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 Summary 

 

 

 Alkylating molecules are exogenous or endogenous chemicals commonly capable to 

modify nucleic acids in all living organisms causing dangerous and toxic effects. Several 

repair systems were developed by all organisms to avoid DNA alkylating modifications. In 

Escherichia coli AidB protein is involved in the adaptive response to alkylation stress in a still 

obscure fashion [1]. The same mechanism is also present in Mycobacterium tuberculosis 

(Mtb), the causing agent of tuberculosis. Human immune response usually targets bacterial 

systems which are essential for cells survival like DNA alkylating response [2]. All the 

Information concerning these mechanisms are deeply interesting objects in order to 

understand molecular mechanism of MTB infection and to lead the identification of new 

putative therapeutic drugs.  

 In this biological contest, the study of DNA alkylation response processes in E.coli and 

MTB was the main interest in this PhD thesis. The first part was principally addressed to 

obtain a comprehensive description of E.coli response to alkylation stress while the second 

part was entirely focused on the Mtb response to methylating molecules. Finally in the third 

part a new tandem MS approach was set up to detect and quantify methylating DNA 

extracted from complex matrices. A complete elucidation of DNA response to alkylation 

damages in E.coli, a model organism for all bacteria was performed. Proteomic approaches 

were designed in order to identify and functionally analyze all the proteins differentially 

expressed in the presence and in the absence of methylating molecules.  

 Subsequently the project focused on the exploration of MTB response to alkylation 

stress. Different clinical tubercular and not tubercular strains were treated with alkylating 

agents in order to analyze sensitivity and morphological alterations. The results obtained 

showed the occurrence of a DNA response mechanism in MTB similar to that found in E.coli. 

In silico investigations revealed the presence of FadE8, a putative DNA protection protein 

homologous to E.coli AidB. The corresponding gene was cloned in several plasmidic vectors 

and expressed in E.coli. The recombinant FadE8 protein was structurally and functionally 

characterized.         
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 A Multiple Reaction Monitoring (MRM) tandem MS procedure was used to 

qualitative and quantitative analyze DNA modifications. Through this approach E.coli and 

MTB systems were eventually compared and the functional roles of homologue proteins 

involved were highlighted. 
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 1. Alkylating stress and DNA response 

 

1.1 Alkylating molecules 

 

 Living organisms are continuously subjected to alkylating conditions caused by 

both endogenous and exogenous species. Biological macromolecules, containing a 

large number of nucleophilic sites including DNA, RNA, proteins and lipids are sensitive 

to electrophilic species permeating cellular defenses and then subjected to alkylation 

damages. Due to its cellular long half-life, its singular copy in a cell and its biological 

role, DNA is the most dangerous target for cells survival. Reactive species like radicals, 

one-electron oxidants and chemicals such as various nitrating and alkylating agents can 

affect genetic information [3]. Specifically, alkylating molecules are species having one 

or more alkyl group which can react with nucleophilic sites on DNA bases causing 

covalent modifications known as adducts [4]. The most reactive sites to be attacked by 

alkylating molecules are the ring nitrogens (N) and the extracyclic oxygen (O) atoms of 

DNA bases.  

 The chemical lesions pattern depends on the molecular characteristic of alkyl 

agents i.e. the number of reactive sites, the type of group added (methyl, chloroethyl, 

etc.) and its reactivity (type of nucleophilic substitution) [5].  Sometimes alkylating 

molecules are not directly reactive with DNA, because they are not electrophilic but 

they can become mutagenic upon metabolic activation. Notably, the cytochrome 

P450 superfamily of monooxygenases is a group of enzymes that catalyze the 

oxidation of organic substances such as  metabolic intermediates, as well as 

xenobiotic substances, drugs and other toxic chemicals. This system is capable to 

convert alkenes to electrophilic epoxides which may cause carcinogenic adducts [6]. As 

an example vinyl chloride an important industrial chemical commonly used in the 

production of polyvinyl chloride, is converted into chloroethylene oxide by cytochrome 

P450. This alkylating molecule is very unstable and it is transformed in the more stable 

chloroacetaldehyde (CAA) by chemical rearrangement as shown in Figure 1. CAA 

bifunctional alkylating agent produces etheno DNA adducts including 1,N6-

http://en.wikipedia.org/wiki/Xenobiotic
http://en.wikipedia.org/wiki/Toxic
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ethenoadenosine and 1,N2-ethenoguanosine which were shown to possess miscoding 

properties [7].  

 

 

Figure 1. Activation of vinyl chloride by metabolic action of cytochrome P450 and formation of 

ethenobases in vivo.    

 

 Alkylating agents containing one active chemical moiety can modify DNA in a 

single site while bifunctional species possessing two reactive groups can bind 

simultaneously two sites generating intra- or inter-strand crosslinks. Alkylating 

molecules can attack the DNA reactive groups according to both SN2 mechanism by 

targeting ring nitrogen atoms and SN1 mechanism modifying nitrogen and extra cyclic 

oxygen groups. Both mechanisms are schematically represented in Figure 2. Amongst 

alkylating species, monofunctional methylating agents induce preferentially the 

formation of N-7-methylguanine (7MeG) at a rate of 60-80% of the total alkylation 

lesions because of the high nucleophilic reactivity of the N7 position of guanine. Mono-

methylating agents can also produce N-3-methyladenine (3MeA) with an amount of 

10-20% of total methyl adducts. In addition oxygen at position 6 of guanine is the most 

reactive oxygen in DNA and it is modified by SN1 alkylating agent to form O6-

methylguanine (O6MeG). 
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Figure 2. Schematic mechanism of DNA alkylation through nucleophilic substitutions: B is the 

nucleophilic base while the leaving group is donated by the alkylating agent.   

 

 Other nitrogen and oxygen atoms in DNA are modified by methylating agents 

to produce mutagenic lesions at very low levels. A typical monofunctional methylating 

molecule is methyl methane sulfonate (MMS) reported in Figure 3. 

 

 

Figure 3. Methyl methane sulphonate chemical structure 

 

 7MeG and 3MeA are not directly mutagenic but they are hydrolytically unstable 

and undergo spontaneous depurination to produce apurinic sites. These sites can 

potentially cause transversion mutations (G-to-T for N 7-MeG and A-to-T for N 3-MeA). 

[8]. The most likely modified base positions and their dangerous implications are 

reported in Figure 4. 
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Figure 4. Base atoms usually modified by alkylating agent through nucleophilic substitution 

and their implication on cellular life.   

 

 Depending on their position DNA adducts can induce mutagenesis and/or cells 

death by blocking essential biological processes such as DNA replication and 

transcription [9]. Alkylated adducts can cause mutations by affecting DNA structural 

forces into two different ways: modification of the canonical Watson-Crick pairings and 

alteration in the strength of the hydrogen bonding, stacking and hydrophobic 

interactions. Causes of mutation are illustrated in Figure 5.   

 

 

 

Figure 5. DNA damages by reactive species cause mutations influencing both Watson-Crick 

pairings and secondary interactions. 
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 The study of alkylating molecules effects is interesting not only for the 

possibility of DNA damages but also for chemotherapeutics generated modifications. 

Indeed alkylating molecules are not only dangerous chemicals occurring in the 

environment but they are currently used as drugs in multiple anti-cancer therapies. 

The capacity of alkylating species to chemically modify DNA causing mutations is in fact 

used to target cancer cells more than normal cells. Cancer cell growing proceeds into 

two phases, graphically represented by Gompertz curve in Figure 6: an exponential 

phase followed by a plateau (similar to bacterial growing profile). As the tumor grows, 

cells inside lose afflux of oxygen so they reach necrosis until the size of tumor becomes 

constant with the same number of living and dead cells. As a consequence, alkylating 

agents have their mutagenic and cytotoxic effect more rapidly on fast growing cancer 

cells rather than normal cells [10].        

 

Figure 6. Gompertz curve representing tumor growing versus time increasing. 

 

 Most of the chemotherapeutic alkylating drugs used in anticancer 

chemotherapy are either monofunctional or bifunctional SN1 alkylating agents. One of 

the most common bifunctional alkylating molecules used in cancer chemotherapy is 

1,4-butanediol dimethanesulfonate known as busulfan, reported in Figure 7.  

 

 

Figure 7. Chemical structure of Busulfan, one of the most common anti-cancer drug. 
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This bifunctional alkylating agent contains two methanesulfonate groups linked by a 4-

carbon alkyl chain. Busulfan can be hydrolyzed to produce carbonium ions that can 

alkylate DNA [11]. 

  

 1.2 Analyses of DNA adducts 

 

 DNA adducts represent outstanding biomarkers to evaluate the amount of DNA 

damage and then to appreciate the complex mechanisms involved in carcinogenesis. 

Moreover quantification of DNA adducts is an important tool to estimate the extent of 

cancer risk linked to a particular chemical agent or process. Detection and 

quantification of a specific methylation profiles caused by a definite agent permit to 

obtain comparative information about damage extent and its evolution in time. For 

these reasons accurate quantitative and qualitative measurement of DNA modification 

is an interesting and essential information to investigate multiple cellular problems. 

 Analytical techniques commonly used to quantify DNA methylation comprise 

32P post-labeling, HPLC with UV, electrochemical or fluorescence detection, 

immunochemical methods, gas chromatography mass spectrometry and accelerated 

mass spectrometry [12]. One group is represented by more sensitive techniques such 

as 32P post-labeling and accelerated mass spectrometry while the other group 

comprise the most specific procedures like tandem mass spectrometry approaches 

coupled with liquid chromatography [13]. Despite lower sensitivity than the first group 

of techniques, mass spectrometry (MS) methodologies represent the most promising 

approaches for studying DNA modification. Indeed MS  applications improve every day 

thanks to technological advances to allow short run time, enhanced sensitivity and 

selectivity and less ion suppression [14].   

 Some recent analytical approaches are based on the coupling between HPLC 

and tandem mass spectrometry working in multiple reaction monitoring (MRM) [15]. 

This methodology is commonly based on the use of liquid chromatography interfaced 

to an electrospray ionization source and a triple quadrupole (QQQ) mass 

spectrometer, schematically represented in Figure 8.  

 

http://www.clinonc.com/content/drugdb/drug.cfm?DrugRef=552
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Figure 8. An MRM triple quadupole analyses is shown. HPLC injects directly in the ESI source to 

perform Multiple Reaction Monitoring for all the selected transitions.     

 

 In a QQQ mass spectrometer operating in Multiple Reaction Monitoring (MRM) 

mode, the analysis proceeds through a two steps mass filtering. In the first phase the 

precursor ion of interest is selected by the Q1 and induced to fragment in the collision 

cell (Q2). Fragmentation of the pre-selected ion occurs by collision induced 

dissociation (CID) using an inert gas. In the second phase the third quadrupole (Q3) is 

used to select only a small number of specific fragment ions. This approach allows a 

specific molecule to be monitored, identified and quantified in a complex mixture. Ion 

counts in fact are directly proportional to the concentration of species present in the 

sample and can be measured by using an internal standard or by applying an external 

calibration. As a consequence this targeted MS approach permits to obtain qualitative 

and quantitative analyses of modified DNA bases even in the presence of a large 

amount of unmodified nucleotides. DNA samples are digested by enzymes or 

chemicals to obtain a mix of free normal and modified nucleosides or bases and the 

mixture is directly analyzed by LC-MS/MS.        

 

 1.3 DNA alkylation response of Escherichia coli and Ada dependent 

 system  

 

 All cells developed several response systems in order to counteract damaging 

stress as a result of pro-mutagenicity, mutagenicity and cytotoxicity of alkyl lesions. 

Essentially, cells respond to these damages either repairing the DNA molecule or 

degrading the alkylating molecules. Proteins and RNAs are normally subjected to 

degradation and replacement pathways for their physiologic turnover in the cell. In 

case of damaged molecules, they can be replaced through new synthesis and only in 
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few and rare examples they are repaired rather than replenish with new molecules. In 

contrast genomic nucleic acid is a single copy molecule and its information is uniquely 

conserved. The only possible cellular choice is then to repair the DNA molecule 

following alkyl damages. Nevertheless, DNA alkylation lesions are often so extensive 

that cellular mechanisms are not capable to restore genetic information and the cell is 

driven to apoptotic pathways. In this way DNA and all the other cellular constituents 

are degraded in order to be used as simple building blocks minimizing damages to the 

entire organism [16].   

 Both multicellular, complex and unicellular simpler organisms have evolved 

multiple response mechanisms that can be essentially divided into four categories: 

direct repair mediated by methyltransferases or oxidative demethylases, base excision 

repair (BER) carried out by DNA glycosylases, mismatch repair system and nucleotide 

excision repair (NER) [17].  

The genetic responses to alkylation damages in Escherichia coli are schematically 

presented in Table 1. 

 

Genetic responses to DNA damage 

Stimulus Signal Sensor 
Regulatory 

protein 
Response 

UV damaged 

DNA 
Single stranded DNA RecA RecA* SOS 

Methyl 

damaged DNA 
Methylphosphotriesteres Ada meAda Adaptive 

Superoxide 
Superoxide and  

nitric acid 
SoxRS Oxidized SoxR 

Superoxide 

resistance 

Peroxide Peroxide OxyR Oxidized OxyR OxyR 

Table 1. Summary of E.coli stress responses  

 

 Cells respond fundamentally to two classes of signals: the presence of a 

damaging specie or a DNA lesion. The presence of one of these events can be 

recognized by a specific sensor protein that induces the transcription of a definite 

repair response [1]. Activation of regulatory sensor depends on the kind of protein 
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involved: SoxR  and  OxyR are activated directly by the DNA damaging agent, RecA by 

the DNA damage and Ada by its own repair activity. This last protein belong to the 

complex of adaptive response to alkylation damages of Escherichia coli. Ada working as 

bifunctional enzyme possesses  two cysteine residues that acts as methyl acceptor 

from methylated DNA: the first one is required to demethylate 

phosphomethyltriesters in the sugar phosphate backbone and the second one to 

remove methyl groups from either O6-methylguanine or O4-methylthymine. Both sites 

can be methylated from the specific substrates but only methylation by phosphates 

produces Ada conformational changes that induce the transcriptional regulator activity 

of the protein. Even though methylated phosphates are less dangerous than other 

lesions, these sites are the most quickly modified by methylating agents and thereby 

represent a sensitive regulatory signal leading to Ada operon induction. As a 

consequence, in the presence of sub-lethal concentrations of alkylating agents, E.coli 

enhances cellular response with increasing doses of damaging molecules. This 

mechanism known as the adaptive response consists of four genes included in the ada 

operon: ada, alkA, alkB and aidB as schematized in Figure 9.              

 

 

Figure 9. E.coli adaptive response to alkylation damages  
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 AlkA protein is a glycosylase that repair several damages such as N7-

methylguanine and N3-methyl purines and O2-methyl pyrimidines. The mechanism of 

action comprises the removal of a damaged base from the sugar phosphate backbone 

through cleavage of the glycosylic bond leading to an abasic site.    

 AlkB protein is an oxidative demethylase capable of removing 1-methyladenine 

and 3-methylcytosine from DNA using an α ketoglutarate/Fe(II)-dependent mechanism 

coupled with the release of CO2, succinate and formaldehyde. Despite the large 

amount of available data, the function of AidB is still obscure and it will be discussed 

below.    

 In human cells the alkyltransferase expressed by MGMT presents a similar 

sequence to Ada and it is capable to remove alkyl adducts from O6 methylguanine in 

contrast to bacterial protein. AlkB has 9 different homologues in human cells capable 

to repair RNA, single strand and double strands DNA and presenting similar fold to the 

bacterial protein [18]. 

Definitely Ada, AlkA and AlkB show one or more homologs proteins in humans, all 

involved in DNA repair processes whereas no homologous of AidB have been reported 

so far.     

  

 1.4 AidB protein 

 

 Acyl-CoA dehydrogenase AidB is the fourth protein involved in the Ada 

depending adaptive response of E.coli. Crystal structure reveals a homotetrameric 

organization associated as a dimer of dimers having identical DNA binding surfaces at 

the interface. Each subunit consists of two domains, the N-terminal region containing 

the dehydrogenase enzymatic site able to bind the FAD molecule and a positively 

charged C-terminal domain exhibiting DNA binding capability. The dehydrogenase activity 

binding site is smaller than typical acyl-CoA dehydrogenase and it presumably can 

accommodate different substrates [19]. In addition, the N-terminal domain of AidB 

shows an activity versus isovaleryl-CoA substrate about two orders of magnitude lower 

than human acyl-CoA dehydrogenase supporting the hypothesis that fatty acyl-CoAs 

are too large to fit the AidB active site and cannot represent its specific substrate [20].    
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 Other structural experiments demonstrate that the presence of a FAD molecule 

is essential for the correct tetramerization of AidB otherwise deflavinated AidB is 

dimeric [21].  

 Recent work elucidated the ability of AidB to bind not only single and double 

strands DNA but also RNA suggesting the possible involvement of the protein in RNA 

defense mechanisms [22].  

 Our previous data demonstrated that AidB prevents DNA damage by alkylating 

agents and counteracts the block to transcription resulting from exposure to alkylating 

agents, preferentially acting on genes that are transcribed from promoters containing 

upstream (UP) elements. These protection effects were observed after treatment with 

MMS, MNNG and ENNG, three alkylating agents that produce different DNA lesions. 

Preventing of ENNG damage is especially interesting since ENNG lesions are repaired 

not only by the adaptive response system, but also by nucleotide excision repair in E. 

coli. Additionally, in the presence of methylating agents, AidB allows efficient 

transcription from UP element [2]. Therefore, unlike all the other protein belonging to 

the adaptive response, AidB might elicit a putative pathway of degradation of 

alkylating agents through its FAD dependent dehydrogenase activity. Alternatively, 

AidB might protect these DNA regions by physically interact with them thus impairing 

the dangerous action of alkylating agents. 

 The transcription of aidb gene under normal conditions of growth in the 

presence of oxygen is induced by Ada protein but in contrast to other adaptive 

response genes, it is also activated without alkylation stress as a result of anaerobic 

conditions or pH alteration. Moreover this gene is regulated by the universal 

anaerobiosis protein Fnr during anaerobic culturing with an increasing in the aidB 

expression. However in the presence of nitric oxide an extensive inhibition of 

expression is observed during  incubation  under  anaerobic  but  not  aerobic 

conditions [23].  
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2. Alkylation and tuberculosis  

 

2.1 Tuberculosis overview 

 

 Alkylation response mechanisms are widespread in the majority of bacteria 

including Mycobacterium tuberculosis. This pathogenic bacterium causes the 

tuberculosis disease also known as the White Plague, one of the most ancient infection 

in the world. The earliest finding of mycobacterial traces infecting animals is dated at 

17000 years before present, whereas the origin of tuberculosis infected humans is 

probably restricted to 4000-3000 BC [24]. In ancient Greece, pulmonary tuberculosis 

was broadly diffused and called Phthisis a Greek word for consumption. Around 460 BC 

Hippocrates described tubercular manifestations involving fever and the coughing up 

of blood, almost always fatal. In the 1800s sanatoria, medical facilities for long term 

illness, opened in association with treatment of tuberculosis but only in 1882 Robert 

Koch identified in M.tuberculosis the unique causative agent of the disease.                 

 In the 1943, Schatz Waksman and colleagues identified streptomycin and they 

demonstrated its  efficacy  against  tuberculosis  in humans, leading to the “era” of 

antibiotic treatment of this bacterial infection [25].  

 

Figure 10. Historical events most important in tuberculosis infection diffusion.  



Chapter 1: Introduction 
 

16 
 

 However, due to the large use of this antibacterial drugs, in few decades drug 

resistant mycobacterium strains developed during antibiotics treatments. Synthetic 

drugs such as isoniazid, pyrazinimide, ethambutol and rifampicin were then used in 

combined administration to prevent drug resistant strains appearance. This treatment 

caused the decline of disease in industrialized countries while tuberculosis persisted in 

the third world regions  such as Africa, Asia and Latin America [26]. In 1993 World 

Health Organization (WHO) declared tuberculosis a global public health emergency 

due to failures in health services, the diffusion of HIV/AIDS infection and appearance of 

multi-drug-resistant (MDR) strains [27]. 

 Nowadays the increase of human migration and the development of 

extensively drug-resistant (XDR) strains led to a more dangerous context. 

Approximately 2 million people infected died each year and WHO estimates that 

between 2002 and 2020 approximately 1000 million people will be infected, 150 

million people will become sick and 36 million will die of tuberculosis [28]. 

  

 

2.2 Mycobacterial infection and current therapies  

 

 Tuberculosis infection starts when bacteria are transported through the air and 

inhaled by an host organism. In this situation, MTB can incur into three different 

destinies depending on the host immune response, as shown in Figure 11.  

 

 

Figure 11. Tuberculosis infection schematization. 
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 If the host’s immune response is healthy enough to eradicate bacteria, a 

complete clearance of MTB will happen. If the immune response is compromised, MTB 

can replicate to cause a clinical disease called primary tuberculosis. Finally if the 

immune response is not able to strongly counteract bacterial invasion, MTB cells are 

confined within macrophages where they inhibit their fusion with lysosomes. In this 

site numerous types of cells such as lymphocytes, monocytes and neutrophils are 

engaged forming granuloma, a latent infection status without evident clinical 

manifestations. This phase can produce the so called post primary tuberculosis [29].   

 Current treatments against tuberculosis infection depends on the type of 

disease. Drug susceptible tuberculosis is treated with a combination of isoniazid, 

rifampicin, pyrazinamide and ethambutol (first-line drugs) for a period of six months. 

Multiple drug resistant tuberculosis strains are unaffected by at least isoniazid and 

rifampicin while extensively drug-resistant strains are cannot be treated with first and 

most part of the second line drugs and they cause an high rate of mortality [30]. The 

suggested procedure for resistant tuberculosis is a combination of at least four drugs 

choosing stepwise selection process [31].  

 

 

 2.3 Mycobacterium tuberculosis and alkylation response 

 

 The appearance of drug resistant strains depends on the MTB capacity of 

adaptation to host environment and drugs treatments. Mutations in bacteria can be 

subordinated to selective pressure, horizontal gene transfer or recombination 

processes [32]. Macrophages defense human organisms at the same time by 

generating reactive species (oxygen and nitrogen classes), by changing pH, etc. In 

addition during detoxification processes, cellular components damaged by reactive 

species can be transformed in damaging molecules indirectly causing further damages 

to DNA [33]. 

