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Intra- and inter-specific communication in Drosophila suzukii: 
from genome to behavior. 

Abstract 

Drosophila suzukii (Diptera: Drosophilidae), an invasive pest from Asia, colonized US 

and Europe in 2008 and since then has economically damaged multi-million 

commercial fruit production. With fruit-breaking serrated ovipositor the female lays 

eggs in the unwounded ripening fruits making them unmarketable. To know the genetic 

likelihood of D. suzukii with other Drosophila species its genome and transcriptome 

were sequenced. The whole genome was mined to understand the origin, speciation and 

adaptation and was correlated with the ecology of the species. Genomic analyses 

revealed that D. suzukii is adapted to temperate climate and has lower selective pressure 

and gene-sequencing rate compared to its sibling sp. D. biarmipes.  From the genomic 

and ecological studies, one of the objectives was to understand the role of olfaction in 

host fruit recognition and identify key volatile compound/s involved in female 

decision-making for oviposition on fresh fruits. Based on gas chromatography mass 

spectrometer (GC-MS) and GC-electro-antennal detector activity, isoamyl acetate was 

found to be one of the key compounds involved in the oviposition site selection. The 

phylogenetic analysis revealed that D. suzukii not only possess the full repertoire of 

genes encoding olfactory receptors activated by isoamyl acetate in D. melanogaster, 

but showed that Or67a (Or67a1 to Or67a5) is even represented by duplicated copies. 

Another aim was to investigate the pheromone communication in this species. The 

extraction and identification of cuticular hydrocarbons from the males inherently 

showed that the species trans-evolved by terminating the production of sex pheromone 

cis vaccenyl acetate (cVA), which is used by species throughout melanogaster group, 

but able to smell it with ‘fewer’ T1 sensilla. Being under highly selective pressure D. 

suzukii has i) scaled-down the size of ejaculatory bulb in males, ii) fewer T1 tricoid 

sensilla, and iii) comparatively smaller glomerulus, in the antennal lobe (AL), involved 

in receiving sensory impulses from T1 sensilla when compared to D. melanogaster. 

However D. suzukii shares all functional fatty acid synthase (FAS) genes responsible to 

CH production.  On applying D. melanogaster male equivalent synthetic cVA on males 

of D. suzukii, it significantly reduced the mating acceptance in the females, which 

otherwise increased in D. melanogaster. Therefore, by adapting not to produce cVA as 

a sex pheromone D. suzukii tend to avoid competition with congeneric species for 

oviposition. The whole spectrum of the present and future studies would help to 

understand the evolution of the olfactory code among the closely related species of 

Drosophila and, as a consequence, contribute to develop alternative control methods of 

D. suzukii. Indeed, comparison of D. suzukii with sibling species and D. melanogaster 

could shed light on the evolution of ecological innovations and help researchers in 

understanding what makes a species to be an invasive pest. 
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1 Introduction 

Insect ability to smell is one of the oldest (Wyatt, 2003) and unique sensory 

system insects rely-on to find their food, mate and for defense against their 

enemies (Firestein, 2001). From the blend of volatiles present in the air, insects 

depend only on the relevant compounds for decision-making, resulting in 

behavioral response, be it for locating the food or reacting for the opposite sex 

for mating (Firestein, 2001; Pellegrino and Nakagawa, 2009). In Drosophila, 

the feeding site is the fermenting food that releases several volatile compounds 

mostly the by-products of microbial fermentation (de Bruyne et al., 2010), 

detected by bunch of sensory hairs called sensilla basiconica, while for sex 

attraction, the pheromone cis vaccenyl acetate (cVA) is detected at a short 

distance by a specialized hairs called sensilla trichoidea (Hallem et al., 2006).  

Based on previous studies on Drosophila melanogaster, the aim of the 

thesis here has been to study the olfactory system from genome to behavior, of 

the south-east Asian fly Drosophila suzukii, the only Drosophila pest in 

melanogaster group, that has invaded Europe and United States, devastating 

multi-million soft skinned fruit production since 2008 (Walsh et al., 2011). In 

order to have more clear view on the D. suzukii origin, speciation and genetic 

relatedness with other Drosophila sp., D. suzukii genome and transcriptome 

were sequenced. Based on the genomic findings, further studies were focused 

to understand the strategy of the fly discriminating fermenting fruit versus 

fresh unwounded ripening fruit explored for oviposition, reason and role of 

evolution for speciation and the mating strategies of D. suzukii over time, 

different from the parental species.  

1.1 The model 

Drosophila is one of the genus with diverse species studied extensively in 

various disciplines because of its ecological adaptations and higher generation 
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number (Ometto et al., 2013) and has successfully spread world-wide from 

Africa 10,000 years ago (David and Capy, 1988). One example is D. suzukii, a 

native pest of South-east Asia now established in US and Europe harming 

several soft skinned fresh fruits with its serrated ovipositor. Unlike D. 

melanogaster, the cosmopolitan fermenting fruit-feeding (de Bruyne et al., 

2010) ancestral species of D. suzukii, this species feeds on the fermenting 

fruits, but lays eggs on unwounded ripening fruits (Mitsui et al., 2010; Ometto 

et al., 2013; Walsh et al., 2011). Notwithstanding, it also breeds on the 

fermenting fruits in the absence of congeneric competition (Ometto et al., 

2013). D. suzukii is known to infest wide host plants ranging from blueberry, 

strawberry, cherry, raspberry, blackberry, grapes, figs, apricot peach, plums, 

mulberry and wild fruits (Kanzawa, 1939; Poyet et al., 2014; Rota-Stabelli et 

al., 2013; Walsh et al., 2011). 

