figure	
  14	
  for	
  a	
  restricted	
  region	
  using	
  

different	
  colors.	
  

	
  

	
  
Fig.14	
  NMR	
  spectra	
  overlay	
  of	
  one	
  sample	
  for	
  each	
  drug	
  treatment	
  from	
  the	
  batch	
  B.	
  Zoom	
  in	
  the	
  

spectral	
  region	
  from	
  2.9	
  to	
  3.3	
  ppm.	
  
	
  

Looking	
  at	
  the	
  NMR	
  spectrum	
  of	
  the	
  sample	
  treated	
  with	
  RHPS4,	
  it	
  is	
  evident	
  

that	
   globally,	
   all	
   spectral	
   regions	
   are	
   interested	
   with	
   a	
   substantial	
   overall	
  

decrease	
   in	
   signal	
   intensities.	
   This	
   presumably	
   means	
   that	
   RHPS4	
   is	
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responsible	
   of	
   a	
   strong	
   cellular	
   metabolism	
   inhibition	
   with	
   respect	
   to	
   the	
  

other	
  two	
  drugs.	
  Indeed,	
  in	
  the	
  PCA	
  model	
  (Fig.13)	
  RHPS4	
  treated	
  group	
  was	
  

separated	
  from	
  all	
  the	
  other	
  groups	
  by	
  means	
  of	
  PC1,	
  as	
  proof	
  of	
  the	
  RHPS4	
  

diversity.	
  Differently	
  from	
  Adriamycin	
  and	
  Compound	
  3,	
  and	
  in	
  contrast	
  with	
  

the	
  overall	
  tendency	
  of	
  lower	
  metabolite	
  production,	
  a	
  considerable	
  increase	
  

in	
  lactate	
  formation	
  was	
  also	
  showed	
  for	
  RHPS4	
  treatment.	
  

Moreover,	
   NMR	
   signals	
   such	
   as	
   those	
   at	
   2.385,	
   3.04	
   and	
   8.35	
   ppm	
   –

unfortunately	
  not	
  yet	
  assigned	
  –	
  are	
  characteristic	
  only	
  for	
  RHPS4,	
  allowing	
  us	
  

to	
  understand	
   that	
   the	
   treatment	
  with	
  RHPS4	
  determines	
   the	
  production	
  of	
  

peculiar	
  metabolites.	
  	
  

In	
   order	
   to	
   check	
   the	
   inter-­‐batch	
   reproducibility,	
   a	
   Principal	
   Component	
  

Analysis	
   (PCA)	
  was	
  performed	
  on	
   the	
   full	
   features	
  NMR	
  data	
  of	
   the	
  samples	
  

from	
  the	
  first	
   (only	
  control	
  samples)	
  and	
  second	
  batch	
  (respectively	
  A	
  and	
  B	
  

batch)	
  (Fig.15).	
  

	
  
Fig.15	
  PCA	
  model	
  performed	
  on	
  the	
  full	
  features	
  hydrophilic	
  data.	
  	
  

Samples	
  of	
  batches	
  A	
  and	
  B	
  are	
  plotted.	
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The	
  PCS	
   scores	
  plot	
  of	
   the	
   resulting	
  model	
   showed	
  an	
   important	
   separation	
  

between	
  intra-­‐batches	
  control	
  samples.	
  This	
  undesirable	
  result	
  might	
  be	
  due	
  

to	
   different	
   cellular	
   generations	
   of	
   the	
   same	
   cell	
   type	
   which	
   are	
   used	
   for	
  

preparing	
  the	
  samples	
  of	
  the	
  two	
  batches.	
  Even	
  though	
  the	
  cells	
  used	
  for	
  the	
  

second	
  batch	
  are	
  propagated	
  from	
  those	
  used	
  for	
  the	
  first	
  one,	
  their	
  genotype	
  

and	
   therefore	
   their	
   metabolome	
   profile	
   may	
   be	
   affected	
   by	
   generational	
  

changes.	
  

From	
  a	
  data	
  mining	
  point	
  of	
  view,	
  in	
  order	
  to	
  overcome	
  this	
  problem	
  and	
  to	
  

minimize	
  the	
  difference	
  between	
  the	
  different	
  batches,	
  a	
  solution	
  could	
  be	
  to	
  

use	
   variable	
   selection	
   or	
   data	
   orthogonalization	
   with	
   respect	
   to	
   batch	
  

variation,	
   but	
   these	
   approaches	
   are	
   tricky	
   and	
   may	
   result	
   in	
   loss	
   of	
  

information	
  with	
  respect	
  to	
  the	
  original	
  data.	
  

Data	
   normalization	
  methods	
  were	
   also	
   tested	
   in	
   this	
   respect	
   but	
   they	
  were	
  

not	
  able	
  to	
  reduce	
  the	
  intra-­‐batch	
  variability.	
  

Furthermore,	
  since	
  NMR	
  spectra	
  showed	
  misalignments	
  in	
  chemical	
  shift	
  due	
  

to	
  pH-­‐sensitive	
  peaks,	
  the	
  spectra	
  were	
  initially	
  divided	
  in	
  equally	
  sized	
  (0.02	
  

ppm)	
  bins	
  trying	
  to	
  minimize	
  the	
  inter-­‐individual	
  differences	
  in	
  peak	
  positions.	
  	
  

Principal	
   Component	
   Analysis	
   (PCA)	
   was	
   performed	
   on	
   the	
   binned	
   data	
  

(Fig.16)	
  for	
  the	
  hydrophilic	
  extract	
  samples	
  again	
  belonging	
  to	
  the	
  first	
  (A)	
  and	
  

second	
  batch	
  (B).	
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Fig.16	
  PCA	
  model	
  performed	
  on	
  the	
  hydrophilic	
  bin	
  data	
  (0.02	
  ppm).	
  	
  

Samples	
  of	
  batches	
  A	
  and	
  B	
  are	
  plotted.	
  

	
  

Comparing	
  the	
  PCA	
  scores	
  plot	
  of	
  this	
  model	
  with	
  that	
  of	
  the	
  previous	
  one	
  in	
  

Fig.15,	
   the	
   NMR	
   spectra	
   binning	
   made	
   the	
   two	
   control	
   groups	
   very	
  

comparable.	
  	
  

Thus,	
   the	
   spectral	
   binning	
   improved	
   the	
   grouping	
   of	
   the	
   control	
   samples	
   of	
  

the	
  two	
  batches,	
  indicating	
  that	
  a	
  signal	
  alignment	
  is	
  beneficial	
  for	
  improving	
  

the	
  significance	
  of	
  the	
  data.	
   It	
  must	
  be	
  highlighted	
  that	
  the	
  binning	
  method,	
  

although	
  still	
  widely	
  used,	
  always	
  results	
  in	
  the	
  loss	
  of	
  a	
  considerable	
  amount	
  

of	
   information	
   originally	
   contained	
   in	
   the	
   original	
   spectra	
   and	
   should	
   be	
  

avoided	
  when	
  other	
  solutions	
   that	
  do	
  not	
   require	
  drastic	
  data	
  reduction	
  are	
  

available.	
  	
  

Therefore,	
   in	
   order	
   to	
   overcome	
   the	
   peak	
   shift	
   problem,	
   the	
   full	
   resolution	
  

data	
   matrix	
   was	
   corrected	
   for	
   errors	
   in	
   chemical	
   shift	
   misalignments	
  

concerning	
   pH-­‐dependent	
   signals	
   using	
   the	
   interval	
   correlation	
   optimized	
  

shifting	
  algorithm	
  (icoshift).	
  	
  

	
  



                                                   Chapter	
  4.	
  NMR	
  Metabolomics	
  of	
  human	
  cancer	
  cell	
  lines	
  

	
  

 79 

In	
  the	
  Fig.	
  17	
  an	
  example	
  of	
  icoshift	
  algorithm	
  application	
  is	
  showed,	
  zooming	
  

in	
   the	
   lactate	
  quartet	
  spectral	
   region.	
   	
   Instead	
  of	
  bucketing	
  method,	
   icoshift	
  

does	
   not	
   involve	
   a	
   data	
   reduction	
   and	
   the	
   spectral	
   resolution	
   is	
  maintained	
  

[37].	
  

	
  

	
  
Fig.17	
  A	
  comparison	
  between	
  raw	
  (first	
  plot)	
  and	
  icoshift	
  aligned	
  Lactate	
  quartet	
  (second	
  plot)	
  

	
  

Hence,	
   all	
   PCA	
   models	
   were	
   performed	
   on	
   the	
   aligned	
   pareto-­‐scaled	
   data	
  

matrix.	
  The	
  pareto-­‐scaling	
  technique	
  reduces	
  the	
  relative	
  importance	
  of	
  large	
  

values	
   (high	
   intensities	
   as	
   for	
   lactate)	
   but	
   keeps	
   the	
   data	
   structure	
   partially	
  

intact,	
  assigning	
   importance	
  to	
  the	
  less	
   intense	
  signals,	
  as	
  for	
  example	
  those	
  

of	
  the	
  spectral	
  aromatic	
  region	
  [38].	
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Fig.18	
  PCA	
  model	
  performed	
  on	
  the	
  hydrophilic	
  aligned	
  data	
  matrix.	
  	
  
Samples	
  of	
  batches	
  A	
  -­‐	
  B	
  and	
  C	
  are	
  plotted.	
  

	
  

	
  

Fig.	
  18	
  shows	
  the	
  scores	
  plot	
  of	
  the	
  PCA	
  model	
  performed	
  on	
  the	
  aligned	
  data	
  

matrix	
   including	
   samples	
   from	
   all	
   batches;	
   therefore	
   also	
   batch	
   c	
   that	
   has	
  

both	
  control	
  samples	
  and	
  treated	
  ones.	
  It	
  results	
  clear	
  that,	
  even	
  with	
  a	
  higher	
  

number	
   of	
   samples	
   treated	
   the	
   same	
   way,	
   PC1	
  mainly	
   describes	
   the	
   batch	
  

differences	
  and	
  the	
  treated	
  samples	
  are	
  well	
  grouped	
  only	
  batch	
  wise.	
  Thus,	
  

the	
   spectral	
   data	
   alignment	
   was	
   not	
   sufficient	
   to	
   minimize	
   the	
   intra-­‐batch	
  

differences,	
   but	
   it	
   reduced	
   the	
   shift	
   effect	
   that	
   was	
   disturbing	
   sample	
  

grouping.	
  Once	
  again	
   the	
  effect	
  of	
  RHPS4	
  on	
   the	
  metabolome,	
  described	
  by	
  

PC1,	
  is	
  dominant	
  and	
  it	
  even	
  overcomes	
  the	
  batch	
  effect.	
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Fig.19	
  PCA	
  model	
  performed	
  on	
  the	
  hydrophilic	
  aligned	
  data	
  matrix.	
  	
  

Samples	
  of	
  batches	
  A	
  -­‐	
  B	
  and	
  C	
  without	
  RHPS4	
  are	
  plotted.	
  

	
  

Recalculating	
   the	
  model	
  without	
  RHPS4	
  treated	
  samples	
  and	
  plotting	
   the	
  PC	
  

score1	
   against	
   PC	
   score3	
   and	
   4,	
   the	
   samples	
   resulted	
   separated	
   to	
   a	
   good	
  

extent	
  on	
  the	
  basis	
  of	
  the	
  anticancer	
  drug	
  treatment	
  and	
  not	
  anymore	
  of	
  the	
  

different	
  batches	
  (Fig.	
  19).	
  	
  

It	
  must	
  be	
  pointed	
  out	
  that	
  PCA	
  analysis	
  has	
  a	
  solely	
  explorative	
  purpose	
  and	
  

it	
   is	
  not	
  supervised	
  as	
  for	
  classification	
  tools	
   like	
  PLS-­‐DA	
  or	
  ECVA.	
  Therefore,	
  

the	
   non-­‐perfect	
   clusterizations	
   obtained	
   are	
   anyhow	
   indicative	
   of	
   a	
  

statistically	
  robust	
  difference	
  among	
  the	
  different	
  drug	
  treatments.	
  Hence,	
   it	
  

can	
  be	
  stated	
   that	
  cell	
  NMR	
  metabolomics	
  can	
  be	
   reliably	
  used	
   for	
   studying	
  

the	
   way	
   the	
   different	
   anticancer	
   drugs	
   affect	
   the	
   cell	
   metabolism,	
   directly	
  

fulfilling	
  the	
  main	
  hypothesis	
  of	
  the	
  investigation.	
  However,	
  still	
  a	
  lot	
  of	
  work	
  

is	
  required	
  for	
  interpreting	
  the	
  obtained	
  results	
  form	
  a	
  biological	
  point	
  of	
  view	
  

and	
  part	
  of	
  it	
  has	
  been	
  initiated	
  and	
  described	
  in	
  the	
  following	
  chapter	
  4.11.	
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A	
   preliminary	
   explorative	
   analysis	
   approach	
   was	
   also	
   carried	
   out	
   on	
   the	
  

lipophilic	
  extract	
  and	
  growth	
  media	
  samples	
  data	
  matrices.	
  Both	
  PCA	
  models	
  

performed	
   on	
   the	
   samples	
   belonging	
   to	
   the	
   same	
   batches	
   showed	
   a	
  

significant	
   difference	
   among	
   drug	
   treatments	
   (Fig.	
   20-­‐21),	
   but	
   further	
  

investigations	
   will	
   aim	
   to	
   assess	
   also	
   the	
   intra-­‐batch	
   variability	
   for	
   the	
  

lipophilic	
  metabolome	
  and	
  the	
  exo-­‐metabolome.	
  

	
  
Fig.20	
  PCA	
  model	
  performed	
  on	
  the	
  lipophilic	
  non-­‐aligned	
  data	
  matrix.	
  	
  

Samples	
  of	
  batches	
  B	
  are	
  plotted.	
  

	
  
Fig.21	
  PCA	
  model	
  performed	
  on	
  the	
  media	
  non-­‐aligned	
  data	
  matrix.	
  	
  

Samples	
  of	
  batches	
  B	
  are	
  plotted.	
  

 



                                                   Chapter	
  4.	
  NMR	
  Metabolomics	
  of	
  human	
  cancer	
  cell	
  lines	
  

	
  

 83 

It	
   is	
   interesting	
   to	
   note	
   that	
   the	
   effect	
   of	
   RHPS4,	
   described	
   by	
   PC1,	
   is	
   also	
  

dominant	
   on	
   the	
   lipophilic	
   metabolome	
   and	
   on	
   the	
   exo-­‐metabolome.	
   In	
  

particular,	
   in	
   order	
   to	
   understand	
   which	
   metabolites	
   are	
   interested	
   by	
  

anticancer	
   drug	
   actions,	
   we	
   had	
   a	
   look	
   at	
   the	
   NMR	
   spectra	
   overlay	
   of	
  

lipophilic	
   cellular	
  extract	
   (control	
   and	
   treated	
  group)	
   (Fig.22).	
   It	
   is	
   clear	
   that	
  

only	
   the	
   spectral	
   region	
   comprised	
   from	
   1.3	
   ppm	
   and	
   1.8	
   ppm	
   (where	
  

lipoproteins	
  use	
   to	
   resonate)	
   is	
   reasonably	
   affected	
  by	
  drug	
   treatment.	
   This	
  

observation	
   will	
   be	
   used	
   to	
   better	
   describe	
   the	
   effect	
   of	
   each	
   drug	
   from	
   a	
  

biological	
  point	
  of	
  view.	
  However,	
  the	
  exo-­‐metabolome	
  and	
  the	
  lipophilic	
  cell	
  

extract	
  profile	
  still	
  need	
  to	
  be	
  further	
  investigated.	
  

	
  

	
  

	
  
Fig.22	
  NMR	
  spectra	
  overlay	
  of	
  lipophilic	
  cellular	
  extract	
  profile.	
  

	
  

	
  

	
  

	
  

[ppm]  6   4   2   6   4   2  

CTL 
RHPS4 

Adriamycin 
Compound 3 
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4.11	
  Metabolites	
  identification	
  	
  

	
  

NMR	
   hydrophilic	
   metabolites	
   identification	
   in	
   this	
   project	
   was	
   achieved	
   by	
  

comparison	
   with	
   the	
   chemical	
   shifts	
   of	
   the	
   metabolites	
   in	
   the	
   Human	
  

Metabolome	
   Database	
   (HMDB)	
   (http://www.hmdb.ca)	
   [39]	
   and	
   in	
   the	
  

literature	
  data	
  [40]	
  [41]	
  [42].	
  

Moreover,	
   Statistical	
   Total	
   Correlation	
   Spectroscopy	
   (STOCSY)	
   analysis	
   was	
  

performed	
  on	
  the	
  NMR	
  (1D-­‐	
  NOESY)	
  bined	
  (0.02	
  ppm)	
  data	
  set	
  of	
  all	
  samples	
  

belonging	
   to	
   the	
  hydrophilic	
  extracts	
   (Fig.	
  23),	
   for	
  obtaining	
   the	
  correlations	
  

among	
   the	
  metabolite	
   signals,	
   using	
   a	
   treshold	
   value	
   r	
   >	
   0.9	
   for	
   correlation	
  

coefficient.	
  

	
  
Fig.23	
  STOCSY	
  correlation	
  matrix	
  plot.	
  1D-­‐NOESY	
  bin	
  data	
  (0.02ppm),	
  hydrophilic	
  extract	
  samples	
  were	
  

used	
  to	
  perform	
  this	
  analysis.	
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The	
  resulting	
  plot	
  can	
  be	
  interpreted	
  as	
  a	
  bidimensional	
  NMR	
  TOCSY	
  spectrum	
  

where	
  peaks	
  on	
  the	
  diagonal	
  are	
  characterized	
  by	
  an	
  autocorrelation	
  value	
  of	
  

1.	
  Highly	
  correlated	
  peak	
  intensities	
  represent	
  protons	
  belonging	
  to	
  the	
  same	
  

molecule,	
   whereas	
   lower	
   (or	
   negative)	
   correlations	
   could	
   lead	
   to	
   proton	
  

signals	
   from	
   different	
   compounds	
   but	
   involved	
   in	
   the	
   same	
   metabolic	
  

pathway.	
  	
  

	
  
Fig.24	
  STOCSY	
  zoom	
  in	
  the	
  region	
  showing	
  the	
  correlation	
  crosspeak	
  among	
  lactate	
  protons	
  at	
  δH	
  1.32	
  

ppm	
  and	
  δH	
  4.115	
  

	
  

For	
  instance,	
  a	
  high	
  correlation	
  was	
  observed	
  among	
  resonances	
  δH	
  1.32	
  ppm	
  

and	
  δH	
  4.115	
   (Fig.24),	
  which	
  corresponds	
   to	
   the	
   lactate	
  doublet	
  and	
  quartet	
  

respectively.	
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Hence,	
  in	
  Table	
  1	
  are	
  presented	
  the	
  chemical	
  shift	
  and	
  the	
  signals	
  multiplicity	
  

determined	
  for	
  each	
  metabolite	
  that	
  have	
  been	
  unambiguously	
  assigned.	
  	
  

	
  

	
  
Tab.1	
  Chemical	
  shift	
  and	
  signals	
  multiplicity	
  for	
  HTC-­‐116	
  cancer	
  cell	
  lines	
  metabolites.	
  Chemical	
  shifts	
  
are	
  reported	
  with	
  reference	
  to	
  TSP	
  singlet	
  resonance	
  at	
  0.000	
  ppm,	
  and	
  multiplicity	
  definitions	
  are:	
  s,	
  

singlet;	
  d,	
  doublet;	
  dd,	
  doublet	
  of	
  doublets;	
  t,	
  triplet;	
  q,	
  quartet;	
  m,	
  other	
  multiplet.	
  