 Thereby, investigation of the mechanisms involved in DNA repair and 

protection is extremely interesting in the tuberculosis context because of their 

involvement in the drug resistant development. Moreover, proteins involved in these 

mechanisms represent excellent therapeutic targets because of the fundamental role 
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they play in bacterial survival and due to the absence of homologues in humans [34, 

35].     

 The knowledge about MTB response systems to DNA alkylation is still poor 

because of experimental difficulties linked with pathogen slow-growing capability and 

most of the hypotheses formulated arise from homology studies. Nucleotide excision 

repair (NER), base excision repair (BER), recombination and SOS repair system genes 

were recognized in the MTB genome while mismatch repair (MMR) mechanism 

components could not be identified [36]. Recently the ada operon of MTB was 

preliminary characterized and AdaA, AlkA, AdaB/Ogt proteins were recombinantly 

expressed. Mingyi Yang et colleagues have demonstrated an effect of mutagenic but 

not cytotoxic inhibition executed by ada operon [37]. In contrast no literature data 

about AidB homologue in M.tuberculosis have been reported.         
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3. Aims 

 

 Alkylating molecules are exogenous or endogenous chemicals commonly 

capable to modify nucleic acids in all living organisms. DNA response mechanisms to 

alkylation damages are interesting target due to dangerous and often toxic effects 

caused to cellular life. Amongst alkylating species, monofunctional methylating agents 

such as methyl methane sulphonate preferentially induce the formation of 7MeG, 

3MeA and O6MeG. Alkyl modifications are usually used as biomarkers and they are 

monitored by using several techniques such as 32P post-labeling and tandem mass 

spectrometry coupled with liquid chromatography.  

 Usually all organisms have developed several repair systems to counteract DNA 

alkylating modifications. In Escherichia coli AidB protein is involved in the adaptive 

response to alkylation stress in a still obscure fashion. The same mechanism is also 

present in the Mycobacterium tuberculosis, causing agent of tuberculosis. Host 

immune response usually defends humans by attacking bacterial systems which are 

essential for cells survival like the DNA alkylating response. A deep understanding of 

these mechanisms is then extremely important in order to identify new therapeutic 

drugs that might lead to novel therapeutic strategies against tuberculosis.  

 In this biological contest, the study of DNA alkylation response processes in 

E.coli and M.tuberculosis was the main interest of this PhD thesis. The first part was 

principally addressed to complete the description of E.coli response to alkylation 

stress, while the second part was entirely focused on the MTB response to methylating 

molecules and finally in the third part a new tandem mass spectrometry approach was 

developed to detect and quantify methylating DNA extracted from bacterial cells upon 

dangerous effect.      

 In the first part a complete elucidation of DNA response to alkylation damages 

of E.coli was pursued because it represents a model organisms for all bacteria. This 

goal was achieved by using a proteomic approach in order to identify and functional 

analyze all the proteins differentially expressed in the presence and in the absence of 

methylating molecules. After that, a deep examination on the effects of methylating 

agents on cell-cell interactions was performed.  
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 The second point of this thesis was focused on the exploration of MTB response 

to alkylation stress. Different clinical tubercular and non-tubercular strains were 

treated with alkylating agents in order to analyze sensitivity to stress conditions and 

morphological alterations. Observed effects on MTB cells suggested us to search for an 

AidB homologue, that was identified as the FadE8 protein in silico. The corresponding 

gene was cloned in several plamidic vectors and then expressed in E.coli. The FadE8 

protein was structurally and functionally characterized.         

 In the third part a Multiple Reaction Monitoring (MRM) tandem MS 

methodology was developed as a powerful tool to qualitative and quantitative analyze 

DNA modifications. Through this approach E.coli and MTB systems were eventually 

compared and the functional roles of homologues proteins involved were highlighted.       
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1. Identification of AidB molecular partners 

 

1.1 Escherichia coli Growths and Cell Extraction Preparation 

 

 E. coli cells growths were transformed with the construct pET22b-AidB. 

Bacterial culture was grown overnight in LB medium at 37 °C and it was diluted 1:100 

in fresh medium containing ampicillin (100 µg/mL) and riboflavin (100 µM). At an A600 

nm of 0.4, the culture was divided in two aliquots and one of these was supplemented 

with 0.04% MMS (methyl methane sulfonate) that has been shown to induce the 

adaptive response. After one cell duplication cellular pellets were collected. The cells 

were resuspended in 20 mM Na2HPO4, 20 mM Imidazole, 500 mM NaCl, 1 mM PMSF 

(phenil methane sulphonyl fluoride) (pH = 7.4), disrupted by passage through a french 

press and centrifuged at centrifugal force of 14,000 x g for 15 min at 4 °C. The 

supernatant was collected and protein concentration was determined with the Bio-Rad 

protein assay, using bovine serum albumine as standard.  

 

1.2 Pull-Down Experiments 

 

 Isolation of AidB partners complex was performed by using His-SelectTM Nickel 

(Sigma) containing Ni2+ ions immobilized to bind His-tagged AidB. A control was 

carried out in order to discriminate between proteins that interact specifically with the 

Ni2+ compared to those that bind in a nonspecific manner to the resin. For this reason, 

the stripping of the resin was executed by washing in 20 mM sodium phosphate, 0.5 M 

NaCl and 50 mM EDTA, for the purpose of removing Ni2+ ions. In this way, the resin 

lost the ability to interact specifically with the tag of histidines, but it was still able to 

establish nonspecific interactions. At this point, the resin was washed with 20 mM 

sodium phosphate, 0.5 M NaCl and 20 mM imidazole pH 7.4. The two protein extracts 

(2.5 mg) were incubated for 16 h at 4 °C with 100 μL of resin without nickel ions in the 

precleaning step. The extracts were then recovered and incubated with His-SelectTM 
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Nickel resin for 16 h at 4 °C to bind AidB by tag of histidines and to isolate its 

complexes. Both the precleaning and affinity chromatography resins were recovered 

and washed with 20 mM sodium phosphate, 0.5 M NaCl and 20 mM imidazole pH 7.4. 

The elution was performed with sample buffer. The samples were then subjected to 

SDS-PAGE (SDS-polyacrilamide gel electrophoresis). 

 

1.3 In Situ Digestion and LC-MS/MS Analyses 

 

 Protein bands stained with Coomassie brilliant blue were excised from the gel 

and destained by repetitive washes with 0.1 M NH4HCO3 (pH 7.5) and acetonitrile. 

Samples were reduced by incubation with 50 µL of 10 mM DTT in 0.1 M NH4HCO3 

buffer (pH 7.5) and alkylated with 50 µL of 55 mM iodoacetamide in the same buffer. 

Enzymatic digestion was carried out with trypsin (12.5 ng/µL) in 10 mM ammonium 

bicarbonate (pH 7.8). Gel pieces were incubated at 4 °C for 2 h. Trypsin solution was 

then removed and a new aliquot of the digestion solution was added; samples were 

incubated for 18 h at 37 °C. A minimum reaction volume was used as to obtain the 

complete rehydratation of the gel. Peptides were then extracted by washing the gel 

particles with 10 mM ammonium bicarbonate and 1% formic acid in 50% acetonitrile 

at room temperature. 

 Tryptic peptide mixtures obtained from in situ digestions were analysed by 

LC/MS/MS using an HPLC-Chip/Q-TOF 6520 (Agilent Technologies). 

The peptide mixtures were injected by auto sampler. They were sent to the 

enrichment column of the chip at flow rate of 4 μL/min, in 98% water, 2% acetonitrile 

and 0.1% formic acid. Subsequently the peptides were eluted directly into the capillary 

column (C18 reversed phase), at a flow rate of 0.4 μL/min. The chromatographic 

separation was carried out with a linear gradient in 95% acetonitrile, 5% water and 

0.1% formic acid. The eluate was then introduced in the ESI source for the tandem 

analysis. In this way each mass spectrum (range 300-2,400 m/z) was followed by one 

or more tandem mass spectra (range 100-2,000 m/z), obtained by fragmenting the 

most intense ions in each fraction eluted chromatographic. 
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 The acquired MS/MS spectra were transformed in Mascot generic file format 

and used for peptides identification with a licensed version of MASCOT (modular 

approach to software construction, operation and test, matrix science, USA), in a local 

database. 

 

1.4 Construction of expression vectors, production and purification 

of recombinant proteins 

 

 The UvrA, DeaD, RecA, TnaA and Ada genes of E. coli K12 were amplified from 

genomic DNA by PCR (polymerase chain reaction). To obtain proteins tagged with c-

myc epitope, the corresponding amplification products were digested with BamHI and 

XhoI and cloned into the pET22b-c-myc vector [4], respectively. All plasmids containing 

the coding sequence for the corresponding recombinant protein fused to a 6X histidine 

tag to facilitate protein purification by Ni2+ affinity chromatography. Plasmids 

construction was verified by automated DNA sequencing. 

 Recombinant cells were grown at 37 °C to an OD (optical density) at 600 nm of 

about 0.5, at which time 0.05 mM isopropyl-beta-D-thiogalactopyranoside (IPTG) was 

added in order to express UvrA, DeaD, RecA, TnaA and Ada genes. Selective antibiotic 

was used at concentration of 100 µg/mL ampicillin. After incubation, cells were 

harvested by centrifugation at centrifugal force of 5,000 x g for 15 min at 4 °C, 

resuspended in 50 mM Na2HPO4, 20 mM Imidazole, 500 mM NaCl, 1 mM PMSF (pH 

7.4), disrupted by passage through a French press and centrifuged at centrifugal force 

of 14,000 x g for 30 min at 4 °C.  

 Recombinant proteins were purified by affinity chromatography on His-Select 

Nickel Affinity Gel (Sigma). After 1 min of incubation at 4 °C, the matrix was collected 

by centrifugation at centrifugal force of 11,000 x g for 1 min and washed three times 

with same equilibration buffer. The recombinant proteins were eluted with buffer 

containing 500 mM imidazole in 20 mM Na2HPO4, pH 7.4, 0.5 M NaCl. Protein 

concentration was estimated with Bradford reagent (Bio-Rad protein assay) and 

protein content was checked by SDS-PAGE. 
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1.5 Co-immunoprecipitation and Western Blotting 

 

 For co-immunoprecipitations, E. coli strain C41 (DE3) was transformed with the 

following constructs: pET22b-c-myc-Ada, pET22b-c-myc-TnaA, pET22b-c-myc-DeaD, 

pET22b-c-myc-RecA and pET22b-c-myc-UvrA. After expression of the recombinant 

genes without induction, cells were harvested, suspended in 50 mM Na2HPO4 (pH 7.4), 

disrupted by passage through a French press and centrifuged at centrifugal force of 

14,000 x g for 30 min at 4 °C. The supernatants were used for the co-

immunoprecipitation experiments.  

 Cell lysates (0.5 mg) were incubated with agarose-linked c-myc antibody 

(Bethyl) and with agarose beads only (control of the experiment) at 4°C overnight. The 

beads were then collected by centrifugation. Precipitates were washed several times, 

the bound proteins were eluted with 1 × SDS-PAGE sample buffer and subjected to 

SDS-PAGE followed by Western Blot Analysis that was performed by using anti-AidB 

antibody (Primm, Milano Italy) and anti-c-myc mouse antibody (Calbiochem) as first 

antibodies and anti-mouse IgG conjugated to peroxidase as a secondary antibody 

(Calbiochem). 

 

 2. DIGE analyses 

 

 2.1 Escherichia coli growths  

  

MV1161 and ΔaidB cells were grown overnight in LB medium at 37 °C and they were 

diluted 1:100 in fresh medium containing 5μg/mL tetracycline (only for ΔaidB). At an 

A600 nm of 0.4, the cultures were divided in two aliquots and one of these was 

supplemented with 0.04% MMS (methyl methane sulfonate) or Busulfan. Cell debris 

was removed by centrifugation at 14,000 rpm at 4 °C for 30 min. The cell lysate 

supernatant was precipitated using a 2D clean up kit (GE Healthcare, Piscataway, NJ) 

and suspended in 100 μL 7 M urea, 2 M thiourea, 30 mM Tris-HCl pH 8.5, 4% CHAPS 

(w/v).  
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 2.2 2D DIGE and image analysis 

 

 50 μg of lysates were labeled with 400 pmol of Cy3 or Cy5. Each Cy3/Cy5-

labeled sample pair was mixed with a Cy2-labeled pooled standard sample containing 

an equal amount of all samples analyzed. The Cy2/Cy3/Cy5 labeled samples were run 

together on the same gel. Samples were fractionated on 18 cm IPG strips with 3–11NL, 

3–5.6, 4–7 and 6–11 pH ranges. IPG strips were rehydrated, in the absence of protein 

samples, with 350 μL of rehydration buffer (350 μL DeStreak rehydration solution, 

0.5% Pharmalyte and 0.5% IPG buffer) overnight at room temperature. The IPG strips 

were focused for 18h for a total of 60kV/h at 20 °C. Then, proteins were reduced with 

an equilibration buffer (6 M urea, 100 mM Tris pH 8.0, 30% glycerol (v/v), 2% SDS) 

containing 0.5% DTT for 15 min. Finally, proteins were alkylated for the same time with 

the buffer containing 4.5% IAA. After the equilibration step, the strips were over 

layered onto 10% polyacrylamide gels (20 × 24 cm). The second dimension was carried 

out for 18 h at 2W per gel using an Ettan Dalt Twelve system (GE Healthcare, 

Piscataway, NJ).  

 After electrophoresis, gels were scanned in a Typhoon 9400 scanner (GE 

Healthcare, Piscataway, NJ). The images labeled with Cy2, Cy3 and Cy5 were acquired 

at excitation/emission values of 488/520, 532/580, 633/670nm, respectively.  

Images were analyzed with the Decyder software version 5.2 (GE Healthcare, 

Piscataway, NJ) in batch processing mode. The maximum number of estimated spots 

per gel was fixed at 5000. Detection and quantification of protein spots were carried 

out by the differential in-gel (DIA) module, whereas protein-spot matching between 

different gels was obtained using the biological variation analysis (BVA) module. The 

DIA module was used for pairwise comparison of each sample (Cy3 and Cy5) with the 

Cy2 mixed standard present in each gel. In addition, DIA was used to detect spot 

boundaries and to calculate spot volume, normalized versus the volume of the 

corresponding spot present in the pool standard of the same gel. This analysis revealed 

the differentially expressed protein spots across six gels. The results from the intragel 

comparison for all dyes were imported into the BVA module. The Cy2 image containing 

the highest number of spots was designated the “master image” and used as template. 

 The protein spots belonging to the remaining internal standard images were 
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automatically matched with “master image”. Each spot intensity was then expressed 

as a mean value of the 6 gels, reducing intergel variation. Spot intensities were then 

compared in the two conditions: cell lines expressing TBX1 and control cells. Statistical 

significance of differences in spot intensity was determined with Student’s t test. Only 

protein spots with a change in size of at least 1.20 fold (t test: p ≤ 0.05) after 

normalization were considered significantly altered. We verified the validity of these 

changes and accuracy of spot matching by manual inspection of gels. 

 

 2.3 LC-MS/MS (Liquid Chromatography Tandem Mass Spectrometry) 

 Analyses 

  

Tryptic peptide mixtures obtained from in situ digestions were analysed by LC/MS/MS 

using an HPLC-Chip/Q-TOF 6520 (Agilent Technologies). The peptide mixtures were 

injected by auto sampler. They were sent to the enrichment column of the chip at flow 

rate of 4 μL/min, in 98% water, 2% acetonitrile and 0.1% formic acid. Subsequently the 

peptides were eluted directly into the capillary column (C18 reversed phase), at a flow 

rate of 0.4 μL/min. The chromatographic separation was carried out with a linear 

gradient in 95% acetonitrile, 5% water and 0.1% formic acid. The eluate was then 

introduced in the ESI source for the tandem analysis. In this way each mass spectrum 

(range 300-2,400 m/z) was followed by one or more tandem mass spectra (range 100-

2,000 m/z), obtained by fragmenting the most intense ions in each fraction eluted 

chromatographic. The acquired MS/MS spectra were transformed in Mascot generic 

file format and used for peptides identification with a licensed version of MASCOT 

(modular approach to software construction, operation and test, matrix science, USA), 

in a local database. 
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3. Biofilm production and Adhesion capability  

 

3.1 Static biofilm assay 

  

 The wells of a sterile 96-well flat-bottomed polystyrene plate (Falcon) were 

filled with 90 mL of the appropriate medium containing or not containing the 

inhibitors. 10 mL of overnight bacterial cultures grown in LB was added into each well. 

The plates were incubated aerobically with or without the enzyme for 24 h at 37 °C in 

the presence of either 0.04% MMS or Busulfan. Growth was monitored by measuring 

the OD600, and after 24 h incubation the ability of the E.coli strain to adhere to the 

polystyrene plates was tested. The content of the plates was then poured off and the 

wells washed with sterile distilled water. The plates were then stained with crystal 

violet for 5 min. Excess stain was rinsed off by placing the plate under running tap 

water. After the plates were air dried, the dye bound to the adherent cells was 

solubilized with 20% (v/v) glacial acetic acid and 80% (v/v) ethanol per well. The OD of 

each well was measured at 590 nm.  

 

3.2 Invasion assay 

 

 HeLa cells, cultured in 24-well plates, were infected with 0.05 mL of 

logarithmically grown bacteria in the presence or in the absence of MMS as above 

described. The entry of MMS was tested by infecting cells for 1 h at 37 °C at an MOI of 

about 10 bacteria per cell. After incubation, the monolayers were washed with PBS 

and 0.5 mL of fresh medium containing 200 mg/mL of gentamicin was added to each 

well and maintained for 1 h at 37 °C to kill extracellular bacteria. Cells were then lysed 

by the addition of 0.025% Triton X-100 and plated on LB to count viable intracellular 

bacteria.  

 

 

 



Chapter 2: Experimental Section 
 

29 
 

 3.3 Adhesion assays 

  

Bacteria from 18 h cultures in BHI broth, grown in the absence of MMS were further 

subcultured up to OD600 of 0.5 at 37 °C in BHI with or without MMS 0.04%. HeLa cells, 

cultured in 24-well plates (Falcon) to obtain semi-confluent monolayers (1x105 

cells/well) were then inoculated with 0.05 mL of bacterial suspensions in logarithmic-

phase growth at an MOI of about 10 bacteria per cell. The adhesion assay was carried 

out by keeping cells and bacteria in contact for 1 h at 37 C. Loosely bound bacteria 

were removed from the cell monolayers by two washes with PBS. The cells were then 

lysed with 0.025% Triton X-100 and plated on LB agar to determine viable adherent 

bacteria. Adhesion efficiency was expressed as the percentage of the inoculated 

bacteria that adhered to HeLa cells. 

 

4. Mycobacterial growths 

 

 4.1 M. smegmatis growths 

  

 Wild type cells were grown 3 days in LB medium at 37 °C and they were diluted 

1:100 in fresh medium containing 100μg/mL ampicillin, 0.05% tween 80. At an A600 

nm of 0.4, the cultures were divided in aliquots and one of these was manteined as the 

untreated control while the others were supplemented with MMS or Busulfan in a 

0.01-0.1% w/v range and the viability of bacterial cultures was monitored for 24 hs.  

Growing profiles were obtained by monitoring cells for 35 hours. 

 

 4.2 MTB growths 

  

 Materials and Reagents used are following listed: Middlebrook 7H9 powder 

(Sigma), Middlebrook 7H11 powder (Sigma), Middlebrook, OADC Enrichment (Sigma), 

BD TB Quick Stain kit (BD Biosciences). 

 Culture were performed in 7H9 liquid medium. 1 frozen vial of 1 ml (450 

million) MTB was suspended in 20 ml 7H9 liquid medium in T75 flask, culture 
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horizontally in incubator humidified at 37 °C without CO2 for 14 days. OD at 600nm 

was measured every 48 hours. 0.03%, 0.015% MMS and reference concentration drug 

were singularly added on day 8. Viable MTB were counted by plating bacterial 

suspensions at different dilutions on Middlebrook 7H11 agar plates supplemented 

with OADC and counting colonies after two weeks.  

 Cells detection was performed by Ziehl-Neelsen acid-fast staining. 10 μl MTB 

culture were pipetted on glass microsopye slide, heated on top of bunsen flame until it 

totally dried to fix the bacteria. The slide was flood with carbol fuchsin stain and 

heated gently until it steams (about 5 min). The carbol fuchsin was poured off and the 

slide was washed thoroughly with tap water (about 5 min). Sample was decolorized 

with  acid-alcohol (5 min). The slide was washed thoroughly with tap water (5 min) and 

flooded with methylene blue counterstain for 1 min. The slide was washed with tap 

water. 

 

 4.3 Construction of expression vectors 

 

 The fadE8 gene of M. tuberculosis was amplified from genomic DNA by PCR. To 

obtain protein tagged with c-myc epitope, the corresponding amplification product 

was digested with BamHI and XhoI and cloned into the pET22b-c-myc vector. Plasmid 

containing the coding sequence for the corresponding recombinant protein fused to a 

6X histidine tag to facilitate protein purification by Ni2+ affinity chromatography. 

Plasmids construction was verified by automated DNA sequencing. 

The aidB gene of E. coli K12 was amplified from genomic DNA by PCR (polymerase 

chain reaction). Amplification product and fadE8 gene were digested and cloned into 

the pTRC99a vector. 

 

 4.4 Production and purification of recombinant FadE8 

 

 Bacterial culture was grown overnight in LB medium at 37 °C and it was diluted 

1:100 in fresh medium containing ampicillin (100 µg/mL) and riboflavin (100 µM). 