1.2 Species description 

Unlike most of the close relative species D. suzukii is one of the few 

Drosophilids that lay eggs in the fresh fruits (Fig. 1A). The adults flies 

commonly referred as Spotted Winged Drosophila (SWD) are 2-3 mm in 

length, red eyes resembling vinegar flies D. melanogaster (Cini et al., 2012; 

Walsh et al., 2011) (Fig. 1B). The male D. suzukii has a conspicuous wing spot 

on the front edge near to the tip of the forewing (Fig. 1E) (so the name) while 

female posses a melanized saw-like serrated ovipositor (Fig. 1C) (Cini et al., 

2012). Secondly, microscopic observation reveals the split-up sex combs on 

the forelegs of male while D. melanogaster has one sex comb (Kopp, 2011). 

D. pulchrella and D. subpulchrella are two other sister species known to 

possess serrated ovipositor and oviposit on the fresh undamaged fruits (Mitsui 

et al., 2010). Nevertheless, there is no report on the economic damage caused 

by these species to the fruit production in their native geographical locations. 

However, D. subpulchrella has the ability to lay eggs on unwounded fruits 

similar to D. suzukii tested in the laboratory condition (Atallah et al., 2014). D. 

suzukii hence is the only Drosophilid so-far reported to cause significant crop 

damage.  

1.3 Invasion in America 

D. suzukii was first found in California (North America) in 2008 (Hauser, 

2011; Walsh et al., 2011) and a year later it was reported in Canada and Florida 

along the east coast. Later in a year time, there was potential damage reported 

in strawberry and raspberry cultivation because of SWD (Goodhue et al., 2011; 
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Hauser, 2011; Steck et al., 2009). Considering the rapid spread and threat, 

growers monitored the pest with apple cider vinegar, yeast sugar solution, wine 

and other fermenting fruit traps (Lee et al., 2012). This was the period when 

large number of scientific groups initiated the work on the management 

aspects, especially designing the monitoring traps. Between 2011 and 2012, 44 

scientific articles were published in various journals mainly focused on the D. 

suzukii management. Few recommendations have comparatively given 

comprehensive results, but few found to be ineffective because of the masking 

of the effect of fermentation traps in grapes and other crops (Lee et al., 2012). 

Nonetheless, the combination of wine and vinegar was found to be attractive in 

trapping the flies (Cha et al., 2012). A major problem with these food baits is 

that they get a large part of unspecific trap captures which makes difficult to 

process traps, especially for non-entomologists who may have difficulties 

distinguishing D. suzukii from other Drosophila species. 

 

1.4 D. suzukii in Europe 

The story of the first detection and spread of D. suzukii in Europe was revised 

by Cini et al. (2012). First adults of D. suzukii were caught contemporaneously 

in Spain (Rasquera Province) (Calabria et al., 2012) and in Italy (Tuscany 

region) in 2008. A year later it was reported to spread up north to Montpelleir 

(France) (Calabria 2012). In the same year in Trentino Province (Italy), both 

first oviposition on wild hosts (Vaccinium, Fragaria and Rubus spp.) and 

economically important damage on several species of cultivated berries were 

reported. The European and Mediterranean Plant Protection Organization 

(EPPO) released the Pest Risk Analysis (PRA) and concluded that D. suzukii 

would prevail in the region because of vast cultivation area and that was 

impossible to suppress. This called-off for an emergency meeting of scientists 

represented from ten European countries for discussing effective control steps 

(Cini et al., 2012). By 2010-2011, the range of D. suzukii was further enlarged, 

invading other regions in Italy and France (Cini et al., 2012), but also 

spreading to the North and East invading Switzerland (2011),  Slovenia (2011), 

Croatia (2011), Austria (2011), Germany (2012),  Belgium (2012), The 

Netherlands (2012), United Kingdom (2012), Hungary (2013) and Greece 

(2014) (see EPPO website). Such escalating outbreak has narrowed the benefits 

because of the high investment on pest management (Cha et al., 2014).  
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1.4.1 Damage 

Although a recent arrival to Europe, D. suzukii already caused severe 

damages in several small fruit growing areas across southern Europe, e.g. on 

sweet cherries (75 to 90% yield loss), strawberries (80% yield loss), raspberries 

(80% yield loss), blackberries and blueberries (each 30 to 40% yield loss). 

Even higher levels of damages were reported for locations in Northern Italy 

(Trentino) and in France, with up to 100% damage registered on blackberry, 

raspberry, strawberry and sweet cherry (Cini et al., 2012; Weydert and 

Mandrin 2013). Furthermore, D. suzukii also attacked apricots, currants, figs 

and grapes. In France it was also reported on apples and peaches although 

without any economically significant damage (Weydert and Mandrin 2013). 

 
Figure 1. (A) Drosophila suzukii eggs on blueberry (cv. Brigitta) collected from the field. (B and 

C) D. suzukii female with serrated ovipositor used to pierce the fruit skin. (D) D. suzukii larva 

feeding on the fruit content. (E) D. suzukii male with typical wingspot on the forewing margin. 

(F) Yellowish brown pupa found on/ inside the fruit. 