	
  

	
  

	
  

	
  

	
  

Compound( Multiplicity( Shift((ppm)(in(D2O(
Acetate& s& 1.92&

Alanine&
d&
q&

1.49&
3.80&

D6Glucose&
d&
dd&

5.24&(α6anomer)&
3.863.3&(overlap)&

Glycine& s& 3.575&

Glutamate&

m&
t&
m&
m&

2.03&
3.78&
2.35&
2.30&

Glutamine&

m&
t&
m&
m&

2.08&
3.8&(overlap)&

2.54&
2.57&

Isoleucine&
d&
t&

1.01&
0.96&

Lactate&
d&
q&

1.32&
4.115&

Leucine&
d&
d&

0.95&
0.93&

Phenylalanine&

d&
m&
m&
dd&
dd&
dd&

7.34&
7.39&
7.44&
3.95&
3.048&
3.235&

Pyruvate& s& 2.383&

Threonine&
d&
m&
d&

1.33&
4.27&
3.62&

Valine&
d&
d&

1.05&
0.995&

&
&

& & & & & & & & & &
& & & & & & . . & & &
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4.12	
  Conclusions	
  and	
  future	
  perspectives	
  	
  

	
  

Despite	
   mammalian	
   cell	
   metabolomics	
   is	
   an	
   increasing	
   research	
   field,	
   the	
  

number	
  of	
  studies	
  reported	
  in	
  the	
  literature	
  for	
  adherent	
  mammalian	
  cells	
  is	
  

still	
   quite	
   low.	
  For	
  a	
  holistic	
  understanding	
  of	
   cancer	
   cells	
  metabolome,	
   it	
   is	
  

crucial	
  the	
  choice	
  of	
  the	
  right	
  protocol	
  for	
  efficient	
  harvesting,	
  quenching	
  and	
  

extraction	
   of	
   cellular	
  metabolites.	
   In	
   this	
   study	
  we	
   identified	
   and	
   optimized	
  

the	
  experimental	
  protocol	
  for	
  HTC-­‐	
  116	
  human	
  colon	
  cancer	
  cell	
  lines	
  for	
  NMR	
  

metabolomics	
  study.	
  	
  

From	
  a	
  general	
  point	
  of	
  view,	
  this	
  project	
  has	
  relevant	
  importance	
  since	
  colon	
  

carcinoma	
  is	
  the	
  third	
  most	
  commonly	
  diagnosed	
  cancer	
  in	
  the	
  world	
  and	
  the	
  

second	
  most	
  common	
  cause	
  of	
  death	
  from	
  cancer.	
  

The	
  NMR	
  analysis	
  of	
  metabolic	
  profiles	
  of	
  human	
  colon	
  cancer	
  cell	
  lines	
  aimed	
  

to	
  provide	
  important	
  information	
  on	
  in	
  vitro	
  actions	
  of	
  drugs,	
  pointing	
  at	
  their	
  

rapid	
   incorporation	
   into	
   novel	
   therapeutic	
   settings.	
   In	
   particular,	
   the	
   PCA	
  

models	
   calculated	
   on	
   the	
   samples	
   belonging	
   to	
   the	
   same	
   batch	
   showed	
  

excellent	
  results	
  about	
  the	
  differentiation	
  among	
  the	
  drug	
  treatments	
  and	
  the	
  

intra-­‐batch	
  reproducibility.	
  

Considering	
  the	
  exploratory	
  characteristic	
  of	
  PCA	
  analysis,	
  which	
  represents	
  a	
  

non	
   supervised	
   approach	
   to	
   sample	
   clustering,	
   even	
   the	
   non-­‐perfect	
  

groupings	
  obtained	
  are	
  undoubtly	
  indicative	
  of	
  a	
  statistically	
  robust	
  difference	
  

among	
   the	
   different	
   drug	
   treatments.	
   Thus,	
   it	
   can	
   be	
   safely	
   stated	
   that	
   cell	
  

NMR	
   metabolomics	
   represents	
   a	
   powerful	
   tool	
   for	
   investigating	
   how	
   the	
  

different	
  anticancer	
  drugs	
  affect	
   the	
  cell	
  metabolism.	
  This	
   result	
   fulfilled	
  the	
  

main	
  hypothesis	
  of	
  this	
  investigation,	
  but	
  it	
  only	
  represents	
  the	
  starting	
  point	
  

towards	
  the	
  understanding	
  of	
  cancer	
  cell	
  metabolism	
  when	
  anticancer	
  drugs	
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are	
  utilized.	
  

In	
  order	
  to	
  increase	
  the	
  statistical	
  power	
  of	
  the	
  study,	
  we	
  had	
  to	
  increase	
  the	
  

number	
  of	
  investigated	
  samples	
  and,	
  in	
  order	
  to	
  do	
  so,	
  we	
  collected	
  samples	
  

from	
  three	
  cell	
  production/treatment	
  batches.	
  The	
  PCA	
  models	
  performed	
  on	
  

the	
  resulting	
  data	
  highlighted	
  a	
  substantial	
  inter-­‐batch	
  variability.	
  We	
  tried	
  to	
  

minimize	
   this	
   variation	
   applying	
   pre-­‐processing	
   methods,	
   unfortunately	
  

without	
  noticeable	
  results.	
  

Chemometric	
  methods,	
  such	
  as	
  any	
  kind	
  of	
  variable	
  selection	
  tools	
  and	
  data	
  

orthogonalization	
   could	
   be	
  used	
   to	
  minimize	
   the	
  batch	
   effect,	
   but	
   a	
   further	
  

study	
  should	
  be	
  aimed	
  at	
  understanding	
  the	
  variability	
  source	
  and	
  correct	
  for	
  

it	
   in	
   order	
   to	
   guarantee	
   that	
   the	
   selected	
   protocol	
   provides	
   comparable	
  

results,	
  avoiding	
  the	
  alteration	
  of	
  the	
  original	
  data.	
  

In	
  the	
  next	
  future	
  we	
  will	
  try	
  to	
  go	
  through	
  the	
  actions	
  of	
  the	
  different	
  drugs	
  

on	
   the	
   cellular	
   metabolome	
   (endo-­‐	
   and	
   exo-­‐metabolome),	
   unequivocally	
  

assigning	
   the	
   metabolite	
   NMR	
   signals	
   responsible	
   for	
   the	
   differentiation	
  

among	
   the	
   treatments	
   through	
   advanced	
   multivariate	
   data	
   analysis	
   for	
  

biomarker	
  profiling.	
  

Eventually,	
   we	
   will	
   map	
   the	
   profile	
   of	
   the	
   identified	
   metabolites	
   into	
  

metabolic	
   pathways	
   to	
   gain	
   a	
   biological	
   overview	
   of	
   the	
   mechanisms	
  

regulating	
  drug-­‐driven	
  cell	
  apoptosis	
  and	
  the	
  selectivity	
  with	
  respect	
  to	
  cancer	
  

cells.	
  

	
  

The	
   interesting	
   and	
   exciting	
   stimuli	
   that	
   I	
   received	
   during	
   my	
   PhD	
   visiting	
  

period	
   at	
   the	
   University	
   of	
   Copenhagen,	
   animate	
   my	
   motivations	
   for	
   my	
  

future	
  research	
  efforts.	
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ABSTRACT: The perception of odor and flavor of food is a complicated physiological and psychological process that cannot be
explained by simple models. Quantitative descriptive analysis is a technique used to describe sensory features. Nevertheless, the
availability of a number of instrumental techniques has opened up the possibility to calibrate the sensory perception. In this frame,
we have tested the potentiality of nuclear magnetic resonance spectroscopy as a predictive tool to measure sensory descriptors. In
particular, we have used an NMR metabolomic approach that allowed us to differentiate the analyzed samples based on their
chemical composition. We were able to correlate the NMR metabolomic fingerprints recorded for canned tomato samples to the
sensory descriptors bitterness, sweetness, sourness, saltiness, tomato and metal taste, redness, and density, suggesting that NMR
might be a very useful tool for the characterization of sensory features of tomatoes.

KEYWORDS: NMR, multivariate analysis, sensory analysis, canned tomatoes

’ INTRODUCTION

It is crucial to know consumers' expectations, habits, and
preferences to ensure product success on themarket. Brand, label
information (such as geographic origin, technology, etc.), price,
packaging, factory image, product concept, and effective com-
munication are all critical factors. However, when the consumer
decides whether to buy the product again or not, success is tightly
connected to the products' features.

It is therefore extremely important to understand how much
consumers' preferences are driven by differences in sensory features
between products. Traditional consumer research helps determine
acceptable versus unacceptable. It is helpful when an overall, syn-
thetic understanding of the product's acceptance is needed. How-
ever, it is not of any help when an explanation, in terms of sensory
descriptors, is needed to provide R&D with technical information
useful to enhance product features. Such information can only be
provided through analytical products evaluation, of which consu-
mers are not capable.

A detailed sensory description, in fact, requires the ability to
decompose each sensory feature, requires selective attention, and
thus requires people specifically trained to the application of
sensory analysis (quantitative descriptive analysis, QDA).1 Sen-
sory analysis is a discipline through which the sensory analyst
evokes, measures, analyzes, and interprets human responses to
stimuli as perceived through the senses. Human sensory tests are
regularly employed in the food and beverages industries, and they
are sometimes integrated by a number of techniques, including

the electronic nose2 and the electronic tongue.2 The most
common types of sensors used are based on electrochemical
techniques, such as potentiometry and voltammetry.3�5 Other
sensing methods include optical6 and acoustic techniques.7 Further-
more, techniques like mass spectrometry (MS)8 and gas chromatog-
raphy (GC)9 have also been used. 1H nuclear magnetic resonance
(NMR) spectroscopy also has been used to investigate the taste of
wine.10Here,we investigate the utility of 1HNMRas a tool to analyze
the taste of canned tomato without any other chemical analysis.

’MATERIALS AND METHODS

Materials. Eighteen canned tomato products of different brands
were purchased in different markets in the city of Napoli (Italy) (Table
S1 in the Supporting Information).
Sensory Assessment. A panel of trained 12 assessors (six females

and six males) was selected based on the ability to recognize, describe,
and quantify basic tastes, odors, and texture properties. The panel
developed a specific profile protocol for QDA containing 14 descriptors:
redness, synaeresis, dimension, residual peel, consistency, density, toma-
to flavor, saltiness, sourness, bitterness, sweetness, tomato taste, cooked
taste, and metal taste. Descriptors were evaluated on a continuous,
unlabeled, 0�10 intensity scale and then turned into numeric variables
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(a number between 0 and 10). Three replicates per sample were
performed, to minimize random errors (each subsequent replicate after
1 week from the previous one). The 18 samples were presented blinded
in a flat plastic plate uncooked and at a controlled temperature (30 �C).
A maximum of three samples were presented during each session
according a balanced rotation plan.
Sample Preparation for 1H NMR Analysis. Each sample was

blended and centrifuged at 2200g for 30 min. Four aliquots (500 μL) of
supernatant of each sample was diluted with 100 μL of D2O and
analyzed independently. No buffer was used.
Chemicals and Reagents. Deuterium oxide (D2O, 99.9 atom %)

was purchased from Cambridge Isotope Laboratories, Inc.
NMR Spectrometry. 1H NMR spectra were acquired at 25 �Cwith

a 700MHzVarianUnity Inova spectrometer using a 5mm 1H{13C/15N}
triple resonance probe. The 1H NMR measurements were carried out
with 128 transients and 16K complex data point. The recycle timewas set
to 5 s, and a 45� pulse angle was used. The water signal was suppressed
using presaturation.
NMR Data Reduction and Processing. The spectra were pro-

cessed using iNMR (www.inmr.net). An exponential line-broadening of
0.5 Hz was applied to the free-induction decay prior to Fourier transforma-
tion. All spectra were referenced relative to external sodium 2,2-dimethyl-2-
silapentane-5-sulfonate (DSS), phased, and baseline corrected. Four ali-
quots of each product were studied by one-dimensional 1H NMR. In total,
72 spectrawere acquired. The spectrawere aligned by correlation optimized
warping11 using mP = 50 and nP = 2. Data reduction was accomplished by
dividing the spectrum into 0.01 ppm regions (bins) over which the signal
was integrated to obtain the signal intensity. The region around the residual

water signal (5.0�4.7 ppm) was removed in order not to compromise the
analysis. The high- and low-field ends of the spectrum, containing no signal,
were also removed (i.e., leaving data between9.5 and 0.5 ppm). At the end, a
total of 870 variables were analyzed for each spectrum. The integrals were
normalized to a total intensity to suppress trivial separation based on
variations in the amount of sample.

The dendrograms describing the sensory analysis were based on
unscaled sensory data. The NMR-based dendrograms were based on
PLS-DA scores of VAST scaled12 NMR data calculated using Simca-P
11.5 (Umetrics, Ume�a, Sweden) as input. In VAST scaling,12 each region/
bin is divided by the average standard deviation of the integral of that region
within each product. This scaling reduces the weight of random variations
between “identical” samples, and the analysis is not biased toward com-
pounds present at high concentrations. The number of axes for the PLS-DA
model was determined by leave one out cross-validation, where all of the
samples from each of the 18 products were left out for one product at a time
to determine the quality of the model. Themodel used was estimated using
all 18 products. Hierarchical cluster analysis (HCA) was then carried out
using complete linkages in R (http://www.r-project.org) by using the
Euclidean distance between the PLS scores for each product.

Principal component analysis (PCA) was carried out on unscaled sensory
data. VAST-scaled12 NMR data were used. The PCA was performed using
Simca-P 11.5 (Umetrics). The number of principal components (PCs) was
determined by leave one out cross-validation as described above. To test
which PCs that varied significantly between products, the PC scores for
the NMR data were subjected to one-way analysis of variance using
sequential Bonferroni correction for multiple testing (significance
level, 0.05). The fact that the variations between the samples from the

Figure 1. Spider web plot of the sensory descriptors for the 18 tested samples. The mean QDA parameters are listed in Table S2 in the Supporting
Information.
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same can were taken as the variation within the product might result in
an overestimation of the significance. Standard errors (SEs) were
calculated as SE = SD/N1/2 where SD is the standard deviation and N
is the number of samples from that product.

Orthogonal projection to latent structures, OPLS, separates the
variance in x correlated with y (y-predictive) with the orthogonal
(noncorrelated; y-orthogonal) variance.13 In contrast to regular PLS, a
single y will result in only one predictive component. OPLS was carried
out using each sensory descriptor as the y-variable. Data were scaled to
obtain unit variance and then centered. OPLS was performed using
Simca-P 12.0 (Umetrics). Cross-validation was obtained as described
above. Markers for the sensory descriptors were identified from the
NMR signals that showed a strong correlation (R2 > 0.5) with the OPLS
predictive scores for the sensory descriptors.

’RESULTS AND DISCUSSION

Sensory Analysis.QDAmean results are reported in Figure 1.
To group products sharing similar sensory features, HCA was
performed on QDA means. The resulting dendrogram is shown
in Figure 2A. Three main groups were identified, consisting
of products 14, 13, 8, and 2 (group 1A); products 5, 18, 16, 12,
15, 9, and 10 (group 2A); and products 11, 17, 6, 1, 7, 4, and 3
(group 3A).
PCA was also performed on the same data set (Figure 3).

Two PCs accounting for 60% of the variation were identified.
A plot of their scores (Figure 3A) shows the positioning of the
products according to their sensory attributes and allowed the
identification of the most important sensory descriptors for
products differentiation. This analysis indicates that the groups
identified by the HCA share the same features and that there is
no strong separation between the different groups identified.
According to the loading plot (Figure 3B), the transition from
the upper-left corner to the bottom-right corner of the map
shows the simultaneous decrease of the bitterness and metal
taste and increase of the sweetness and saltiness. Tomato flavor,
saltiness, and tomato tastes are positioned on the bottom-right
side of the map. Redness, consistency, dimension, density,
residual peel, sourness, and cooked taste are positioned in the
upper-right quadrant. In general, products belonging to group
1A are characterized by sweetness, by tomato taste and salti-
ness, and by tomato flavor. Group 2A is instead characterized by a
more marked redness and sourness. On the other hand, group 3A
is characterized by bitterness and metal taste, having a light

redness. However, none of the descriptors shows a high
correlation (|R| > 0.5) with the model (Figure 3B).
To characterize the correlations between different sensory

descriptors, the correlation coefficients were calculated (Table 1).

Figure 2. Dendrograms showing the similarities between products based on (A) QDA and (B) NMR. Products falling within the same group in the
NMR classification are indicated with the same color.

Figure 3. Score (A) and loading (B) plots of the PCA performed on
sensory data. Products are colored according to NMR HCA analysis
in Figure 2B. Note that none of the sensory descriptors are well
described by this PCA model (|R| > 0.5 for all descriptors).
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We can see, for example, a strong negative correlation of sweetness
with bitterness but not with metal taste or sourness, as suggested by
the loadings plot (Figure 3B).
NMR Analysis. The same products tested in the QDA were

analyzed by NMR. The superimposition of two representative 1H
NMR spectra is reported in Figure 4. It should be noticed that for
each product, all of the NMR samples were taken from the same
can. The data might thus underestimate the spread of the chemical
properties within each product. Analogously to the HCA per-
formed on sensory data, theHCA analysis performed on theNMR
data revealed threemain groups (Figure 2B): 14 and 2 (group 1B);
13, 10, 9, 18, and 16 (group 2B); and 15, 17, 5, 11, 6, 1, 4, 3, 7, 8,
and 12 (group 3B). Despite the fact that the two HCAs refer to
data collected by very different analytical techniques, it can be seen
that there is a good global agreement between the different
measurements: All products of group 1B (products 2 and 14)
are also present in group 1A, all products except one in group 2B
(products 9, 10, 16, and 18) are also present in group 2A, and all
products in group 3A (products 1, 4, 6, 7, 11, and 17) are also
present in group 3B.
PCA has also been performed on the NMR data set. Fourteen

PCs were identified, of which PC1, PC2, and PC3 vary signifi-
cantly between the different products. These three PCs account
for 57% of the variation. The general distribution of the products
in the score plots (Figure 5A,B) in a way recall the one observed
in the sensory data set (Figure 3A). For example, considering the
PC1�PC2 plot, products 3 and 4 are mapped close to each other
and, at the same time, far away from the products 9, 10, 16, 15,
and 18. Similarly, these latter samples are far way from products 2
and 14. Finally, the products 1, 6, 7, 8, 12, and 17, whichwere placed
in the very center of the plot of the sensory data (Figure 3A), are
placed in the center of NMR PC1�PC2 plot as well. As judged
from the loading plots (Figure 5C�E), the first PC describes the
distribution of the samples based on their sweetness. In fact,
negative values can be observed for signals belonging to sugars
like saccharose and α- and β-D-glucose. At the same time, posi-
tive correlations can be observed for signals belonging to bitter
amino acids like tyrosine, phenylalanine, tryptophane, and iso-
leucine (see Chemical Signatures of Sensory Descriptors). The
noisy look of the second PC describes the formation of sharper
NMR signals due to a decrease in viscosity. The third PC seems
instead related to an increase of saccharose, isoleucine, and acetate
and a decrease of tyrosine, α-D-glucose, malate, and glutamate.