Recombinant cells were grown at 25 °C to an OD (optical density) at 600 nm of about 
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0.5, at which time 0.05 mM isopropyl-beta-D-thiogalactopyranoside (IPTG) was added 

in order to express fadE8 gene. After 16 hours of incubation, cells were harvested by 

centrifugation at centrifugal force of 5,000 x g for 15 min at 4 °C, resuspended in 50 

mM Na2HPO4, 20 mM Imidazole, 500 mM NaCl, 1 mM PMSF (pH 7.4), disrupted by 

passage through a French press and centrifuged at centrifugal force of 14,000 x g for 

30 min at 4 °C. Recombinant protein was purified by affinity chromatography on His-

Select Nickel Affinity Gel (Sigma). After 1 min of incubation at 4 °C, the matrix was 

collected by centrifugation at centrifugal force of 11,000 x g for 1 min and washed 

three times with same equilibration buffer. The recombinant proteins were eluted 

with buffer containing 500 mM imidazole in 20 mM Na2HPO4, pH 7.4, 0.5 M NaCl.  

Protein concentration was estimated with Bradford reagent (Bio-Rad protein assay). 

 

 4.5 Isovaleryl-CoA dehydrogenase activity assay. 

 

 Isovaleryl-CoA dehydrogenase activity assays were carried out at room 

temperature in 200 mM phosphate buffer, pH 8.0, and using purified recombinant 

proteins that had been dialyzed to remove imidazole. For routine assays, 2 mM 

isovaleryl-CoA (Sigma) was used as the substrate and 0.1 mM 2,6-

dichlorophenolindophenol (DCPIP) was used as the terminal electron acceptor in a 

final volume of 300 μl. The change in absorbance at 600 nm was monitored by using a 

Beckman DU 7500 spectrophotometer, and the enzyme activity was calculated by 

assuming an extinction coefficient of 20.6 mM−1 cm−1 for DCPIP [38]. 

 

 4.6 Electrophoretic shift mobility assays. 

 

 Biotin-labeled DNA probes (fragments UP35 PaidB, UP35 Pada, UP35 PalkA, 

Neg PaidB) were used. Sense and antisense oligonucleotides were annealed by 

incubation at 95 ◦C for 5 min and successive gradual cooling to room temperature. 

Purified recombinant FadE8 was incubated with the probes for 20 min at room 

temperature in 20 µl of buffer Z (25 mM HEPES pH 7.6, 50 mM KCl, 12.5 mM MgCl2, 1 

mM DTT, 20% glycerol, 0.1% triton). Protein–DNA complexes were separated on 5% 
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native polyacrylamide gel (29:1 cross-linking ratio) in 0.5 × TBE (45 mM Tris pH 8.0, 45 

mM boric acid, 1 mM EDTA) at 200 V (20 V/cm) at room temperature. Afterwards, 

electrophoretic transfer to a nylon membrane was carried out in 0.5 × TBE at 380 mA 

for 45 min, and the transferred DNA was cross-linked to the membrane with UV light. 

After incubation in blocking buffer for 1 h at room temperature, the membrane was 

incubated with streptavidin–HRP conjugate (Sigma) for 30 min at room temperature. 

The membrane was washed and visualized with SuperSignal chemiluminescence 

reagent (Pierce).  

 

 5. Ethenobases analyses 

  

 5.1 DNA extraction  

  

 1 ml cell suspension was centrifuged at 8000g for 2 min. After removing the 

supernatant, the cells were washed with 400 μl STE Buffer (100 mM NaCl, 10 mM 

Tris/HCl, 1 mM EDTA, pH 8.0) twice. Then the cells were centrifuged at 8000g for 2 

min. The pellets were resuspended in 200 μl TE buffer (10 mM Tris/HCl, 1 mM EDTA, 

pH 8.0). Then 100 μl Tris-saturated phenol (pH 8.0) was added to these tubes, followed 

by a vortex-mixing step of 60 s for bacteria, to lyse cells. The samples were 

subsequently centrifuged at 13 000g for 5 min at 4°C to separate the aqueous phase 

from the organic phase. 160 μl upper aqueous phase was transferred to a clean 1.5 ml 

tube. 40 μl TE buffer was added to make 200 μl and mixed with 100 µl chloroform and 

centrifuged for 5 min at 13 000g at 4°C. 160 μl upper aqueous phase was transferred 

to a clean 1.5 ml tube. 40 μl TE and 5 μl RNase (10 mg/ml) were added and incubated 

at 37 °C for 10 min to digest RNA. Then 100 µl chloroform was added to the tube, 

mixed well and centrifuged for 5 min at 13 000g at 4 °C. 150 ll upper aqueous phase 

was transferred to a clean 1.5 ml tube. The aqueous phase contained purified DNA and 

was directly used for the subsequent experiments or stored at -20°C. The purity and 

yield of the DNA were assessed spectrophotometrically by calculating the A260/A280 

ratios and the A260 values to determine protein impurities and DNA concentrations 
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(Extremely rapid extraction of DNA from bacteria and yeasts, Hai-Rong Cheng1,2 & 

Ning Jiang1,). 

 

 5.2 DNA hydrolyses and LC-MS/MS analyses 

 

 The procedure involved incubation of DNA at pH 6 with phosphodiesterase II 

and nuclease P1, followed by treatment at pH 8 by phosphodiesterase I and alkaline 

phosphatase. The samples were transferred into an HPLC vial, and freeze dried. The 

resulting residue was dissolved in a 2 mM ammonium formate solution. The samples 

were then analyzed by reverse-phase HPLC associated with a Thermo Scientific TSQ 

Quantum Ultra used in the multiple reaction monitoring mode. The detection of 

methylated bases was achieved in the positive electrospray ionization mode. For all 

exocyclic adducts studied, the monitored transition corresponded to the loss of the 2-

deoxyribose moiety from the protonated pseudo-molecular ion. 

 The column was maintained at 28 °C and eluted with a flow rate of 0.2ml/min 

starting with 100% ammonium formate 5mM (pH 6.5). The percentage of acetonitrile 

reached 15% in 25 min, whereas it reached 25% in 30 min. The column was then 

washed and equilibrated for 10 min with 100% of acetonitrile.   

The amount of modified nucleoside was obtained by external calibration in the range 

of 20-200 fmol. 

 

 6. Methylated bases analyses 

  

 6.1 DNA hydrolyses LC-MS/MS analyses  

 

 The DNA solutions were subjected to acid hydrolysis in 0.1 M HCl at 80 °C for 30 

min to obtain free bases. The samples were dried under vacuum and solubilized in 50 

μL of 3% (v/v) methanol (MeOH)/0.1% (v/v) trifluoroacetic acid for methylated purine 

analysis. Standard methylated bases (Sigma-Aldrich) were solubilized in 3% (v/v) 

methanol (MeOH)/0.1% (v/v) trifluoroacetic acid [39]. Samples were then analyzed by 

reverse-phase HPLC associated with a Agilent Triple quadrupole 6420 used in the 
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multiple reaction monitoring mode. The C18 column was eluted with a flow rate of 

0.2ml/min starting with 3% (v/v) MeOH/0.1% (v/v) formic acid. The column was 

delivered at 3% MeOH for 2 minutes. The percentage of MeOH reached 75% in 5 min 

and rapidly back to 3% MeOH.  

 The amount of methylated bases was obtained by external calibration in the 

range of 10-100 pg.  
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1. Molecular partners of Eschierichia coli transcriptional 

 regulator AidB 

 

1.1  Isolation of AidB Complexes in E. coli Upon Exposure to MMS 

 

 Proteomic approaches were designed to shed some light on the mechanism of 

action of AidB through the identification of its protein partners in vivo [40]. The 

association of the protein with partners belonging to a particular mechanism will be 

strongly suggestive of its biological function. In vivo isolation of AidB containing protein 

complexes were performed by transforming E. coli C41 strain with the pET22b-AidB 

construct carrying the AidB gene fused to a six histidine tags. The strain was grown in 

the absence and in the presence of sub-inhibitory concentrations of the alkylating 

agent MMS. Isolation of AidB complexes was performed by IMAC (Ion Metal Affinity 

Chromatography). The total protein extracts from the two samples were first 

submitted to a pre-cleaning step by incubation with His-Select beads lacking nickel ions 

in order to remove non-specific proteins. Eluates from the pre-cleaning were then 

recovered and AidB containing complexes were isolated by IMAC on His Select beads. 

After extensive washing, the proteins specifically bound to the AidB bait were eluted 

with a strong ionic buffer containing 0.5 M imidazole and fractionated on SDS-PAGE 

stained with coomassie blue. Pre-cleaning samples were also eluted and used as 

control. Figure 12 shows the obtained Coomassie blue stained gel.  
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Figure 12. SDS-PAGE fractionation of AidB complexes. Lanes 1 and 2 pre-cleaning eluates. 

Lanes 3 and 4 AidB complexes in the absence and in the presence of MMS, respectively. 

 

 1.2 Identification of proteins specifically interacting with AidB  

 

 The entire lanes from both samples (3, 4) and controls (1, 2) were cut in 24 

slices and each gel slice was in situ digested with trypsin and the corresponding 

peptide mixtures directly analysed by LC/MS/MS procedures. Tandem mass spectral 

analyses provided both the accurate molecular mass and sequence information from 

the daughter ion spectra of each peptide. These data were used for database search 

using a home version of the Mascot software leading to the identification of the 

proteins. Common proteins identified in both the sample and the control gel slices 

were ruled out and only those solely occurring in the samples were considered as 

putative AidB interactors thus greatly decreasing the number of false positives. 

Proteins identified in the proteomic experiments are listed in Tables 2 and 3 where the 

protein name, the corresponding Swiss Prot code and the number of identified 

peptides are reported. The presence of the AidB bait in both lists constituted a sort of 

internal control indicating the correctness of the pull down experiment.  

 A total of 73 proteins were identified by the proteomic procedure, 17 of which 

were found both in the presence and in the absence of the methylating agent. The 

results of the proteomic experiments are summarized in Tables 2 and 3.  
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Table 2.  Proteins identified in the control sample. 

In the absence of MMS Swiss prot code Peptides 

2-oxoglutarate dehydrogenase E1 component (SucA) P0AFG3 2 

Dihydrolipoyllysine-residue acetyltransferase component of pyruvate 
dehydrogenase complex (AceF) 

P06959 6 

Phosphoenolpyruvate synthase (PpsA) P23538 2 

Bifunctional polymyxin resistance protein arnA (ArnA) P77398 42 

Glucosamine-fructose-6-phosphate aminotransferase [isomerizing] (GlmS) P17169 10 

Phosphoenolpyruvate-protein phosphotransferase (PtsI) P08839 3 

Protein AidB P33224 20 

Alkyl hydroperoxide reductase subunit F (AhpF) P35340 7 

Glycogen synthase (GlgA) POA6U8 11 

UDP-N-acetylmuramate: L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase 
(mpl) 

P37773 2 

NADP-specific glutamate dehydrogenase (gdhA) P00370 12 

3-oxoacyl-[acyl-carrier-protein] synthase 2 (fabF) P0AAI5 3 

Transcriptional activator protein (lysR) P03030 9 

Ribosomal small subunit pseudouridine synthase A (rsuA) P0AA43 11 

UPF0011 protein yraL (yhbJ) P67087 6 

Enoyl-[acyl-carrier-protein] reductase [NADH] (fabI) P0AEK4 2 

Acyl-[acyl-carrier-protein]-UDP-N-acetylglucosamine O-acyltransferase (lpxA) P0A722 2 

FKBP-type 22 kDa peptidyl-prolyl cis-trans isomerase (fklB) P0A9L3 6 

Catabolite gene activator (crp) P0ACJ8 22 

UPF0011 protein yraL (yraL) P67087 2 

Uncharacterized protein yqjI (yqjI) P64588 3 

Uncharacterized protein ybgA (ybgA) P24252 2 

Ferric uptake regulation protein (fur) P0A9A9 6 

50S ribosomal protein L17 (rplQ) P0AG44 3 

 

Table 3.  Proteins identified in the sample treated with 0.04% MMS. 

In the presence of MMS Swiss prot code Peptides 

UvrABC system protein A (UvrA) P0A698 5 

Aldehyde-alcohol dehydrogenase (AdhE) P0A9Q7 2 

Dihydrolipoyllysine-residue acetyltransferase component of pyruvate 
dehydrogenase complex (AceF) 

P06959 5 

Ribonucleoside-diphosphate reductase 1 subunit alpha (NrdA) P00452 3 

Maltodextrin phosphorylase (malP) P00490 2 

Bifunctional polymyxin resistance protein arnA (arnA) P77398 37 

Glucosamine-fructose-6-phosphate aminotransferase [isomerizing] (glmS) P17169 20 

Phosphoenolpyruvate-protein phosphotransferase (ptsI) P08839 7 

Cold-shock DEAD box protein A (DeaD) P0A9P6 6 

Succinate dehydrogenase flavoprotein subunit (sdhA) P0AC41 3 

GTP-binding protein typA/BipA (typA) P32132 2 

L-aspartate oxidase (NadB) P10902 2 

Chaperone protein hscA (hscA) P0A6Z1 2 

D-lactate dehydrogenase (dld) P06149 2 

Protein aidB (AidB) P33224 19 

Alkyl hydroperoxide reductase subunit F (ahpF) P35340 9 

Glucose-6-phosphate 1-dehydrogenase (zwf) P0AC53 3 

Glycogen synthase (glgA) POA6U8 10 

UDP-N-acetylmuramate: L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase 
(mpl) 

P37773 3 

Tryptophanase (TnaA) P0A853 2 

NADP-specific glutamate dehydrogenase (gdhA) P00370 24 
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3-oxoacyl-[acyl-carrier-protein] synthase 2 (fabF) P0AAI5 4 

3-oxoacyl-[acyl-carrier-protein] synthase 1 (fabB) P0A953 5 

Succinylornithine transaminase (astC) P77581 13 

UDP-N-acetylglucosamine 1-carboxyvinyltransferase (murA) P0A749 11 

Glutamate-1-semialdehyde 2,1-aminomutase (hemL) P23893 4 

S-adenosylmethionine synthetase (metK) P0A817 5 

Protein hflK (hflK) P0ABC7 4 

Isocitrate dehydrogenase [NADP] (icd) P08200 2 

Maltose/maltodextrin import ATP-binding protein malK (malK) P68187 4 

Transcription termination factor rho (rho) P0AG30 3 

ATP-dependent Clp protease ATP-binding subunit clpX (clpX) P0A6H1 3 

Cysteine desulfurase (iscS) P0A6B8 3 

Regulatory protein ada (ada) P06134 9 

Glycerol dehydrogenase (glda) P0A9S5 3 

Acetylornithine deacetylase (arge) P23908 4 

Lactose operon repressor (laci) P03023 3 

Glutamate-1-semialdehyde 2,1-aminomutase (gsa) P23893 2 

USG-1 protein (usg) P08390 2 

Riboflavin biosynthesis protein RibD (RibD) P25539 4 

P-protein (pheA) P0A9J8 3 

UDP-4-amino-4-deoxy-L-arabinose—oxoglutarate aminotransferase (ArnB) P77690 3 

Glyceraldehyde-3-phosphate dehydrogenase A (gabA) P0A9B2 13 

Elongation factor Ts (tsf) P0A6P1 8 

UPF0042 nucleotide-binding protein yhbJ (yhbJ) P0A894 6 

Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta (accD) P0A9Q5 2 

Aspartate carbamoyltransferase catalytic chain (pyrB) P0A786 2 

Ribosomal small subunit pseudouridine synthase A (rsuA) P0AA43 12 

Uncharacterized HTH-type transcriptional regulator yeiE (yeiE) P0ACR4 10 

UPF0042 nucleotide-binding protein yhbJ (yhbJ) P0A894 11 

Formyltetrahydrofolate deformylase (purU) P0A440 10 

UPF0011 protein yraL (yraL) P67087 7 

Enoyl-[acyl-carrier-protein] reductase [NADH] (fabI) P0AEK4 2 

Acyl-[acyl-carrier-protein]-UDP-N-acetylglucosamine O-acyltransferase (lpxA) P0A722 3 

D-methionine-binding lipoprotein metQ (metQ) P28635 2 

FKBP-type 22 kDa peptidyl-prolyl cis-trans isomerase (fklB) P0A9L3 6 

GTP cyclohydrolase 1 (folE) P0A6T5 2 

Catabolite gene activator (crp) P0ACJ8 21 

Translation initiation factor IF-3 (infC) P0A707 2 

Uncharacterized protein yqjI (yqjI) P64588 3 

UPF0227 protein ycfP (ycfP) P0A8E1 3 

50S ribosomal protein L6 (rplF) P0AG55 2 

UPF0304 protein yfbU (yfbU) P0A8W8 2 

Ferric uptake regulation protein (fur) P0A9A9 8 

50S ribosomal protein L27 (rpmA) P0A7L8 2 

30S ribosomal protein S15 (rpsO) P0ADZ4 3 

   

 

According to their reported biological activities, the putative interactors were grouped 

into different functional categories: metabolic pathways including several FAD and 

NAD+ dependent dehydrogenases, stress response and transcription, translation and 
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processing of DNA/RNA. Among others, we focused our attention on the stress 

response proteins for further investigations.  

 

1.3 Validation of Protein-protein Interactions by Co-

immunoprecipitation Experiments 

 

 Putative protein-protein interactions detected by the proteomic experiments 

were validated by co-immunoprecipitation experiments. Proteins involved in pathways 

strictly connected with DNA repair and protection mechanisms were firstly examined. 

Each putative protein partner was recombinantly expressed as c-myc-tagged protein in 

E. coli C41 cells and the cell extracts were immunoprecipitated with anti-c-myc-

conjugated antibody. Immunoprecipitates were fractionated by SDS-PAGE and stained 

by Western blot analysis using an anti-AidB antibody. Interaction of the individual 

partner with AidB was confirmed by the presence of a positive signal revealed by the 

western blot analysis. As an example, Figure 13 shows the Western Blot Analysis 

performed on the immunoprecipitate from E. coli cells expressing c-myc tagged UvrA.  

 

 

(a) 

 

(b) 

Figure 13.  (a) Western blot analysis of the total cell extract from E. coli C41 cells producing c-

myc-UvrA (lane 1) and the UvrA containing immunoprecipitate (lane 3). Lane 2 contains the 

precleaning; (b) Western blot analysis of the total cell extract from E. coli C41 cells (lane 1) and 

the UvrA immunoprecipitate revealed by the anti-AidB antibody (lane 3). Lane 2, precleaning.  

 

 Figure 13a shows the total cell extract (lane 1) and the corresponding 
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immunoprecipitate (lane 3) immunorevealed by anti c-myc antibody demonstrating 

that UvrA was expressed by the recombinant cells and immunoprecipitated by the 

antibody. 

 Figure 13b shows the positive signal detected when the UvrA 

immunoprecipitate was incubated with the anti-AidB antibody, demonstrating the 

presence of AidB in the sample and confirming the interaction.  

Positive interactions of AidB with UvrA, DeaD and TnaA were identified, whereas no 

positive bands in the western blot could be detected when Ada and RecA proteins 

were tested. It should be underlined that both Cold-shock DEAD box protein A (DeaD) 

and Tryptophanase (TnaA) had already been identified in complex with AidB in the 

transcriptional machinery gathered at the E. coli arnB P1 promoter in the presence of 

MMS [19]. 

 

2. Differential proteomic approach to the study of E.coli upon 

exposure to methylating agent 

 

 Differential in Gel Electrophoresis (DIGE) was used to deeply examine the effect 

of methylation stress on Escherichia coli proteome. MV1161 cells were grown in four 

replicates in LB medium to an optical density of 0.5 at 600 nm. Each culture was 

divided into two aliquots, one of them was treated with MMS 0.04% and the other one 

was kept untreated and used as control. Upon 20 minutes of exposure, cells were 

collected and washed with PBS. Cells were suspended in lysis buffer. Lysates from 

treated or untreated cells were labeled with Cy3 or Cy5 respectively []. Each Cy3/Cy5-

labeled sample pair was mixed with a Cy2-labeled pooled standard sample containing 

an equal amount of both treated and untreated samples. The Cy2/Cy3/Cy5 labeled 

samples were run together on the same gel. After electrophoresis, gels were scanned 

in a Typhoon 9400 scanner. The images labeled with Cy2, Cy3 and Cy5 were acquired 

at excitation/emission values of 488/520, 532/580, 633/670nm respectively [41, 42]. 

The three images acquired at three different wavelengths were superimposed as 

shown in Figure 14. 
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Figure 14. Protein extracts of treated and untreated E.coli cells labeled with the three different 

fluorophores Cy2, Cy3, Cy5, and fractionated by 2D SDS-PAGE. 

 

 Images were used for pairwise comparison of each sample (Cy3 and Cy5) with 

the Cy2 mixed standard present in each gel. A specific software was used to detect 

spot boundaries and to calculate spot volume, normalized versus the volume of the 

corresponding spot present in the pool standard of the same gel. Statistical 

significance of differences in spot intensity was determined with Student’s t test. Only 

protein spots with a change in size of at least 1.20 fold (t test: p ≤ 0.05) after 

normalization were considered significantly altered. We verified the validity of these 

changes and accuracy of spot matching by manual inspection of the gels.  

 The image analysis showed the occurrence of about 45 differently expressed 

protein spots. The spots of interest were picked, in situ hydrolyzed and the resulting 

peptide mixtures were analyzed by MS using the LC/MSD Trap XCT Ultra. Data analyses 

were performed through Mascot software selecting NCBInr database. A total of 69 

proteins were identified, 61 down and 8 up regulated. The comprehensive list is 

reported in Table 4. 

Table 4. Differentially expressed proteins identified. 