In most areas, low population levels are observed in spring, but numbers 

increase fast during summer, with populations reaching their highest level in 

late autumn (Weydert and Mandrin 2013). Although cherry is considered to be 

a favoured host, population density in early summer, during the ripening period 

of cherry, is much lower than those faced by crops maturing later. Thus, 

summer crops, such as strawberries and other berry crops, are subjected to 

much higher infestation pressure. Although grapes are not supposed to be a 

main host for D. suzukii (Bellamy et al., 2013), some soft-skinned varieties 
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may suffer from the extremely high population densities in autumn. High 

population densities in autumn may in turn lead to higher infestation pressure 

in spring. An efficient regulation of D. suzukii in late-maturing crops 

presumably also lowers the infestation level in the following spring. It is 

therefore likely that a range of regulation strategies is needed for early-season 

and late-season crops. For example, a delay of immigration thanks to perimeter 

mass trapping might be a suitable strategy in situations of low pest abundance, 

whereas in situations of high pest abundance this strategy may not provide 

reliable control. Population dynamics also depend on pedo-climatic conditions: 

in cooler climates the pest activity starts later while in warmer and drier 

conditions the population density is drastically reduced during the summer 

season. In addition, lower temperature will lead to fewer generations per year 

(Ometto et al., 2013). It is therefore possible that different regulation strategies 

are necessary for different climatic zones even within the Mediterranean 

region. 

1.4.2 Economic impact 

As one of the major ecological, environmental and socio-economical risk at 

both global and local scale, alien species that become invasive are considered 

to be the main direct drivers of several detrimental effects on biodiversity, on 

human and animal health and welfare and on crop production worldwide. 

Controlling invasive species and repairing the damage they do is estimated to 

cost European economies at least €12 billion each year. 

D. suzukii infestation is an actual major threat for the fruit industry of the 

concerned countries and can therefore become a model of the economic impact 

of a new pest at European level. Assessments about the D. suzukii economic 

impact are however relatively scarce at present, and focused on the USA 

(Bolda et al., 2010; Goodhue et al., 2011). A provisional economic injury level 

was calculated at >2 adults/ monitoring trap for all crops and farmers are 

encouraged to apply preventive insecticide treatments when the threshold is 

reached (Gardeman and Tanigoshi, 2011). De Ros et al. (2012) made a very 

first evaluation of the pest’s economic impact on the five host crops mostly 

affected by pest infestation. This study is however only focused on Trento 

Province, Italy, where it was estimated that the 400-ha soft fruit production 

areas faced losses of around 500,000 EUR in 2010 and 3 million EUR in 2011. 

As a consequence of infestation and harvesting dynamics, the greater economic 

impact in Trentino can be ascribed to the blueberry production. However, this 

estimation took into account the revenue losses of small fruit industry while 

not considering the management costs of control strategies and other societal 

consequences of the increase of chemical inputs. 
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1.5 D. suzukii yesterday and today: Evolutionary perspective 

D. suzukii was first reported by Kanzawa (1939) as a pest on several fruit 

species in Japan. It also spread in Asia however, most of the reports published 

are in Asian languages and so no translation been done on pest status, 

economic impact and distribution (Dreves, 2011). Out of Asia, it was first 

spotted in the Hawaiian island in the early 1980’s but there was no report of the 

crop damage or pest spread (Kaneshiro, 1983). Lately in 2008, the species had 

widespread in USA and also in Europe, significantly affecting several fruit 

productions (Calabria et al., 2012; Hauser, 2011). D. suzukii is the product of 

several hundred-fold years of speciation of the Drosophila genus out-of-Africa 

(David and Capy, 1988) and still needs detailed studies to understand the 

behavioral and physiological adaptations in relation to its ecological 

importance (Ometto et al., 2013). Within suzukii subgroup, geographically 

distributed in Asia, D. suzukii, D. subpulchrella and D. pulchrella look very 

much similar to each other with male having dark spot on the forewing 

(Takamori et al., 2006) and female are attracted to ripening fruits for 

oviposition (Mitsui et al., 2010). D. biarmipes is another suzukii subgroup 

species that posses wing spot in males, but is much alike D. melanogaster, 

attracted to fermenting fruits (McRobert et al., 1997). 

D. suzukii being thrived on the fresh fruits in its geographical origin, found 

similar climatic conditions in US and Europe on the similar soft fruits. 

However, interestingly, recent report of D. suzukii infestation on fruits of 

woody tree species Prunus serotina, a south American exotic tree species in 

Europe, shows the potential of the species host-switching ability, other than the 

preferred hosts (Poyet et al., 2014). Considering the economic importance and 

adaptation of the pest, it is inevitably necessary to study basic biology of the 

pest ranging from its olfactory system, neural plasticity that governs host 

selection and its interaction with the host plants. 

The genome sequence of D. suzukii was made available only before last 

year (Ometto et al., 2013). In the suzukii subgroup, D. suzukii and D. biarmipes 

have been sequenced but two other important species D. pulchrella and D. 

subpulchrella, which are believed to be sibling species D. suzukii are yet to be 

studied at gene level. According to the recent update, 23 drosophilid genomes 

have been sequenced including D. suzukii (Ometto et al., 2013) and provides 

excellent opportunity to study the evolution of chemosensation in this model 

group. 
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2 Chemosensation in Drosophila 

Chemical sensing in one of the oldest sensory mechanism ever studied in an 

organism, be it a unicellular bacteria or a multicellular organisms (Steiger et 

al., 2011; Wyatt, 2003). Chemical communication can be broadly classified 

based on smell (olfaction) and taste (gustation). The olfaction is the mode to 

detect the volatile odours from distance, while gustation depends on the event 

of coming in contact with the source to detect and react (Vosshall and Stocker, 

2007). The mechanism involved in detecting the odour molecules in the air is 

mediated by the specialized proteins called odorant receptors (OR), while for 

the taste the proteins are referred to as gustatory receptors (GR) (Clyne et al., 

1999; Vosshall et al., 1999). 