The loading plots also contain a number of signals that could not
be assigned unambiguously.
Prediction of Sensory Descriptors. Although it is encoura-

ging that there are similarities in the structures of the sensory and
NMR data, the important question is how well the sensory
descriptors can be predicted by NMR. To resolve that question,
we made predictive models for the different sensory descriptors
using orthogonal-projection to latent structures, OPLS.13 Using
this protocol, we were able to get good predictions [Q2(cum) >
0.5] for bitterness, redness, density, and metal and tomato taste
(Table 2). After inspection of the remaining models and identi-
fication of outliers in those, we were able to get goodmodels for all
but two brands for saltiness, sweetness, and sourness (Table 2). In
five cases out of six, the removed products showed extreme values
for saltiness (2 of 2), sweetness (2 of 2), and sourness (1 of 2).
It thus seems that these extra strong features depend on other
factors than those under more normal conditions. The remaining

Table 1. Correlation Coefficients (|R| > 0.5) between Sensory Descriptorsa

redness dimension synaeresis density tomato flavor saltiness sourness sweetness bitterness tomato taste cooked taste consistency

redness 0.60 0.76 0.56 0.55

dimension 0.60 0.55 0.51 0.87

synaeresis �0.60

density 0.76 0.55 �0.60 0.71 0.57 0.59 0.56

tomato flavor 0.71 0.52 0.86

saltiness 0.57 0.52 0.58 �0.52 0.57 0.71

sourness 0.54

sweetness 0.58 �0.69 0.52

bitterness �0.52 0.54 �0.69

tomato taste 0.59 0.86 0.57 0.52 0.58

cooked taste 0.56 0.51 0.71

consistency 0.55 0.87 0.56 0.58
a Sensory descriptors showing |R| < 0.5 to all other sensory descriptors are excluded.

Figure 4. Annotated 1H NMR spectra of two typical canned tomato
samples. Product 2 (solid black line) is characterized by the presence of
saccharose (see signals at 5.41 ppm) and a low viscosity, while product
15 (dashed gray line) is characterized by the absence of saccharose and a
high viscosity. Note that the y-axis scale of the upper panel is increased
40� compared to the lower.
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descriptors were related to the physical rather than chemical
properties of the products.
Chemical Signatures of Sensory Descriptors.To determine

the chemical components responsible for a given sensory de-
scriptor, we have looked for all possible correlations between the
NMR signals and the analyzed sensory descriptors using OPLS
models. Specifically, the origin of signals displaying correlation
above R2 > 0.5 with the OPLS scores for the sensory descriptors
with a Q2 > 0.5 was identified. In this procedure, a multitude of

chemical components were identified for several of the sensory
descriptors14 (see also Table 3).
It was possible to identify only very few compounds that have a

relationship with sweetness. Particularly, sweet perception was
positively correlated with saccharose (5.41 ppm) in spite of its
low concentration, whereas it was negatively correlated with
tyrosine (H-α 3.94 ppm), which is a known bitter amino acid. No
correlation was found with citrate, while a negative correlation
with the malate signal at 4.29 ppm was found. This is an interesting
result since malate and citrate seem to have very similar sensory
properties (see below).15 The characteristic sweet�sour taste of
tomato and its overall flavor intensity are mainly due to reducing
sugars, free acids, and free amino acids, minerals, and volatile
substances. Overall, the character and intensity of taste are greatly
affected by the salts present and by the buffer effect of the various
cations and anions. About 50% of the dry matter in tomatoes is
made of sugars, primarily glucose and fructose. There is frequently
saccharose as well, but its quantity rarely exceeds 0.1% of the fresh
mass.16,17 It is interesting to note that the sensation of sweetness
cannot solely be explained by the sugar content. In fact, Jones and
Scott did not find a close correlation between sugar content and
sweetness.18 Similarly, Watada and Aulenbach did not find correla-
tion between sweetness and dry matter content either.19 All of this
means that other components affect the perceived sweetness.
Interestingly, Stevens and co-workers found a relationship between
the sensation of sweetness and the glucose/citric acid interaction.20

Particularly, they have found that glucose affects sweetness more
than fructosewith high citric acid concentration. Furthermore, when
the sugar concentration is low, citric acid reduces perceived
sweetness, while with high sugar concentration, it increases sweet
perception. It has been estimated that the relative composition in

Figure 5. Score (A and B) and loading (C�E) plots of the PCA
performed on NMR data. Panels A and B show the PC1�PC2 and
PC1�PC3 score plots, and panels C�E show the PC1�PC3 loadings.
Products are colored according to NMR HCA analysis in Figure 1B.
Error bars correspond to one SE (SE = SD/N1/2).

Table 2. Description and Statistical Summary of the OPLS
Models Constructed Based on NMR Data

variable Aa Nb R2X(cum)c R2Y(cum)c Q2(cum)d

bitterness 7 66 0.70 0.99 0.87e

redness 5 66 0.65 0.98 0.86e

density 2 66 0.37 0.80 0.68e

metal taste 1 66 0.31 0.85 0.67e

tomato taste 2 66 0.42 0.87 0.58e

saltiness 1 66 0.27 0.71 0.33

products 5 and 18 excluded 5 58 0.66 0.99 0.91e

sweetness 2 66 0.40 0.84 0.30

products 2 and 3 excluded 7 58 0.72 0.99 0.78e

tomato flavor 2 66 0.34 0.74 0.23

residual peel 1 66 0.30 0.56 0.14

consistensy 2 66 0.43 0.73 0.07

2 62 0.37 0.79 0.26

sourness 0 66 0.23 0.31 0.04

products 3 and 10 excluded 5 58 0.65 0.96 0.83e

syneraesis 1 66 0.29 0.59 0.02

dimension 0 66 0.21 0.36 0.02

cooked taste 0 66 0.21 0.32 �0.01
aA number of orthogonal components. bNumber of samples included in
the model. c R2X(cum) and R2Y(cum) = the cumulated fraction of the
variance in the parameter explained by the model. d Q2Y(cum) = the
cumulative predicted fraction of the variation of the parameter as
determined by cross-validation. e Q2Y(cum) values above 0.5 are con-
sidered as good predictors.
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glucose, fructose, and citric acid can explain about 80% of the
variation in sweetness.20

In contrast to sweetness, bitter taste was negatively correlated
with glucose and saccharose signals and positively correlated with
a number of bitter amino acids21 like isoleucine (H-β, H-γ1,
H-γ2, and Me-γ at 1.98, 1.46, 1.26, and 0.93 ppm, respectively),
tryptophan (H4, H5, and H6 at 7.75, 7.17, and 7.29 ppm,
respectively), tyrosine (H3/H5 and H2/H6 at 6.90 and 7.18
ppm, respectively), valine (H-β at 2.53 ppm), and phenylalanine
(H3/H5 and H2/H6 at 7.40 and 7.30 ppm, respectively). The
correlation with glucose suggests that even if glucose did not
correlate with sweet taste, it has a strong masking effect on the
bitter taste. Sweetness and bitterness show a relatively strong
anticorrelation (R = �0.69; Table 2). Interestingly, bitter taste
was also positively correlated with glutamate signals (H-β1,
H-β2, and H-γ at 2.52, 1.62, and 32 ppm, respectively), acetate
(1.91 ppm), andmalate (2.37 and 2.66 ppm), all compounds that
do not possess a bitter taste themselves. However, the taste-
enhancing effect of the glutamic acid, one of the most abundant
amino acid in tomato, was proven,22�24 and we cannot exclude a
similar effect also for acetate and malate.
The sour taste of tomato can be ascribed mainly to the organic

acids, rather than to the hydrogen ion concentration. Organic
acids form more than 10% of the dry content of tomatoes.25,26

The two main acidic components are citric and malic acid, where
malic acid is more sour than citric acid even if present in lower
concentration. In our case, we found that sourness is positively
correlated with both of these components. Moreover, it is known
that sourness is also affected by the presence of free amino
acids.27 We found positive correlations with amino acids having
taste-enhancing properties like glutamate, glutamine, aspartate,
and asparagine and with amino acids having a bitter taste like
tryptophan, tyrosine, phenylalanine, valine, and isoleucine. Inter-
estingly, sour taste was negatively correlated to the presence of
α- and β-D-glucose. All of these data strongly suggest that sour taste
is closely correlated to bitter taste. As shown in Table 2, the
correlation coefficient between the two was 0.54 in this study.
Furthermore, tomato taste and saltiness were all positively

correlated (Table 2) and were negatively correlated to isoleucine
(H-γ and Me-γ at 1.26 and 0.93 ppm, respectively) and malate
(4.29 ppm). Metal taste, instead, had positive correlations with

bitter amino acids like isoleucine (Hγ and Meγ at 1.26 and 0.93
ppm, respectively), tyrosine (H3/H5 and H2/H6 at 6.90 and
7.18 ppm), and phenylalanine (H3/H5 and H2/H6 at 7.40 and
7.30 ppm, respectively). On the other hand, a negative correla-
tion was evident with the signal belonging to α- and β-D-glucose
(3.82 and 3.49 ppm) and saccharose (5.41 ppm). Interestingly,
metal taste was also positively correlated to the malate signal
at 4.28 ppm. Metal taste did not show any correlations above
|R| = 0.5 with other sensory descriptors in this study.
Very surprisingly, redness was positively correlated with the

presence of tryptophan (H4, H5, and H6 at 7.75, 7.17, and 7.29
ppm, respectively) and tyrosine (H3/H5 at 6.90 andH-βs at 3.06
and 3.18 ppm). At this stage, we cannot explain this observation.
Finally, a number of signals in the region between 4.30 and 4.60

ppm and at 4.03 ppm display negative correlations with density.
For the time being, we are not able to unambiguously assign these
signals, even if their chemical shifts strongly suggest that they
could be attributed to sugars.
In conclusion, the perception of odor and flavor of food is a

complicated physiological and psychological process that cannot
be explained by simple models. This is because hundreds of com-
pounds simultaneously influence the human olfactory receptors
and because the physiological response is far from linear, and the
overall effects are not just the superimposition of the effect of
single stimuli.
Sensory analysis, and, in particular, the QDA, continues to be

an irreplaceable technique to describe sensory features. Never-
theless, the availability of a number of instrumental techniques
has opened up the possibility to calibrate the sensory perception.
Thus, the tandem approach that uses instrumental and classical
sensory analysis seems to be a valuable strategy. Unfortunately,
the more usual artificial tongue/nose are used to determine very
specific components of the analyzed food. Furthermore, not all
instrumental techniques are able to analyze directly the genuine
mixture interacting with our sense without any extraction/con-
centration procedures. For example, MS and GC require volati-
lization of the analyzed compounds that very often is obtained
with a chemical derivatization. In this frame, we have tried to
test the potentiality of NMR spectroscopy as a predictive tool to
measure sensory descriptors, without performing any comple-
mentary chemical analyses. In particular, we have used an NMR

Table 3. Correlation between Chemical Substances and OPLS Models for Sensory Descriptorsa

redness metal taste saltiness sourness sweetness bitterness tomato taste

acetate (1.91) +

aspartate (2.68, 2.80) + +

asparagine (2.87, 2.95) +

citrate (2.53, 2.66) +

glucose (3.49, 3.82) � � �
glutamate (2.05, 2.16, 2.32) + +

glutamine (2.14, 2.45) +

isoleucine (0.93, 1.26, 1.46, 1.98) + � + + �
malate (2.37, 2.66, 4.29) + � + � + �
phenylalanine (7.30, 7.40) + + +

saccharose (5.41) � + �
tryptophan (7.17, 7.29, 7.75) + + +

tyrosine (3.94, 6.90, 7.18) + + + � +

valine (2.53) + +
a + and � signs indicate positive and negative correlations, respectively. Chemical shift values (ppm) of the used signal are reported in brackets.
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metabolomic approach since it is rapid, sensitive, and relatively
inexpensive. This approach in combination with multivariate
analysis has an advantage over the ordinary sensory test, since it
offers more reliable results for the classification and determina-
tion of some aspect of the sensory attribute of the tomato. The
metabolomic fingerprints recorded for all tested canned tomato
samples allowed us to differentiate all analyzed samples based on
their chemical composition.
Interestingly, the same classification and characterization have

been reached independently from the QDA analysis. In parti-
cular, a number of sensory descriptors can be easily predicted
from the NMR data: bitterness, sweetness, sourness, saltiness,
tomato and metal taste, redness, and density. The presence of a
number of bitter amino acids like isoleucine, tryptophan, tyrosine,
phenylalanine, and valine is correlated with bitterness and surpris-
ingly to sourness. Other amino acids seem also to have a crucial role
as taste enhancers like glutamate, glutamine, aspartate, and aspar-
agine, which amplify the bitter and the sour taste, as well as the
cooked taste. The sugar content is obviously correlated with
sweetness, even if their correlation is not so straightforward. Finally,
other components like citrate, malate, formiate, and acetate are
correlated with sourness. Very interestingly, citrate and particularly
malate seem to be crucial in the defining the taste of tomato. In
general, we have noted that the same substances could be involved in
two (or more) features; these could be counteractive in the sense
that the increase in one leaves less room for the other features; they
could be also affected by a third feature, etc. One drawback with the
methodology presented here is that only the soluble fraction of the
product is measured. In future studies, this can be avoided by using
HR-MAS NMRwhere also the semisolid fractions contribute to the
NMR spectrum. However, the results obtained suggest that NMR
could be a very useful tool for the characterization of some sensory
features of tomato. To evaluate the applicability of this methodology
to other kinds of food, a number of experiments are currently
undertaken in our laboratories.
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LSD 95% = Two products are significantly different for each attribute when the 
difference of mean values are ≥ LSD value. 

 

 

Table S1. Identities of the canned tomatoes used in this study. 

Sample # Sample Brand 

1 Valfrutta - Gran Cubetti di Giornata 

2 De Rica - Polpa Pronta 

3 Primadonna - Polpa di Pomodoro 

4 Annalisa - Polpa di Pomodoro 

5 Santa Rosa Bertolli - I Pezzettoni 

6 Esselunga - Polpa di Pomodoro 

7 Carrefour – Polpa di Pomodoro 

8 Feger – Polpa di Pomodoro 

9 Coop - Polpa di Pomodoro 

10 Delizia del Sole - Polpa di Pomodoro a Pezzetti 

11 Mutti - Polpa 

12 Tesori dell’ Arca - Polpa di Pomodoro 

13 Cirio - PolpaPiu’ 

14 Cirio - Polpadoro 

15 Cirio - Fior di Filetti 

16 Star - Polpabella 

17 De Rica – Polpa di Pomodoro 

18 La Doria – Polpa di Pomodoro 

 

Table S2. QDA mean results. 
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1 5.5 5.3 6.4 4.7 6.5 3.5 3.1 4.8 4.4 2.6 4.3 6.0 4.9 3.4 

2 5.5 4.9 3.8 5.4 6.3 5.5 6.8 2.8 9.0 0.7 6.4 4.5 2.1 3.8 

3 3.4 3.5 4.1 7.1 2.0 3.5 2.7 6.1 1.8 3.2 4.9 4.0 4.3 3.2 

4 2.3 5.2 4.8 5.9 4.0 1.3 1.1 3.1 3.0 2.9 1.4 3.0 4.4 3.4 

5 5.9 7.0 5.7 6.8 5.5 4.3 8.6 5.7 4.8 1.7 5.3 8.2 4.2 6.0 

6 5.4 3.7 5.6 4.0 6.3 4.3 2.2 3.9 3.7 2.7 4.5 3.3 4.6 3.5 

7 3.7 4.5 5.4 6.5 3.7 3.5 5.0 1.5 5.1 2.1 4.3 7.0 4.2 3.4 

8 5.3 6.3 4.0 7.1 5.9 5.5 5.6 3.4 5.2 1.0 6.3 5.5 2.8 5.9 

9 6.5 6.4 4.0 6.8 6.0 5.6 2.3 4.7 3.5 4.7 5.2 4.3 4.9 6.0 

10 6.5 5.4 3.3 5.5 5.3 4.6 3.0 8.3 3.8 3.6 4.4 5.8 5.5 5.0 

11 3.3 0.1 0.4 5.5 0.9 1.3 1.1 2.8 4.2 2.5 1.6 3.3 5.5 0.1 

12 6.3 5.3 4.6 3.5 6.7 3.6 6.0 3.4 4.7 2.3 5.5 5.7 3.7 4.7 

13 6.7 5.0 7.1 4.3 8.8 8.5 6.3 3.2 5.4 1.5 6.6 5.5 4.5 3.8 

14 5.2 3.1 1.4 2.3 7.4 6.8 6.7 3.5 6.1 0.8 7.2 4.7 2.8 4.5 

15 8.6 9.9 1.8 2.2 7.4 4.9 2.8 5.2 4.0 3.8 5.2 6.3 4.6 6.4 

16 9.1 5.8 5.7 4.6 6.9 4.0 5.0 5.3 4.5 4.4 5.0 5.8 5.3 4.7 

17 4.9 5.4 5.5 3.1 6.4 4.3 3.7 3.1 5.2 1.8 5.6 3.7 8.3 4.5 

18 8.7 5.7 5.7 3.6 9.0 4.7 9.0 5.1 4.6 2.7 4.0 8.0 4.5 4.0 

LSD 0.7 0.5 0.7 0.8 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 
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a b s t r a c t

The perception of odour and flavour of foods is a complicated physiological and psychological process
that cannot be explained by simple models. Unfortunately, taste is not objective, but partially subjective
and it depends also on the mood of the taster. Generally, sensory analysis is used to describe sensory fea-
tures. The availability of a number of instrumental techniques has opened up the possibility to calibrate
the sensory perception. Here we have tested the potentiality of nuclear magnetic resonance spectroscopy
as ‘‘magnetic tongue’’ to measure sensory descriptors in extra-virgin olive oil. We were able to correlate
the NMR metabolomic fingerprints of extra-virgin olive oil to the sensory descriptors: tomato, bitter,
pungent, rosemary, artichoke, sweet, grassy and leaf.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The sensory impression of a food is determined mainly by the
chemical senses of taste and smell. They are both sensed through
sensory cells of the tongue (taste) and of the nasal cavity (smell)
(Roper, 2006). Sensory cells are able to differentiate between the
different tastes and smells based on different molecules or ions.

From a food company point of view, understanding how much
consumers’ preferences are driven by differences in sensory
features between products is extremely important. Traditional con-
sumer research helps determining acceptable versus unacceptable.
It is helpful when an overall, synthetic understanding of the prod-
ucts acceptance is needed. However, it is not of any help when an
explanation, in terms of sensory descriptors, is needed in order to
provide R&D with technical information useful to enhance product
features. Such information can only be provided through analytical
products evaluation, of which consumers are not capable. For these
reasons, food and beverages industries take advantage of quantita-
tive descriptive analysis (QDA) (Noble, 2002; Stone & Sidel, 1998).
This is a discipline through which the sensory analyst evokes,
measures, analyzes and interprets human responses to stimuli as
perceived through the senses. Unfortunately, taste is not objective
like for example the sight, but partially subjective and it also
depends also on the mood of the taster. Thus a number of more
objective analytical techniques have been used to support or, in
some cases, replace the classical QDA. Among these, it is worthy
to mention the electronic nose and the electronic tongue (Deising,

Stone, & Thompson, 2004). Furthermore, techniques like mass
spectrometry (MS) (Aishima, 2004; Zanor et al., 2009) and gas chro-
matography (GC) (Taylor, Rob, & Linforth, 2003) have also been
used. Very recently, we have proposed the use of the 1H nuclear
magnetic resonance (NMR) spectroscopy as ‘‘magnetic tongue’’ to
predict the sensory descriptors of canned tomatoes (Malmendal
et al., 2011). Herein, we intend to widen the applicability of this
technique testing the 1H-NMR spectroscopy to predict the taste of
extra virgin olive oil (EVOO).

2. Materials and methods

2.1. Materials

Eighteen EVOO products of different brands were given from
different companies in the Campania region (Italy) within the
EXTRABIO 2008, a quality prize organised by the Chamber of Com-
merce of Naples for olive oils from organic agriculture.

2.2. Sensory assessment

Sensory profiles of the 18 samples were determined by the olive
oil sensory panel of the ‘‘Laboratorio Chimico Merceologico’’ of the
Chamber of Commerce of Naples (Italy). This panel is particularly
trained to recognise, describe and quantify basic taste and odour
properties. Evaluation took place in individual testing booths
according to the official method (EC Regulation 2568/91). Eleven
descriptors have been defined: fruity, leaf, grassy, bitter, pungent,
sweet, almond, artichoke, apple, tomato and rosemary tastes.
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Descriptors were evaluated on a continuous, unlabeled, 0–10
intensity scale, and then turned into numeric variables (a number
between 0 and 10). Oils were served in coloured tasting glasses.
The temperature of the oils was kept constant (28 ± 2 �C). Samples
were labelled with a 3-digit code and served based on a balanced
rotation plan.