Av 

Ratio 
Protein description 

Gene 

Symbol 
Swiss Prot 

-5.78 N-acetylneuraminate lyase nanA   P0A6L4  

-1.85 Formate dehydrogenase, nitrate-inducible, major subunit fdnG P24183  

-1.82 Fumarate reductase flavoprotein subunit frdA P00363  

http://www.uniprot.org/uniprot/P0A6L4
http://www.uniprot.org/uniprot/P24183
http://www.uniprot.org/uniprot/P00363
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-1.72 
Tryptophanase tnaA  P0A853  

Bifunctional protein GlmU glmU  P0ACC7  

-1.67 
Oligopeptide transport ATP-binding protein OppD oppD P76027  

Dihydroorotase pyrC  P05020  

-1.65 
2,3-bisphosphoglycerate-independent phosphoglycerate mutase gpml P37689  

Aerobic glycerol-3-phosphate dehydrogenase glpD P13035  

-1.62 Fumarate hydratase class I, anaerobic fumB P14407  

-1.62 
Cytidine deaminase cdd  P0ABF6  

Probable deferrochelatase/peroxidase YfeX yfeX  P76536  

-1.61 UDP-glucose 4-epimerase galE  P09147  

-1.53 

Ribonuclease G rng P0A9J0  

Bifunctional purine biosynthesis protein PurH purH  P15639  

Transcriptional regulatory protein TyrR tyrR P07604  

-1.53 
PTS system mannose-specific EIIAB component manX P69797  

L-threonine dehydratase catabolic TdcB tdcB  P0AGF6  

-1.49 Anaerobic glycerol-3-phosphate dehydrogenase subunit A glpA  P0A9C0  

-1.41 Glyceraldehyde-3-phosphate dehydrogenase A gapA P0A9B2  

-1.40 Trehalose-6-phosphate hydrolase treC  P28904  

-1.38 
Uncharacterized oxidoreductase YdgJ ydgJ  P77376  

Aspartate--ammonia ligase asnA  P00963  

-1.32 
Aminomethyltransferase gcvT  P27248  

Flagellar motor switch protein FliM fliM  P06974  

-1.32 Probable acrylyl-CoA reductase AcuI acuI  P26646  

-1.30 

Phosphoenolpyruvate carboxykinase [ATP] pckA  P22259  

3-octaprenyl-4-hydroxybenzoate carboxy-lyase ubiD P0AAB4  

Uncharacterized sulfatase YdeN ydeN P77318  

Malate synthase A aceB  P08997  

-1.30 

Catalase-peroxidase katG P13029  

Polyribonucleotide nucleotidyltransferase pnp P05055  

Dihydrolipoyllysine-residue acetyltransferase component of pyruvate 

dehydrogenase complex aceF 
P06959  

-1.27 Threonine--tRNA ligase thrS P0A8M3  

-1.27 
Phosphoenolpyruvate carboxykinase [ATP] pckA  P22259  

Malate synthase A aceB P08997  

-1.26 
Chaperone protein ClpB clpB P63284  

Elongation factor G fusA P0A6M8  

-1.26 UDP-glucose 4-epimerase galE  P09147  

http://www.uniprot.org/uniprot/P0A853
http://www.uniprot.org/uniprot/P0ACC7
http://www.uniprot.org/uniprot/P76027
http://www.uniprot.org/uniprot/P05020
http://www.uniprot.org/uniprot/P37689
http://www.uniprot.org/uniprot/P13035
http://www.uniprot.org/uniprot/P14407
http://www.uniprot.org/uniprot/P0ABF6
http://www.uniprot.org/uniprot/P76536
http://www.uniprot.org/uniprot/P09147
http://www.uniprot.org/uniprot/P0A9J0
http://www.uniprot.org/uniprot/P15639
http://www.uniprot.org/uniprot/P07604
http://www.uniprot.org/uniprot/P69797
http://www.uniprot.org/uniprot/P0AGF6
http://www.uniprot.org/uniprot/P0A9C0
http://www.uniprot.org/uniprot/P0A9B2
http://www.uniprot.org/uniprot/P28904
http://www.uniprot.org/uniprot/P77376
http://www.uniprot.org/uniprot/P00963
http://www.uniprot.org/uniprot/P27248
http://www.uniprot.org/uniprot/P06974
http://www.uniprot.org/uniprot/P26646
http://www.uniprot.org/uniprot/P22259
http://www.uniprot.org/uniprot/P0AAB4
http://www.uniprot.org/uniprot/P77318
http://www.uniprot.org/uniprot/P08997
http://www.uniprot.org/uniprot/P13029
http://www.uniprot.org/uniprot/P05055
http://www.uniprot.org/uniprot/P06959
http://www.uniprot.org/uniprot/P0A8M3
http://www.uniprot.org/uniprot/P22259
http://www.uniprot.org/uniprot/P08997
http://www.uniprot.org/uniprot/P63284
http://www.uniprot.org/uniprot/P0A6M8
http://www.uniprot.org/uniprot/P09147
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-1.26 HTH-type transcriptional regulator CysB cysB P0A9F3  

-1.25 Glycerol kinase glpK P0A6F3  

-1.21 
Bifunctional protein FolC folC   P08192  

D-tagatose-1,6-bisphosphate aldolase subunit GatZ gatZ  P0C8J8  

-1,2 Deoxyribose-phosphate aldolase deoC P0A6L0  

-1.19 tRNA-dihydrouridine synthase A dusA P32695  

-1.17 Trehalose-6-phosphate hydrolase treC  P28904  

-1.17 Histidine--tRNA ligase hisS P60906  

-1.15 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase gpmA P62707  

-1.12 
Pyruvate kinase I pykF  P0AD61  

Ribose import ATP-binding protein RbsA rbsA  P04983  

1,09 
Glutamate decarboxylase beta gadB  P69910  

Bifunctional protein HldE hldE  P76658  

1,11 Outer membrane protein assembly factor BamA bamA P0A940  

1,24 Phosphoglucomutase pgm  P36938  

-2.76 Transketolase 2  tktB P33570 

1,2 Methionine--tRNA ligase metG  P00959  

-1.52 phosphoenolpyruvate carboxykinase pck P22259  

1,37 
6-phospho-beta-glucosidase A bglA  P24240  

potassium transporter peripheral membrane protein trkA  P0AGI8 

1,51 alkyl hydroperoxide reductase ahpF  Q8XBT4  

-1.56 
aldehyde dehydrogenase A, NAD-linked  aldA  P25553  

aspartate ammonia-lyase aspA  P0AC38 

-1.51 
thymidine phosphorylase deoA  P07650  

6-phosphogluconate dehydrogenase  gnd  P00350 

-1.79 galactitol-1-phosphate dehydrogenase  gatD  P0A9S4  

-1.48 
aldehyde reductase, NADPH-dependent  yqhD Q46856  

dihydro-orotase  pyrC  P05020  

-1.69 phenylalanine tRNA synthetase, alpha subunit  pheS P08312 

-1.68 glucosamine-6-phosphate deaminase nagB  P0A760 

 

 The list of total proteins was submitted to Database for Annotation, 

Visualization and Integrated Discovery (DAVID) Bioinformatics Resources to obtain a 

functional organization. Proteins were then grouped according to their biological 

function as shown in Figure 15. 

http://www.uniprot.org/uniprot/P0A9F3
http://www.uniprot.org/uniprot/P0A6F3
http://www.uniprot.org/uniprot/P08192
http://www.uniprot.org/uniprot/P0C8J8
http://www.uniprot.org/uniprot/P0A6L0
http://www.uniprot.org/uniprot/P32695
http://www.uniprot.org/uniprot/P28904
http://www.uniprot.org/uniprot/P60906
http://www.uniprot.org/uniprot/P62707
http://www.uniprot.org/uniprot/P0AD61
http://www.uniprot.org/uniprot/P04983
http://www.uniprot.org/uniprot/P69910
http://www.uniprot.org/uniprot/P76658
http://www.uniprot.org/uniprot/P0A940
http://www.uniprot.org/uniprot/P36938
http://www.uniprot.org/uniprot/P00959
http://www.uniprot.org/uniprot/P22259
http://www.uniprot.org/uniprot/P24240
http://www.uniprot.org/uniprot/Q8XBT4
http://www.uniprot.org/uniprot/P25553
http://www.uniprot.org/uniprot/P07650
http://www.uniprot.org/uniprot/P0A9S4
http://www.uniprot.org/uniprot/Q46856
http://www.uniprot.org/uniprot/P05020
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Figure 15. Clustered identified proteins are reported.  

 

 Most of the identified proteins were down regulated and belonged to 

metabolic processes, a result that confirmed the negative effect of methylating agents 

on cellular growths, as previously observed [2].  

 An interesting group is represented by cell wall components containing both 

proteins directly involved in cell wall structure and others belonging to biosynthetic 

pathways leading to the synthesis of cell wall components.  

 In particular, N-acetylneuraminate lyase (nanA) was part of this functional 

group and critically down regulated in the presence of MMS. In pathogen bacteria such 

as Streptococcus pneumonia NanA is involved in biofilm formation and in adhesion to 

host cells [43, 44, 45]. These data indicate that in the presence of methylating stress 

the substantial decreasing in NanA expression might affect E. coli cell-cell interaction 

capabilities. NanA down regulation in the presence of methylation stress was explored 

through in vitro and in vivo assays addressed to evaluate biofilm formation and 

adhesion abilities during a stage at Prof. Selan laboratory (Department of Public Health 

and Infectious Diseases, University La Sapienza of Rome).   
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3. Effect of methylating agent on bacterial biofilms formation and 

adhesion capability 

 

Biofilms are surface attached polymeric matrices of cells having biological activities. 

This bacterial attachment mechanism is also required to adhere directly to host 

organism and it is involved in infectious processes for most pathogen microorganisms 

[46]. Static growth conditions were first optimized in order to obtain the maximum 

amount of attached cells to multiwell surface and to eventually evaluate biofilm 

formation. MV1161 (a wild type strain) and MV5924 (an E. coli strain missing the aidB 

gene, called ∆aidB) strains were inoculated on different sizes wells in the presence and 

in the absence of 0.5% and 1% glucose to promote biofilm formation. In vitro 

quantification of attached cells was evaluated after 24 hours of incubation at 37°C by 

crystal violet staining and subsequent measurement of the absorbance at 590 nm. 

Better results were obtained on bigger surfaces and following addition of 1% glucose 

that increased biofilm formation five times. Once defined the best experimental 

conditions, wild type and ∆aidB strains were grown in the presence and in the absence 

either of 0.04% MMS or Busulfan. Figure 16 shows biofilm production for both strains. 

 

 

Figure 16. Biofilm formation for wild type (on the left) and ΔaidB (on the right) E.coli strains 

untreated (blu), in presence of MMS (red) and Busulfan (green). Biofilm is reported by crystal 

violet absorbance at 590 nm. Data represent results obtained on three different independent 

experiments for both wild type and ΔaidB strains.  
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 Data obtained showed that wild type strain produces an amount of biofilm two 

times greater than ∆aidB suggesting that the absence of aidb in the strain causes 

activation of pathways in layers accumulation capacity. The presence of MMS 

decreased biofilm formation in agreement with proteomic results that suggested a 

down regulation of processes linked to cellular wall formation. On the contrary, biofilm 

production is unaffected by the presence of Busulfan suggesting that E.coli responses 

are unable to counteract this kind of DNA modification in both wild type and ∆aidB. 

These data support the occurrence of a connection between alkylation response and 

cellular cohesive properties.  

 Biofilm mechanisms are usually associated to cellular adhesion/invasion 

processes so further investigations were focused on deeply study this point. The 

capability of wild type E. coli strain to adhere and invade human HeLa cells was 

examined. Such cell type is an immortal line taken in 1951 and derived from Henrietta 

Lacks cervical cancer, and it was chosen because of its durability and proliferation. 

Bacteria invasion capability of E. coli was evaluated by using gentamycin invasion 

assay. Data obtained clearly showed that wild type was not able to invade HeLa cells. 

This result was expected because invasion property is commonly found in pathogenic 

rather than in non-pathogen bacteria and wild type E. coli belongs to the second 

group. 

 Adhesion capability was evaluated independently from invasion. After 0.04% 

MMS treatment, wild type cells were sub cultured and multiply diluted on HeLa cells in 

order to establish the best bacterial/eukaryotic cells ratio. Data obtained for one of the 

three cellular dilution realized are reported in Figure 17.   
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Figure 17. Number of bacterial cells adhered on HeLa cells is reported in presence and in 

absence of MMS 0.04%. Data represent the mean ± SD of three independent experiments 

 

E. coli adhesion on HeLa cells resulted drastically decreased in the presence of MMS 

demonstrating a functional correlation between methylation stress and cohesive 

cellular properties in agreement with proteomic data. In particular, the down 

regulation of NanA suggested that this protein might have a leading role in biofilm 

formation and adhesion processes not only in pathogenic bacteria but also in E.coli. 
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1. Effect of alkylating agent on M. tuberculosis growth and 

morphology 

 

1.1 MMS on Mycobacterium smegmatis cells 

 

 The investigation of the effect of DNA methylation on the cellular growth of 

MTB was performed to explore whether limited doses of alkylating agents might affect 

MTB cell viability. Methyl methanesulfonate (MMS) and the bi-functional 

chemotherapeutic drug Busulfan were used as methyl donors. 

 Preliminary experiments were carried out on Mycobacterium smegmatis to 

evaluate the lowest amount of reagent clearly affecting cells growth. M.smegmatis 

cells were grown in the presence and in the absence of different concentrations of 

MMS in a 0.01-0.1% w/v range and the viability of bacterial cultures was monitored for 

24 hs. Figure 18 clearly shows a decrease in cell survival with increasing doses of MMS 

in comparison with untreated cells (CN). 

 

Figure 18. Cells survival rate after 24 hours from the exposure to MMS. 

 

 These data demonstrated that a 0.03% MMS concentration led to a decrease of 

about 50% in cell survival. This concentration was then selected for further 

experiments. First, the growth profiles of M.smegmatis in the absence and in the 

presence of 0.03% MMS were evaluated. Figure 19 clearly shows that treated cells 
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displayed a remarkable reduction in the growth profile as compared to the control, 

indicating that in these conditions M.smegmatis cultures were affected by DNA 

alkylation.  

 

Figure 19. Growth profile of M.smegmatis cells in the presence (red) and in the absence (blue) 

of MMS 0.03%. 

 

 1.2) MMS on M.tuberculosis clinical strains 

 Alkylation experiments were then performed on two reference (H37Rv and 

H37Ra) and 8 clinical strains of the pathogen Mycobacterium tuberculosis during a 

stage at Prof. Zanetti laboratory (Department of Chemistry and Pharmacy, University 

of Sassari). Preliminarily, the Minimum inhibitory concentrations (MIC) of MMS for 

both reference strains were calculated by Resazurin Microtiter Assay (REMA). The MIC 

concentration values obtained for H37Rv and H37Ra were 0.10% and 0.05% 

respectively, slightly higher than those used for M.smegmatis. Finally, alkylation 

experiments were performed on 4 different tubercular strains that had developed drug 

resistance to isoniazid, streptomycin and both isoniazid and rifampicin and on 4 

different non-tubercular (NTM) clinical strains of M. tuberculosis (M. gordonae, M. 

szulgai, M. xenopi, M. chelone). Once these bacteria cultures were exposed to multiple 

MMS concentrations, seven out of eight strains appeared sensitive to MMS showing an 

extended cells death in these conditions. Interestingly, the MMS concentrations used 

resulted lower than the MIC previously determined for reference strains. As an 

example, figure 9 shows the growth profiles of the clinical strain resistant to isoniazid, 

in the presence of 0.03% and 0.015% w/v MMS in comparison with cells untreated or 

treated with the reference drug. 
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Figure 20. Growth profiles of the tubercular clinical strain resistant to isoniazid in the presence 

of isoniazid (red), MMS 0.03% (green), MMS 0.015% (violet) and in the absence of methylating 

compound (blue).  

 

 The viability of this strain was heavily affected by both MMS concentrations 

whereas bacterial cells are clearly resistant to the reference drug isoniazid. Optical 

microscopy images of mycobacterial cells were obtained in all conditions tested as 

shown in Figure 21.  

 

Figure 21. Optical microscopy images of the clinical strain resistant to isoniazid in the absence 

of methylating compounds (A), in the presence of isoniazid (B), MMS 0.015% (C) and MMS 

0.03% (D).  
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A remarkable disappearance of typical cells clusters was clearly detected in the 

presence of both MMS concentrations (C and D) with respect to isoniazid treated cells 

(B) and control samples (A). 

 

 1.3 Busulfan on M. smgmatis cells 

 

  Since DNA methylation seems to impair M.tuberculosis cell viability, we 

evaluated the effect of a bi-functional methylating drug commonly used in cancer 

chemotherapy (Busulfan). The effect of this molecule was tested on M.smegmatis cells 

in a 0.01%-0.1% concentration range (w/v). Figure 22 shows the growth profile of 

M.smegmatis treated with 0.06% Busulfan where about 20% decrease in cells survival 

was clearly detected.  

 

 

 

Figure 22. Growth profiles of M.smegmatis cells in the presence (red) and in the absence 

(blue) of Busulfan 0.06%. 
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2. Study of a M.tuberculosis protein potentially involved in 

alkylation response  

 

  2.1) In silico analysis of MTB putative AidB homologue  

 

  A mechanism of adaptive response to alkylation stress had already been 

reported in M. tuberculosis [37]. This process showed certain similarities to the 

homologous mechanism described in E. coli. Therefore, an in silico screening on the 

MTB protein database was carried out using the bioinformatics tool BLAST (Basic Local 

Alignment Search Tool) searching for putative proteins homologue to the E.coli 

adaptive response factors with particular emphasis on the AidB protein. The E.coli 

protein sequence was employed as a template to find regions of local similarity 

between protein sequences presenting in MTB database. Searching results produced a 

positive match with the putative acyl-CoA dehydrogenase FadE8 with an amino acidic 

identity of 44% and a good percentage of positives substitutions. Figure 23 shows the 

sequence alignment between the two protein.       

 

Figure 23. Sequence alignment between AidB from E.coli and FadE8 from MTB.    
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  No information on FadE8 could be obtained from either the Swiss Protein 

Database or the recent literature. This protein was classified as a putative Acyl-CoA 

dehydrogenase on the basis of sequence similarity with other members of the Acyl-

CoA dehydrogenase family. 

  An homology modeling of FadE8 was performed in collaboration with Dr. Rita 

Berisio of the National Research Council of Naples in order to evaluate common or 

different structural features with AidB. Figure 24 shows a ribbon representation of the 

general FadE8 fold. Two distinct domains encompassing the N - and C - terminal 

regions of the protein are reported in yellow and in purple respectively. The surface 

and cartoon representation of FadE8 is reported in Figure 25 where the putative DNA 

binding site is also indicated. 

  

Figure 24. Ribbon representation of FadE8 homology model. The N - and C – terminal domains 

are depicted in yellow and purple respectively. 

 

The structural model showed the same main features of the E. coli homologous AidB, 

where the putative DNA binding site seemed to be separated from the dehydrogenase 
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domain. Substrate is binding at the interface between the middle (orange) and the C-

terminal (purple) domains as shown in Figure 25. 

 

 

Figure 25. Surface and cartoon representation of FadE8. The putative DNA binding site 

is indicated by an arrow. 

 

 

 2.2 Heterologous expression of fadE8 in E.coli and protein 

 purification 

 

  In silico analyses indicate a possible functional homology between E. coli AidB 

and FadE8 from MTB. This hypothesis was verified by cloning and expressing fadE8 

gene in E.coli. The gene was amplified from MTB genome through PCR and cloned in a 

pET22b vector containing sequence coding a 6-His tag at the C-terminus of the protein. 

FadE8 production was obtained in C41 E.coli cells in the presence of 10mM riboflavin 

by 0.1mM IPTG induction by growing bacterial cells at 25°C for 16 hours. Cells were 

lysed and the insoluble fraction containing inclusion bodies was separated from the 

soluble fraction. Production and cellular localization of recombinant FadE8 were 



Chapter 4: Mycobacterium tuberculosis and methylation stress 
 

57 
 

evaluated through SDS-PAGE analysis. Figure 26 shows the gel fractionation of total E. 

coli extract (lane 1), solubilized inclusion bodies (lane 2) and the soluble fraction (lane 

3). FadE8 was clearly produced in large amount but essentially confined in inclusion 

bodies.    

 

Figure 26. SDS-PAGE of the FadE8 production in E.coli. Total cells extract is loaded in lane 1, 

inclusion bodies in lane 2 and soluble fraction in lane 3. 

 

Recombinant tagged FadE8 produced in E.coli cells was purified from soluble fraction 

by Immobilized Metal ion Affinity Chromatography (IMAC). This technique exploits the 

interaction between the histidine tag on the recombinant protein and Ni2+ ions 

coupled to highly cross-linked agarose beads. The eluted proteins were analysed by 

SDS-PAGE as reported in Figure 27.  
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Figure 27. Total cells extract is loaded in lane 1, unbound fraction in lane 2, washings in lane 3 

and 4, eluted FadE8in lane 5. 

   

  2.3 FadE8 refolding processes 

 

  The FadE8 protein was purified to homogeneity but was obtained with a very 

low yield. Two different refolding approaches were then performed to increase the 

soluble amount of FadE8. Inclusion bodies were isolated after cells lysate and were 

solubilized in strong denaturants. Refolding of solubilized inclusion bodies was 

performed by both dialysis and dilution. Inclusion bodies were dissolved in denaturing 

conditions (6M guanidine hydrochloride, 50 mM Hepes pH 7.5, 25 mM dithiothreitol) 

and dialysed against decreasing concentrations of denaturant. This multistep 

treatment resulted in slow removal of the denaturing agent leaving the protein 

exposed to intermediate denaturant concentrations for long time. Alternatively, 

inclusion bodies were dissolved in denaturing conditions to a protein concentration of 

about 0.1 mM and then ten-fold diluted with non-denaturing buffer in a single step. 

Better results were obtained with the multistep dialyses method since no protein 

precipitation was observed. The refolding process of recombinant FadE8 protein was 

also investigated by adding different molecules into the refolding solution. Because of 

their ability to interact with hydrophobic molecules, cyclodextrins (CD) were selected 

and used in collaboration with Prof. Castronuovo (Department of Chemical Sciences, 

Federico II University). Two CDs were chosen, an α-CD (six membered sugar ring 

molecule) and a synthetic β-CD (seven sugar ring molecule). In these experiments, 
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refolding was performed directly on the IMAC column; the denatured protein was first 

bound to the stationary phase through its histidine tag under denaturing conditions 

and then transfered into native conditions either washing directly with non-denaturing 

buffer or in multiple steps with decreasing concentrations of denaturant in the 

presence of CD. In both cases, the refolded protein yield was increased although the 

process is still far from being satisfactory suggesting that other factors should play a 

role in the refolding process.  