Drosophila has around 60 ORs encoding 62 receptors including gustatory 

receptors and ionotropic receptor genes and is being used as a model organism 

to study neural circuits involved in chemoreception (Fishilevich and Vosshall, 

2005; Robertson et al., 2003). 

2.1 Drosophila olfactory system 

The third antennal segment of Drosophila, flagellum is primarily involved in 

olfaction (Vosshall and Stocker, 2007). In addition to antennal flagellum, the 

maxillary palp are also involved in mediating the olfactory orientation of the 

fly. Both flagellum and maxillary palp house a compact hair like sensory 

structures called sensilla, that are the basic functional units of olfactory system 

(de Bruyne et al., 2001, 1999; Hallem and Carlson, 2004). These sensilla have 

hydrophobic membrane and allow predominantly lipophilic odour molecules in 

the air to pass through small pores and enter the aqueous fluid and reach 

olfactory receptor neurons (ORN). Each sensillum has one to four ORNs (de 

Bruyne et al., 2001, 1999) and these ORNs have their dendrites suspended in 

the sensillum lymph while the axon is projected towards the intermediate 
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information-processing unit of brain called as antennal lobe (AL) (Hallem et al., 

2004; Hiroi et al., 2008). Upon contact with the odour molecule, the dendrites 

pass-on the stimulus information via difference in the membrane potential to 

AL. 

2.1.1 Antenna 

In Drosophila, there are three major morphological types of sensilla on the 

antenna, which differ in their shape, size and function i.e., basiconic, tricoid 

and coeloconic sensilla (Shanbhag et al., 1999; Stocker, 1994). Altogether, 

Drosophila has around 419 sensilla in males and 457 in females. Out of which, 

around 120 sensilla are tricoid and the remaining are basiconic and coeloconic 

sensilla (Shanbhag et al., 1999). Basiconics are further divided as large 

basiconics (AB1, AB2 and AB3) and small basiconics (AB4, AB5, AB6, AB7, 

AB8, AB9 and AB10) while tricoid are categorized as AT1, AT2, AT3 and 

AT4 (Riesgo-Escovar et al., 1997). 

All basiconic sensilla are involved in detecting odour molecules for locating 

food (de Bruyne et al., 2001; Hallem et al., 2004; Yao et al., 2005), while 

tricoid sensilla are involved in detecting short range communicating 

pheromone cis vaccenyl acetate (cVA) in case of D. melanogaster (Naters and 

Carlson, 2007). cVA is one of the major cuticular hydrocarbons present on the 

sexually matured male used for courtship and mating. The third type, 

coeloconic sensilla, are involved in sensing food odour molecules, acids, 

humidity and ammonia (Benton et al., 2009; Galizia and Rössler, 2010; Yao et 

al., 2005).  

2.1.2 Maxillay palp 

These are secondary olfactory organs of Drosophila adjacent to proboscis (de 

Bruyne et al., 1999). Compared to antenna, maxillary palp has lesser number of 

sensilla, belonging to only one class, i.e., basiconics (Singh and Nayak, 1985). 

There are only around 60 basiconic sensilla on the maxillary palp, but sensitive 

to many odorants (de Bruyne et al., 1999). 

2.2 Perireceptor events in olfaction 

The definition “perireceptor events” for the first time was coined by Getchell et 

al., (1984) to define the uptake of the odour molecule, binding with 

transporting protein, inactivation of odour molecule and eventually receptor 

activation and transduction. All sensilla, irrespective of their types, function 

similarly in transforming chemical signal into electrical signal via changes on 

the membrane potential of the ORNs (Leal, 2013). 
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Upon contact with the hydrophobic cuticular membrane of the sensillum the 

odour molecule reaches the entry port, the pore tubules from the surface and is 

picked by unique protein, called as Odorant Binding Protein (OBP), in the 

aqueous medium around the dendrites of a neuron (Hallem et al., 2006, 2004; 

Vogt et al., 2003) (Fig. 2). These proteins accordingly transport the odour 

molecule to their receptors i.e., odorant receptor (OR), gustatory receptors 

(GR), ionotropic receptors (IR) present on the dendritic membrane (Pelosi et 

al., 2006). This protein solubilizes the odour molecule after activating the 

stimulus response and is immediately deactivated by another enzyme Odorant 

Deactivating Enzyme (ODE) (Ishida and Leal, 2005). It is a matter of 

milliseconds that the odour molecule activates the response channel and is 

immediately deactivated (Ishida and Leal, 2005).  

2.2.1 Odorant Binding 

Proteins (OBPs) 

The discovery of odorant 

binding proteins in 

Antheraea polyphemus, 

wild silk moth antenna by 

Richard Vogt and Lynn 

Riddiford in 1981 was a 

milestone in the field of 

insect olfaction. In 1999 

again, the same group 

confirmed that OBP are 

universally present across 

different species (Vogt et 

al., 1999) including 

mammals (Tegoni et al., 

2000). In fruit fly, 52 

genes are believed to be 

involved in OBP synthesis 

(Sanchez-Gracia et al., 

2009).  

Once the odorant molecule binds with the OBP it is carried to the olfactory 

receptors on the dendrite on the ORN. The specificity of the OBP for 

pheromone and for general odour molecules was unclear until when Smith and 

his colleagues in 2005 showed that D. melanogaster mutant flies lacking 

LUSH OBP lost their complete sensitivity to detect the pheromone cis-

Vaccenyl acetate (cVA). In case of moths, general odorant binding proteins 

Figure 2. Schematic drawing of an olfactory sensillum 

represented by an olfactory receptor (black oval dots), 

dendrite (projecting red line), sensillum lymph (light yellow 

envelope), pore, OBPs (light pink dots), ORNs and Axon. 