2.3. Sample preparation for 1H-NMR analysis

The procedure previously reported by Segre and Mannina
(1997) was followed to prepare the samples: 20 lL EVOO were dis-
solved in 560 lL chloroform-d and 20 lL DMSO-d in 5 mm NMR
tubes.

2.4. NMR spectrometry

1H-NMR spectra were acquired at 25 �C with a 700 MHz Varian
Unity Inova spectrometer using a 5 mm 1H{13C/15N} triple reso-
nance probe. The 1H-NMR measurements were carried out with
1000 transients and 32 K complex data point. In order to retrieve
quantitative information, the recycle time was set to 5 s, and a
45� pulse angle was used.

2.5. NMR data reduction and processing

The spectra were processed using iNMR (www.inmr.net). An
exponential line-broadening of 0.5 Hz was applied to the free-
induction decay prior to Fourier transformation. All spectra were
referenced relative to external sodium 2,2-dimethyl-2-silapen-
tane-5-sulfonate (DSS), phased and baseline corrected. The spectra
were aligned by using the Icoshift algorithm (Savorani, Tomasi, &
Engelsen, 2010). Data reduction was accomplished by dividing
the spectrum into 0.005 ppm regions (bins) over which the signal
was integrated to obtain the signal intensity. Only the spectral re-
gion between 6.55 and 9.75 (excluding the region around the chlo-
roform signal between 7.0 and 7.8 ppm) was considered for the
study (see Section 3). At the end, a total of 480 variables were ana-
lysed for each spectrum. The integrals were normalised to the inte-
gral of the triplet at dH 0.86 ppm (CH3 of triacylglycerols) in order
to suppress trivial separation based on variations in the amount of
sample.

2.6. Statistical analysis

Statistical analysis was performed using Simca-P 13.0 (Umet-
rics, Umeå, Sweden). The number of principal components (PCs)
in the principal component analysis (PCA) (Eriksson, Johansson,
Kettaneh-Wold, & Wold, 2006) was determined by leave one out
cross-validation, where all the samples from each of the 18 prod-
ucts were left out for one product at a time to determine the qual-
ity of the model. The model used was estimated using all 18
products. Sensory data were Unit-Variance (UV) scaled, while
NMR data were pareto-scaled (Eriksson, Johansson, Kettaneh-
Wold, & Wold, 1999), where each value has been divided by the
standard deviation and by the square root of the standard devia-
tion computed around the mean, respectively. Both dataset were
also centred. Two PCs were computed for both sensory and NMR
PCAs.

The dendrograms for the sensory analysis and NMR data were
both based on the PCA scores (PC1 and PC2). Hierarchical cluster
analysis (HCA) was carried out by using Ward clustering method
(Ward, 1963).

Orthogonal projection to latent structures, OPLS, separates the
variance in x correlated with y (y-predictive) with the orthogonal
(non-correlated; y-orthogonal) variance (Trygg & Wold, 2002). In
contrast to regular PLS, a single y will result in only one predictive

component. OPLS was carried out using each sensory descriptor as
the y-variable. As in PCA, sensory data were UV-scaled, while NMR
data were pareto-scaled and both centred. Cross validation was ob-
tained as described above. Markers for the sensory descriptors
were identified from the NMR signals that showed a strong corre-
lation (R2 > 0.5) with the OPLS predictive scores for the sensory
descriptors.

3. Results and discussion

3.1. Sensory analysis

Eighteen samples of EVOO were selected from local industries
of the Campania region in Italy. These samples have been judged
by assessors specifically trained in the application of quantitative
descriptive analysis (QDA) and in the evaluation of EVOO.

The QDA method aims to (i) define a product’s sensory profile
(describing products in terms of sensory features as perceivable
through five senses), (ii) identify similar products sharing similar
sensory properties through cluster analysis, (iii) define a sensory
map of products through principal component analysis (PCA), in
order to position, within an overall picture, products in terms of
their sensory properties. Main sensory descriptors were identified
and selected (as actually describing products and discriminating
among them) during several preliminary sessions. These are: fru-
ity, leaf, grassy, bitter, pungent, sweet, almond, artichoke, apple,
tomato and rosemary tastes.

During the sessions of analysis, assessors determined the inten-
sity of each attribute for each product through objective evalua-
tions. Evaluations were given on a continuous, no labelled, 0–10
scale, and then turned into numeric variables (a number between
0 and 10). Products were tested plain and not cooked. QDA mean
results are reported in Fig. 1 (Table S1 in Supplementary material).
In order to group products sharing similar sensory features, hierar-
chical cluster analysis (HCA) was performed on QDA means. The
resulting dendrogram is shown in Fig. 2A. Basically 3 groups have
been identified: samples 13, 4, 9, 5, 8, 2, 3, 14 (Group 1A); samples
18, 12, 1, 7 (Group 2A); samples 6, 15, 10, 17, 11, 16 (Group 3A).

Principal component analysis (PCA) was also performed on the
same dataset (Fig. 3). Two principal components (PCs) accounting
for 65% of the variation were identified. The plot of their scores
(Fig. 3A) shows the positioning of the products according to their
sensory attributes and allowed the identification of the most
important sensory descriptors for products differentiation. Inter-
estingly, a number of descriptors shows a significant correlation
(Q2(cum) > 0.4) with the model (Table S2), indicating a high level
of correlation between the sensory descriptors. Almond taste is
not predicted by the model (Q2(cum) = �0.07). PCA indicates that
the groups identified by the HCA share the same features, and that
there is no strong separation between the different groups
identified.

According to the loading plot (Fig. 3B), transition from the left to
the right of the map shows the simultaneous decrease of the sweet
taste and increase of the bitter, pungent, fruity and artichoke
tastes. The sensory map is also influenced by apple, tomato, grassy
tastes that stand on the top of the map, opposite to leaf and rose-
mary tastes (on the bottom). In general, Group 1A, which is the
most populated group, contains products that are characterised
by apple, tomato, grassy, artichoke, pungent, fruity and bitter
tastes. On the other hand, Group 3A contains products with more
marked sweet taste. Group 2A, instead, is characterised mostly
by rosemary and leaf tastes.

The loadings plot (Fig. 3B) suggests a covariance between
different tastes. Thus a higher sweetness is generally associated
with a lower bitterness. It seems there is also a strong correlation
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between artichoke, pungent, fruity and bitter tastes and so forth.
To further characterise the correlations between different sensory
descriptors, the correlation coefficients were calculated (Table 1).
Interestingly, there is a strong positive correlation between bitter,
pungent and artichoke tastes. These are, in turn, negatively corre-
lated to sweet taste. There is also a strong correlation between
grassy and fruity tastes. As expected, from the PCA analysis, no sig-
nificant correlation could be calculated for almond taste.

3.2. NMR analysis

The same products tested by QDA were analysed by NMR. The
rationale is to use an NMR metabolomic approach to compare

the constituent of the different EVOO samples, and correlate the
NMR data with the sensory descriptors obtained by the QDA
analysis.

Fig. 4 shows different vertical expansions of the NMR spectrum
of a representative sample of EVOO. Particularly, Fig. 4A show the
NMR spectrum at a regular scale, where the major signals of ali-
phatic and glyceryl protons of triacylglycerols, including allylic
and diallylic resonances of monounsaturated and polyunsaturated
fatty acids, can be easily singled out.

Increasing the vertical scale (Fig. 4B) also diacylglycerols (sn-1,2
and sn-1,3), naturally present in EVO oil at level of about 2–4% (as
molar fraction), methyls of linolenic acid (18:3 n�3) present at
levels less than 1% can be detected.

Fig. 1. Spider-web plot of the sensory descriptors for the 18 tested samples. The mean QDA parameters are listed in Table S1 in the Supplementary information. In order to
group products sharing similar sensory features, hierarchical cluster analysis (HCA) has been performed on QDA means. The resulting dendrogram is shown in Fig. 2A.
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Human sensory cells cannot detect the molecules described so
far and all the EVOO have basically identical composition of these
constituents. Hence, the sensory perception of the EVOO is related
to very minor components. These can be observed by further

increasing the vertical scale of the spectrum (Fig. 4C), which allows
the identification of resonances of very minor components like, for
example, different aldehyde CHO protons (n-alcanals, n-alchenals,
idroxy-alchenals, seicoridoids aglycons) (Sacchi, Addeo, & Paolillo,
1997) in the region around 9 ppm and phenolic ring signals around
6–7 ppm (Christophoridou & Dais, 2009). These last molecules are
commonly attributed the bitter-pungent taste of EVOO, with a
main role of phenol compounds (Andrewes et al., 2003) in combi-
nation to selected volatiles (Caporale, Policastro, & Monteleone,
2004).

Thus, in order to study EVOO from taste point of view, we had to
consider only the spectral regions that were not occupied by the
signals of the taste-free major constituents. Furthermore, it should
also be noted that almost all the analysed samples contain small
amounts of water from the production of the EVOO. The signal of
water in the NMR spectra of olive oil acquired in chloroform and
dimethyl sulfoxide (see Section 2) is very broad and sometime very
intense, and generally resonates between 4 and 6 ppm. This means
that this range cannot be used to compare different EVOO samples
either. Furthermore, the spectral regions containing solvent signals
cannot be taken into account. Thus, in our case, the regions that
can be considered are from 6.55 ppm to 7.00 and from 7.80 to
9.75 ppm. Other smaller regions could also be considered, but they
are dramatically affected by baseline distortion from the very in-
tense triacylglycerol signals that offset the intensity values, thus
resulting in inaccuracy in peak assignment and quantification.

Analogously to the HCA performed on sensory data, the HCA
analysis performed on the NMR data revealed three main groups
(Fig. 2B): 8, 3, 4, 13, 14, 2, 9 (Group 1B); 7, 1, 11, 12 (Group 2B);
18, 15, 5, 17, 10, 6, 16 (Group 3B). Despite the fact that the two
HCAs refer to data collected by very different analytical techniques,
it can be seen that there is an excellent global agreement between
the different measurements: only sample 5, 11 and 18 are not
grouped in the same way using QDA and NMR data.

PCA has also been performed on the NMR dataset. Two PCs were
identified, accounting for 83.6% of the variation. The general distri-
bution of the products in the score plots (Fig. 5A) in a way recall the
one observed in the sensory dataset (Fig. 3A). For example, Group
1B and Group 3B are mapped opposite to each other, suggesting
that PC2 in the PCA computed with the NMR data is in a way re-
lated to the sweetness/bitterness of the samples. On the other hand
Group 2B is very well separated from the other two groups along
PC1, suggesting that this PC is related to apple, rosemary and leaf
tastes.

Fig. 2. Dendrograms showing similarities between products based on QDA (A) and NMR (B). The dendrograms were based on the two first PCs after PCA of QDA (A) and NMR
(B) data, respectively. Products falling within the same group are indicated with the same colour. Most of the products are grouped in the same way using both QDA and NMR
(Group 1A/1B; Group 2A/2B; Group 3A/3B). Products that are not grouped in the same way are coloured in grey. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. Score (A) and loading (B) plots of the PCA performed on sensory data.
Products are coloured according to QDA HCA analysis in Fig. 2. Sample belonging to
Group 1A, 2A and 3A have circle, box and diamond signs, respectively. Variables in
loading plot (B) that are well predicted by the model (Q2(cum) > 0.4) are reported in
bold. Almond, that cannot be predicted and hence has a small impact on the model,
is reported in light grey. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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As judged from the loading plots (Fig. 5B and C), Group 2B
contains higher concentration of molecules having signals at dH
9.58, 9.31, 7.88, 6.97, 6.69 and 6.63 ppm, and low concentration
of molecules having signals at dH 9.45, 9.09, 9.05, 6.82 and
6.58 ppm, relative to Groups 1B and 3B.

However, Groups 1B and 3B are differentiated along PC2. Look-
ing at the loading plot of second principal component (Fig. 5C), it is
clear that Group 1B contains higher concentrations of molecules

having signals at dH 9.45, 9.09, 9.05, 6.82, 6.58, whereas lower con-
centrations of those molecules are present in the Group 3B.

3.3. Prediction of sensory descriptors

In order to determine how well the sensory descriptors can be
predicted by NMR, we made predictive models for the different

Table 1
Correlation coefficients (|R| > 0.5) between sensory descriptors.a

Fruity Leaf Grassy Bitter Pungent Sweet Artichoke Apple Tomato Rosemary

Fruity 0.62 0.77 0.63 0.51 0.63
Leaf 0.62 0.50
Grassy 0.77
Bitter 0.63 0.50 0.75b �0.84 0.63
Pungent 0.51 0.75 �0.70 0.71
Sweet �0.84 �0.70 �0.60
Artichoke 0.63 0.63 0.71 �0.60 0.61
Apple �0.54
Tomato 0.61 �0.75
Rosemary �0.54 �0.75

a Sensory descriptors showing |R| < 0.5 to all other sensory descriptors are excluded.
b The correlation coefficients between bitter, pungent, sweet and artichoke tastes are italics.

Fig. 4. Increasing (from A to C) vertical expansions of the NMR spectrum of a
representative sample of extra-virgin olive oil.

Fig. 5. Score (A) and loading (B and C) plots of the PCA performed on NMR data. (B
and C) show the PC1 and PC2 loadings. Products are coloured according to Fig. 2.
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sensory descriptors using orthogonal-projection to latent struc-
tures, OPLS (Trygg &Wold, 2002). Using this protocol we were able
to get good predictions (Q2(cum) > 0.4) for tomato, bitter, pungent
rosemary and artichoke tastes (Table 3). After further inspection
of all models, and identification of outliers wewere able to get good
models for all but 1, 2, 3 and 4 brands for sweet, grassy, artichoke
and leaf taste, respectively (Table 2). In seven cases out of ten the
removed products showed extreme values for sweet (1 of 1), grassy
(2 of 2), artichoke (2 of 3) and leaf (2 of 4) tastes. It thus seems that
these extra strong features depend on other factors than under
more normal conditions.

3.4. Chemical signatures of sensory descriptors

In order to determine which chemical components are respon-
sible for a given sensory descriptor, we have looked for all possible
correlations between the NMR signals (in the considered spectral
regions) and the analysed sensory descriptors using OPLS models.
In order to have a qualitative view of the correlations, we first
had a look at the loading plots of the predictive component of each
OPLS model having with Q2 > 0.4 (Fig. 6).

Bitter, pungent and artichoke tastes are highly correlated
(R > 0.63) and display a very similar profile. They all show a strong

Table 3
Correlation among NMR signals and OPLS models for sensory descriptors.a

a Sensory descriptors not showing any significant correlation with NMR signal are excluded.
+and � signs indicate positive and negative correlations (R2 > 0.5), respectively.
⁄ppm reported in bold are relative to the most intense signals.
⁄⁄alk stands for alkyl chain.

Table 2
Description and statistical summary of the OPLS models constructed based on NMR data.a

Variable Ab Nc R2X(cum)d R2Y(cum)d Q2(cum)e

Tomato 2 18 0.86 0.95 0.82e

Bitter 4 18 0.91 0.98 0.65e

Pungent 1 18 0.84 0.76 0.52e

Rosemary 5 18 0.92 0.99 0.43e

Artichoke 1 18 0.83 0.56 0.42
Artichoke excluding products 4, 5 and 17 2 15 0.86 0.93 0.71e

Sweet 1 18 0.83 0.73 0.39e

Sweet excluding product 11 1 17 0.82 0.80 0.72e

Grassy 2 18 0.87 0.82 0.39e

Product 1 and 5 excluded 9 16 0.96 1.00 0.72e

Fruity 1 18 0.83 0.55 0.33e

Leaf excluding products 11, 12, 17 and 18f 3 14 0.88 0.93 0.53

a No significant OPLS model could be constructed for almond and apple tastes, that are excluded from the table.
b A number of orthogonal components.
c Number of samples included in the model.
d R2X(cum) and R2Y(cum) = The cumulated fraction of the variance in the parameter explained by the model.
e Q2Y(cum) = the cumulative predicted fraction of the variation of the parameter as determined by cross-validation. Q2Y(cum) values above 0.4 are considered as good

predictors.
f Leaf taste can be well predicted (Q2(cum) > 0.5) only excluding product 11, 12, 17 and 18.
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anticorrelation to sweet taste (R < �0.6), which displays the in-
verse profile. Tomato and rosemary tastes also show a strong anti-
correlation (R = �0.75) and display inverse profiles relative to each
other. Grassy and tomato taste display similar profiles without
being significantly correlated.

In order to more precisely determine which signals are
correlated to which sensory descriptor, the signals displaying cor-
relation above R2 > 0.5 with the OPLS scores for the sensory
descriptors were identified (Table 3).

Unfortunately, not all signals reported in Table 3 could be
unambiguously assigned and for many of those only a tentative
assignment can be done. Thus, signals at dH 9.70 could be assigned
to the hexanal (Mannina, Patumi, Proietti, Bassi, & Segre, 2001;
Sacchi et al., 1997). Signals at dH 9.58, dH 9.55 and dH 6.84 could
be assigned to 4-hydroxy-trans-alk-2-enal molecules (where alk
stands for alkyl chain), alk-2,4-dienals and trans-alk-2-enals,
respectively (Sacchi et al., 1997). Signals around dH 9.10 could also
be tentatively assigned to protons of the dialdehyd form of seco-
iridoids, and signals at dH 6.5–6.8 to phenyl alcohols moieties
(tyrosol and hidroxytyrosol) of oleuropein and ligstroside aglycons
(Christophoridou & Dais, 2009). Finally, the signal at dH 9.45 is the
only one that can be unambiguously assigned to the aldehyde pro-
ton of the trans-2-hexenal (Mannina et al., 2001; Sacchi et al.,
1997).

As expected, this further in-depth inspection of the OPLS data
confirmed the qualitative evaluation and allowed us to retrieve
much more information, especially regarding the less intense sig-
nals. As mentioned above the taste bitter, pungent and artichoke
possess a very similar chemical fingerprint. However, they seem
to be differentiated by the signals at dH 9.21 and 9.31 ppm. Sweet
is basically the inverted image of bitter, pungent and artichoke
tastes except for the signals at dH 9.70, 8.19, 7.88, 6.94, 6.69 and
6.63 ppm. Tomato and grassy are very similar to each other, and
they differ only for the signal at dH 9.55, 9.11, 9.09, 8.95 and
8.91 ppm. Fruity is almost superimposable to grassy taste except
for signals at dH 9.55, 9.39, 9.25, 9.21 and 8.95 ppm.

More in general, as for the tentatively assigned signals, the lack
of hexenal seems to increase sweet, tomato, grassy and fruity
tastes, whereas the increment of its concentration increases the
perception of leaf and rosemary tastes. Secoiridoids, trans-alk-e-
enals and 4-hydroxy-trans-alk-2-enal are in a way related to the
sweet/bitter relationship of the EVOO.

Finally, Morales, Alonso, Rios, and Aparicio (1995) proposed
that the trans-2-hexenal (dH 9.45 ppm) correlates to fruity taste
of the olive oil. Here we find the same correlation. However, we
widen this observation suggesting that this aldehyde is positively
correlated to grassy and tomato tastes as well.

4. Conclusions

Extra-virgin olive oil (EVOO) has received increasing attention
over the world for their unique nutritional and healthy properties
and extraordinary flavor and taste.

Nuclear magnetic resonance spectroscopy (NMR) has been ap-
plied to olive oil analysis since 1987 (Sacchi, Addeo, Giudicianni,
& Paolillo, 1989). In the last 20 years several applications have
been developed mainly applying carbon-13 and proton NMR
(Sacchi et al., 1989–1991, 1996–1998; Sacchi, 2001; Mannina
et al., 2001, 2003; Zamora, Gomez, Dobarganes, & Hidalgo, 2002;
Zamora, Navarro, & Hidalgo, 1994). The recent development of
NMR spectrometers (high field, cold-probe) and their performance
in term of both resolution and sensitivity open new perspectives in
the application of this powerful analytical technique in the analysis
of EVO oil.