 

  2.4 In vivo assisted FadE8 folding by GroEL/GroES complex 

 

  Because of the high amount of recombinant protein produced, cellular 

chaperones might be unable to mediate correct protein folding of newly synthesized 

proteins. The complex between molecular chaperones GroEL/GroES is one of the E. coli 

system that is usually responsible for facilitating correct folding processes. 

Recombinant overproducing FadE8 cells were co-transformed with a vector containing 

genes coding GroES and GroEL in order to increase the cellular amount of protein 

chaperones. Figure 28 shows that co-producing the recombinant protein with GroES 

and GroEL greatly increased the amount of soluble protein. 

 

Figure 28. SDS-PAGE of FadE8 co-produced with GroES/GroEL chaperones. Soluble fraction is 

loaded in lane 1 and inclusion bodies in lane 2. 
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Unfortunately the complex formed by GroEL/GroES with FadE8 was very stable and 

difficult to dissociate. Several attempts were performed to affinity purify the 

recombinant protein by the IMAC method always resulting in FadE8 heavily 

contaminated by GroEL. 

 

  2.5 Recombinant FadE8 characterization  

 

  Structural and functional characterization of FadE8 were then performed by 

using the low amount of soluble protein purified in the absence of chaperones. The 

correct primary structure of recombinant FadE8 was proved by MALDI mass mapping. 

Purified FadE8 was analysed by SDS-PAGE and the corresponding protein band excised 

from the gel, reduced and alkylated with iodoacetamide to irreversibly block the 

cysteine residues and in situ enzymatically digested with trypsin. The resulting peptide 

mixture was then directly analysed by MALDI-MS using a reflectron instrument. The 

accurate mass values of the peptides in the mass spectrum was mapped onto the 

anticipated FadE8 sequence leading to a consistent coverage of the protein primary 

structure.  

  In order to evaluate if FadE8 was functionally homologue to AidB from E.coli, 

the DNA binding ability and the dehydrogenase activity of the protein were in vitro 

tested. Electrophoresis Mobility Shift Assay (EMSA) experiments were performed to 

investigate the possible binding of FadE8 with DNA. EMSA is an electrophoretic 

separation in native condition used to study protein-DNA interactions on 

polyacrylamide or agarose gel. A retardation in DNA electrophoresis mobility following 

incubation with a purified protein demonstrates the formation of a DNA-protein 

complex. Using different DNA sequences, EMSA can also indicate if these binding 

capabilities are sequence dependent.  

 FadE8 was incubated with a random DNA sequence and then analysed by EMSA 

experiments as shown in Figure 29 (lane 1). A clear retardation in the electrophoresis 

mobility of the DNA-protein complex was observed as compared to the DNA alone. 

Similarly to AidB, FadE8 was then capable to bind DNA. Further analyses were focused 

on the elucidation of the specificity of the interaction. Two different DNA regions of 
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aidB promoter (lane 2 and 3) were employed as probes using a random sequence as 

control (lane 4).  

1  

 

Figure 29. EMSA assay performed on FadE8 protein. DNA alone is loaded in lane 1, two 

different DNA regions of aidB promoter in lane 2 and 3, random sequence in lane 4. 

 

EMSA experiments showed similar shifts in the electrophoresis mobility for all three 

DNA baits, indicating that FadE8 recognises DNA in a non-specific manner.  

  Specific enzymatic assays were performed to evaluate the dehydrogenase 

activity of FadE8. The reactions were carried out by using isovaleryl-CoA as substrate 

and 2,6-dichlorophenolindophenol (DCPIP) as the final electron acceptor. The change 

in absorbance at 600 nm was monitored over time. Purified AidB was used as positive 

control. Enzymatic activities obtained for AidB and FadE8 are reported in Table 5, in 

comparison with human isovaleryl-CoA dehydrogenase activity reported in literature 

[43].  

Table 5. Dehydrogenase activities of AidB and FadE8.  

Protein 
Isovaleryl-CoA dehydrogenase activity 

(μmol min-1 [mg protein]-1) 

AidB (E.coli) 0.12 ± 0.01 

FadE8 (MTB) 0.30 ± 0.01 

Human dehydrogenase 8.2 to 11.7 

 

  1         2          3          4 
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The results revealed a weak dehydrogenase activity of FadE8 very similar to AidB and 

much smaller than the human enzyme. These data suggested that the specific FadE8 

substrate might be different from Acyl-CoA molecules as already reported for AidB [2]. 
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1. Quantitative analysis of DNA ethenobases by LC-MS/MS    

 

 The mechanism of DNA protection exerted by AidB was investigated using a 

quantitative analysis based on liquid chromatography tandem mass spectrometry 

methodologies during a stage at Dr. Douki’s laboratory, CEA Grenoble, France. AidB 

protects DNA from methylation but nothing was reported about protection of other 

alkyl lesion. This point was investigated by using an alkyl molecule known as 

chloroacetaldehyde (CAA) a metabolic intermediate of vinyl chloride that has been 

shown to give rise to DNA adducts. Upon alkylation with CAA, the purine bases are 

transformed into stable ethenobases [48].  

 Two E. coli strains, wild type and ΔaidB, were individually engineered either 

with the gene encodeing for AidB or FadE8, to generate wild type and ΔaidB strains 

overproducing either AidB or FadE8. Exposure to CAA was performed on six different 

E.coli strains, three wild type (control, AidB and FadE8 overproducing) and three ΔaidB 

strains (control, AidB and FadE8 overproducing). The six different strains were grown 

in the absence and in the presence of three different sub-inhibitory concentrations  of 

CAA (1, 5, 10 mM). As an example the growth profiles of ΔaidB overproducing AidB 

treated with different concentrations of CAA is shown in figure 30. 

 

Figure 30. Escherichia coli cells growths in the absence of alkylating agent (blue), in the 

presence of 1 (purple), 5 (light blue), 10 (yellow) mM CAA.  
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Cellular pellets were collected during the exponential growth phase as indicated. 

Plasmidic DNAs were isolated from treated and untreated cells and digested with 

multiple enzymes to release single nucleosides. The mixture of alkylated and native 

nucleosides were eventually analysed by reverse-phase HPLC associated with a triple 

quadrupole mass spectrometer used in the multiple reaction monitoring mode (MRM). 

The molecular ions of ethenonucleosides and specific fragments were selectively 

recorded to identify and quantify the individual ethenoderivatives. Table 6 reports the 

scheme of MRM transitions monitored during the analyses. It should be underlined 

that this method could not distinguish between the two ethenoguanines.  

 

Table 6. MRM transitions used for quantitative analyses. 

Multiple Reaction Monitoring (MRM) 

Ethenonucleosides Precursor ion (m/z) Fragment ions (m/z) 

εdGua 292 176 

εdAdo 275 160 

 

 The monitored transition corresponded to the loss of 2-deoxyribose moiety 

from the protonated pseudo-molecular ion for all three modified bases [49]. The 

detection of ethenobases was realized in the positive electrospray ionization mode. 

Protonated nucleosides were isolated in the first quadrupole, whereas the 

corresponding protonated base was collected as a specific fragment in the third 

quadrupole following fragmentation of the parent ion in the collision cell. 

 Figure 31 shows the quantitative analysis of the ethenoguanines formed 

following alkylation of the six E.coli strains by different concentrations of CAA.   
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Figure 31. Methylations of plasmidic DNA are reported for ethenodeoxyguanines.  

 

Data are reported as the ratio between modified and unmodified bases that were 

quantified by HPLC using their UV absorbance. As expected both wild type and ΔaidB 

strains showed increasing DNA alkylation at increasing concentrations of CAA. ΔaidB 

revealed only a slightly less amount of ethenoguanines as compared to wild type. 

Surprisingly, when the analysis was performed on both strains overproducing the 

protection protein AidB or FadE8, similar results were obtained. Alkylation of both 

engineered strains increased with increasing concentrations of CAA, suggesting that 

both AidB and FadE8 were unable to protect DNA from CAA alkylation.    

 

 

 2. Quantitative analysis of methylated DNA by LC-MS/MS  

 

 The ability of both AidB and FadE8 to protect DNA from methylating agents was 

investigated by developing a new method for the qualitative and quantitative 

measurements of methylated DNA bases. Analogously to ethenobases analysis, the 

new method was based on the exploitation of LC-MS/MS technology in the MRM 

mode. In preliminary experiments, standard methylated 7MeG, O6MeG, 3MeA were 

analysed in a triple quadrupole MS to define the appropriate transitions to be used in 

the MRM analysis. It has been reported, in fact, that the most commonly methylated 
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DNA bases in vivo by MMS are guanine and adenine to form N-7-methylguanine 

(N7MeG), O6-methylguanine (O6MeG) and N-3-methyladenine (N3MeA) [39].  

 The molecular ions of these bases were isolated in the first quadrupole and 

then fragmented in the collision cell. The most intense and specific fragments 

produced by each base were selected to identify and quantify the individual 

methylated bases. The MRM transitions used to develop the analytical method are 

reported in Table 7. It should be underlined that the developed method was able to 

discriminate between the two methylated guanines that share the precursor ion and 

one fragment but can be distinguished by the second MRM transition. 

 

 

Table 7. MRM transitions used for quantitative analyses. 

Multiple Reaction Monitoring (MRM) 

Methylated bases Precursor ion (m/z) Fragment ions (m/z) Loss 

O-6-methylguanine 166 
134 CH3OH 

149 NH3 

7-methylguanine 166 
124 NH2CN 

149 NH3 

3-methyladenine 150 
108 CH3HCN 

123 HCN 

 

 Figure 32 shows the calibration curves that were obtained for each methylated 

base by using different amount of standards in the range 10-100 μg/L. Correlation 

coefficients resulted very close to 1 indicating a very good degree of linear 

dependence between the two variables.      
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Figure 32. Calibration curves obtained by using 10, 20, 40, 60, 80, 100 μg/L of methylated 

standard bases N7MeG (a), O6MeG (b) and N3MeA (c). 

 

 The effect of alkylating molecules on E. coli DNA was first monitored on a time 

course basis by collecting sample from wild type cells at three different times (20, 40 

and 60 minutes) following exposure to methylation stress. Two different alkylating 

agents were used: MMS and Busulfan at the same concentration (0.04%). Figure 33 

summarizes the data. 
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Figure 33. DNA methylations of wild type cells are reported in the absence and in the presence 

of MMS and Busulfan over three different times: 20 minutes (blue), 40 min (red) and 60 

minutes (green).  

 

 In the absence of methylating agents, wild type cells showed increasing DNA 

methylation over time probably because cellular responses to methylation stress were 

not activated in these conditions. When E. coli cells were treated with MMS, an 

increasing in DNA methylation was first observed. However after 1 hour a clear 

decreasing in DNA methylation was detected according to the induction of the 

adaptive response. Finally, cells treated with Busulfan showed increasing DNA 

methylation over time suggesting that the cellular stress elicited by this reagent did 

not provide induction of the adaptive response. Busulfan is a bifunctional alkylating 

molecule  that causes DNA intra- or inter-strands crosslinkings, leading to a covalent 

structure that  probably cellular defenses are not capable to counteract. 

 Quantitative MRM tandem MS approach was also used to evaluate the 

biological roles exerted by AidB and FadE8 in the cellular response to alkylating agents.  

 Wild type and ΔaidB strains engineered to produce the two proteins were 

grown in the presence and in the absence of MMS. DNA was extracted from cells in 

exponential growth phase, hydrolyzed in acidic conditions to obtain free bases and 

analysed by the MRM method developed. Figure 34 shows the results obtained in the 

absence of MMS. 
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Figure 34. DNA methylations of wild type cells in presence and in the absence of AidB and 

FadE8 are reported in the absence of methylation stress. 

 

 As expected, the wild type strain resulted generally less methylated than ΔaidB 

because of the presence of the DNA protecting protein AidB. The results obtained on 

both strains overproducing either AidB or FadE8 clearly showed a decrease in DNA 

methylation. These data demonstrated that both AidB and FadE8 are able to exert a 

protection effect on DNA methylation.  

 These results were supported by data obtained in the presence of MMS, 

reported in Figure 35.  

 

Figure 36. DNA methylations of wild type cells in presence and in the absence of AidB and 

FadE8 are reported in the presence of methylation stress. 
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 Again ∆aidB showed a higher level of DNA methylation as compared to wild 

type. The presence of either AidB or FadE8 decreased DNA methylation in both strains 

even in the presence of the methylating agent.  

Quantitative data demonstrated that AidB and FadE8 are functionally homologs in vivo 

protecting DNA from methylation suggesting that FadE8 might be part of the adaptive 

response to methylating stress in M.tuberculosis. 
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Discussion 

 

 Alkylating stress is a widespread issue affecting living organisms, originated by 

both endogenous and exogenous chemicals. DNA alkylation causes several mutations 

and often cells death by blocking essential biological processes such as DNA replication 

and transcription [50, 51]. Therefore all the organisms developed different response 

systems to counteract these events either repairing the DNA molecule or degrading 

the alkylating molecules [52].   

 In Escherichia coli, sub inhibitory concentration of methylating agents induces 

the expression of four genes (ada, alkA, alkB, aidB) involved in the direct repair of DNA 

alkylation damages [53]. Ada protein is the methylation sensor of this system known as 

the adaptive response. While the role of Ada, AlkA and AlkB, was clearly defined [54, 

55], the involvement of AidB in this system has long been known but its specific role in 

the protection of DNA is still obscure. Previous data demonstrated that AidB interacts 

with DNA very likely to protect the nucleic acid from alkylating molecules but it is not 

able to repair the DNA molecule following alkylation [2]. In addition, the protective 

action of AidB is preferentially expressed on DNA regions containing upstream 

elements. This observation led to the hypothesis that AidB might belong to a putative 

pathway of degradation of alkylating agents through its FAD dependent 

dehydrogenase activity. Alternatively, AidB might protect these DNA regions by 

physically interact with them thus impairing the dangerous action of alkylating agents.  

 An homolog adaptive response was also found in Mycobacterium tuberculosis, 

the etiologic agent of tuberculosis [37]. During the infection, if the host immune 

response is not able to strongly counteract bacterial invasion, MTB cells are confined 

within macrophages and together with different cell types are enclosed in a 

granuloma, a latent infection status without evident clinical manifestations [56, 57]. 

During MTB infection, the host antimicrobial response generates several metabolically 

activated DNA alkylating agents leading to severe DNA-damaging injuries on MTB cells 

[58]. Protection of the bacterial DNA from host chemical damages then strictly 

depends on the MTB repair mechanisms including the adaptive response. Being this 
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mechanism fundamental for MTB viability whereas it is missing in human, this process 

may represent a putative therapeutic target to explore in search for new tuberculosis 

treatments. 

 In this biological contest, this PhD thesis was focused on the investigation of E. 

coli responses to methylation stress in order to obtain a global proteomic view of the 

changes induced by alkylating damages. Moreover M. tuberculosis responses to 

alkylation stress were analysed to obtain information concerning cellular and 

morphological modifications induced. Finally a deeply comparison between the two 

proteins E.coli AidB and its homologue MTB FadE8 was carried out in order to identify 

new therapeutic target.    

 Differential proteomic approaches were performed on E.coli in the presence 

and in the absence of MMS upon exposure of 20 minutes. This analysis allowed the 

identification of about 70 differentially expressed proteins between MMS treated and 

untreated conditions. In particular, the presence of methylating molecule caused a 

widespread down regulation in proteins expression. Metabolic processes were 

especially down regulated in according to data previously reported that showed 

growing profiles heavily affected by the presence of methylating molecules [2]. In 

particular, the massive down regulation of enzymes belonging to the glycolytic 

pathway and the fatty acids degradation strongly suggests a decrease of energy 

production in E. coli with concomitant difficulties in cell growth. Among the few up 

regulated proteins AhpF and GadB are reported to be involved in the response to 

stress conditions. GadB is part of the gad system that helps the cells to maintain a 

neutral intracellular pH when E. coli is exposed to extremely acidic conditions [59]. 

Alkyl hydroperoxide reductase subunit F, AhpF, is specifically involved in protecting 

cells against alkyl hydroperoxides that are capable to damage DNA [60, 61, 62]. This 

protein belongs to the glutathione-independent peroxidase system in Escherichia coli 

and Salmonella typhimurium with a protective role in limiting oxygen-linked DNA 

damage [63]. AhpF belongs to the family of pyridine nucleotide-disulfide 

oxidoreductases and functions as a channel electrons to produce a cascade of 

disulfide-exchange reactions [64, 65]. The general overview provided by the proteomic 

data suggests that following methylation stress E. coli is suffering a decrease in the 
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energetic metabolism, a situation that the cells is trying to counteract by producing 

defense proteins.   

 The emergency in energy production is supported also by the down regulation 

of proteins involved either in cell wall structure or in membrane biosynthesis 

components. Interestingly, the most down regulated protein is the lyase NanA that 

was reported to be involved in biofilm formation and in adhesion to host cells in 

pathogen bacteria such as Streptococcus pneumonia [66, 67, 68, 69]. Functional 

experiments performed on wild type E. coli demonstrated that both cellular properties 

are decreased by the presence of methylating molecule. The lack in energy production 

highlighted by the proteomic analyses might have impaired the synthesis of all the 

proteins and other macromolecules needed to form both biofilm and adhesion 

structures.  

 Since changes in the proteome are expected to require some time to become 

effective, it is reasonable that none adaptive response components were  identify in 

the up regulated proteins. This finding was also supported by quantitative data of DNA 

methylation performed on cells treated with MMS. Time course analyses showed that 

an effective decreasing in DNA methylation occurred after one hour following 

exposure to MMS suggesting that the adaptive response needs at least three cellular 

duplications to become effective. Proteomic analyses were indeed performed on 

protein extracts obtained after only one cellular duplication, too early to induce 

expression of the adaptive response.   

 Functional proteomic approaches were designed to shed some light on the 

mechanism of action of AidB through the identification of its protein partners in vivo. 

AidB partners were isolated by immunoprecipitation procedures both in the absence 

and in the presence of MMS as alkylating agent and the individual protein components 

identified by mass spectrometry. Several proteins were identified in both conditions, 

although the number of AidB molecular partners is considerably higher in the presence 

of MMS. Surprisingly, AhpF protein was also found as AidB partner both in the 

presence and in the absence of MMS delineating a new possible role for the AidB 

protein in other stress mechanisms.    

 Proteins identified under methylating stress conditions were grouped in three 

large categories according to their reported biological activities, stress response, 
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energetic metabolic pathways, and nucleic acid metabolism (transcription, processing 

and translation). In particular, AidB was found to interact with UvrA whose expression 

is under the control of the SOS response system involved in DNA damages response 

[70]. This interaction was also validated by co-immunoprecipitation experiments 

confirming proteomic data. Interaction of these two proteins is very interesting since 

UvrA is part of the UvrABCD nucleotide excision system involved in removing modified 

nucleotides as a result of several different DNA modifications including formation of 

covalent bonds, local unfolding, abnormal folds and variations in charge distribution 

[71]. UvrA works in a multienzyme complex with the specific role of examining the 

DNA molecule in search for modifications in order to allow the other proteins of the 

complex to perform the excision of the damaged nucleotides [72]. This protein is 

generally present at very low concentrations within the cell but its expression strongly 

increases under stress conditions [73]. Interaction of AidB with UvrA and AhpF might 

then indicate that AidB is involved in different response complexes other than the Ada-

dependent adaptive mechanism, suggesting new cellular strategies to minimize DNA 

damages.  

  M. tuberculosis response to alkylation damages was also deeply investigated. 

The effect of DNA alkylation was evaluated on the cellular growth of clinical tubercular 

and non-tubercular strains. Growth profiles showed that methylating donor can impair 

mycobacteria cell viability even at low concentrations whereas bacterial cells are 

clearly resistant to the reference drug isoniazid.  

 Optical microscopy images were also performed in order to estimate whether 

tubercular and non-tubercular strains could be morphological affected by the presence 

of methylating agent. In particular, cell wall MTB exterior is primary characterised by 

the presence of a glycolipid molecule, trehalose dimycolate, also known as cord factor 

[74]. These molecules bring to the arrangement of M. tuberculosis cells into long and 

thin structures named cord factors like the glycolipid component. This cellular 

formation is a key step in pathogenicity of tuberculosis infection because can affect 

immune response and granuloma production [75, 76]. Optical microscopy images of 

MMS treated and untreated MTB cells showed a remarkable disappearance of typical 

cord factors in cells treated with methylating molecule suggesting that alkylating stress 

might influence in vivo pathogenicity of MTB.  
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 In addition anti-cancer chemotherapeutic drug Busulfan significantly affect M. 

smegmatis cells survival in concentrations lower than those commonly used in cancer 

treatments. These results confirmed mycobacterial sensitivity to methylation damages 

and promising the MTB adaptive response as a new putative therapeutic target against 

mycobacterial infection.  

 Investigations of M. tuberculosis responses mechanisms to DNA alkylation were 

also focused on molecular response by searching for an AidB homologue. In silico 

analysis identified the putative Acyl-CoA dehydrogenase FadE8 with an aminoacidic 

identity of 44%. Exhaustive structural and functional studies demonstrated that 

purified FadE8 showed functional homology to AidB displaying both DNA binding 

capability and isovaleryl-CoA dehydrogenase activity. In particular, experimental assays 

revealed a weak dehydrogenase activity versus isovaleryl-CoA very similar to AidB and 

much smaller than the human enzyme. These data suggested that the specific FadE8 

substrates might be different molecules, as already reported for AidB, suggesting that 

methylating molecules could be degraded by an oxidative system. This putative 

degradation pathway might be similar to that occur inside the mitochondria by β-

oxidation of fatty acids. In this process methylating molecule might play the role of 

fatty acid while either AidB or FadE8 might performed the leading step of oxidation by 

FAD.  

 This data were supported by in vivo tandem MS quantitative analyses 

performed on DNA extracted from E. coli wild type and ΔaidB strains. As expected 

ΔaidB resulted more methylated than wild type both in the absence and in the 

presence of MMS since the DNA protective protein AidB is absent. In addition the 

presence of either AidB or FadE8 decreased DNA methylation suggesting that both 

proteins are able to exert a protection effect on DNA damages.  