(Image modified after Sanchez-Gracia et al., 2009). 
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(GOBP) are believed to be associated with carrying the odour molecules other 

than pheromone, to the binding site on the dendrites (Steinbrecht et al., 1996), 

expressed in male and female antennae in the different class of ORNs (Vogt et 

al., 1991). 

2.2.2 Olfactory receptors (ORs) 

Olfactory receptors (ORs) are seven transmembrane domain proteins located 

on the cell membrane of the neuron (Benton et al., 2006). Insect ORs are 

composed of novel family of seven transmembrane domain proteins (7TM) and 

are distinctly different from the ORs of vertebrates (Hansson and Stensmyr, 

2011), that is, the insect ORs have inverted topology of 7TM domain proteins 

with N- terminal inside and C-terminal outside the cell membrane (Benton et 

al., 2006). The insect OR from fruit fly D. melanogaster was first identified by 

bioinformatic-based approach (de Bruyne et al., 1999; Vosshall et al., 1999). 

After this discovery, there was a spectacular expansion of knowledge on the 

insect olfactory system. Now, similar research has been focused on honeybees, 

ants, beetles and mosquitoes (Leal, 2013). However, the knowledge is still 

biased towards olfaction of D. melanogaster because of the vast available 

information on the species (Leal, 2013).  

Odorant Receptor Co-receptor (ORCo) 

ORCo is believed to be the integral part of ORs involved in the localization of 

ORs to ORN dendrites and enhance specific responses to the odorant without 

affecting the ligand specificity (Benton et al., 2006). OR83b is the ORCo 

earlier identified from moths (Krieger et al., 2002) and mosquitoes (Hill et al., 

2002) and is claimed to be highly conserved among most of the insects across 

different orders where it is believed to perform similar function (Larsson et al., 

2004). 

The odorant-OBP complex arrives at the dendrite membrane, a reception 

site and then fits in the receptor site as a “key and lock” manner (Leal, 2013). It 

then generates signals on the dendritic membrane via ion exchange channels 

and the signals are passed-on to antennal lobes (AL). Eventually, the chemical 

signal is transformed into appropriate behavioural response (Jacquin-Joly and 

Merlin, 2004). 

To understand the functional classes of receptors expressed in the antenna 

and maxillary palp, individual receptors were functionally expressed in other 

organism (Hallem et al., 2006). OR43a was the first odour receptor to be 

functionally characterized from D. melanogaster. The overexpression of 

OR43a and also as heterologous expression in Xenopus laevis oocytes 

responded for fruit and other natural odours (Dahanukar et al., 2005). After few 
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years, nearly all the odour receptors of D. melanogaster antenna and maxillary 

palp were characterized (Hallem et al., 2006). The ORs from other insects are 

expressed in the mutant flies’ “empty neuron” system (Hallem et al., 2004; 

Vosshall et al., 2000) thus characterizing the ORs from which they were 

derived. It was proved from this technique that generally the ORN express only 

one functional receptor (Hallem et al., 2004). However, interestingly, some 

neurons like pb2A, the sensillum present on the maxillary palp, represent two 

functional receptors genes, OR33c and OR85e (Goldman et al., 2005). 

Furthermore, the sensitivity of these functional receptor genes is not similar, 

while OR85e is broadly tuned to smell more compounds and OR33c is 

narrowly tuned (Goldman et al., 2005). 

2.2.3 Gustatory receptors (GRs) 

Gustatory receptors were also identified based on bioinformatic-based 

approach alike olfactory receptors (Clyne et al., 2000). Gustatory receptors are 

another set of 7TM domain proteins from the divergent protein family like 

olfactory receptors (Robertson et al., 2003), responsible for taste. They were 

identified in the labella of Drosophila (Clyne et al., 2000). These 

chemosensory receptors are expressed in different parts of the fly body ranging 

from antennae, maxillary palp, proboscis, tibiae, tarsi and wing margin of 

Drosophila (Robertson et al., 2003). Similar to olfactory receptors, gustatory 

receptors have inverted topology with N-terminal inside and C-terminal outside 

cell membrane (Clyne et al., 2000). There are few exceptional gustatory 

receptors expressed on the olfactory organ, antenna of Drosophila, which 

innervate pair of the glomeruli and not the suboesophageal ganglion and hence 

show their partial olfactory function along with taste (Scott et al., 2001; 

Vosshall et al., 2000). The phylogenetic analyses of GRs and ORs is supportive 

of the fact that gustatory receptors belong to much older fossil protein family 

than the olfactory receptors being evolved from it (Robertson et al., 2003; Scott 

et al., 2001), so it is possible that GRs were earlier also involved in olfaction.  

D. melanogaster has 60 OR and GR genes that encode for 62 OR and 68 

GR receptor proteins, respectively (Robertson et al., 2003). Following their 

identification, few GRs were functionally characterized, like GR68a that is 

expressed only in the male Drosophila forelegs, sensitive for pheromone 

detection (Bray and Amrein, 2003), GR66a for bitter taste expressed in the 

labium (Wang et al., 2004) and GR5a for trehalose reception (Dahanukar et al., 

2001). As mentioned before, of all identified GRs, GR21a and GR63a are 

expressed in the antennae of the fly (Jones et al., 2007; Kwon et al., 2007; 

Scott et al., 2001), and function as an olfactory unit innervating the glomeruli 

(Scott et al., 2001). Following the in-situ hybridization of these GRs in D. 
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melanogaster antenna and by electrophysiological assays it was confirmed the 

involvement of these receptors in CO2 detection (Jones et al., 2007).  