The aim of this work was to explore the analytical potentiality
of the NMR spectroscopy as ‘‘magnetic tongue’’ in the analysis of
extra-virgin olive oil (EVOO), with particular attention to the quan-
titative measure of minor compounds related to the sensory
description. Particularly, the phenol and aldehyde NMR signals al-
lowed a first prediction of sensory characteristics of EVOO.

The reported results are very promising and pave the way to a
more careful analysis of other spectral regions on a wider number
of oil samples.
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Table S1. Quantitative Descriptive Analysis results. 

 fruity leaf grassy bitter pungent sweet almond artichoke apple tomato rosemary 

1 4.5 3.5 1.5 4.5 5.5 3 3 3 1.8 3.3 0 

2 5.5 3 3.8 3.5 5.0 3.5 3.5 3.5 2 4 0 

3 6.0 4.1 5.1 4.4 4.8 4.3 3.5 3.0 3.5 4.5 0 

4 7.0 4.0 5.5 5.3 5.0 3.5 2.8 4.3 3.0 5.5 0 

5 6.1 3.3 5 4 4.5 3.9 4.3 3.3 4.1 0 0 

6 4 2.5 2.2 3.4 3.9 4.2 3.38 1 2 0 2.5 

7 4.8 3.2 3.5 5.0 4.9 3.8 3.5 1.7 3.0 0.0 4.0 

8 6 1.7 4.3 4 4.5 4 4.5 2.5 2.3 4.3 0 

9 5.8 3.5 4.5 6 5 3 3.1 3.1 3 3.5 0 

10 4.7 3.8 3.3 3.4 2.5 3.8 3.5 1.5 3.5 2 0 

11 4 1.3 2.8 3 3.5 5.5 3.5 2.4 1.3 3 0 

12 5.5 4.5 3.5 5.0 4.5 3.0 3.5 2.3 0 0 4.0 

13 7.0 4.5 5.0 6.0 5.2 2.5 2.3 3.5 0 4.2 0 

14 6.1 2.8 4.7 5.6 4.8 2.8 4 2.5 2.5 4 0 

15 4.5 1.3 3.5 2.5 3 5.3 3.5 0 0 0 3 

16 4 1 3.2 3.5 3.6 4.2 3.1 1 2.5 2 0 

17 5.5 3.5 4 3.2 3.9 5.0 3.5 0 3.4 2 0 

18 6.0 5.0 2.3 3.6 3.5 5.0 2.6 2.0 0 0 5.0 

!
!
!
!
!
Table S2. Cumulated R2 and Q2 values for each variable in the PCA model. 

Taste R2(cum)* Q2(cum)** 
fruity 0.67 0.41 
leaf 0.62 0.25 
grassy 0.58 0.22 
bitter 0.80 0.68 
pungent 0.66 0.45 
sweet 0.64 0.40 
almond 0.48 -0.07 
artichoke 0.71 0.54 
apple 0.56 0.12 
tomato 0.64 0.37 
rosemary 0.75 0.32 

*R2(cum) indicate how well the variation of the variable is explained. 
**Q2(cum) indicate how well the variable can be predicted. 
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Use of NMR in profiling of cocaine seizures
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1. Introduction

Cocaine is the purification product of coca paste, an extract of
the leaves of the coca bush, where it is found as a natural alkaloid.
In addition to cocaine, which is the main alkaloid, coca paste
contains also small percentages of other compounds, mostly
alkaloids [1], here named ‘‘minor components’’. The amount and
the kind of these compounds depend on the specific cultivar and on
the environment where the plant has been cultivated. Interesting-
ly, the procedures used for extraction and purification of the
cocaine are not totally efficient, so that small amount of minor
components are found also in trafficked cocaine samples.
Therefore, the presence of these minor compounds is very
dependent of the ‘‘history’’ of the cocaine sample and they can
be considered a ‘‘fingerprint’’ of that sample. A careful analysis of
this fingerprint can provide very important information about
cocaine origin, or more simply allow the identification of a given
consignment as well as the area and period in which that
consignment has been trafficked. Minor components may have
forensic significance, since the origin of cocaine samples can, in
principle, be determined through the analytical determination of
their presence or absence [2].

Although a large array of techniques for the analysis and
identification of cocaine is available, the GC–MS technique
currently dominates forensic analysis [3]. Nevertheless, sometimes
this technique requires a derivatization and a chromatographic
separation. Unfortunately, not all molecules are amenable to
derivatization, and once derivatized, analytes could not be
sufficiently volatile or stable for GC separations. Nuclear magnetic
resonance (NMR) spectroscopy represents one of forensic sciences’
most versatile tools [4], since it represents a unique methodology
for performing identification and quantification at the same time
without any derivatization. In addition, NMR does not require a
high purity reference standard for accurate quantitation of the
target compound and it does not have a medium which can lead to
solute adsorption effects and imprecision of analysis.

The determination of the origin of illicit cocaine samples seized
by law enforcement is always the focus of intense investigation
aimed at identifying the trafficking routes. In fact, drug trafficking
is an acute problem compounded by judicial rules and by
difficulties in the exchange of data, due to data protection
regarding people and investigative processes. However, seized
drugs can be easily compared in order to provide information
without interfering with the normal investigative processes. The
considerable quantities of seized drugs allow data collection that
can form a useful basis for such procedures. The results of such
comparisons may provide key evidence in the investigations.

In the present study, a strategy based on 1H NMR spectral
analysis applied in conjunction with multivariate analysis is
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proposed. This investigation allows determining linkage between
cocaine samples seized at different times and different places in
Naples (Italy) to indicate common origin or distribution channel,
which, combined with traditional information, can improve
investigation strategies.

2. Materials and methods

2.1. Materials

54 chlorohydrate cocaine samples were seized by the Police Department of

Naples in different areas of Naples county during the year 2006.

2.2. NMR spectroscopy

2 mg of each sample were dissolved in 600 mL CD3OD and placed in 5 mm NMR

tubes without any preliminary treatment. 1H NMR spectra were acquired at 25 8C
with a 700 MHz Varian Unity Inova spectrometer using a 5 mm 1H{13C/15N} triple

resonance probe. The 1H NMR measurements were carried out with 1000 transients

and 32k complex data point. In order to retrieve quantitative information, the

recycle time was set to 5 s, and a 458 pulse angle was used.

2.3. GC–MS

Seized samples were dissolved in absolute ethyl alcohol (Carlo Erba Reagenti,

Italy) to a concentration of 1 mg/mL. GC was performed with an Agilent 6890A gas

chromatograph equipped with a quadrupole mass-selective detector (MSD) Agilent

5973N (Agilent Technologies). The MSD was operated in the electron ionization (EI)

mode, with an ionization potential of 70 eV, a scan range of 40–450 amu. The GC

was fitted with a 30 m � 0.25 mm ID fused-silica capillary column coated with

0.25 mm 5% diphenyl–95% dimethylpolysiloxane stationary phase (HP5-ms, J&W).

The oven temperature was programmed as follows: initial temperature, 180 8C;
initial hold, 2 min; program rate, 10 8C/min, 270 8C; hold, 2 min; 10 8C/min; 300 8C
final temperature; hold, 2 min (run time 18 min). Column flow: 1 mL/min. The

injector was operated in the split mode (10:1) at 280 8C. Injection volume 1 ml. The

MSD source was operated at 230 8C.

2.4. NMR data reduction and processing

The spectra were processed using iNMR software (www.inmr.net). An

exponential line broadening of 0.5 Hz was applied to the free-induction decay

prior to Fourier transformation. All spectra were referenced relative to external

sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS), phased and baseline cor-

rected. Data reduction was accomplished by dividing the spectrum into 0.005 ppm

regions (bins) over which the signal was integrated to obtain the signal intensity.

This was done in order to minimize artifacts due to small variations in peak position,

and to reduce the number of variables without loosing spectral information. Only

the spectral region between 0.0 and 8.5 ppm (excluding the region around the

solvent signals between 3.29–3.33 and 4.79–4.83 ppm) was considered for the

study (see Section 3). The integrals were normalized to the integral of the cocaine

triplet at dH 7.65 ppm (H40) in order to suppress trivial separation based on

variations in the amount of sample.

Fig. 1. Comparison of an expanded region of four samples of seized cocaine. (a) Example of a sample of pure cocaine. Asterisks indicate cocaine signals. (b) Sample having

lidocaine as cutting agent. (c) Sample having procaine as cutting agent. (d) Sample having procaine and phenacetin as cutting agents.

Fig. 2. HCA dendrogram based on NMR data, showing similarities between samples. Samples falling within the same group are indicated with the same color. The dendrogram

is calculated with Ward clustering method and sorted by size. Area (A, B, C and D) and quarter of the year (I, II, II and IV) of seizure are also reported. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
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2.5. Statistical analysis

Statistical analysis was performed using Simca-P 13.0 (Umetrics, Umeå,

Sweden). The number of principal components (PCs) in the Principal Component

Analysis (PCA) [5] was determined by cross-validation. The model used was

estimated using all 54 samples. The dataset was pareto-scaled [6], i.e. each of the

values in each bin were divided by the square root of the standard deviation for all

the values in the bin, and centered. Hierarchical cluster analysis (HCA) was carried

out by using the Ward clustering method [7]. Partial least-squares regression

discriminant analysis (PLS-DA) was performed to explore the ability of the NMR

data to discriminate between classes of samples [8]. The quality of the models was

described by R2 and Q2 values. R2 is defined as the proportion of variance in the data

explained by the models and indicates the goodness of fit. Q2 is defined as the

proportion of variance in the data predictable by the model and indicates

predictability [8].

The model validation was performed using the permutation test [9], in which a

total of 400 models were calculated by randomizing the order of Y variables in the

corresponding PLS-DA models. The obtained Q2 and R2 values, describing the

predictive ability and the reliability of the fitting, respectively, were plotted and

compared with the Q2 and R2 values obtained from the real model.

Statistical Total Correlation Spectroscopy (STOCSY) analysis was performed on

the whole 1H NMR data set of the 54 samples, to obtain the correlations among the

constituents, using a cutoff value r > 0.9 for correlation coefficient.

3. Results and discussion

Each seized sample has been analyzed by 1H NMR without any
preliminary treatment. It was easy to detect the main signals
belonging to the cocaine hydrogens (see Table S1 in Supplemental
Materials). Nevertheless, other signals were present in the spectra.
These signals could be attributed to the minor components (i.e.
norcocaine, tropacocaine, cis- and trans-cinnamoylcocaine, ecgo-
nine and ecgonidine methyl esters) coming from the extraction
and purification processes of the cocaine and/or cutting agents
(adulterant/diluent) that could be mixed to the cocaine samples
before drug dealing (Fig. 1). The analysis of cutting agents can be
used as an investigative support, since they can be easily detected
and quantified by a simple 1H NMR spectrum. For example, their
analysis can be used to identify the specific cutting agents being
used in a given area (or period) by clandestine laboratories.
However, since the main goal of this investigation is to propose a
strategy to determine a common origin and/or a distribution
channel of the illicit drug, adulterants or diluents are not useful for
our purpose since different local pushers may have cut the same
cocaine consignment in different ways. On the other hand, as
mentioned above, the entire set of signals belonging to the minor
components can be considered a ‘‘fingerprint’’ of that sample. Thus,
a careful analysis of this fingerprint can provide very important
information about cocaine origin, or more simply allow the
identification of the areas and period in which a given consignment
of drug has been trafficked. Therefore, the first step of the work was
the identification of spectral regions of the 1H NMR spectrum
containing information related only to the minor components,
without interference from cocaine and adulterant/cutting agent
signals.

With this aim, the STOCSY analysis method has been applied
[10]. This technique can be used for determining metabolic
connectivity between different molecules as well as for structural

Table 1
Spectral ranges containing clustering information.

Range ppm

1 0.86–0.96

2 1.50–1.56

3 5.90–5.93

4 6.48–6.52

5 7.31–7.34

6 7.61–7.63

7 7.68–7.72

Fig. 3. PCA score (panels a and b) and loading (panels c–e) plots. Panels (a) and (b)

show the PC1–PC2 and PC1–PC3 score plots. Panels (c), (d) and (e) show the PC1,

PC2 and PC3 loading plots respectively. Samples are colored according to HCA

analysis in Fig. 2.
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assignment in NMR spectra of complex mixtures. STOCSY takes
advantage of the multicollinearity of the intensity variables in a set
of spectra (in this case the 54 1H NMR spectra) to generate a
pseudo-2D NMR spectrum, which displays correlation among the
intensities of various peaks across the whole spectrum. In the
STOCSY plot (see Fig. S1 in Supplemental Materials), correlations
occurring from a single molecule (structural correlations) are
present, as well as the intermolecular ones (non structural
correlations) leading to the identification of substances whose
signal intensities increase and decrease simultaneously with the
first molecule. Here, only the structural correlations were
considered. Thus, it was possible to identify all the signals of
cocaine and cutting agents with the help of literature data [11]. The
signals for the following agents were detected: lidocaine,
phenacetin, diltiazem, sugars, procaine, MDMA (3,4-methylene-
dioxy-N-methylamphetamine), paracetamol and caffeine. Hence,
all the spectral regions in which those signals were present were
excluded, and all the regions that only contain signals of the minor
(fingerprint) components were considered in the analysis. Spectral
regions without signals have also been excluded. Overall, only
seven spectral intervals (Table 1) containing signals of minor
components were identified.

In order to improve the comparability of the spectra, they have
been normalized. Since the amount of the minor components is
somehow related to the amount of cocaine (which is the main
component), the 7 spectral intervals of each sample were
normalized with respect to the area of a reference cocaine peak.
Particularly, the cocaine triplet at dH 7.65 ppm (H40) has been used,
since it does not overlap with other signals of any of the 54
samples. Such normalization provided the relative quantity of the
fingerprint constituents for each sample. The resulting data matrix,
with columns representing the normalized signal intensities and
rows representing the different samples, was then used for the
multivariate analysis.

One of the goals of this investigation is to find similarities
among samples, in order to cluster them and to determine the
number of drug consignments trafficked during a given period of
sampling. Thus, hierarchical cluster analysis (HCA) has been
performed on the data matrix. This analysis finds clusters of
samples based on intensities of the signals present in the selected
spectral regions. Before clustering, all the dataset have been
pareto-scaled and centered. Pareto scaling, i.e. dividing the (mean-
centered) variables (points) by the square root of their standard
deviation, is applied to reduce the weight of the high-intensity
components, while reducing the weight of noise in the model. The
resulting HCA dendrogram (Fig. 2) shows that the 54 samples are
gathered in 5 main groups that can be considered as 5 different
drug consignments. In order to get insights about the reasons for
this clustering, principal component analysis (PCA) was performed

on the same dataset (Fig. 3). Three principal components (PCs)
accounting for 67% (PC1 33%, PC2 19%, PC3 15%) of the variation
were identified. These numbers are in the usual range for NMR
data. The explained variance is not so high because the NMR data
contains noise. The plots of their scores (Fig. 3a and b) show the
positioning of the samples according to their chemical character-
istics and allowed the identification of the most important NMR
signals for sample differentiation. PCA indicates that group 1
substantially differs from groups 2, 3, 4 and 5 along PC1. According
to the PC1 loading plot (Fig. 3c), group 1 differs from the other
groups mainly for the presence of tropacocaine, whose hydrogens
resonate at dH 7.32 ppm [12]. The presence of this minor
component in the samples belonging to group 1 has been also
established by GC–MS analysis performed on the same samples. On
the other hand, groups 2, 3, 4 and 5 are separated along PC2. The
PC2 loading plot indicates that these groups mainly differ for the
content of cis- (dH 7.62 and 5.91 ppm) and trans-cinnamoylcocaine
(dH 6.50 ppm) [13]. Furthermore, the four groups are also
separated by a different content of unassigned molecules having
signals at dH 0.95, 0.93 and 0.90 ppm. The samples with high PC2
scores are characterized by higher concentrations of cis- and trans-
cinnamoylcocaine, and of the molecule having signal at dH
0.90 ppm, and lower concentrations of the molecules having
signals at dH 0.95 and 0.93 ppm. PC3 is also governed by the same
resonances. Indeed, the loading plots of PC2 and PC3 (Fig. 3d and e)
are very similar except that the signal at 0.90 ppm has the same
sign as the signals at 0.93 and 0.95 ppm in PC3.

In order to determine how well the identified consignments of
drug can be predicted by NMR, predictive models for the different
groups were computed, using the Projection to Latent Structures
Discriminant Analysis (PLS-DA) (Fig. S2 (a and b) in Supplemental
Materials). The model gave prediction scores (Q2(cum) > 0.5) for
all five groups (Fig. S2 (c) in Supplemental Materials). The validity
of the PLS-DA model was assessed with the use of the permutation
test, in which a total of 400 models were calculated using randomly
permuted Y variables (Fig. S2 (d) in Supplemental Materials). The
obtained Q2 and R2 values, describing the predictive ability and the
reliability of the fitting, respectively, were plotted and compared
with the Q2 and R2 values obtained from the real model. The
substantial decrease of both parameters Q2 and R2 (vertical axis
interception point of the Q2 and R2 regression line resulted both
with negative values) enforced the statistical validity of the
obtained PLS-DA model. In order to further validate the PCA and
PLS-DA models, five PCAs and five PLS-DAs additional models have
been computed. Each of these models has been computed holding
out 10 randomly selected samples at the time. All models were
characterized by high predictive coefficients (Q2 > 0.5), indicating
that the original models well describe the distribution of the
samples.

Fig. 4. PCA score-plots annotated with (panel a) year quarter and (panel b) area of seizure.
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In order to retrieve investigative information, all the samples
have been labeled according to place (Figs. 2 and 4b) and date
(Figs. 2 and 4a) of seizure. Based on information from Naples Police
Department, four macroareas (A, B, C and D) of Naples county have
been considered, in a way that each macroarea is controlled by a
single criminal organization (clan). The samples have also been
labeled according to the quarter of the year in which they were
seized (I, II, II and IV) (Fig. 4a). These labels reveal a very interesting
structure of the data. For example, samples of group 1 (green) have
been seized mainly in area D of the county. Analogously, samples of
groups 2 (blue), 3 (red), 4 (yellow) and 5 (cyan) are seized mainly in
areas A, A/C, C, and B, respectively. This may suggest that each clan
stocks up with drug consignments independently from the others
and that it actually controls a given area in an almost exclusive
manner. It is also possible to monitor the samples that, for some
reason, move from the area where most of the consignment to
which they belong has been sold. For example, this could be due to
a reselling of the cocaine sample or to a simple moving of a
consumer from the area of purchase to the one of consumption.

The consignments were also trafficked in different periods.
Thus, group 1 (green) have been sold mainly in the first (I) quarter,
with only a couple of samples in the second one (II) (Fig. 4a).
Groups 2, 3 and 4 have been trafficked in the third (III) and forth
(IV) quarters and, finally, group 5 (blue) has been sold all year long.

4. Conclusion

In the course of a police investigation on a cocaine distribution
network, the investigators obtain large amounts of circumstantial
information. On the basis of those data, they infer and define
links that may exist between different persons active within a
distribution network. Linkages revealed using such traditional
methods of investigation can be corroborated and even substanti-
ated by the detection of chemical links, which can, in turn, be used
to reveal previously undetected investigative links. In this frame,
the potentiality of the NMR in combination to the statistical
multivariate analysis is demonstrated to potentially ameliorate for
police investigations. In particular, the spectral regions that, at
least in this investigation, can be used for grouping of seized
cocaine samples have been defined: dH 0.86–0.96, 1.50–1.56, 5.90–
5.93, 6.48–6.52, 7.31–7.34, 7.61–7.63, 7.68–7.72 ppm. These
regions were very useful in providing information about place
and date of trafficking. The statistical multivariate analysis allowed
also the identification of key minor components responsible of this
grouping.