 Similar experiments were performed in the presence of different alkylating 

molecules such as chloroacetaldehyde, a metabolic derivative of polyvinyl chloride and 

the bi-functional drug Busulfan. Both wild type and ΔaidB overproducing the protective 

proteins AidB and FadE8 showed increasing alkylation with increasing concentrations 

of CAA. These data clearly demonstrated that both AidB and FadE8 are unable to 

protect DNA from either CAA or Busulfan alkylation, suggesting that these proteins 

might exert their DNA protection effect selectively on methylated DNA. The similar 
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behavior shown by FadE8 and AidB, in DNA methylation processes demonstrated that 

FadE8 might be involved in the adaptive response of MTB by a still obscure mechanism 

of DNA protection.  

 In conclusion, even though E. coli and M. tuberculosis are far away in the 

evolutionary grade they seems to show similar behaviors in molecular responses to 

alkylation damages. E. coli is a facultative anaerobic that is capable to switch from 

aerobic to anaerobic respiration according to oxygen availability [77]. M. tuberculosis is 

highly aerobic requiring high levels of oxygen. It have an unusual cell wall, rich in lipids 

such as mycolic acid responsible for its resistance, pathogenicity and impediment 

to Gram staining. Moreover cell wall complexity causes M. tuberculosis divisions to be 

extremely slow, about every 24 hours compared to E. coli that divides every twenty 

minutes [78, 79].  

 In order to counteract DNA alkylation, M. tuberculosis shows the presence of 

several systems including nucleotide excision repair (NER), base excision repair (BER), 

recombination and SOS repair system genes while missing the mismatch repair (MMR) 

mechanism [80]. Recently the ada operon of MTB was preliminary characterized but 

none was reported about AidB homologue in M. tuberculosis. We demonstrated the 

existence in MTB of FadE8, a protein structurally and functionally homologue to AidB. 

Considering that FadE8 is involved in DNA protection and  that the MTB cord factor 

disappears upon methylation stress, it is possible to imagine FadE8 as a new putative 

target against tuberculosis infection. Inhibition of FadE8 that is absent in human might 

reduce MTB survival upon exposure to human immune system that usually fight 

bacteria by damaging DNA.   

 All findings about DNA repair and protection systems, reported in this PhD 

thesis, can be gather together to a unique prospective. Methylation stress could be 

used as a new strategy to counteract mycobacterial infection either by strengthening 

human immune response by using exogenous methylating drugs or by weakening 

bacterial defenses by providing adaptive response inhibitor molecules.    
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a b s t r a c t 
 
aidB is one of the four genes of E. coli that is induced by alkylating agents and regulated by Ada pro-tein. Three 

genes (ada, alkA, and alkB) encode DNA repair proteins that remove or repair alkylated bases. However, the role 

of AidB remains unclear despite extensive efforts to determine its function in cells exposed to alkylating agents. 

The E. coli AidB protein was identified as a component of the protein com-plex that assembles at strong 

promoters. We demonstrate that AidB protein preferentially binds to UP elements, AT rich transcription enhancer 

sequences found upstream of many highly expressed genes, several DNA repair genes, and housekeeping genes. 

AidB allows efficient transcription from promoters containing an UP element upon exposure to a DNA methylating 

agent and protects downstream genes from DNA damage. The DNA binding domain is required to target AidB to 

specific genes preferentially protecting them from alkylation damage. However, deletion of AidB’s DNA binding 

domain does not pre-vent its antimutagenic activity, instead this deletion appears to allow AidB to function as a 

cytoplasmic alkylation resistance protein. Our studies identify the role of AidB in alkylating agent exposed cells and 

suggest a new cellular strategy in which a subset of the genome is preferentially protected from damage by 

alkylating agents. 
 

© 2011 Elsevier B.V. All rights reserved. 
 

 
1.  Introduction 
 

The E. coli aidB gene is one of the four genes of the adaptive 

response to alkylation damage and is regulated by Ada protein (for 

review see: [1,2]). Ada protein is a methyltransferase that functions as 

a transcriptional activator after transfer of a methyl group from DNA to 

a cysteine residue in its amino terminal domain. The alkyla-tion of Ada 

is stable and activates it to function as a transcriptional activator that 

induces expression of the ada–alkB operon, the alkA and aidB genes. 

Ada, AlkA and AlkB are enzymes that repair different alkyl lesions in 

DNA. Ada removes alkyl groups from O
6
 alkylgua-nine, O

4
 

alkylthymine by transferring them to a cysteine residue in its C-terminal 

domain [3]. Its amino terminal domain is also a methyltransferase that 

repairs one stereoisomer of alkylated phos-phates by transferring them 

to a cysteine residue in its N-terminal domain [4,5]. AlkA is a 

glycosylase that removes 6 different types of alkylated bases from 

DNA [6] and AlkB is an -ketoglutarate- 
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Fe(II)-dependent DNA dioxygenase that repairs 1-alkyladenine and 3-

alkylcytosine lesions by oxidizing the alkyl groups to unstable 

derivatives that spontaneously decay restoring the bases to their 

original state [7,8].  
The role for AidB in alkylated cells has remained an unsolved 

problem. AidB has similarity to the acyl-CoA dehydrogenase family of 

metabolic enzymes and has weak isovaleryl CoA-dehydrogenase 

activity [9,10]. AidB was also shown to be a flavoprotein that binds 

nonspecifically to double stranded DNA. This observation led to the 

suggestion that it might be a repair enzyme [9]. The recent crystal 

structure of AidB revealed that its flavin binding site lies within an 

interior channel, while its DNA binding site is accessible only from the 

exterior of the protein and is spatially distant from its flavin binding 

region. Based on these observations, it was suggested that AidB might 

instead bind and protect DNA by inactivating alkylators before they are 

able to react with DNA.  
In this study we demonstrate that AidB has sequence specific DNA 

binding activity that targets AidB to UP element-containing genes. We 

propose the gene specific targeting of AidB protein to be a new cellular 

strategy that results in preferential protection from alkylation damage 

and counteracts transcription inhibition by alkylating agents at a subset 

of the genome, i.e., at genes controlled by promoters with UP 

elements. 
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2.  Materials and methods 2.4.  Construction of fusion plasmids for transcription assays  
 
2.1.  Bacterial strains and plasmids 
 

The bacterial strains and plasmids used in this work are listed in 

Table 1. 

 
2.2.  Cloning of the aidB gene 
 

The E. coli aidB gene was amplified from the bacterial chromo-

some by PCR using the primers listed in Table 2. The amplification 

product was digested with NdeI and HindIII (underlined in Table 2) and 

cloned into the pET22b (+) vector (Novagen) creating the plas-mid 

pET22b-aidB. The resulting expression vector contains a 6X histidine 

tag to allow protein purification by Ni
2+

 affinity chro-matography. 

Plasmid construction was verified by automated DNA sequencing. The 

recombinant AidB protein was produced and puri-fied as described 

previously [11]. 

 
2.3.  Electrophoretic mobility shift assay (EMSA) 
 

EMSA experiments were performed using rrnB P1wt as the biotin-

labeled DNA probe. Sense and antisense oligonucleotides (Table 2) 

were annealed by incubation at 95 
◦
 C for 5 min and suc-cessive 

gradual cooling to room temperature. Purified recombinant AidB was 

incubated with 20 ng of biotinylated DNA rrnB P1wt for 20 min at room 

temperature in 20 l of buffer Z (25 mM HEPES pH 7.6, 50 mM KCl, 

12.5 mM MgCl2, 1 mM DTT, 20% glycerol, 0.1% triton). Protein–DNA 

complexes were separated on 5% native poly-acrylamide gel (29:1 

cross-linking ratio) in 0.5× TBE (45 mM Tris pH 8.0, 45 mM boric acid, 

1 mM EDTA) at 200 V (20 V/cm) at room tem-perature. Afterwards, 

electrophoretic transfer to a nylon membrane was carried out in 0.5× 

TBE at 380 mA for 45 min, and the trans-ferred DNA was cross-linked 

to the membrane with UV light. After incubation in blocking buffer for 1 

h at room temperature, the mem-brane was incubated with 

streptavidin–HRP conjugate (Sigma) for 30 min at room temperature. 

The membrane was washed and visu-alized with SuperSignal 

chemiluminescence reagent (Pierce).  
Competition experiments were performed using increasing 

quantities (100–500×) of either unlabelled rrnB P1wt, which con-tains 

its UP element used as a specific competitor or rrnB P1 UP is used as 

a non-specific competitor. 

 
Table 1  
Bacterial strains and plasmids. 

 
The lacZ gene was amplified from genomic DNA of E. coli by PCR 

using the primers listed in Table 2. The amplification prod-uct was 

digested with HindIII and XhoI (underlined in Table 2) and cloned into 

the pET22b (+) vector (Novagen) generating the plasmid pET22b-lacZ. 

The rrnB P1 promoter with (rrnB P1wt) and without its UP element 

(rrnB P1 UP), PleuA and PompF were amplified by PCR, digested with 

SphI and HindIII and inserted into pET22b-lacZ lin-earized with the 

same restriction enzymes. The resulting plasmids, designated as listed 

in Table 1, were verified by automated DNA sequencing. 
 

 
2.5.  In vivo transcription assays 
 

MG1655 and MV5924 E. coli strains were individually trans-formed 

with pET22b-lacZ, pET22b-P rrnB P1wt-lacZ, pET22b-P rrnB P1 UP-

lacZ, pET22b-PleuA-lacZ and pET22b-PompF-lacZ plas-mids. These 

bacterial cultures grown overnight in LB medium at 30 
◦
 C, were diluted 

1:100 in fresh medium. At an A600 nm of 0.4, the cultures were divided 

in four aliquots: one was not supple-mented and the other three 

aliquots were supplemented with MNNG (5 g/ml), ENNG (5 g/ml), 

MMS 0.04%, respectively. Cel-lular pellets were collected during the 

exponential growth phase. -Galactosidase activity from the promoter–

lacZ fusions was deter-mined by measuring ONPG-hydrolysis, as 

described by Miller [12] and was compared to the activity obtained 

using a promoterless lacZ gene. 
 

 
2.6.  Isolation of plasmid DNA and damage assay 
 

The MG1655 and MV5924 E. coli strains bearing pET22b-lacZ 

were grown overnight in LB medium at 30 
◦
 C; these bacterial cul-tures 

were then diluted 1:100 in fresh medium. At an A600 nm of 0.4, the 

cultures were divided in four aliquots: one was not sup-plemented and 

the other three aliquots were supplemented with MNNG (5 g/ml), 

ENNG (5 g/ml), MMS 0.04%, respectively. After the addition of 

alkylating agent, the bacterial cells were allowed to grow for 3 h; the 

plasmid DNA was isolated and served as a probe for the estimation of 

alkylated bases. The plasmids were divided into 2 aliquots, one of 

which was treated with the E. coli AlkA (a kind gift from Patrick J. 

O’Brien) and AP Endo (NEB); the other aliquot did not receive further 

treatment (control). Treatment with AlkA 

 
Strains/plasmids Description Reference or source 

   

Strains   
MG1655 Wild-type; F-  -ilvG rfb50 rph1 [38] 
MV5924 aidB  ::TetR derivative of MG1655 in which the aidB gene is replaced by a [11] 

 tetracycline resistance cassette using the methods of Murphy and Campellone [39]  

MV6774 ada-alkB  25::CmR alkA1 tag-1 aidB  35::TetR derivative of MV1161 [13] This study 
MV6780 ada-alkB  25::CmR alkA1 tag-1 aidB  35::TetR/pTrc99A) This study 
MV6782 ada-alkB  25::CmR alkA1 tag-1 aidB  35::TetR/pMV435 (pTrc99A-AidB

+
 ) This study 

MV6790 ada-alkB  25::CmR alkA1 tag-1 aidB  35::TetR/pMV1526 This study 
 (pTrc99A-AidB  440-451)  

Plasmids   

pET22b(+) Carries an N-terminal pelB signal sequence for potential periplasmic localization, This study 
 plus an optional C-terminal His-tag sequence  

pET22b-aidB pET22b  (NdeI–HindIII)  (aidB gene) This study 
pET22b-lacZ pET22b  (HindIII–XhoI)  (lacZ gene) This study 
pET22b-PrrnB(+UP)-lacZ pET22b-lacZ  (SphI–HindIII)  PrrnB(+UP) This study 
pET22b-PrrnB(-UP)-lacZ pET22b-lacZ  (SphI–HindIII)  PrrnB(-UP) This study 
pET22b-PleuA-lacZ pET22b-lacZ  (SphI-HindIII)  PleuA This study 
pET22b-PompF-lacZ pET22b-lacZ  (SphI-HindIII)  PompF This study 
pTrc99A E. coli expression vector [10] 
pMV435 pTrc99A-AidB

+ [10] 
pMV1526 pTrc99A-AidB  440-541 This study 
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Table 2  
Oligonucleotides.  
  

aidB Fw 5 -ATACATATGGTGCACTGGCAAACTCA-3 
aidB Rv 5 -ATAAAGCTTTAACACACACACTCCCC-3 
lacZ Fw 5 -TGTAAGCTTATAACAATTTCACACAGGAA-3 
lacZ Rv 5 -CGGCTCGAGTTATTTTTGACACCAGAC-3 
rrnB P1(+UP) Fw 5 -TAAAGCATGCTCAGAAAATTATTTTAAATTTC-3 
rrnB P1Rv 5 -ATTAAGCTTAGGAGAACCCCGCTGA-3 
rrnB P1(-UP) Fw 5 -ATTTGCATGCCCTCTTGTCAGGCC-3 
PleuA Fw 5 -ATAAGCATGCGGGACGTTTTTATTGCG-3 
PleuA Rv 5 -AAGAAGCTTGATAAAGCGAACGATGTG-3 
PompF Fw 5 -ATTTGCATGCACAAAGTTCCTTAAATTTTA-3 
PompF Rv 5 -TAAAAGCTTAATAAAAATTTACGGAACTATTG-3 
rrnB P1(+UP) Fw bio (emsa) 5 -bio-AGAAAATTATTTTAAATTTCCTCTTGTCAGGCCGGAATAACTC CCTATAAT-3 
rrnB P1(+UP) Rv (emsa) 5 -ATTATAGGGAGTTATTCCGGCCTGACAAGAGGAAATTTAAAATAA TTTTCT-3 
rrnB P1(+UP) Fw (emsa) 5 -AGAAAATTATTTTAAATTTCCTCTTGTCAGGCCGGAATAACTCCCT ATAAT-3 
rrnB P1(-UP) Fw (emsa) 5 -CCTCTTGTCAGGCCGGAATAACTCCCTATAAT-3 
rrnB P1(-UP) Rv (emsa) 5 -ATTATAGGGAGTTATTCCGGCCTGACAAGAGG-3 

 
 
was performed in 70 mM MOPS, pH 7.5, 1 mM EDTA, 1 mM DTT, 5% 

glycerol for 30 min at 37 
◦
 C, followed by treatment with AP Endo for 1 

h at 37 
◦
 C. Then the samples were subjected to electrophoresis in 

0.8% agarose gel for ∼1 h at 80 V using 40 mM Tris, pH 7.8, 1 mM 

EDTA buffer. 

 
2.7.  Determination of DNA damage in the lacZ gene 
 

MG1655 and MV5924 E. coli strains were individually trans-formed 

with pET22b-lacZ, pET22b-P rrnB P1wt-lacZ, pET22b-P rrnB P1 UP-

lacZ. These bacterial cultures grown overnight in LB medium 
at 30 

◦
 C were diluted 1:100 in fresh medium. At an A600 nm of 0.4, the 

cultures were divided in two aliquots, and one was supplemented  
with 0.04% MMS to activate the adaptive response. The bacterial cells 

were allowed to grow for 3 h. Then, the plasmids under study were 

isolated from these bacterial cells and were digested with HindIII and 

XhoI to release the lacZ fragment. To estimate the pres-ence of alkyl 

lesions, the DNA fragments were treated or not with the AlkA and AP 

Endo proteins. The samples were then subjected to electrophoresis on 

alkaline agarose gels in 30 mM NaOH, 1 mM EDTA, pH 8 buffer, at 60 

V for 3 h at 25 
◦
 C. The gel was neutralized by soaking in a solution 

containing 1.5 M NaCl and 1 M Tris–HCl, pH 7.6 for 1 h. Finally, the 

gel was stained in TE buffer (10 mM Tris–HCl, 1 mM EDTA, pH 7.4) 

containing SYBR
®

 Gold for 30 min at 25 
◦
 C and the samples were 

then analyzed for single-strand DNA breaks. 
 

 
2.8.  Cell survival and mutagenesis 
 

Cell survival was tested by growing cells to a density of 1–3 × 10
8
 

cells/ml, treating with MNNG for 30 min, then diluting cells in 

phosphate buffered saline containing 4% Na2S2O3 to inac-tivate 

residual MNNG [13], then plating cells on LB plates [13]. Mutation 

frequencies were determined using DSEM plates [13]. Cultures grown 

to approximately 3 × 10
8
 cells per ml then spread on alkylating agent 

containing plates and incubated for 3 days at 37 
◦
 C and Arg

+
 mutant 

colonies counted. Since alkylating agents are relatively unstable, 

plates containing mutagens were made by first adding alkylators at 

volumes needed to attain the specified final concentration, then adding 

25 ml cooled (50 
◦
 C) DSEM medium. The plates were cooled for 20 

min, then dried by incubation at 37 
◦
 C for 20 min with covers removed 

and immediately inoculated. All mutagenesis measurements were 

made at sub-lethal doses of alky-lators using strains deficient in most 

alkylation specific DNA repair mechanisms (ada-alkB 25::CmR alkA1 

tag-1 aidB 35::TetR) car-rying either the vector pTrc99A, or pTrc99A 

derivatives that express aidB alleles. 

 
 
3.  Results 
 

To identify proteins that bind the upstream regions of strong 

promoters, we investigated the protein complex that assembles at the 

upstream elements of the rrnB P1 promoter (see  Supplemental Data 

and  Supplemental Figure S1) by comparing proteins that bind to a 

sequence containing the −35 region and the UP element, an A/T rich 

enhancer sequence that constitutes the upstream element of many 

genes [14–16], but not to a similar sequence lacking the UP element. 

The presence of the E. coli AidB protein among these proteins was 

unexpected, and suggested a possible regulatory role for AidB in 

transcription. 
 
3.1.  AidB preferentially binds DNA containing UP elements 
 

Fig. 1 shows that AidB protein binds to DNA containing the rrnB 

P1wt promoter retarding the fragment in an electrophoretic mobility 

shift experiment (EMSA). When rrnB P1wt DNA is used as competitor, 

there is a rapid loss of binding to the labeled DNA. However, when the 

rrnB P1 UP promoter lacking the UP element is used as competitor, no 

inhibition of binding to the labeled rrnB P1wt 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Gel retardation. Experiments were performed by incubating the AidB protein 

with rrnB P1wt ; competitors were included as indicated. Lane 1: AidB protein incu-

bated with rrnB P1wt . Lanes 2–3: Competition assay with rrnB P1wt (100–500×) as 

specific competitor. Lanes 4–5: Competition assay with rrnB P1 UP as non specific 

competitor (100–500×). 
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sequence is seen even when it is added at a 500-fold excess. This 

indicates that AidB protein preferentially binds to rrnB P1 promoter 

only when the UP element is present. Similar results were also seen 

when random DNA containing the same base pair composition was 

used as competitor (see  supplemental data). The preferential bind-ing 

is not restricted to the rrnB P1wt promoter, since binding of AidB to its 

own promoter also requires the presence of the UP element [11]. 
 
 
3.2.  Functional analysis of AidB during transcription 
 

In order to determine whether the presence of AidB at the rrnB P1 

promoter might be of biological significance, we tested its effect on 

transcription from this promoter by in vivo transcription assays. In 

addition, we tested other promoters that differ with respect to presence 

or absence of an UP element, namely: (1) the rrnB p1 pro-moter with 

its UP element (rrnBWT), (2) the rrnB promoter deleted 
of its UP element (rrnB  UP), (3) PleuA, which lacks an UP element and 
(4) PompF, which has an UP element. All promoters were individually 

fused to a promoterless lacZ gene contained in the reporter plasmid 

pET22b-lacZ. Both MG1655 (wild type) and MV5924 ( aidB) E. coli 

strains were then transformed with the fusion plasmids and grown 

 
in LB medium, either in the absence or in the presence of alkylat-ing 

agents (MMS, MNNG, and ENNG). After 2 h incubation in the 

presence or absence of the alkylating agent, -galactosidase activ-ity 

was measured during the exponential growth phase. As shown in Fig. 

2A, wild type and aidB mutant strains not exposed to alkyla-tors 

showed identical levels of -galactosidase activity, indicating that the 

presence of AidB has no effect on transcription in untreated cells 

experiencing normal growth.  
When MG1655 cells are treated with MMS, MNNG, or ENNG, 

transcription is reduced by roughly 2-fold for all promoters tested. In 

contrast, the aidB mutant showed a much more severe reduc-  
tion in transcription, especially at the rrnBWT and PompF, the two UP 
element containing promoters (Fig. 2). This suggests that the  
interaction of AidB protein with this class of promoters is of func-tional 

significance and that AidB prevents transcription block by alkylation 

stress. The smaller effect of the aidB deletion on the two promoters 

lacking UP elements is consistent with preferential bind-ing of AidB to 

this region (Fig. 1). Taken together, these data strongly suggest that 

AidB is required for high levels of transcription dur-ing alkylation stress 

and that it has a more pronounced effect on transcription from 

promoters containing an upstream UP element sequence. While it is 

formally possible that AidB is a transcriptional 
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Fig. 2. In vivo transcription of lacZ fused to different promoters. The pET22b-P rrnB P1wt -lacZ, pET22b-P rrnB P1 UP -lacZ, pET22b-PleuA-lacZ and pET22b-PompF-lacZ plasmids 

were individually introduced into MG1655 (wild type) and MV5924 ( aidB) E. coli strains and the specific activity of -galactosidase was determined in the absence (A) and in the 

presence of MNNG (5 g/ml) (B), ENNG (5 g/ml) (C), MMS 0.04% (D). The activities of promoters are reported in Miller units; the activity obtained using a promoterless lacZ gene was 

subtracted. Numbers above bars refer to the ratio of the -galactosidase activity of the promoter measured in the wild type cells to the activity of that same promoter in the aidB mutant 

strain. Means and standard deviations have been calculated from four independent assays. 
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regulator of UP element containing genes when alkylating agents are 

present, a more likely explanation, based on its role as part of an 

alkylation inducible DNA repair response, is that AidB prevents or 

repairs DNA damage in specific regions of the genome, preferen-tially 

preserving the coding capacity of genes transcribed from UP element 

containing promoters. 
 