2.2.4 Ionotropic Receptors (IRs) 

Other than olfactory receptor and gustatory receptor, recently a novel class of 

receptor was identified, which also is based on bioinformatics-based approach, 

the ionotropic receptor (IR), to be a part of chemosensation and belong to 

ionotropic glutamate receptor (iGluR) protein family (Benton et al., 2009). 

These receptors are expressed in the sensilla on the fly antenna, sensilla 

coeloconica in four different types, ac1 to ac4, involved in the detection of 

acids, ammonia and humidity (Benton et al., 2009; Yao et al., 2005). Other 

than ORs and GRs on the fly antenna, IRs are found on two different regions of 

the antenna, i.e., on the arista and sacculus (Foelix et al., 1989; Shanbhag et al., 

1995). Based on the genomic analyses, 66 IRs have been identified, of which 

16 IRs are found on the antennae and 10 of them are expressed in the 

coeloconic sensilla on the antenna, either singly or co-expressed with other IRs 

(Benton et al., 2009; Croset et al., 2010). Like ORCo (OR83b), which is co-

expressed in ORs, IR8a and IR25a are broadly co-expressed with many other 

IRs (Benton et al., 2009). 

Both ORs and IRs are involved in the olfaction in Drosophila with distinct 

structure and ligand specificity (Rytz et al., 2013) but the co-existence of both 

the receptors has so far no proper explanation. The olfactory response neurons 

of ORs and IRs revealed distinct differences between the two, however, 

though, both converge the neurons to the antennal lobe (Ai et al., 2010). It is 

reported that IR neurons are fine-tuned for few odours compared to OR 

neurons, are less sensitive (Getahun et al., 2012; Yao et al., 2005) and 

phlegmatic in their response and adaption to the odours compared to ORs 

(Getahun et al., 2012). While the discriminating difference between ORs and 

IRs is the response profile for the compounds, strongest IR ligands are weakly 

or not at all detected by ORs (Silbering et al., 2011; Yao et al., 2005) and vice 

versa, strongest OR ligands are not recognized by the IR receptors (de Bruyne 

et al., 2001; Hallem et al., 2006).  

 

2.3 Insect Antennal Lobe (AL) 

Antennal lobe is the primary sensory information-processing center in insects 

composed of smaller morphological and functional units called glomerulus. 

Antennal lobes are innervated with three different types of neurons; one, that 

carry electrified signals from the periphery (in the fly, from antenna and 
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maxillary palp (Singh and Nayak, 1985)) to the glomeruli, referred as olfactory 

receptor neurons (ORNs), the second is the local interneurons (LN), connecting 

different glomerulus within the AL, and thirdly, the projection neurons (PN), 

that receive partially-processed signals from glomerulus and synapse with 

neurons of complex brain centers of protocerebrum, the mushroom bodies and 

lateral horn (Roman and Davis, 2001). This sequence of events then leads to 

the behavioral response in the insect for locating food, mate or escape from 

enemies. The fruit fly antennal lobe consists of ~43 glomeruli (Laissue et al., 

1999) receiving chemical signals from 60 ORs and GRs, respectively 

(Robertson et al., 2003).  

Local neurons/ local interneurons do not protrude outside but connect 

different glomeruli within the antennal lobe. They necessitudinally switch their 

function by inhibiting or exciting the response within the antennal lobe by 

releasing γ-aminobutyric acid (GABA) or acetylcholine enzyme, respectively 

(Masse et al., 2009). The projection neurons are directly connected with the 

ORNs in the glomerulus and send the information to mushroom bodies and 

lateral horn, while most of them are cholinergic (excitatory) few are 

GABAergic (inhibitory) (Masse et al., 2009). Experimental inactivation of 

mushroom bodies have shown behavioral response in the insects that is 

mediated by the lateral horn, however, the signals sent to mushroom bodies 

help the insect in associative learning for the neural stimulus (Connolly et al., 

1996). 
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3 Pre- and post mating behavior in 
Drosophila 

In genus Drosophila, species have radiated from being cosmopolitan and 

generalist to specialist on one or few preferred hosts. The genus represents 

large variation in utilization of resources, host specialization, courtship 

signaling (Mazzoni et al., 2013) and female remating (de Crespigny et al., 

2006; Markow and O’Grady, 2005). Researchers have used D. melanogaster as 

a premier model organism to study from basic principles of genetic to behavior 

to medical implications (Strauch et al., 2014). However, the interspecific 

diversity within the genus has now opened wide area of interest to study the 

genetics, sexual selection, speciation, feeding and mating preference among 

different Drosophila species (Remsen and O’Grady, 2002; Ritchie and 

Gleason, 1995). 

For a given species, mating occurs at one particular location at a specific 

time of a day/year. For this reason, the species has to first find the location 

either for feeding or for mating or oviposition. Most but not all Drosophila 

species feed and mate on the same substrate e.g., the male D. nigrospiracula 

feed on the same substrate alongside female but for mating the male waits for 

the arrival of the female on the plant away from feeding site (Markow, 1988), 

and it is mediated by the chemosensory system of the fly to reach the targeted 

location. Adult feeding sites are in general the mate-finding sites for most of 

the Drosophila species. The male produced cis vaccenyl acetate (cVA) is the 

cuticular hydrocarbon component in the genus Drosophila that serves as a sex 

pheromone and aggregation pheromone (Symonds and Wertheim, 2005). The 

Drosophila genus has very diverse species that feeds various food substrates 

ranging from fermenting or fresh or poisonous fruits, cacti, flowers, 

mushrooms and other fungi, sap tree exudates, excretion of land crabs (Higa 

and Fuyama, 1993; Markow and O’Grady, 2005; Stensmyr et al., 2008). 