The results reported here indicate that the proposed analysis
can assist tactically (evidential/judicial) and strategically (intelli-
gence) the investigators. This can contribute to the establishment
of distribution and/or trafficking links between multiple seized

samples that have been obtained at different locations or in the
possession of different individuals. Furthermore, the fact that the
relative ratios of the minor components in coca leaf are closely
associated with plant varietal, cultivar and agronomic differences
can be exploited for the assignment of geographical origin, at least
when suitable authentic databases is available.
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Supplemental Materials 
 

 
Fig. S1. STOCSY plot for the 1H NMR spectra of cocaine samples. Correlation matrix is calculated 
from 54 spectra and is plotted as a contour plot with r > 0.9. 
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Fig. S2. (a, b) PC1-PC2 and PC1-PC3 score plots of PLS-DA. (c) Cumulated R2 and Q2 values for 
each variable of the training set (Y for PLS). R2 indicates how well the variation of a variable is 
explained, while Q2 indicates how well a variable can be predicted. The latter is estimated by cross 
validation. (d) Permutation test in which 400 models were calculated by randomizing the order of Y 
variables. The obtained Q2 and R2 values, describing the predictive ability and the reliability of the 
fitting, respectively, were plotted and compared with the Q2 and R2 values obtained from the real 
model. 
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Table S1. 1H and 13C NMR assignments of cocaine. 
 

 
 
position' 1H'(ppm)' 13C'(ppm)'
1' 4.27! 65.2!
2' 3.60! 47.2!
3' 5.59! 64.8!
4' 2.43! 33.7!
5' 4.07! 64.4!
6' 2.25,!2.46! 23.5!
7' 2.23,!2.53! 24.6!
8' 2.92! 39.4!
9' −! 173.6!
10' −! 166.2!
11' 3.66! 53.3!
1’' −! 130.0!
2’' 7.95! 130.1!
3’' 7.50! 129.5!
4’' 7.65! 134.6!
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a b s t r a c t

The growing amount of literature about G-quadruplex DNA clearly demonstrates that such a structure is
no longer viewed as just a biophysical strangeness but it is instead being considered as an important
target for the treatment of various human disorders such as cancers or venous thrombosis. In this
scenario, with the aim of finding brand new molecular scaffolds able to interact with the groove of the
DNA quadruplex [d(TGGGGT)]4, we recently performed a successful structure-based virtual screening
(VS) campaign. As a result, six molecules were found to be somehow groove binders. Herein, we report
the results of novel NMR titration experiments of these VS-derived ligands with modified quadruplexes,
namely [d(TGGBrGGT)]4 and [d(TGGGGBrT)]4. The novel NMR spectroscopy experiments combined with
molecular modelling studies, allow for a more detailed picture of the interaction between each binder
and the quadruplex DNA. Noteworthy, isothermal titration calorimetry (ITC) measurements on the
above-mentioned compounds revealed that 2, 4, and 6 besides their relatively small dimensions bind
the DNA quadruplex [d(TGGGGT)]4 with higher affinity than distamycin A, to the best of our knowledge,
the most potent groove binder identified thus far.

� 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

Telomeres are special structures that adorn the end of all
eukaryotic chromosomes. They are an ensemble of proteins (shel-
terin proteins) and noncoding DNA sequence which consists, in all
vertebrates, of 50-(TTAGGG)n-30 repeats, followed by a G-rich
single-stranded 30-overhang (G-tail) [1]. Telomeres are funda-
mental for the protection of chromosomal ends from unwanted
recombination and degradation and at the same time they allow the
chromosomes ends to be distinguished from chromosome breaks
thus avoiding ‘repair’ processes that would result in chromosome
end-to-end fusions. It is well-known that telomeric DNA in normal
somatic cells progressively shortens at each round of cell division as
a consequence of the inability of DNA polymerase to fully replicate
the 30ends. Thus, when the Hayflick limit is reached, cells stop
replicating and enter a senescence phasewhich precedes apoptosis.

Therefore, telomeric DNA functions also as a biological clock, at least
in healthy cells. Conversely, cancer cells are able to maintain telo-
meric DNA length constant through the expression of telomerase
enzyme which catalyses the synthesis of G-rich repeats at 30 [2].
Telomerase is indeed over-expressed in the majority of human
cancers and now it is a validated target for the search of novel
effective antineoplastic agents [3]. Besides, the well-known telo-
merase inhibitors which are specific for the catalytic subunit,
a novel class of telomerase inhibitors, known as G-quadruplex sta-
bilisers, is emerging [4], and they arise from the evidence that
the G-tail of the telomeric DNA can form unusual structures termed
G-quadruplexes. G-quadruplex structures comprise stacks of
G-tetrads, which are the planar association of four guanines in
a cyclic Hoogsteen hydrogen-bonding arrangement [5]. The
formation of quadruplex structures at telomeric DNA level results in
telomerase inhibition since quadruplex DNA is not recognised by
the single-stranded RNA component of the telomerase enzyme. But,
more importantly, the quadruplex structure can be recognised itself
as DNA damage signal thus instantly invoking apoptosis [6]. At
present, a growing number of quadruplex binders exist and they
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mostly stack on the terminal quartet surface (end-stackers) [7]. The
first evidence that the grooves of a quadruplex structure can be
recognised by an organic molecule came approximately three years
ago from our own NMR work revealing that, distamycin A can bind
in a dimeric form to the two opposite grooves of the quadruplex [8].
Whereas the end-stacker ligands are the major part of all known
quadruplex binders and their number is growing each day, quad-
ruplex groove binders represent a quite unexplored and valuable
field. In fact, grooves in duplex and quadruplex DNA are chemically
and conformationally different, and since groove dimensions differ
according to the type of quadruplex, groove binders can in principle
be selective for a particular quadruplex topology. Thus, with the aim
of finding brand new molecular scaffolds able to interact with the
groove, starting from the quadruplex structure found in complex
with distamycin A, we recently performed an extensive structure-
based virtual screening (VS) campaign [9]. As a result, six mole-
cules (1e6, Fig.1)were found to be somehowgroove binding agents.
Herein, we have performed additional NMR titrations of the six
compounds with modified quadruplexes, namely [d(TGGBrGGT)]4
and [d(TGGGGBrT)]4. These NMR spectroscopy experiments
combined with molecular modelling studies, provided a more
detailed picture of the interactions between each binder and the
quadruplex DNA. Noteworthy, isothermal titration calorimetry (ITC)
measurements on the above-mentioned compounds revealed that
2, 4, and 6 despite their relatively small dimensions, are more
effective in groove binding with respect to distamycin A, to the best
of our knowledge, themost potent groove binder identified thus far.

2. Material and methods

2.1. Oligonucleotide synthesis

The oligonucleotide d(TGGGGT) was synthesised on a Millipore
Cyclone Plus DNA synthesizer using solid phase b-cyanoethyl
phosphoramidite chemistry at 15 mmol scale. Commercially avail-
able 50-DMT-aminoprotected-8-bromodeoxyguanosine-30-phos-
phoramidite was used for the preparation of the modified
oligonucleotides. The oligomers were detached from the support
and deprotected by treatment with concentrated aqueous
ammonia at 55 �C for 12 h. The combined filtrates and washings
were concentrated under reduced pressure, redissolved in H2O,
analysed and purified by high-performance liquid chromatography
(HPLC) on a Nucleogel SAX column (MachereyeNagel, 1000-8/46);
using buffer A: 20 mM KH2PO4/K2HPO4 aqueous solution (pH 7.0),
containing 20% (v/v) CH3CN; buffer B: 1 M KCl, 20 mM KH2PO4/
K2HPO4 aqueous solution (pH 7.0), containing 20% (v/v) CH3CN;
a linear gradient from 0 to 100% B for 30min and flow rate 1ml/min
were used. The fractions of the oligomer were collected and
successively desalted by Sep-pak cartridges (C-18). The isolated
oligomers proved to be >98% pure by NMR.

2.2. Nuclear magnetic resonance experiments

The quadruplex NMR samples were prepared at a concentration
of 2 mM (8 mM single strand concentration), in 0.6 ml (H2O/D2O

Fig. 1. Structure of the newly identified quadruplex binders as resulted from the virtual screening experiment [9].
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9:1) buffer solution having 10 mM KH2PO4, 70 mM KCl, 0.2 mM
EDTA, pH 7.0. NMR spectra were recorded with Varian UnityINOVA
700 MHz spectrometer. 1H chemical shifts were referenced relative
to external sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS).
1D proton spectra of the sample in H2O were recorded using
pulsed-field gradient DPFGSE [10,11] for H2O suppression. Phase-
sensitive NOESY spectra [12] were recorded with mixing times of
100 and 200 ms (T ¼ 25 �C). Pulsed-field gradient DPFGSE [10,11]
sequence was used for NOESY experiments in H2O.

NOESY experiments were recorded using STATES-TPPI [13]
procedure for quadrature detection. The time domain data con-
sisted of 2048 complex points in t2 and 400 fids in t1 dimension. A
relaxation delay of 1.2 s was used. The NMR datawere processed on
iMAC running iNMR software (www.inmr.net).

2.3. Molecular modelling

The binding modes of compounds 1e6 were studied by means
of docking experiments with the aid of Autodock4 (AD4) [14] and
using the [d(TGGGGT)]4 G-quadruplex DNA structure as deposited
in the Protein Data Bank (PDB code 1S45) as macromolecules. The
3D structures of all the compounds were generated with the
Maestro Build Panel [15]. For the purpose of docking each molecule
has been constructed in the protonation state suggested by the
MarvinSketch 5.2.5.1 package (http://www.chemaxon.com) using
a pH 7.0 accordingly with the NMR titrations. The target DNA
structures were prepared through the Protein Preparation Wizard
of the graphical user interface Maestro 9.0.211 [15] and the OPLS-
2001 force field. Water molecules were removed, hydrogen atoms
were added and minimisation was performed until the RMSD of all
heavy atoms was within 0.3 Å of the crystallographically deter-
mined positions. Then the constructed compounds and DNA
structures were converted to AD4 format files using ADTgenerating
automatically all other atom values. In order to allow the ligands to
explore all the possible search space, the docking area has been
centred on themass centre of the quadruplex structure and defined
by a box large enough to comprise the entire macromolecule.
Accordingly, grids points of 84� 84� 84with 0.375 Å spacing were
calculated around the docking area for all the ligand atom types
using AutoGrid4. 100 separate docking calculations were per-
formed for each binder. Each docking calculation consisted of
25 � 106 energy evaluations using the Lamarckian genetic algo-
rithm local search (GALS) method. A low-frequency local search
according to the method of Solis and Wets was applied to docking
trials to ensure that the final solution represents a local minimum.
Each docking runwas performed with a population size of 150, and
300 rounds of Solis and Wets local search were applied with
a probability of 0.06. A mutation rate of 0.02 and a crossover rate of
0.8 were used to generate new docking trials for subsequent
generations. The docking results from each of the 100 calculations
were clustered on the basis of root-mean square deviation (RMSD
2.0 Å) between the Cartesian coordinates of the ligand atoms and
were ranked on the basis of the free energy of binding. All docking
solutions were analysed for the coherency with NMR data and for
each compound, the lowest energy solution more in line with the
experimental data was further considered and subjected to energy
minimisation through the OPLS-2001 force field. All figures were
rendered using Chimera software package [16].

2.4. Isothermal titration calorimetry

The [d(TGGGGT)4] stock solution was prepared by dissolving the
lyophilised compound in 10 mM phosphate buffer with 70 mM KCl,
0.2mMEDTA, pH 7. The solutionwas annealed by heating at 95�C for
5 min and slowly cooling to room temperature. The concentration of

the dissolved oligonucleotide was evaluated by UV measurement at
95 �C, using asmolarextinction coefficient thevalue calculated by the
nearest-neighbour model [17] for the sequence d(TGGGGT). Stock
solutions of the six drugs were prepared by solubilising weighted
amounts in DMSO to a final concentration of 8 mM. The complexes
between the quadruplex and the drugs were prepared diluting the
drug stock solution into the quadruplex solution to get a final
DNA:drug molar ratio of 1:4.1 and a final DMSO concentration of 7%.
Distamycin A was solubilised in the same buffer used for the oligo-
nucleotide containing 7% of DMSO.

The titrations were carried out in 10 mM phosphate buffer,
70 mM, KCl, 0.2 mM EDTA, 7% DMSO, pH 7, at 293 K, using a high-
sensitivity ITC-200 microcalorimeter from Microcal (GE Health-
care). In each experiment, volumes of 2 mL of a 1.2 mM distamycin A
solution were added into a 50 mM solution of quadruplexeDNA
complex, using a computer-controlled 40-mL microsyringe, with
a spacing of 180 s between each injection. Each titration was cor-
rected for heat of dilution by subtracting the measured enthalpies of
the injections following saturation. Integrated heat data obtained for
the titrations were fitted using a non-linear least-squares mini-
misation algorithm to a theoretical titration curve, using the
MicroCal-Origin 7.0 software package from which the binding
parametersDH� (reaction enthalpychange inkcalmol�1),Kb (binding
constant in M�1), and n (stoichiometry) were derived. The entropic
contribution was calculated using the relationships DG� ¼ �RT$lnKb

(R 1.987 cal mol�1 K�1, T 293 K) and DG� ¼ DH��TDS�.

3. Results and discussion

3.1. NMR and molecular modelling studies

Using NMR, six molecules (1e6, Fig. 1) were found to be
potential groove binders: they cause an appreciable shift, amongst
others, of the signals of G3, G4, G5 and T6 of the parallel quadruplex
[d(TGGGGT)]4, indicating that the recognition process involves
mostly the 30 side of the grooves, as also computed by the virtual
screening calculations [9].

In order to get further insights into the binding mode of
compounds 1e6, we have acquired a number of NOESYexperiments
of the complexes of the six compounds with the quadruplex
[d(TGGGGT)]4. Unfortunately, as no diagnostic NOE cross-peak could
be retrieved for any complex, none of the three-dimensional struc-
tures at atomic level could be determined.

Thus,we decided to get amore detailed picture of the interactions
from theNMR titrationofmodifiedquadruplexes and frommolecular
docking calculations. As a result, we designed and synthesised
modified oligonucleotides, namely d(TGGBrGGT), d(TGGGBrGT) and
d(TGGGGBrT),wheredGBr is 8-bromo-20-deoxyguanosine, potentially
capable of forming quadruplex structures and possessing a bulky
group (bromine) at different positions of the grooves (G3,G4 andG5),
as this portion of the DNA should be involved in 1e6 recognition [9].
These modified quadruplexes would then be titrated with the six
molecules 1e6 and the results of the NMR titration profile analysed.
The rationalebehind these experiments derived fromthe assumption
that if these compounds interacted with the quadruplex groove
region, the presence of the bromine group should now prevent (or at
least limit) the ligand/DNA interactions.

Prior to these experiments, we tested the capability of
d(TGGBrGGT), d(TGGGBrGT) and d(TGGGGBrT), to form a quadruplex
structure [18]. Their NMR samples were prepared at a concentration
of 2 mM, in 0.6 ml (H2O/D2O 9:1) buffer solution having 10 mM
KH2PO4, 70 mM KCl, 0.2 mM EDTA, pH 7.0. These samples were then
annealed for 5e10 min at 80 �C and slowly cooled down to room
temperature, then 1H NMR spectra were recorded by using DPFGSE
pulse sequence for H2O suppression [10,11].
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The 1H NMR spectra (700 MHz, T ¼ 25 �C) of d(TGGBrGGT) and
d(TGGGGBrT) show the presence of four well defined singlets in the
region 11e12 ppm, ascribable to imino protons involved in Hoogs-
teen hydrogen bonds of G-quartets, as well as the presence of five
signals belonging to three guanine H8 and to two thymine H6
protons in the aromatic region. This indicates that a single well
defined quadruplex species is present in solution for both mole-
cules, consisting of four G-tetrads and possessing a fourfold
symmetry with all strands parallel to each other. In such a quad-
ruplex, each Br group faces the grooves and points outward. On the
other hand, the 1D 1H NMR spectrum of d(TGGGBrGT) shows the
presence of a great number of signals in the regions of imino and
aromatic protons, suggesting that d(TGGGBrGT) is affected by
structural heterogeneity, thus preventing its use in our experiments.
Hence, only the quadruplexes [d(TGGBrGGT)]4 and [d(TGGGGBrT)]4
were titrated with compounds 1e6 and the titrations monitored by
NMR. A comparison of resonances of protons of the uncomplexed
quadruplex and the complexed one has been performed. In partic-
ular, we report the Dd values (chemical shifts of the complex minus
free DNA) of aromatic, methyl and imino protons.

As far as compound 1 is concerned, the titration with unmodi-
fied quadruplex [d(TGGGGT)]4 led to a general shift of the moni-
tored signals (white bars in Fig. 2). On the other hand, the titration
of [d(TGGBrGGT)]4 causes a slight shift (light-grey bars in Fig. 2) of
the residues at the 30 edge of the quadruplex, namely G5-H8,
T6-H6/Me, and only of T1-H6/Me at 50 edge, whilst no appreciable
shift can be measured for the other signals. This means that the
bromine atom at the very centre of the groove did affect the binding
of compound 1, and that 1 can be confidently considered a groove
binder. Furthermore, the titration of [d(TGGGGBrT)]4 led to a severe
line broadening of all signals, making impossible to retrieve any
information from the spectra. This NMR phenomenon can be
interpreted assuming that the ligand is changing its binding pose
on the NMR time scale.

It is noteworthy that compounds 1e6 have been discovered
from a previous virtual screening campaign and in that study
Autodock4 program was used with a search area large enough to
enclose only one of the four identical grooves to avoid redundant
information [9]. However, this couldn’t cast out the possibility that
one or more of the selected molecules can also be able to bind to
other part of the target. Thus, herein, we present results of new
docking calculations where the search area has been enlarged to
comprise the entire surface of the quadruplex [d(TGGGGT)]4 with
the purpose of checking for the capability of the ligands to extend
their binding out of the groove. Regarding 1, docking calculations
showed that all solutions in the lowest energy families
(DG ¼ �6,2 kcal mol�1), were found to be anchored to the 30 side of
the groove in line with the above-mentioned NMR data (1 was
predicted in a groove binding mode 75 out of 100 time, see
Supporting information). As shown in Fig. 3a (and in Fig. S2a in
Supporting information), the amine group of 1 engages a H-bond
with the 40O of the T6 nucleoside, while the ligand carbonyl group
together with the ortho-hydroxyl group of the phenyl moiety forms
H-bonds with G5 base. Three H-bonds have been also detected
between 1 and the phosphate backbone. The above-described
binding pose has been found 25 out of 100 times (see Supporting
information).

Fig. 2. Dd values of aromatic (H6/H8), methyl (Me) and imino protons (NH) for
[d(TGGGGT)]4 (white bars), [d(TGGBrGGT)]4 (light-grey bars) and [d(TGGGGBrT)]4
(dark-grey bars). Shadowed columns gather resonance variation belonging to the same
residue. Asterisks indicate a severe line broadening of the monitored signals. Arrows
indicate the lack of bars due to the presence of bromine atoms.
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Surprisingly, compound 2 generates almost identical Dd values
in the titration with [d(TGGGGT)]4 and [d(TGGBrGGT)]4 (white and
light-grey bars, respectively, in Fig. 2), having a general perturba-
tion of the signals belonging to the 30 side of the groove. This can be
interpreted by assuming that the bromine atom does not affect the
binding of 2 suggesting that this compound should not preferen-
tially bind the very centre of the groove. On the other hand, the
titration of [d(TGGGGBrT)]4 (dark-grey bars in Fig. 2) led to
a marked shift of T6-H6/Me signals whereas only a slight shift of all
the other monitored signals can be observed. This indicates that 2
prefers to interact with the 30 edge of the quadruplex.