3.3.  AidB reduces the level of alkylation damage in DNA 
 

To test directly if AidB might be able to prevent or repair alky-lation 

damage to DNA the pET22b-lacZ plasmid was isolated from wild type 

and aidB mutant cells grown either in the absence or in the presence 

of alkylators (MMS, MNNG, and ENNG) and served as a probe for the 

estimation of alkylated bases in DNA. The plasmids were divided into 

2 aliquots, one was treated with E. coli AlkA (a gift from Patrick J. 

O’Brien) and AP Endonuclease IV (AP Endo) (New England Biolabs); 

the other aliquot did not receive further treat-ment and served as a 

control. The AlkA glycosylase recognizes and removes a wide variety 

of alkylated bases converting them to abasic sites [6] and AP Endo is 

an apurinic/apyrimidinic (AP) endonuclease that converts the abasic 

sites to nicks [17,18]. The combined action of these two enzymes on a 

damaged plasmid results in the con-version of the covalently closed 

circular (supercoiled) DNA to open circular and, if lesions are closely 

spaced, linear forms. AlkA treated and untreated plasmids were then 

subjected to electrophoresis on agarose gels and tested for the 

conversion of the supercoiled form to open circular and linear forms. 

As shown in Fig. 3A, alkyl lesions were not detected in plasmids 

isolated from bacteria grown in LB medium without the addition of 

alkylating agents, indicating there is no detectable endogenous 

damage or non-specific cleavage by 

 
these enzymes in vitro. When plasmid DNA isolated from wild type 

cells exposed to alkylating agents was analyzed (Fig. 3B–D), treat-

ment with AlkA and AP Endo did not result in nicking (Lane 2) 

indicating a lack of DNA damage, but when DNA isolated from the 

alkylating agent treated aidB mutant was analyzed, the supercoiled 

fraction was completely absent after AlkA/AP Endo treatment and 

there was an increase in both open circular and linear forms (Lane 4). 

These results indicate that the presence of AidB reduces the level of 

alkylation damage in plasmid DNA. Moreover, AidB protects DNA from 

all three alkylating agents tested, although they differ in the nature of 

DNA lesions they produce. Indeed, MNNG methylates and ENNG 

ethylates DNA more effectively at O
6
-G than MMS. In con-trast MMS 

methylates double stranded DNA primarily at N
7
-G and N

3
-A sites and 

in single stranded DNA regions it also methylates N
1
-A and N

3
-C more 

efficiently than MNNG [19].  
AidB preferentially protects DNA regions downstream of an UP 

element.  
Since AidB appears to protect DNA from alkylating agents very 

effectively (Fig. 3), the lack of an alkylation sensitivity phenotype of 

aidB mutants remains a puzzle (see Fig. 5 and [13,20]). The observa-

tion that AidB protein allows more effective transcription of genes with 

UP element promoters in the presence of an alkylating agent (Fig. 2) 

and has a higher affinity for UP element containing pro-moters [11], 

suggests that AidB may not protect the entire genome equally and may 

show a preference for UP element containing regions of DNA. To test 

this possibility, we analyzed the effect of AidB on alkylation damage in 

vivo in the lacZ fragment. In this experiment, we used three plasmids, 

each carrying the lacZ gene fused to three different upstream 

sequences: the rrnBWT promoter, the rrnB UP promoter, and a third 

plasmid carrying a promoterless 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Plasmid damage assay. The pET22b-lacZ DNA was isolated from wild type (Lanes 1–2) and aidB (Lanes 3–4) E. coli strains grown in the absence (A) or in the presence of 

MNNG (5 g/ml) (B), MMS 0.04% (C), ENNG (5 g/ml) (D), digested (Lanes 2, 4) or not (Lanes 1, 3) with AlkA and AP Endo and subjected to agarose gel electrophoresis. Lane 5, 1 kb 

DNA marker (NEB). OC: open circular; L: linear; SC: supercoiled. 
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lacZ gene. We investigated whether the presence of AidB might affect 

the content of alkyl lesions within the lacZ sequences. Wild type and 

aidB mutant cells containing these plasmids were first treated with 

MMS. After isolation, the plasmids were digested with restriction 

enzymes to release the lacZ fragment. The lacZ frag-ment was then 

purified by agarose gel electrophoresis and divided into two aliquots. 

One aliquot was treated with the AlkA/AP Endo to nick the DNA at the 

lesion sites. The samples were then sub-jected to electrophoresis on 

alkaline agarose gel to denature DNA and to separate nicked from full-

length ssDNA fragments. Since only undamaged strands will run as 

full-length molecules, the frac-tion of strands containing lesions can be 

estimated by comparing the AlkA/AP Endo treated samples with 

controls not treated with AlkA/AP Endo. Fig. 4 shows that the aidB 

mutant cells are not able to protect the lacZ gene regardless of the 

upstream sequence present and all DNA samples are equally sensitive 

to AlkA/AP Endo treatment (Lanes 8, 10, and 12). In wild type cells, 

essentially all DNA from the rrnBWT bearing plasmid exposed to 

AlkA/AP Endo remains as full length (Fig. 4, compare Lanes 3 and 4). 

When lacZ is fused to the rrnB UP promoter, the sample treated with 

AlkA/AP Endo (Lane 6) shows a clear decrease in the amount of full-

length fragments compared with the control DNA not treated with 

AlkA/AP Endo (Lane 5). Treatment of lacZ from the promoter-less 

plasmid with AlkA/AP Endo resulted in an almost complete loss of full-

length DNA fragments indicating a higher level of dam-age (Compare 

Lanes 1 and 2), thus confirming that the presence of AidB is required 

for the protection against alkyl damage. It also suggests that 

transcription itself cannot be solely responsible for damage prevention, 

since transcription at the onset of damage is identical in wild type and 

the aidB mutant (Fig. 2). Additionally, there is no detectable difference 

in damage levels when DNA sam-ples isolated from the aidB mutant 

are compared with one another despite the markedly higher level of 

transcription of the lacZ gene transcribed from the rrnB P1wt element 

versus the promoterless lacZ. By contrast, plasmids from MMS treated 

wild type cells show a clear difference in their levels of protection from 

alkylation dam-age. Fig. 4 shows that lacZ fused to the UP element 

containing the rrnB P1wt promoter is well protected from MMS 

exposure when compared, either to the samples from the aidB mutant, 

or lacZ fused to the rrnB promoter that lacks the UP element, or has 

no promoter. 
 
 

These results demonstrate that AidB preferentially protects the 

DNA of genes transcribed from UP element-containing promoters 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. AidB preferentially protects DNA regions containing an UP element. The 

pET22b-lacZ, pET22b-P rrnB P1wt -lacZ and pET22b-P rrnB P1 UP -lacZ plasmids 

were isolated from wild type (Lanes 1–6) and aidB (Lanes 7–12) E. coli strains grown 

in the presence of MMS 0.04% and digested to release and purify the lacZ fragment. 

The lacZ containing DNA fragments were untreated (Lanes 1, 3, 5, 7, 9, 11) or treated 

(Lanes 2, 4, 6, 8, 10, 12) with AlkA and AP Endo and subjected to electrophoresis on 

alkaline agarose gel. Lanes 1, 2, 7, 8: lacZ lacking a promoter; Lanes 3, 4, 9, 10: lacZ 

fused to the rrnB P1wt promoter with its UP element; Lanes 5, 6, 11, 12: lacZ fused to 

the rrnB P1 UP promoter without its UP element; Lane 13: 1 kb DNA marker (NEB). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Alkylating agent sensitivity of strains deficient in adaptive response genes. Cells 

were grown to a density of approximately 1–3 × 10
8
 cells/ml and treated with MNNG as 

indicated. Wild type (MG1655), aidB 35::TetR (MV5924). Each data point represents 3 

(15, 90 g/ml) or 6 repetitions (0, 30 and 60 g/ml). Standard errors of the mean are 

shown where visible beyond the data point. 
 
to a greater extent than DNA fragments bearing promoters lacking an 

UP element. 
 
3.4.  AidB does not confer cellular resistance to alkylation damage 
 

The aidB mutant strain MV5924 was tested for its sensitivity to 

MNNG damage. Fig. 5 shows that even a complete deletion of aidB 

results in little or no sensitivity to MNNG when compared with its 

isogenic wild type. The aidB mutation also does not affect MMS 

sensitivity (Figure S3, supplementary material). These results are 

consistent with previous observations that mutants carrying inser-tions 

in the aidB gene show no increase in sensitivity to alkylating agents 

[13]. A lack of alkylation sensitivity of the aidB deletion mutant is 

inconsistent with a general DNA damage prevention mechanism, since 

the ability to prevent damage throughout the genome should result in 

increased resistance. However, protection of only some DNA regions 

would prevent damage to only those genes that are targets for AidB 

protein and is unlikely to have a major effect on overall survival. 
 

Based on the 3-dimensional structure of AidB protein, it has been 

suggested that AidB is unlikely to function as a DNA repair protein. 

Instead it may bind DNA and enzymatically inactivate alkylators as 

they approach the DNA. This notion is based on the observa-tion that 

the dehydrogenase active site of AidB is spatially distant from its DNA 

binding face and accessible only from the exterior of the protein [23]. 

Since a DNA repair protein predicts that the DNA binding domain will 

be required for activity, we constructed an AidB mutant that lacks the 

entire DNA binding domain (aidB 440-541). This mutant has previously 

been shown to have IVD activity identical to the wild type, but no 

detectable DNA binding activ-ity [11]. Since wild type AidB protein 

functions as an antimutator when cells are grown in the presence of 

MNNG, we tested if the DNA binding deficient AidB mutant protein 

retains the antimuta-tor activity. Fig. 6 shows that the aidB 440-541 

mutant allele is as active as the wild type allele in the antimutator 

assay, indicating that DNA binding is not required for the alkylation 

resistance func-tion of AidB and suggesting DNA binding instead 

serves to target AidB to specific genes. 
 
 
4.  Discussion 
 

The biological role of AidB has long been uncertain. Our data 

demonstrate that AidB prevents DNA damage by alkylating agents 
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Fig. 6. Antimutagenic activity of wild type and AidB( 440-541). Cells were grown to a 

density of approximately 3 × 10
8
 cells per ml and undiluted cultures were spread on 

DSEM plates ± alkylating agents and mutation frequencies determined. All muta-

genesis experiments were conducted at sublethal doses of alkylating agents using 

strains deficient in most alkylation specific DNA repair mechanisms: aidB
+
 (MV6782, 

ada-alkB 25::CmR alkA1 tag-1 aidB 35::TetR/pTrc99A-AidB
+
 ); aidB 440-541  

(MV6790, ada-alkB 25::CmR alkA1 tag-1 aidB 35::TetR/pTrc99A-AidB 440-451); vector 

control (MV6780, ada-alkB 25::CmR alkA1 tag-1 aidB 35::TetR/pTrc99A). 

 
and counteracts the block to transcription that results upon expo-sure 

to alkylating agents, especially in genes that are transcribed from 

promoters containing UP elements. These effects are seen after 

treatment with MMS, MNNG and ENNG, three alkylating agents that 

produce different DNA lesions or damage spectra [24]. The result that 

ENNG damage is also prevented is especially interesting since ENNG 

lesions are repaired not only by adaptive response repair system, but 

also by nucleotide excision repair in  
E. coli [25].  

The result that AidB can prevent DNA damage seems incon-sistent 

with the result that loss of AidB function by a complete deletion has 

little or no effect on MMS or MNNG sensitivity of the mutant strain (Fig. 

5 and S3). However, effects of an aidB mutation on DNA damage and 

mutagenesis were seen at sublethal doses of alkylating agents (Figs. 

3–6). Since Ada depen-dent aidB induction is relatively weak 

compared to that of other adaptive response genes [13,20], it is 

possible that AidB protein levels are too low to provide adequate 

protection against lethal doses of alkylating agents. The primary 

function of AidB may be to protect DNA from the low levels of 

alkylators that are pro-duced as by-products of stationary phase 

metabolism [26–29], a possibility that is consistent with the observation 

that aidB is induced and expressed at elevated levels in stationary 

phase [10,30,31]. 
 

The result that the AidB protein specifically binds to DNA 

sequences that include the UP element [11] (see also Fig. 1), sug-

gests that the lack of increased sensitivity to high levels of alkylating 

agents in the aidB mutant (Fig. 5) may also be due to the fact that 

AidB only protects a subset of the genome, leaving other genes, 

including essential ones, exposed to DNA damage. The aidB mutant 

phenotype is consistent with targeted repair or damage prevention and 

is analogous to the effect seen in strains that lack the abil-ity to carry 

out transcription-coupled repair (TCR) of UV damage, the only other 

gene specific repair or damage prevention system currently known. A 

TCR deficient mfd mutant shows only a mod-est decrease in cellular 

resistance to UV, but a dramatic reduction in the rate at which repair of 

active genes occurs [32–34]. Thus, the AidB prevention mechanism 

appears to be a cellular strategy to preferentially protect a subset of 

genes. In this case the genes 

 
include ones important for basic metabolic processes and key DNA 

repair genes. AidB is targeted towards genes whose promoters have 

upstream UP elements. This includes genes such as most of the 

ribosomal RNA genes and many tRNA genes as well as several key 

DNA repair genes required for recovery from alkylation damage such 

as recA, polA, sulA, recN the ada-alkB operon, and aidB itself 

[14,35,36].  
The presence of a functional aidB gene protects UP element genes 

from alkylation damage and results in more efficient tran-scription in 

the presence of alkylating agents. lacZ fused to the two UP element 

containing rrn and ompF promoters are transcribed 10-and 6-fold more 

efficiently in the presence of an alkylating agent than lacZ fused to an 

rrn promoter whose UP element has been deleted, or the leuA 

promoter, which has no UP element. Although it is possible that AidB 

has regulatory effects on these genes, a lower level of template 

damage should clearly contribute to the transcription efficiency. 
 

Promoters lacking an UP element, and thus not efficiently bound by 

AidB protein still show a slightly higher level of transcription in wild type 

versus aidB mutants upon alkylation (2.2- and 2-fold enhancement for 

rrnB UP and Pleu, Fig. 2). It is unclear if this aidB-dependent 

enhancement of transcription in the presence of an alkylating agent 

represents some direct protection by aidB, or is an indirect effect of the 

elevated levels of ribosomes, tRNAs and possibly other components of 

the translational machinery that are transcribed at a higher levels in the 

aidB+ strain under these con-ditions. The observation that the 

protection of lacZ fused to the rrn promoter lacking an UP element and 

the observation that plasmid DNA shows better protection in wild type 

than in an aidB mutant strain (Fig. 4), suggests that there may be 

some general protection resulting from the presence of aidB, especially 

when it is highly expressed, or induced for a long period of time as in 

these experi-ments. Under these conditions AidB may initially protect 

the genes preferentially targeted, followed by other parts of the 

genome if AidB protein accumulates to sufficiently high levels. The 

precise mechanism of action of AidB remains to be determined, though 

it is possible that it provides the protection of DNA adjacent to its pre-

ferred binding site, either by simply inactivating alkylating agents and 

reducing the local concentration, or by polymerizing into mul-timers 

that extend from the initial binding site. In the latter case, it is likely to 

protect both by shielding the DNA and by inactivating alkylators. 
 
 

However, the MNNG resistance resulting from expression of the 

DNA binding deficient aidB mutant protein, AidB( 440-541) indi-cates 

that the mutant lacking DNA binding activity still functions to prevent 

alkylation mutagenesis. This observation makes it unlikely that AidB 

functions by simply binding and coating the DNA, thus preventing 

access by alkylators. The ability of the DNA binding defective AidB 

protein to prevent mutagenesis suggests that AidB is not a DNA repair 

protein, since DNA repair would be inhibited by lack of DNA binding 

activity. Instead, AidB is more likely to func-tion to prevent damage by 

detoxifying alkylating agents, which could reduce DNA alkylation even 

in the absence of DNA bind-ing activity by reducing the intracellular 

concentration of active alkylators. A role for AidB in alkylating agent 

detoxification is also consistent with earlier work on AidB and analysis 

of the structural features of the protein [10,23]. Determination of the 

precise mech-anism by which AidB may inactivate alkylating agents 

requires further work to examine the chemistry of the hypothetical pro-

cess. 
 

It is unclear how widespread preferential damage prevention 

mechanisms such as AidB are, if other prokaryotes and eukary-otes 

have similar damage prevention proteins, or if the strategy of 

preferential DNA protection extends to mechanisms that prevent 

damage by other agents. In E. coli the dps gene is highly expressed in 

stationary phase and prevents oxidative DNA damage. Unlike AidB, 
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however, this protein is produced at very high levels and appears to 

function as a genome wide protective protein. It is unclear if it may also 

have a preference for specific sequences when it is expressed at lower 

levels [37]. 
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Abstract: The AidB protein is involved in the adaptive response to DNA alkylation damages in Escherichia coli. Functional 

proteomic experiments were designed to elucidate AidB biological functions in the presence and in the absence of methyl 

methanesulfonate as methylating agent. Several proteins were identified in both conditions and according to their reported biological 

activities, the inter-actors were grouped into three different functional categories: stress response, energetic metabolic pathways and 

nucleic acid metabolism. Particularly, the interaction between AidB and UvrA, a member of the UvrABCD nucleotide excision 

system, suggested a new interesting putative role for AidB. 
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1. Introduction 

 

DNA modifications by alkyl molecules can cause 

cytotoxic and mutagenic lesions in all living 

organisms. Several repair mechanisms able to remove 

alkyl groups and restore genetic information occur in 

microorganisms to counteract DNA chemical 

damages. Furthermore, bacteria exhibit the adaptive 

response by which cellular resistance enhances with 

increasing doses of methylating agents [1]. This 

response in Escherichia coli involves the presence of 

the acyl-CoA dehydrogenase AidB, among others. 

AidB consists of two domains, the N-terminal region 

responsible of the dehydrogenase activity, and the 

C-terminal domain exhibiting DNA binding capability 

[2]. Unlike all the other proteins of the adaptive 

response, AidB seems to act as a DNA protective 

protein and it is not endowed with DNA repair 

capabilities.  

Moreover, in the presence of methylating agents, 

AidB allows efficient transcription from promoters 

containing an UP element, AT rich transcription 
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enhancer sequences and protects downstream genes 

from chemical damages [3, 4]. Even though the 

mechanism of DNA protection exerted by AidB is still 

obscure, this protein might prevent alkyl damage 

either by binding and physically hiding the DNA 

molecule or by inactivating alkylating agents thus 

reducing their local concentration.  

This paper focused on the elucidation of AidB 

biological role at the molecular level by functional 

proteomic approaches addressed to the identification 

of AidB protein partners. Since it is now clear that 

relevant biological mechanisms involve multi-protein 

complexes, the association of AidB with partners 

belonging to a particular mechanism will be strongly 

suggestive of its biological function. Isolation of AidB 

multi-protein complexes was performed in vivo by 

pull down strategies using a His-tagged form of the 

protein as bait in the presence and in the absence of 

methyl-methane sulfonate as methylating agent.  

Authors identified several proteins involved in 

different biological mechanisms including various 

response complexes thus suggesting that AidB is 

endowed with different functions indicative of new 

cellular strategies to counteract alkylation stresses. 
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2. Experimental Sections 

Proteomic grade trypsin, DTT (dithiothreitol), 

HEPES, KCl, MgCl2, glycerol, ammonium 

bicarbonate and triton were purchased from Sigma. 

All used solvents were of the highest purity available 

from Romil. 

2.1 Escherichia Coli Growths and Cell Extraction 

Preparation 

E. coli cells growths were transformed with the 

construct pET22b-AidB. Bacterial culture was grown 

overnight in LB medium at 37 °C and it was diluted 

1:100 in fresh medium containing ampicillin (100 

µg/mL) and riboflavin (100 µM). At an A600 nm of 0.4, 

the culture was divided in two aliquots and one of 

these was supplemented with 0.04% MMS (methyl 

methane sulfonate) that has been shown to induce the 

adaptive response. After one cell duplication cellular 

pellets were collected. The cells were resuspended in 

20 mM Na2HPO4, 20 mM Imidazole, 500 mM NaCl, 

1 mM PMSF (phenil methane sulphonyl fluoride) (pH 

= 7.4), disrupted by passage through a french press 

and centrifuged at centrifugal force of 14,000 x g for 

15 min at 4 °C. The supernatant was collected and 

protein concentration was determined with the 

Bio-Rad protein assay, using bovine serum albumine 

as standard.  

2.2 Pull-Down Experiments 

Isolation of AidB partners complex was performed 

by using His-SelectTM Nickel (Sigma) containing 

Ni
2+

 ions immobilized to bind His-tagged AidB. A 

control was carried out in order to discriminate 

between proteins that interact specifically with the 

Ni
2+

 compared to those that bind in a nonspecific 

manner to the resin. For this reason, the stripping of 

the resin was executed by washing in 20 mM sodium 

phosphate, 0.5 M NaCl and 50 mM EDTA, for the 

purpose of removing Ni
2+

 ions. In this way, the resin 

lost the ability to interact specifically with the tag of 

histidines, but it was still able to establish nonspecific 

interactions. At this point, the resin was washed with 

20 mM sodium phosphate, 0.5 M NaCl and 20 mM 

imidazole pH 7.4. The two protein extracts (2.5 mg) 

were incubated for 16 h at 4 °C with 100 μL of resin 

without nickel ions in the precleaning step. The 

extracts were then recovered and incubated with 

His-SelectTM Nickel resin for 16 h at 4 °C to bind 

AidB by tag of histidines and to isolate its complexes. 

Both the precleaning and affinity chromatography 

resins were recovered and washed with 20 mM 

sodium phosphate, 0.5 M NaCl and 20 mM imidazole 

pH 7.4. The elution was performed with sample buffer. 

The samples were then subjected to SDS-PAGE 

(SDS-polyacrilamide gel electrophoresis). 