Accordingly, these species have evolved their pre and post mating behavior 
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including search of the mate and feeding site location. For instance, D. 

sechellia, D. nigrospiracula and D. pachea have a specific host preference and 

uniquely the preferred host is toxic to other Drosophilids. D. sechellia feed and 

oviposit on the fruit of Morinda citrifolia and has developed resistance for the 

toxic compounds produced by the fruit (Dekker et al., 2006; McBride, 2007). 

D. sechellia responds very strongly to high concentration of hexanoate 

compounds from fruits, while other flies including D. melanogaster die or 

repel for the same concentration (Dekker et al., 2006). Other species D. pachea 

and D. nigrospiracula feed on the Senita cactus (Lophocereus schottii), an 

endemic plant species of Sonoran desert (northwestern Mexico and United 

States) (Kopp, 2012; Lang et al., 2012). The flies feed on the concentrated 

alkaloids of the plant and have adapted their physiology and food preference 

only to cactus plant, while other species like D. nigropsiracula, D. mojavensis 

and D. mettleri feed on the cactus-soaked soil but not on the actual cactus 

tissue because of the higher concentration of alkaloids (Kopp, 2012). There are 

other species of Drosophila like D. carcinophila, D. endobranchia and 

Lissocephala poweilli, living on land crabs feeding on the microbes and 

nitrogenous waste compounds (Stensmyr et al., 2008). 

Of all the species studied in Drosophila till now, D. suzukii has a unique 

importance for it is the only species of economic impact. Indeed, D. suzukii 

feeds on the fermenting fruits along with congeneric D. melanogaster and 

other fermenting fruit-driven species (Mitsui et al., 2010) but for oviposition 

the species generally switch to fresh fruits, but however, female oviposit also 

on the fermenting fruits in the absence of congeneric competition. The species 

has wide host acceptance range and the larvae feed on the fruit pulp and the 

fruit withers (Walsh et al., 2011). The males are found on/ around the 

fermenting fruit for a successful mating. The courtship index in male is not 

much different from D. melanogaster except for some minor acoustic signals 

and male wing display during courtship (Mazzoni et al., 2013). Unlike D. 

melanogaster which is known to mate even in the dark mediated by 

pheromonal signals, D. suzukii is unable to mate in the dark (Fuyama, 1979). 

The adults prefer to feed and mate preferably in the early morning as compared 

to the rest of the day (Revadi et al., unpublished data) (Fig. 3). 

 

 

 

Figure 3. Mating rate of D. suzukii female 

flies tested at different time points (n=100, 

for each time period). 
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4 Objectives 

The main objective of the thesis was to understand the ecology and 

communication mechanisms in D. suzukii from genome to behavior as a 

prerequisite to establish potential monitoring and control methods. Based on 

this, the study objectives were split into- 

 

1. Linking genomics and ecology to understand the evolutionary 

complex of the pest. 

 

 

2. Chemical characterization of volatile compounds emitted by the host 

fruits and perceived by D. suzukii, probably involved in the 

recognition of the oviposition site by gravid females.  

 

 

3. To investigate from genome to behavioral level the possible role of 

cuticular hydrocarbons (CHs) involved in mating and species 

recognition. 
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5 Summary of Results 

5.1 Linking genomics and ecology to understand the 
evolutionary complex of the pest (Paper I). 

For better understanding D. suzukii and its peculiar ecology, it was first 

important to know evolutionary history right from the divergence from its 

parental species and the rational for switching the reproductive behavior from 

rotten to fresh fruits. For this reason D. suzukii genome and transcriptome was 

sequenced and annotated. The population collected from Trentino province of 

Italy was inbred for F5 generation. The genomic DNA was extracted from 10 

inbred flies (5 males + 5 females), while the RNA was extracted from 15 

individuals of various life stages, randomly selected from fly culture. The size 

and contents of the transcriptome and mitochondrial genome (mtDNA) was 

very much comparable to the already sequenced Drosophila sp. 

The phylogenetic and dating analyses with transcriptome and the mtDNA 

genome data of D. suzukii was done in comparison with 20 additional 

Drosophila sp. for which the data already exists. Ninety one protein-coding 

genes extracted from transcriptome of 21 Drosophila sp. were plotted on the 

phylogeny tree (Fig. 4A). Another phylogenetic construction with mtDNA 

genome of 21 Drosophila species was done but did not support the findings of 

transcriptome-derived phylogeny. D. eugracilis was placed as a sister species 

of D. ficusphila in the mtDNA genome derived phylogeny tree, while the same 

species was placed intermediate between melanogaster and suzukii group in 

transcriptome-derived tree (Fig. 4B). 

The molecular clock analyses of 21 Drosophila species using mtDNA genome 

dataset and trancriptome dataset put D. suzukii and D. biarmipes next to each 

other on the phylogeny tree and shows that speciation occurred between 6-9 



 29 

Mya (Fig. 5A). However, it should be noted that at the basal root there was a 

variation in nodes between mtDNA and transcriptomic data.  