A clearer picture of the ligandequadruplex interaction could be
obtained from docking calculations using again the unmodified
quadruplex [d(TGGGGT)]4 as target. The calculations highly
converged towards one family of conformations (DG ¼ �7.4) (Fig. 3b
and Fig. S2b in Supporting information) in which the benzoisoqui-
nolinedione ring stacks on the surface of the 30 terminal quartet,
particularly between the T6 andG5 rings, and the rest of themolecule
inserts into the groove, where the main anchor point is represented
by the protonated nitrogen of the piperazine ring, which establishes
a charge reinforced H-bond with the phosphate backbone. This
binding mode is in agreement with the new NMR titrations per-
formed in this investigation indicating that 2 is actually characterised
by a mixed binding mode, providing both stacking and groove
binding interactions. A statistical graph of the binding modes
occurrence for compound 2 is reported in Supporting information.

Differently from 1 and 2, titration of compound 3 with
[d(TGGGGT)]4, [d(TGGBrGGT)]4 and [d(TGGGGBrT)]4 led to a general
shift of almost all signal (Fig. 2). However, the resonances of
[d(TGGGGT)]4 (white bars) shiftedmore and those of [d(TGGBrGGT)]4
and [d(TGGGGBrT)]4 less (light- anddark-grey bars, respectively). This
indicates that3does not possess awell definedbindingmode, so that,
when thegroove is unavailable by thepresence of thebromineatoms,
3 slides towards the 30 edge groove of the quadruplex; vice versa, in
the case of [d(TGGGGBrT)]4, the molecule is able to interact only
weakly with the available part of the groove. Docking calculations on
[d(TGGGGT)]4 suggest that the ligand binds the 30-end of the groove

(DG¼�8.2) (3was predicted in a groove bindingmode 87 out of 100
time, see Supporting information). As shown in Fig. 3c (and Fig. S2c in
Supporting information), twoH-bondswere found, the first between
the pyridine nitrogen of 3 and the T6 30OH group and the second
between thehydroxyl groupof the chromenone core and theG3NH2.
Hydrophobic contacts between the pyridine and the T6 rings were
also detected together with a charge reinforced H-bond established
by the protonated nitrogen of the piperazine ringwith the phosphate
backbone. The above-described binding mode has been found by
Autodock program 27 out of 100 time (see Supporting information).

Interestingly, compound 4 displayed different behaviours for the
three quadruplexes tested. With the quadruplex [d(TGGBrGGT)]4
(light-grey bars in Fig. 2), the titration provided higher Dd values for
the residues at the edges of the quadruplex with the respect of
unmodified [d(TGGGGT)]4 (white bars in Fig. 2). On the contrary,
titration of [d(TGGGGBrT)]4 caused major shift for the residue sitting
in the very centre of the groove (dark-grey bars). This means that
compound 4 can interact with the grooves, and, accordingly, when
the very centre of the groove is hindered, 4 binds the end sides of the
grooves, but it is able to bind the very centre of the grooves when
their 30 edges are unavailable. Docking calculations suggest two
binding poses especially in line with NMR data (Fig. 4a and b, and
Fig. S3a in Supporting information), where the molecule can either
interact with 50 residues (binding mode A, DG ¼ �8.2) or with the 30

end (bindingmode B,DG¼�7.9). Specifically, inA, the benzoquinone
ring establishes a pep interactionwith the T1 ring, while an H-bond
between the G2 NH2 group and the carbonyl moiety is detected. In B,
the two carbonyl moieties of the ligand are engaged in H-bonds with
G4 NH2 and T6 NH respectively. In both binding modes a charge
reinforced H-bond is observed between the protonated nitrogen of 4
and the phosphate backbone. Based on thisfinding and on the shift of
NMR signals observed for all residues forming the groove, a sliding
motion of 4 inside the groove can be proposed. Noteworthy, 100 out
of 100 runs propose 4 as groove binder (see Supporting information
for further details).

As far as compound 5 is concerned, the titration of [d(TGGGGT)]4
(Fig. 2, white bars) clearly indicates that 5, like the other selected

Fig. 3. Binding poses calculated by AD4 for compounds 1 (a), 2 (b) and 3 (c) in the quadruplex structure. DNA backbone is represented as white stick bonds. Ligands are depicted as
green sticks. H-bonds are represented as dashed blue lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 4. Two binding poses calculated by AD4 for compound 4 (a and b), and one for compound 5 (c) in the quadruplex structure. DNA backbone is represented as white stick bonds.
Ligands are depicted as green sticks. H-bonds are represented as dashed blue lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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compounds, prefers to bind the 30 edge of the groove. The titration of
[d(TGGBrGGT)]4 displays significant lower Dd values for the imino
protons (Fig. 2, light-grey bars), while the shifts of the signal of G4,
G5 and T6 remain substantially unchanged. On the other hand, the
titration of [d(TGGGGBrT)]4 indicates that 5 is still able to interact
with the 30 edge of the quadruplex probably via end-stacking
interaction. A mixed binding mode is therefore expected for
compound 5. In line with these data, docking calculations suggested
that in 5 the quinolone ring is adapted on the top of the 30-end
sandwiched between the T6 and G5 bases (Fig. 4c and Fig. S3b in
Supporting information), with the imidazo-pyrimidine moiety
extending towards the groove incipience and H-bondingwith the G5
NH2 group (DG ¼ �6.7). The above-described binding mode has
been proposed by the docking program 60 out of 100 times (see
Supporting information for more details).

Finally, compound 6 displays peculiar titration behaviours.
While the titration of the unmodified [d(TGGGGT)]4 showed
marked shifts of the G2, G3, G4 and G5 residues (Fig. 2, white bars),
the titration of [d(TGGBrGGT)]4 is instead characterised by very low
Dd values for all residues (light-grey bars). Furthermore, the titra-
tion of [d(TGGGGBrT)]4 mainly caused shifts of the residues G2, G3
and T6, along with a severe line broadening of the imino proton
signals (dark-grey bars, Fig. 2). This means that 6 does bind with the
grooves of the quadruplex, and, as in 4, the uniform perturbation of
all groove residues of the quadruplex [d(TGGGGT)]4, with respect to
the limited ligand size, suggests that a fast sliding motion of 6

inside the groove is also possible. Molecular docking calculations
also revealed that two molecules of 6 could in principle simulta-
neously anchor the two opposite ends of the groove although the 50

end is preferred (42 times out of 100) (Fig. 5a and b and Fig S3c in
Supporting information). Notably, in perfect line with the changes
experimentally observed for G2 and G5 aromatic protons signals,
the ligand alternatively forms H-bonds with G2 (DG ¼ �7.5) or G5
(DG ¼ �6.1) bases in the two reported binding modes (Fig. 5).
Finally, the two poses suggested by the docking program, in which
a pep interaction is formed with T1 or T6 ring, could somehow
account for the T6-H6 proton and T1-methyl signals shift.

3.2. Isothermal titration calorimetry measurements

In order to determine the binding affinity of the compounds 1e6
with the quadruplex [d(TGGGGT)]4, ITC titration experiments were
carried out [19].

Previously, we characterised the interaction of distamycin A
with the same quadruplex and revealed that four molecules of the
drug were accommodated in two opposite grooves of the quad-
ruplex; moreover, the thermodynamic signature of the binding
event suggested that the entropic contribution was the one driving
the complex formation [8]. An analogous study however was not
possible for the six new ligands identified with the virtual
screening, because their poor solubility in water prevented us from
performing canonical ITC experiments [19], in which a solution of
the quadruplex is titrated with a concentrated drug solution in the
identical aqueous buffer. As an alternative approach to investigate
the affinity of the new drugs for the DNA quadruplex, we carried
out competition/displacement experiments, by analysing the
ability of distamycin A to bind to the quadruplex in the presence of
another compound [20,21]. Despite the solubility concerns,
mixtures of the quadruplex and each of the six new drugs were
successfully prepared by solubilising the molecules in DMSO and
diluting them in a phosphate solution containing the quadruplex
(as described in the Methods); these complexes were then titrated
with distamycin A, and the outcome followed by ITC.

In Fig. 6 three representative ITC experiments are reported. First,
the interaction of distamycin A with [d(TGGGGT)4] was repeated in

Fig. 5. Two binding poses calculated by AD4 for compound 6. DNA backbone is rep-
resented as white stick bonds. Ligands are depicted as green sticks. H-bonds are
represented as dashed blue lines. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 6. Calorimetric analysis of the interactions of the quadruplex [d(TGGGGT)4] and its complexes with the drugs 5 and 6, with distamycin A. Raw titration data showing the
thermal effect of injecting distamycin A into a calorimetric cell containing the quadruplex alone (A), quadruplex with 5 (C) and quadruplex with 6 (E). The normalised heat for the
titrations, shown in B, D and F respectively, was obtained by integrating the raw data and subtracting the heat of the ligand dilution. The heat effect reveals the typical double step
binding curve of the distamycin A interaction to the quadruplex in B and C, null interaction in F. The red lines in B and D represent the best fit derived by a non-linear least-squares
procedure based on an independent binding sites model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the new buffer used in this study in absence of any other ligand,
clearly showing that in the new experimental conditions this
binding event is identical to what was previously observed (Fig. 6,
Panels A and B and Table 1). The binding occurs in two separate
steps, the first one centred on a stoichiometry of 1:2 in which two
molecules of distamycin A interact with the quadruplex and then
a second event inwhich twomoremolecules bind, leading to a final
stoichiometry of 4 molecules of distamycin A per quadruplex.
Panels C and E report two displacement experiments carried out
titrating with distamycin A the complexes obtained with the drugs
5 and 6 respectively. The two experiments are quite different and
indicative of two distinct phenomena. In the first case, a binding
curve similar to the control experiment is obtained (compare
Fig. 6D and B), indicating that the presence of the drug 5 in the
mixture did not have an effect on the association of distamycin A
with the [d(TGGGGT)4]. Distamycin A still binds in two distinct
events, with stoichiometry and binding constants not significantly
affected by the presence of 5 (Table 1).

Conversely, the ITC titration of distamycin A into the quad-
ruplex/6 complex (Fig. 6E and F) gives a completely different
outcome. In this case, distamycin A appears no longer able to
interact with the DNA, suggesting that 6 binds to the quadruplex
tightly than distamycin A. It is important to highlight that the
competition/displacement experiments do not give any informa-
tion about the stoichiometry of the complex formed between the
quadruplex and the compound competing with the distamycin A. A
summary of the results for all six compounds is reported in Table 1:
1 and 3 behave as 5, whereas the presence of 2 or 4 or 6 abolishes
the binding of distamycin A.

In conclusion the competition ITC experiments represent
a possible strategy to evaluate whether an insoluble groove binder is
stronger or weaker than a soluble drug that could be used as refer-
ence point. In our case, using the distamycin A as reference drug, we
were able to group the six drugs identified with virtual screening in
two extreme classes. The first class contains compounds that bind
rather weakly to the quadruplex (1, 3 and 5), whereas in the second
class the drugs that bind substantially stronger than distamycin A (2,
4 and 6) are clustered.

4. Conclusions

A successful structure-based virtual screening (VS) campaignwas
recently undertaken by our research group and it resulted in the
identification of six small molecules able to interact with the groove
of the quadruplex [d(TGGGGT)]4. Herein, we report NMR spectros-
copy experiments which, combined with extensive molecular dock-
ing studies, allow for a more detailed picture of the interaction
between each VS-derived binder and the quadruplex DNA. Note-
worthy, isothermal titration calorimetry (ITC) measurements
revealed that 2, 4, and 6, despite their relatively small dimensions,
bind substantially stronger than distamycin A, which is, to the best of

our knowledge, the most potent groove binder identified so far.
As it is widely accepted that specificity among the various DNA
G-quadruplexes, thatmight be simultaneously present in the human
genome, is a fundamental requirement for the quadruplex binder to
become a drug, extensive binding tests towards DNA duplex and
different DNA quadruplex topologies will be the next step in our
research program. The future results combined with structural
studies will provide a source of inspiration for the design of next
generationof potent and selective quadruplexDNAdrug-like binders.
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ABSTRACT: Targeting of DNA secondary structures, such as
G-quadruplexes, is now considered an appealing opportunity
for drug intervention in anticancer therapy. So far, efforts made
in the discovery of chemotypes able to target G-quadruplexes
mainly succeeded in the identification of a number of
polyaromatic compounds featuring end-stacking binding
properties. Against this general trend, we were persuaded
that the G-quadruplex grooves can recognize molecular entities with better drug-like and selectivity properties. From this idea, a
set of small molecules was identified and the structural features responsible for G-quadruplex recognition were delineated. These
compounds were demonstrated to have enhanced affinity and selectivity for the G-quadruplex over the duplex structure. Their
ability to induce selective DNA damage at telomeric level and to induction of apoptosis and senescence on tumor cells is herein
experimentally proven.

■ INTRODUCTION

Telomeres are critical chromosomal elements which guarantee
proper replication and protection of chromosome ends.1 They
are made up of 2−20 kb of double-stranded TTAGGG repeats
and feature a 3′ single-stranded overhang of 50−500
nucleotides. Parallel to normal cells proliferation, telomeres
get gradually shorter triggering irreversible growth arrest
(cellular senescence).2 A telomere maintenance mechanism is
provided by the six-membered protein complex called shelterin
and by telomerase. The latter adds copies of the repeated motif
to the end of the single-stranded overhang. This enzyme is
transcriptionally repressed in most differentiated human
somatic cells3 while being overexpressed in about 85% of
cancer cells.4 In the remaining 15% of human tumors, telomere
lengthening is obtained by a different mechanism known as
alternative lengthening of telomere (ALT).5 In both cases,
telomeres are maintained to a stable length with consequent
senescence circumvention and cellular immortalization.6 In this
scenario, it is now widely accepted that telomere maintenance
and protection play a central role in tumorigenesis. Thus,
agents that are able, at any level, to influence telomere
homeostasis are considered now an appealing opportunity for
drug intervention in anticancer therapy. The 3′ single-stranded
overhang of the telomeric DNA in eukaryotic cells can adopt
the peculiar G-quadruplex fold.7 The stabilization of this fold
through the interaction with different ligands alters the G-rich
overhang structure and causes its degradation through a DNA-

damage repair pathway and release of one of shelterin proteins
(i.e., POT1) from telomeres.8 These events lead to a fast
induction of tumor cell senescence and apoptosis. For some of
these compounds the in vivo anticancer activity has been
reported (BRACO-19, RHSP4, and telomestatin).9−11 Un-
fortunately, none of these molecules have progressed beyond
the experimental stage into clinical trial, mainly because of
insufficient druglike properties. Recently, our pursuit of new G-
quadruplex ligands succeeded in the discovery of six leadlike
chemotypes that were proven to effectively interact with the
[d(TGGGGT)]4 G-quadruplex structure.12 Among them,
compound 1a (Table 1) appeared to be the most promising
hit. So far, ligands that selectively recognize G-quadruplex
grooves are few,13 even though quadruplex groove recognition
is likely to provide much more quadruplex-selective ligands.
Interestingly, 1a was proven to span the entire quadruplex
grooves and was demonstrated to interact more tightly than
distamycin A (Dst),14 which was described as the most affine
G-quadruplex groove binder.15 More general considerations
need to be done on the druglike properties of the 1a coumarin
core. This is a naturally occurring structure (mainly in plants)
that is present in a plethora of compounds endowed with
different biologically activities (anti-HIV, CNS-active, antico-
agulant, anti-inflammatory, antitumor).16 Because of the
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number of documented biological activities and its amenability
to combinatorial chemistry, the coumarin scaffold represents a
well-known example of privileged structure.16

In the present study, the promising derivative 1a was used as
a seed for searching similar entities in several commercially
available databases, and NMR experiments allowed identifica-
tion of a small focused library of structural analogues with G-
quadruplex binding properties. By a back and forth approach,
the structural features responsible for G-quadruplex groove
recognition were delineated, while isothermal titration calorim-
etry (ITC) measurements allowed for the identification of
chemotypes featuring a tighter binding than Dst. Different from
Dst, the best binders were also proved to be G-quadruplex
selective over duplex. These results propelled the biological
characterization of the new ligands, demonstrating their ability
to induce selective DNA damage at telomeric level and
induction of apoptosis and senescence on tumor cells.

■ RESULTS AND DISCUSSION
Compound Selection and G-Quadruplex NMR Bind-

ing Assays. Given the relative synthetic accessibility of
coumarin compounds, we first decided to search in commercial
molecular databases if analogues of compound 1a were
available. This approach has the advantage of rapidly providing
a library of structural analogues of the lead compound and also
being highly economically efficient. Therefore, the simplistic
pairwise Tanimoto similarity score was computed between 1a
and the compounds present in the full ZINC database
collection of purchasable compounds (∼7 million compounds)
using a 70% similarity threshold. This resulted in 272
compounds that were visually analyzed revealing that, as
expected, coumarin derivatives were selected (Table 1) as well
as several analogues featuring the regioisomeric chromone
scaffold (Table 2).
With the aim of exploring the influence of the pendant amine

moiety on the quadruplex binding, five of the available
coumarin derivatives derived from the filtered database were

first purchased (1b−f). These were all tested for their ability to
interact with the DNA quadruplex through nuclear magnetic
resonance (NMR) spectroscopy, which is a valuable tool for
studying molecular interactions in solution.17 A number of
DNA quadruplex folding topologies are known, and the kind of
folding is strongly affected by the sequence, buffer, and
molecular crowding conditions. This is particularly true for the
human telomeric sequence.7 In fact, several structures have
been reported having different strand orientations and loop
distributions. Unfortunately, the topology of the quadruplex
structure adopted by the human telomeric sequence in vivo is
unknown, so in analogy to what was done in our previous
investigations,12,15 we have decided to use the highly symmetric
tetramolecular quadruplex [d(TGGGGT)]4. In particular, we
employed the chemical shift perturbation method18 to detect
interaction between a molecular candidate and the G-
quadruplex structure. The signals that can be most easily
monitored are the imino and aromatic protons of all bases and
the methyl protons of thymines, as they all are in the less
crowded region of the NMR spectrum of [d(TGGGGT)]4.
Since we were mainly interested in potential groove binder

analogues, in our inspection we considered quadruplex ligands
all compounds providing a shift of the G3 and G4 signals of at
least 0.05 ppm. Following this criterion, among the five tested
coumarins, compounds 1b−d demonstrated appreciable G-
quadruplex binding while 1e and 1f displayed no DNA
interaction. This indicates that the presence a H-bond donor
(1b) and/or a positively charged group at a distal position (1c−
d) with respect to the coumarin scaffold is critical for DNA
binding.
More structural variability was present when considering the

regioisomeric chromone derivatives (2a−k, Table 2). This
moiety is also regarded as a privileged structure, being present
in different biologically active compounds and prone to
combinatorial synthesis.19 In this case, we first tested the G-
quadruplex binding properties of 2a through NMR titration.
This experiment did not indicate appreciable shift of any signal
of [d(TGGGGT)]4, suggesting that the chromone scaffold is
unable to provide efficient binding for the quadruplex. On the
other hand, the positively charged group in position 8 (R3

substituent) should provide this moiety with a critical
interaction point with the quadruplex (most probably, with
the phosphate backbone atoms), as confirmed by the presence
of detectable interactions of compounds 2b and 2c with the
target. Furthermore, bulky tertiary amines are not tolerated
(2d), while cyclic amines (2e−k) are able to cause substantial
shift of the G3, G4, G5, and T6 signals. In order to probe the
influence of a substituent in position 2 on the chromone
scaffold (R1 in Table 2), 2l−p, featuring H-bond donor groups,
were also tested. Interestingly, while 2l−o still provide
appreciable quadruplex binding, 2p does not interact with the
DNA, suggesting that bulkier amines are detrimental for the
binding regardless of the presence of a H-bond donor in
position 2. Indeed, the latter position seems to directly
influence the G-quadruplex recognition, considering that the
simple substitution with a methyl group (2s−t) abolishes the
ligand binding as demonstrated by NMR experiments. The
same holds true for position 6 (R2) of the chromone ring that
when substituted with a ethyl chain results in compounds 2q−r,
which are incapable of [d(TGGGGT)]4 binding.