2.3 In Situ Digestion  

Protein bands stained with Coomassie brilliant blue 

were excised from the gel and destained by repetitive 

washes with 0.1 M NH4HCO3 (pH 7.5) and 

acetonitrile. Samples were reduced by incubation with 

50 µL of 10 mM DTT in 0.1 M NH4HCO3 buffer (pH 

7.5) and alkylated with 50 µL of 55 mM 

iodoacetamide in the same buffer. Enzymatic 

digestion was carried out with trypsin (12.5 ng/µL) in 

10 mM ammonium bicarbonate (pH 7.8). Gel pieces 

were incubated at 4 °C for 2 h. Trypsin solution was 

then removed and a new aliquot of the digestion 

solution was added; samples were incubated for 18 h 

at 37 °C. A minimum reaction volume was used as to 

obtain the complete rehydratation of the gel. Peptides 

were then extracted by washing the gel particles with 

10 mM ammonium bicarbonate and 1% formic acid in 

50% acetonitrile at room temperature. 

2.4 LC/MS/MS (Liquid Chromatography Tandem 

Mass Spectrometry) Analyses 

Tryptic peptide mixtures obtained from in situ 

digestions were analysed by LC/MS/MS using an 

HPLC-Chip/Q-TOF 6520 (Agilent Technologies). 

The peptide mixtures were injected by auto sampler. 
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They were sent to the enrichment column of the chip 

at flow rate of 4 μL/min, in 98% water, 2% 

acetonitrile and 0.1% formic acid. Subsequently the 

peptides were eluted directly into the capillary column 

(C18 reversed phase), at a flow rate of 0.4 μL/min. 

The chromatographic separation was carried out with 

a linear gradient in 95% acetonitrile, 5% water and 

0.1% formic acid. The eluate was then introduced in 

the ESI source for the tandem analysis. In this way 

each mass spectrum (range 300-2,400 m/z) was 

followed by one or more tandem mass spectra (range 

100-2,000 m/z), obtained by fragmenting the most 

intense ions in each fraction eluted chromatographic. 

The acquired MS/MS spectra were transformed in 

Mascot generic file format and used for peptides 

identification with a licensed version of MASCOT 

(modular approach to software construction, operation 

and test, matix science, USA), in a local database. 

2.5 Construction of Expression Vectors 

The bacterial strains and plasmids used in this work 

are all reported in Table 1. The UvrA, DeaD, RecA, 

TnaA and Ada genes of E. coli K12 were amplified 

from genomic DNA by PCR (polymerase chain 

reaction). To obtain proteins tagged with c-myc 

epitope, the corresponding amplification products 

were digested with BamHI and XhoI and cloned into 

the pET22b-c-myc vector [4], respectively. All 

plasmids (Table 1) containing the coding sequence for 

the corresponding recombinant protein fused to a 6X 

histidine tag to facilitate protein purification by Ni
2+

 

affinity chromatography. Plasmids construction was 

verified by automated DNA sequencing. 

2.6 Production and Purification of Recombinant 

Proteins 

Recombinant cells were grown at 37 °C to an OD 

(optical density) at 600 nm of about 0.5, at which time 

0.05 mM isopropyl-beta-D-thiogalactopyranoside 

(IPTG) was added in order to express UvrA, DeaD, 

RecA, TnaA and Ada genes. Selective antibiotic was 

used at concentration of 100 µg/mL ampicillin. After 

incubation, cells were harvested by centrifugation at 

centrifugal force of 5,000 x g for 15 min at 4 °C, 

resuspended in 50 mM Na2HPO4, 20 mM Imidazole, 

500 mM NaCl, 1 mM PMSF (pH 7.4), disrupted by 

passage through a French press and centrifuged at 

centrifugal force of 14,000 x g for 30 min at 4 °C. 

Recombinant proteins were purified by affinity 

chromatography on His-Select Nickel Affinity Gel 

(Sigma). After 1 min of incubation at 4 °C, the matrix 

was collected by centrifugation at centrifugal force of 

11,000 x g for 1 min and washed three times with 

same equilibration buffer. The recombinant proteins 

were eluted with buffer containing 500 mM imidazole 

in 20 mM Na2HPO4, pH 7.4, 0.5 M NaCl. 

Protein concentration was estimated with Bradford 

reagent (Bio-Rad protein assay) and protein content 
 

Table 1  Bacterial strains and plasmids used. 

Strains/plasmids Description Reference or source 

Strains 

C41 (DE3) 

Strain that derives from BL21 [F-ompT hsdSB (rB-mB-) gal dcm (DE3)]. This strain 

has at least one uncharacterized mutation that prevents cell death associated with 

expression of many toxic recombinant proteins. 

Ref. [3] 

Plasmids 

pET22b(+)  
Carries an N-terminal pelB signal sequence for potential periplasmic localization, 

plus an optional C-terminal His-tag sequence 
Novagen 

pET22b-Ada pET22b(BamHI-XhoI)(Ada gene)   This work 

pET22b-DeaD pET22b(BamHI-XhoI)(DeaD gene)   This work 

pET22b-TnaA pET22b(BamHI-XhoI)(TnaA gene)   This work 

pET22b-UvrA pET22b(BamHI-XhoI)(UvrA gene)   This work 

pET22b-RecA pET22b(BamHI-XhoI)(RecA gene)   This work 
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was checked by SDS-PAGE. 

2.7 Co-Immunoprecipitation and Western Blotting 

For co-immunoprecipitations, E. coli strain C41 

(DE3) was transformed with the following constructs: 

pET22b-c-myc-Ada, pET22b-c-myc-TnaA, pET22b-c 

-myc-DeaD, pET22b-c-myc-RecA and pET22b-c-myc 

-UvrA. After expression of the recombinant genes 

without induction, cells were harvested, suspended in 

50 mM Na2HPO4 (pH 7.4), disrupted by passage 

through a French press and centrifuged at centrifugal 

force of 14,000 x g for 30 min at 4 °C. The 

supernatants were used for the 

co-immunoprecipitation experiments.  

Cell lysates (0.5 mg) were incubated with 

agarose-linked c-myc antibody (Bethyl) and with 

agarose beads only (control of the experiment) at 4°C 

overnight. The beads were then collected by 

centrifugation. Precipitates were washed several times, 

the bound proteins were eluted with 1 × SDS-PAGE 

sample buffer and subjected to SDS-PAGE followed 

by Western Blot Analysis that was performed by 

using anti-AidB antibody (Primm, Milano Italy) and 

anti-c-myc mouse antibody (Calbiochem) as first 

antibodies and anti-mouse IgG conjugated to 

peroxidase as a secondary antibody (Calbiochem).  

3. Results and Discussion 

3.1 Isolation of AidB Complexes in E. coli Upon 

Exposure to MMS 

In vivo isolation of AidB containing protein 

complexes were performed by transforming E. coli 

C41 strain with the pET22b-AidB construct carrying 

the AidB gene fused to a six histidine tags. The strain 

was grown in the absence and in the presence of 

sub-inhibitory concentrations of the alkylating agent 

MMS. Isolation of AidB complexes was performed by 

IMAC (ion metal affinity chromatography). The total 

protein extracts from the two samples were first 

submitted to a pre-cleaning step by incubation with 

His-Select beads lacking nickel ions in order to 

remove non-specific proteins. Eluates from the 

pre-cleaning were then recovered and AidB containing 

complexes were isolated by IMAC on His Select 

beads. After extensive washing, the proteins 

specifically bound to AidB bait were eluted with a 

strong ionic buffer containing 0.5 M imidazole and 

fractionated on SDS-PAGE stained with coomassie 

blue. Pre-cleaning samples were also eluted and used 

as control. Fig. 1 shows the obtained Coomassie black 

stained gel.  

3.2 Identification of Proteins Specifically Interacting 

with AidB 

The entire lanes from both samples (3, 4) and 

controls (1, 2) were cut in 24 slices and each gel slice 

was in situ digested with trypsin and the 

corresponding peptide mixtures directly analysed by 

LC/MS/MS procedures. Tandem mass spectral 

analyses provided both the accurate molecular mass  

 
Fig. 1  SDS-PAGE fractionation of AidB complexes. Lanes 

1 and 2 precleaning eluates. Lanes 3 and 4 AidB complexes 

in the absence and in the presence of MMS, respectively. 

and sequence information from the daughter ion 

spectra of each peptide. These data were used for 

database searches using a home version of the Mascot 



Molecular Partners of Escherichia coli Transcriptional Modulator AidB 

  

880 

software leading to the identification of the proteins. 

Common proteins identified in both the sample and 

the control gel slices were ruled out and only those 

solely occurring in the samples were considered as 

putative AidB inter-actors thus greatly decreasing the 

number of false positives. Proteins identified in the 

proteomic experiments are listed in Tables 2 and 3 

where the protein name, the corresponding Swiss Prot 

code and the number of identified peptides are 

reported. The presence of the AidB bait in both lists 

constituted a sort of internal control indicating the 

correctness of the pull down experiment.  

A total of 73 kinds of proteins were identified by 

the proteomic procedure, 17 of which were found both 

in the presence and in the absence of the methylating 

proteomic experiments are summarized in Tables 2 

and 3. According to their reported biological 

activities, these identified inter-actors were grouped 

into different functional categories: metabolic 

pathways including several FAD and NAD
+
 

dependent dehydrogenases, stress response and 

transcription, translation and processing of 

DNA/RNA. Among others, we focused our attention 

on the stress response proteins for further 

investigations.  

3.3 Validation of Protein-protein Interactions by 

Co-immunoprecipitation Experiments 

Putative protein-protein interactions detected by the 

proteomic experiments were validated by 

co-immunoprecipitation experiments. Proteins 

involved in pathways strictly connected with DNA 

repair and protection mechanisms were firstly 

examined. Each putative protein partner was 

recombinantly expressed as c-myc-tagged protein in E. 

coli C41 cells and the cell extracts were 

immunoprecipitated with anti-c-myc-conjugated 

antibody. Immunoprecipitates were fractionated by  

Table 2  Proteins identified in the control sample. 

In the absence of MMS Swiss prot code Peptides 

2-oxoglutarate dehydrogenase E1 component (SucA) P0AFG3 2 

Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex (AceF) P06959 6 

Phosphoenolpyruvate synthase (PpsA) P23538 2 

Bifunctional polymyxin resistance protein arnA (ArnA) P77398 42 

Glucosamine-fructose-6-phosphate aminotransferase [isomerizing] (GlmS) P17169 10 

Phosphoenolpyruvate-protein phosphotransferase (PtsI) P08839 3 

Protein AidB P33224 20 

Alkyl hydroperoxide reductase subunit F (AhpF) P35340 7 

Glycogen synthase (GlgA) POA6U8 11 

UDP-N-acetylmuramate: L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase (mpl) P37773 2 

NADP-specific glutamate dehydrogenase (gdhA) P00370 12 

3-oxoacyl-[acyl-carrier-protein] synthase 2 (fabF) P0AAI5 3 

Transcriptional activator protein (lysR) P03030 9 

Ribosomal small subunit pseudouridine synthase A (rsuA) P0AA43 11 

UPF0011 protein yraL (yhbJ) P67087 6 

Enoyl-[acyl-carrier-protein] reductase [NADH] (fabI) P0AEK4 2 

Acyl-[acyl-carrier-protein]-UDP-N-acetylglucosamine O-acyltransferase (lpxA) P0A722 2 

FKBP-type 22 kDa peptidyl-prolyl cis-trans isomerase (fklB) P0A9L3 6 

Catabolite gene activator (crp) P0ACJ8 22 

UPF0011 protein yraL (yraL) P67087 2 

Uncharacterized protein yqjI (yqjI) P64588 3 

Uncharacterized protein ybgA (ybgA) P24252 2 

Ferric uptake regulation protein (fur) P0A9A9 6 

50S ribosomal protein L17 (rplQ) P0AG44 3 

Table 3  Proteins identified in the sample treated with 0.04% MMS. 
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In the presence of MMS Swiss prot code Peptides 

UvrABC system protein A (UvrA) P0A698 5 

Aldehyde-alcohol dehydrogenase (AdhE) P0A9Q7 2 

Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex 

(AceF) 
P06959 5 

Ribonucleoside-diphosphate reductase 1 subunit alpha (NrdA) P00452 3 

Maltodextrin phosphorylase (malP) P00490 2 

Bifunctional polymyxin resistance protein arnA (arnA) P77398 37 

Glucosamine-fructose-6-phosphate aminotransferase [isomerizing] (glmS) P17169 20 

Phosphoenolpyruvate-protein phosphotransferase (ptsI) P08839 7 

Cold-shock DEAD box protein A (DeaD) P0A9P6 6 

Succinate dehydrogenase flavoprotein subunit (sdhA) P0AC41 3 

GTP-binding protein typA/BipA (typA) P32132 2 

L-aspartate oxidase (NadB) P10902 2 

Chaperone protein hscA (hscA) P0A6Z1 2 

D-lactate dehydrogenase (dld) P06149 2 

Protein aidB (AidB) P33224 19 

Alkyl hydroperoxide reductase subunit F (ahpF) P35340 9 

Glucose-6-phosphate 1-dehydrogenase (zwf) P0AC53 3 

Glycogen synthase (glgA) POA6U8 10 

UDP-N-acetylmuramate: L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase (mpl) P37773 3 

Tryptophanase (TnaA) P0A853 2 

NADP-specific glutamate dehydrogenase (gdhA) P00370 24 

3-oxoacyl-[acyl-carrier-protein] synthase 2 (fabF) P0AAI5 4 

3-oxoacyl-[acyl-carrier-protein] synthase 1 (fabB) P0A953 5 

Succinylornithine transaminase (astC) P77581 13 

UDP-N-acetylglucosamine 1-carboxyvinyltransferase (murA) P0A749 11 

Glutamate-1-semialdehyde 2,1-aminomutase (hemL) P23893 4 

S-adenosylmethionine synthetase (metK) P0A817 5 

Protein hflK (hflK) P0ABC7 4 

Isocitrate dehydrogenase [NADP] (icd) P08200 2 

Maltose/maltodextrin import ATP-binding protein malK (malK) P68187 4 

Transcription termination factor rho (rho) P0AG30 3 

ATP-dependent Clp protease ATP-binding subunit clpX (clpX) P0A6H1 3 

Cysteine desulfurase (iscS) P0A6B8 3 

Regulatory protein ada (ada) P06134 9 

Glycerol dehydrogenase (glda) P0A9S5 3 

Acetylornithine deacetylase (arge) P23908 4 

Lactose operon repressor (laci) P03023 3 

Glutamate-1-semialdehyde 2,1-aminomutase (gsa) P23893 2 

USG-1 protein (usg) P08390 2 

Riboflavin biosynthesis protein RibD (RibD) P25539 4 

P-protein (pheA) P0A9J8 3 

UDP-4-amino-4-deoxy-L-arabinose—oxoglutarate aminotransferase (ArnB) P77690 3 

Glyceraldehyde-3-phosphate dehydrogenase A (gabA) P0A9B2 13 

Elongation factor Ts (tsf) P0A6P1 8 

UPF0042 nucleotide-binding protein yhbJ (yhbJ) P0A894 6 

Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta (accD) P0A9Q5 2 

Aspartate carbamoyltransferase catalytic chain (pyrB) P0A786 2 

Ribosomal small subunit pseudouridine synthase A (rsuA) P0AA43 12 

(Table 3 continued.) 
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In the presence of MMS Swiss Prot code Peptides 

Uncharacterized HTH-type transcriptional regulator yeiE (yeiE) P0ACR4 10 

UPF0042 nucleotide-binding protein yhbJ (yhbJ) P0A894 11 

Formyltetrahydrofolate deformylase (purU) P0A440 10 

UPF0011 protein yraL (yraL) P67087 7 

Enoyl-[acyl-carrier-protein] reductase [NADH] (fabI) P0AEK4 2 

Acyl-[acyl-carrier-protein]-UDP-N-acetylglucosamine O-acyltransferase (lpxA) P0A722 3 

D-methionine-binding lipoprotein metQ (metQ) P28635 2 

FKBP-type 22 kDa peptidyl-prolyl cis-trans isomerase (fklB) P0A9L3 6 

GTP cyclohydrolase 1 (folE) P0A6T5 2 

Catabolite gene activator (crp) P0ACJ8 21 

Translation initiation factor IF-3 (infC) P0A707 2 

Uncharacterized protein yqjI (yqjI) P64588 3 

UPF0227 protein ycfP (ycfP) P0A8E1 3 

50S ribosomal protein L6 (rplF) P0AG55 2 

UPF0304 protein yfbU (yfbU) P0A8W8 2 

Ferric uptake regulation protein (fur) P0A9A9 8 

50S ribosomal protein L27 (rpmA) P0A7L8 2 

30S ribosomal protein S15 (rpsO) P0ADZ4 3 

 

SDS-PAGE and stained by Western blot analysis 

using an anti-AidB antibody. Interaction of the 

individual partner with AidB was confirmed by the 

presence of a positive signal revealed by the western 

blot analysis. 

As an example, Fig. 2 shows the Western Blot 

Analysis performed on the immunoprecipitate from E. 

coli cells expressing c-myc tagged UvrA. Fig. 2a 

shows the total cell extract (lane 1) and the 

corresponding immunoprecipitate (lane 3) 

immunorevealed by anti c-myc antibody 

demonstrating that UvrA was expressed by the 

recombinant cells and immunoprecipitated by the 

antibody. Fig. 2b shows the positive signal detected 

when the UvrA immunoprecipitate was incubated 

with the anti-AidB antibody, demonstrating the 

presence of AidB in the sample and confirming the 

interaction.  

Positive interactions of AidB with UvrA, DeaD and 

TnaA were identified, whereas no positive bands in 

the western blot could be detected when Ada and 

RecA proteins were tested.  

It should be underlined that both Cold-shock DEAD 

box protein A (DeaD) and Tryptophanase (TnaA) had 

already been identified in complex with AidB in the 

transcriptional machinery gathered at the E. coli arnB 

P1 promoter in the presence of MMS [4]. 

3.4 Discussion 

The biological mechanism underlying the adaptive 

response to DNA alkylation damages in E. coli was 

extensively described. Sub inhibitory concentration of  

 
(a) 

 
(b) 

Fig. 2  (a) Western blot analysis of the total cell extract 

from E. coli C41 cells producing c-myc-UvrA (lane 1) and 

the UvrA containing immunoprecipitate (lane 3). Lane 2 

contains the precleaning; (b) Western blot analysis of the 

total cell extract from E. coli C41 cells (lane 1) and the 

UvrA immunoprecipitate revealed by the anti-AidB 

antibody (lane 3). Lane 2, precleaning. 
 

methylating agents induces the expression of four 

genes (Ada, AlkA, AlkB, AidB) involved in the direct 
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repair of DNA alkylation damages. While the role of 

the first three proteins, Ada, AlkA and AlkB, was 

clearly defined [5], the involvement of AidB in this 

system has long been known but its specific role in the 

protection/repair of DNA is still obscure. Previous 

data demonstrate that AidB interacts with DNA very 

likely to protect the nucleic acid from alkylating 

molecules but it is not able to repair the DNA 

molecule following alkylation [4]. In addition, the 

protective action of AidB is preferentially expressed 

on DNA regions containing upstream elements. This 

observation led to the hypothesis that AidB might 

belong to a putative pathway of degradation of 

alkylating agents through its FAD dependent 

dehydrogenase activity. Alternatively, AidB might 

protect these DNA regions by physically interact with 

them thus impairing the dangerous action of alkylating 

agents. 

Proteomic approaches were designed to shed some 

light on the mechanism of action of AidB through the 

identification of its protein partners in vivo. AidB 

partners were isolated by immunoprecipitation 

procedures both in the absence and in the presence of 

MMS as alkylating agent and the individual protein 

components identified by mass spectrometry. Several 

proteins were identified in both conditions, although 

the number of AidB molecular partners is 

considerably higher in the presence than in the 

absence of MMS.  

Proteins identified under methylating stress 

conditions were grouped in three large categories 

according to their reported biological activities, stress 

response, energetic metabolic pathways, and nucleic 

acid metabolism (transcription, processing and 

translation). In particular, AidB was found to interact 

with UvrA whose expression is under the control of 

the SOS response system involved in DNA damages 

response [6]. This interaction was also validated by 

co-immunoprecipitation experiments confirming 

proteomic data. Interaction of these two proteins is 

very interesting since UvrA is part of the UvrABCD 

nucleotide excision system involved in removing 

modified nucleotides as a result of several different 

DNA modifications including formation of covalent 

bonds, local unfolding, abnormal folds and variations 

in charge distribution [7]. UvrA works in a 

multienzyme complex with the specific role of 

examining the DNA molecule in search for 

modifications in order to allow the other proteins of 

the complex to perform the excision of the damaged 

nucleotides [8]. This protein is generally present at 

very low concentrations within the cell but its 

expression strongly increases under stress conditions 

[9]. Interaction of AidB with UvrA might then 

indicate that AidB is involved in different response 

complexes other than the Ada-dependent adaptive 

mechanism, suggesting new cellular strategies to 

minimize DNA damages.  

In the presence of MMS, several other proteins 

belonging to metabolic pathways were identified 

suggesting a general mechanism of energy production 

developed by E. coli to counteract stress conditions. 

Among these, many AidB inter-actors are involved in 

the biosynthesis of fatty acids, indicating the 

occurrence of a possible mechanism of cell wall 

repair. It is likely, in fact, that besides DNA 

modifications, alkylating agents might produce 

damages to cell wall components thus inducing a 

specific response from the microorganism that 

enhances the metabolic synthesis of fatty acids in an 

attempt to repair or replace damaged membrane 

components thus strengthening the physical defenses 

of the cell. 

4. Conclusions 

In conclusion, the data reported in this paper 

identified a novel interaction between AidB and UvrA 

which is a component of the UvrABCD system 

involved in DNA repair under several stress 

conditions delineating a new possible role for the 

AidB protein. Moreover, the identification of several 

proteins belonging to the fatty acid biosynthetic 
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pathway as AidB partners pointed out to a mechanism 

of cell wall consolidation as a new defense strategy of 

the cell against the poisonous effect of methylating 

agents.  
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