Isothermal Titration Calorimetry (ITC) Experiments.
For compounds demonstrating appreciable interaction with the
DNA G-quadruplex (1a,b, 2b,c, 2e−o) displacement iso-

Table 1. Structures of the Selected Coumarin Derivatives
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thermal titration calorimetry (ITC) experiments20 were
performed to investigate their quadruplex binding affinity.
Since it is well-known that multiple conformations of the
human telomeric sequences may coexist in solution and that
such polymorphism could invalidate the data obtained by ITC
measurements, we have decide to use, in analogy to NMR, the
[d(TGGGGT)]4 quadruplex.
Unfortunately, efforts to obtain direct thermodynamic

information from canonical ITC experiments failed because
of solubility issues regarding the ligands at the rather high
concentrations required for such measurements.21 Displace-
ment experiments were then effectively carried out by analyzing
the binding of Dst to the G-quadruplex previously saturated
with each ligand (see Experimental Section). Although the
displacement ITC experiments do not allow direct measure-
ment of the thermodynamic parameters involved in the binding
processes, this strategy represents a valid approach for
evaluating the efficiency of a G-quadruplex (or duplex) binder

compared to Dst. Indeed, when the DNA−ligand complex is
formed, the ligand will inhibit the binding of Dst if its affinity
for the G-quadruplex is higher than the latter; conversely, it will
be displaced by a stronger binder.
Figure 1a and Figure 1b show two representative ITC

displacement experiments carried out by titrating with Dst the
[d(TGGGGT)]4 saturated with compounds 2o and 2l,
respectively. The results obtained in the two experiments
clearly show two different phenomena. In the first case, the ITC
profile for the titration of ligand-saturated G-quadruplex is
essentially identical to the one obtained for the binding of Dst
to the G-quadruplex alone,14 thus indicating that the presence
of 2o does not affect significantly the interaction. On the
contrary, the titration of [d(TGGGGT)]4/2l mixture with Dst
(Figure 1b) gives completely different results. In this case, ITC
data show constant heat release at each injection of Dst, only
due to ligand dilution, proving that it is no longer able to
interact with the G-quadruplex. Overall, ITC experiments

Table 2. Structures of the Selected Chromone Derivatives
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showed that 4 out of 15 compounds (1a, 2c, 2l, and 2m) have
the ability to bind the G-quadruplex more tightly than Dst,
inhibiting its interaction. To evaluate a possible selectivity of
the best ligands for G-quadruplex over duplex, we performed
identical ITC displacement experiments by titrating d-
(CGCGAATTCGCG)2 duplex/ligand mixtures with Dst.
This self-complementary DNA dodecamer was chosen because
it contains the central AATT core, considered being one of the
specific binding sites for Dst.22 Figure 1c shows an example of
raw ITC data and binding isotherm for the titration of
d(CGCGAATTCGCG)2/2l mixture with Dst. As shown, at
each injection of Dst solution, less and less heat release was
measured until constant values were obtained, implying a
saturable process. The binding isotherm shows a typical
sigmoidal binding curve and clearly suggests that the presence
of the compound in the mixture has no effect on the interaction
of Dst with the duplex. Similar results were obtained for 2c and
2m (see Supporting Information), suggesting G-quadruplex
selectivity of these three compounds. On the other hand, 1a
was shown to affect Dst-duplex interaction, thus suggesting a
poor selectivity.
The Newly Identified G-Quadruplex Ligands Induce

DNA Damage and Cell-Cycle Arrest. These encouraging
results propelled the full biological characterization of the new
ligands for investigating the ability of the new ligands to cause
telomere uncapping (Figure 2). To this aim, a two-step analysis
was performed to establish, in the first one, if the compounds
were able to induce DNA damage and, in the second one, if the
DNA damage was localized to the telomeres. By using human
transformed BJ fibroblasts (BJ-HELT), we found that, different
from Dst, all the ligands were able to induce DNA damage (at
least at the higher drug dose, Figure 2a) and deconvolution
microscopy analysis showed that some of the damaged foci
colocalized with TRF1, a good marker for interphase
telomeres23 forming the so-called TIF (telomere dysfunction
induced foci)24 (Figure 2d). Of note, quantitative analysis
identified compounds 2c, 2l, and 2m as the most potent in
inducing telomere damage: the percentage of cells with more
than four γH2AX/TRF1 colocalizations reached about 50%
(Figure 2b), with a mean of about eight TIF per nucleus
(Figure 2c). Such a biological evaluation also confirmed that
the sole chromone structure (2a) was not proved to cause

substantial DNA damage. Interestingly, the whole data are in
perfect consonance with ITC experiments that indicated that
2c, 2l, and 2m are strong, selective G-quadruplex binders. A
further correlation can also be done for compound 1a that, by
promiscuously binding the DNA (see ITC data), is able to
induce high levels of DNA damage but few TIFs.
The above results raised the interesting possibility that

telomere damages induced by the ligands in transformed
fibroblasts may rapidly and efficiently promote growth
inhibition in tumor cells. Treatment of HeLa cells with one
of the most promising selected ligands (2l) triggered a dose-
dependent inhibition of cell survival (Figure 3a) associated with
an early accumulation of cells in the G2/M phase of the cell
cycle, and at 96 h of treatment a fraction of cell population
resided in the sub-G1 compartment, indicative of apoptosis
(Figure 2b).
Apoptosis induction triggered by 2l has been confirmed by

annexin staining (Figure 3c; at 96 h of treatment about 30% of
cells are annexin V-positive/PI negative), and it was also
accompanied by the induction of a senescence phenotype: large

Figure 1. Raw ITC data (top panels) and integrated heat (bottom
panels) for titration of [d(TGGGGT)]4/2o (a), [d(TGGGGT)]4/2l
(b), and d(CGCGAATTCGCG)2/2l (c) mixtures with Dst at 25 °C.
The integrated heat for the titrations (squares) was obtained by
integrating the raw data and subtracting the heat of the ligand dilution.
The lines represent nonlinear least-squares fit of the data to the
appropriate binding model.

Figure 2. DNA damage activation at telomeres. BJ-EHLT fibroblasts
were treated for 24 h with Dst and the indicated ligands at doses 0.1
(light-gray bars) and 0.5 μM (dark-gray bars). Cells were processed for
immunofluorescence (IF) using antibodies against γH2AX and TRF1
to mark DNA damage and telomeres, respectively. Percentages of
γH2AX-positive (a) and TIF-positive (b) treated vs untreated cells are
reported in the histograms. (c) Mean number of TIF in the indicated
samples. Cells with four or more γH2AX/TRF1 foci were scored as
TIF positive. The red bars highlight the most effective ligands. Error
bars indicate the standard deviation. (d) Representative images of IF of
untreated and Dst-, 2c-, 2l-, and 2m-treated BJ-EHLT cells. Enlarged
views of TIFs are reported below the merged images. The images were
acquired with a Leica deconvolution microscope (magnification
100×).
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cell size, vacuolated cytoplasm, and β-galactosidase activity
(Figure 3d).
The Newly Identified G-Quadruplex Ligands Feature

Enhanced Druglikeness. In our inspection, the most
interesting ligands (1a, 2c, 2l, and 2m) were also compared
for their predicted absorption, distribution, metabolism, and
excretion (ADME) properties with respect to other compounds
previously described as G-quadruplex binders (Supporting
Information, Table S3). These calculations were performed
employing the QikProp software (QikProp, version 3.4 (2011);
Schrödinger, LLC, New York, NY). In addition to predicting
molecular properties, QikProp provides ranges for comparing
each compound’s property with those of 95% of known drugs
(these ranges are provided in Supporting Information, Table
S4). This software was also used because it allows for flagging
reactive functional groups that may cause false positives in
biological assays. Results of QikProp calculations are reported
in Supporting Information, Tables S5−S7. According to these
calculations, only 7 out of 32 inspected compounds display no
violations of the ranges recommended for each descriptor or
property. Strikingly, compounds 1a, 2c, 2l, and 2m are among
these most promising ligands.

■ CONCLUSIONS
Targeting of DNA secondary structures such as G-quadruplexes
is now considered an appealing opportunity for drug

intervention in anticancer therapy.25 So far, efforts made in
the discovery of chemotypes able to target G-quadruplexes
mainly succeeded in the identification of a number of
polyaromatic compounds featuring end-stacking binding
properties. Unfortunately, the poor druglike properties of
these compounds turned out to be a main limitation during the
in vivo verification of their antitumor properties. Herein, with
the aim of discovering G-quadruplex groove binders with
enhanced druglike properties, a lead optimization campaign was
undertaken starting from a promising virtual screening hit.
Thus, the physicochemical characterization (NMR and ITC) of
the binding of a set of closely related analogues allowed
identification of novel ligands of the [d(TGGGGT)]4
quadruplex. Interestingly, their biological characterization
demonstrated the ability to induce selective DNA damage at
telomeric level and induction of apoptosis and senescence on
tumor cells. These results substantiate our choice of using the
[d(TGGGGT)]4 structure as a working model to design new
molecular entities endowed with G-quadruplex binding proper-
ties. Furthermore, for the first time, we demonstrate that
selective G-quadruplex binding and telomeric DNA damage can
be elicited by more druglike chemotypes. These findings pave
the way for the design of new potential drugs and shed new
insights into the emerging field of DNA quadruplex.

■ EXPERIMENTAL SECTION
Oligonucleotide Synthesis. The oligonucleotide d(TGGGGT)

was synthesized using standard protocol.26 The oligomer was detached
from the support and deprotected by treatment with concentrated
aqueous ammonia at 55 °C for 12 h. The combined filtrates and
washings were concentrated under reduced pressure, redissolved in
H2O, analyzed, and purified by high-performance liquid chromatog-
raphy (HPLC) on a Nucleogel SAX column (Macherey-Nagel, 1000-
8/46), using buffer A consisting of 20 mM KH2PO4/K2HPO4 aqueous
solution (pH 7.0), containing 20% (v/v) CH3CN, buffer B consisting
of 1 M KCl, 20 mM KH2PO4/K2HPO4 aqueous solution (pH 7.0),
containing 20% (v/v) CH3CN, a linear gradient from 0% to 100% B
for 30 min, and flow rate 1 mL/min. The fractions of the oligomer
were collected and successively desalted by Sep-pak cartridges (C-18).
The isolated oligomer proved to be >99% pure by NMR.

Selected Compounds. The selected compounds where purchased
from the supplier as indicated in Table S1 (see Supporting
Information). The purity of compounds 1a−f and 2a−t was assessed
using reversed-phase high-performance liquid chromatography
(HPLC), using a Shimadzu C18, 5 μm (150 mm × 4.6 mm) column.
The elution was performed with a 1.0 mL/min flow rate using a linear
gradient from 0% to 100% methanol in water over 30 min. The
detection was performed at 210 nm. The purity was also analyzed with
high-performance liquid chromatography−mass spectrometry
(HPLC−MS) performed on an Agilent 1200 series system (Agilent
Technologies, Santa Clara, CA, USA) equipped with an Agilent 6110
series LC/MS quadrupole instrument, using a Phenomenex Luna C18,
5 μm (150 mm × 4.6 mm) column. The elution was performed with a
1.0 mL/min flow rate using a linear gradient from 0% to 90%
acetonitrile in water over 20 min. Detection was performed at 210 nm.
The relative purity of compounds 1a, 1c−e, 2a−d, 2f, 2h, 2i, 2l−n,
and 2p−r was higher than 98.0%. Purity of compounds 1b, 1f, 2e, 2g,
2j, 2k, 2o, 2s, and 2t ranged between 95% and 98%.

Nuclear Magnetic Resonance Experiments. The quadruplex
NMR samples were prepared at 0.1 mM (0.4 mM single strand
concentration) in 0.2 mL (H2O/D2O, 9:1) of buffer solution having
10 mM KH2PO4, 70 mM KCl, 0.2 mM EDTA, pH 7.0. NMR spectra
were recorded with Varian UnityINOVA 700 MHz spectrometer. 1H
chemical shifts were referenced to external sodium 2,2-dimethyl-2-
silapentane-5-sulfonate (DSS). 1D proton spectra of the sample in
H2O were recorded using pulsed-field gradient DPFGSE27,28 for H2O

Figure 3. Biological effects of 2l ligand. (a) Survival curve of the HeLa
cells exposed to different doses of 2l ranging from 0.5 to 5 μM. (b)
Cell cycle analysis and (c) apoptosis evaluation of HeLa cells
processed at the indicated times after exposure with 3.5 μM 2l. (c)
Biparametric dot plots showing PI vs annexin V staining in the
indicated samples. (d) SA-β-gal staining of Hela cells untreated and
treated with 5 μM 2l for 5 days.
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suppression. The NMR data were processed on an iMAC running
iNMR software (www.inmr.net).
Chemical Shift Perturbation Experiments. The quadruplex

[d(TGGGGT)]4 has been titrated with each of the selected
compounds. The samples 1e−f, 2a, 2d, 2p−t were not able to cause
any significant shift of the DNA signals. On the other hand, the
compounds 1b−d, 2b, 2c, 2e−k, 2l−o turned out to be able to bind
the quadruplex. Particularly, for all the titrations of 1b−d, 2b, 2c, 2e−
k, 2l−o, the four DNA strands turned out to be magnetically
equivalent throughout the titration, and no splitting of resonances was
observed at any stage. In order to preliminarily evaluate the binding
site of each analogue, a comparison of resonances of some protons of
the uncomplexed DNA and the complexed one has been done. In
particular, we report the Δδ values (chemical shifts of the complex
minus free DNA) of aromatic, methyl, and imino protons (Supporting
Information, Table S2). Generally, the signals of the protons of the T1
residue shifted the least, whereas the ones of residue T6 shifted more.
In any case, a general shift of the aromatic and imino signals was also
observed for the G2, G3, G4, and G5.
Isothermal Titration Calorimetry. The d(TGGGGT) and

d(CGCGAATTCGCG) oligonucleotide sequences were prepared by
dissolving the lyophilized compound in 10 mM phosphate buffer with
70 mM KCl, 0.2 mM EDTA, pH 7. The solutions were annealed by
heating at 90 °C for 5 min and slowly cooling to room temperature
and then equilibrated at 4 °C for 24 h. The concentration of
oligonucleotides was determined by UV adsorption measurements at
90 °C using molar extinction coefficient values ε(260 nm) of 57 800 and
110 700 M−1 cm−1 for d(TGGGGT) and d(CGCGAATTCGCG),
respectively. The molar extinction coefficients were calculated by the
nearest neighbor model.29 Stock solutions of the investigated
compounds were prepared by solubilizing weighted amounts in
DMSO to a final concentration of 8 mM. The mixtures of the DNA
molecules and the compounds were prepared by diluting the ligand
stock solution into the DNA solution to get a final ligand/DNA molar
ratio of 4:1 and a final DMSO concentration of 7%. Dst was
solubilized in the same buffer used for the mixtures. ITC experiments
were performed at 298 K using a CSC 5300 Nano-ITC micro-
calorimeter from Calorimetry Science Inc. (Lindon, UT) with a cell
volume of 1 mL. The titrations were carried out in 10 mM phosphate
buffer, 70 mM KCl, 0.2 mM EDTA, 7% DMSO, pH 7. In each
experiment, volumes of 5−10 μL of Dst solution (360−720 μM) were
added into a 30 μM solution of DNA or DNA/ligand mixture, using a
computer-controlled 250 μL microsyringe, with a spacing of 200−400
s between each injection. Each titration was corrected by subtracting
the heat of Dst dilution. Where possible, integrated heat data obtained
for the titrations were fitted by employing a nonlinear least-squares
minimization algorithm to a theoretical titration curve, using the
Bindwork software from Calorimetry Science Inc.
Cells and Culture Conditions. Transformed human BJ fibroblasts

expressing hTERT and SV40 early region (BJ-HELT) and human
epithelial carcinoma cell line (HeLa) were obtained as previously
reported8 and grown in Dulbecco modified Eagle medium (D-MEM,
Invitrogen Carlsbad, CA, U.S.) supplemented with 10% fetal calf
serum, 2 mM L-glutamin, and antibiotics.
Immunofluorescence. Immunofluorescence was performed as

previously reported.30 Cells were fixed in 2% formaldehyde and
permeabilized in 0.25% Triton-X100 in PBS for 5 min at room
temperature. For immunolabeling experiments, cells were incubated
with primary antibody, then washed in PBS and incubated with the
secondary antibodies. The following primary antibodies were used:
pAb anti-TRF1 (Abcam Ltd.; Cambridge, U.K.); mAb anti-γH2AX
(Upstate; Lake Placid, NY). The following secondary antibodies were
used: TRITC conjugated goat anti-rabbit, FITC conjugated goat anti-
mouse (The Jackson Laboratory). Fluorescence signals were recorded
by using a Leica DMIRE2 microscope equipped with a Leica DFC
350FX camera and elaborated by a Leica FW4000 deconvolution
software (Leica, Solms, Germany).
Clonogenic Assay. HeLa cells were seeded in 60 mm Petri dishes

(Nunc, MasciaBrunelli, Milan, Italy) at a density of 5 × 102 cells per
dish and 24 h later exposed to different doses (ranging from 0.5 to 5

mM) of 2m. Cell colony-forming ability was determined as previously
described.30 All the experiments were repeated four times in triplicate.

Flow Cytometric Analysis. The cell cycle analysis was performed
by flow cytometry. Cells were washed in PBS and fixed in 70% ethanol
in PBS. 1 × 106 cells were centrifuged and resuspended in a staining
solution (50 μg/mL PI, 75 kU/mL RNase A in PBS) for 30 min at
room temperature in the dark and analyzed by flow cytometry using
FACScalibur (Becton-Dickinson, San Jose, CA, U.S.). For each
analysis 20 000 events were collected. Cell cycle distribution and
percentage of apoptotic cells were analyzed using Cell Quest (BDIS)
and ModFit LT (Verity Software House, Topsham, ME).

Evaluation of Apoptosis. Apoptosis was detected by flow
cytometric analysis of annexin V staining. Annexin V-FITC vs PI
assay (Vibrant apoptosis assay, V-13242, Molecular Probes, Eugene,
OR, U.S.) was performed as previously described.31 Briefly, adherent
cells were harvested and suspended in the annexin-binding buffer (1 ×
106 cells/mL). Thereafter, cells were incubated with annexin V-FITC
and PI for 15 min at room temperature in the dark and immediately
analyzed by flow cytometry. The data are presented as biparametric
dot plots showing PI red fluorescence vs annexin V-FITC green
fluorescence.

Senescence Analysis. Senescence-associated β-galactosidase (SA-
β-gal) staining on HeLa cells was performed as described by Dimri et
al.32 Briefly, after exposure with 3.5 μM 2m for 5 days to cell culture,
the cells were fixed with 2% glutaraldehyde in PBS for 5 min at room
temperature, washed in PBS, and incubated at 37 °C for 24 h in
staining solution: 1 mg/mL 5-bromo-4-chloro-3-indolyl-β-D-galacto-
side (X-gal), 5 mm potassium ferrocyanide, 5 mm potassium
ferricyanide, 2 mm MgCl2 in PBS, pH 6.0. Then cells were analyzed
using an optical microscope.

Statistical Analysis. The experiments have been repeated from
three to five times, and the results obtained are presented as the mean
± SD. Significant changes were assessed by using Student’s t test for
unpaired data, and P < 0.05 was considered significant.
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calorimetry; ALT, alternative lengthening of telomere; TIF,
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