 
Figure 4. The evolutionary affinities of Drosophila suzukii and the other Drosophila species 

inferred from phylogenomic and mitogenomic data. A: Phylogenetic analyses of 91 orthologous 

nuclear genes (200,475 bp). B: Phylogenetic analyses of 12 mitochondrial genes (11,139 bp). 

Both datasets support an Asian affinity of D. suzukii. 

The current distribution of D. suzukii and the sister species compiled with 

climatic model of Asian Tortonion era (late Miocene age) showed the 

confinement of D. biarmipes to the southern equatorial habitat, while D. 

suzukii towards north favored with temperate climatic condition (Fig. 5B). This 

model also supports the molecular clock analysis of species divergence. The 

monitoring traps with apple cider vinegar set to catch D. suzukii in the alpine 

region of Trentino (Province in the north Italy) along the altitudinal gradient 

caught significantly higher number of flies at higher altitude of 600-1000 and > 

1000 above mean sea level (AMSL) (Fig. 5C). This also supports the findings 

of molecular clock analysis and also the climatic model of Tortonian era with 

current species distribution of D. suzukii D. biarmipes and D. takahashi. As a 

known fact, the most preferred host plants of D. suzukii also thrive in the 

temperate climate. The species abundance and activity at higher altitude 

however suggest that either they breed on the wild host fruits adapted to 

tolerate colder weather or they migrate to higher altitude to escape higher 

temperature. It is also possible that at higher altitude the temperature is low and  

the fermentation of fruit is also delayed and adults can feed on the fruits for 

longer time. 
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2336 orthologous genes of five species; D. suzukii, D. biarmipes, D. 

takahashi, D. melanogaster and D. ananassae were choosen (D. biarmipes and 

D. takahashi were chosen for their close relatedness with D. suzukii, D. 

melanogaster, for being widely studied close relative and D. ananassae, a 

randomly chosen far relative) to understand the molecular evolutionary history 

shared by these species.  

 
Figure 5. Molecular timetrees, paleoclimate and field trapping of Drosophila suzukii. A: Relaxed 

clock analyses of the Drosophila species using both the nuclear and mitochondrial datasets. B: 

Current endemic geographical distribution of D. suzukii (stars) compared to that of D. biarmipes 

(dots) and D. takahashi (triangles); yellow line marks the border of temperate (mostly 

mountainous) forested area during the Tortonian age. C: Annual captures per trap at five different 

altitudes in the Alps. 

D. suzukii genes are characterized by lower rate of molecular evolution (Fig. 

6A). Synonymous (dS) and non synonymous (dN) substitution  (nucleotide 

substitution) rates were calculated for all the species (Fig. 6B), and D. suzukii 

has significantly lower rate of substitution compared to its sister sp. D. 

biarmipes and the results show reduced rate of substitution along with suzukii 

branch (Fig. 6B). The molecular analysis showed that D. suzukii has the lowest 

substitution rate among all the five species considered. Based on this result, 

when the selective pressure was calculated by the ratio dN/dS, D. suzukii has 

significantly lower selective pressure compared to D. biarmipes. The results 

also showed differential selective pressure with significantly larger dN/dS ratio 

in autosomal genes while lower for X-linked chromosomes (Fig 6C). These 

results support the current physiology of D. suzukii, which is known to undergo 
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winter reproductive diapause in the temperate climate and as a consequence, 

has lower number of reproductive generations per year with respect to other 

related species. 

 
Figure 6. The slowly-evolving genome of Drosophila suzukii. (A): Consensus evolutionary 

analysis of 2,336 orthologous genes in five key species. Upper and lower are respectively the 

trees derived from analyses of non-synonymous (dN) and synonymous (dS) substitutions. The 

dN/dS for each species is given in parentheses. (B): Branch specific normally modelled mutation 

rates as optimized by Beast using as initial value a mutation rate of 0.0346 neutral substitutions 

per base pair per million of year (St. Dev=0.00281). (C): A detailed comparison between the rate 

of molecular evolution in D. suzukii and its sister species D. biarmipes, for all genes (All) as well 

for autosomal (Aut) and X-linked genes (* P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 

0.0001, Wilcoxon test after controlling for gene length). 
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5.2 Chemical characterization of volatile compounds emitted by 
the host fruits of D. suzukii, probably involved in the 
recognition of the oviposition site by gravid females (Paper 
II). 

D. suzukii being able to search and locate the undamaged fresh fruits to 

oviposit, which otherwise is not a generalized behavior  for many Drosophilids, 

was hypothesized to have unusual olfactory capacity to discriminate 

fermenting and fresh fruits. In the presence of congeneric competition, D. 

suzukii switch to fresh fruits for oviposition and olfaction plays a key role in 

the recognition of fruits by females. Therefore, it was important to know the 

sensory modalities of the fly that helps to locate fresh ripening fruits. The 

prerequisite was to identify the active volatile compounds present in the fresh 

fruits, which serve as a host for fertile adult female, and five fruit species were 

chosen based on their susceptibility viz., blackberry, blueberry, cherry, 

raspberry and strawberry, for testing the attraction of adult females for 

oviposition, which included behavior and electrophysiological experiments. 

Y-tube olfactometer based behavioral experiments with mated D. suzukii 

females showed that all the fruits included in the experiment are equally 

susceptible for oviposition. Significant difference was recorded when 25 gr of 

fresh fruits were tested against same weight of fruits wrapped in the odor proof 

plastic bag. Blueberry was highly attractive fruit in the olfactometer against 

control, followed by cherry, raspberry strawberry and blackberry (Fig. 7).

 

Figure 7. Percentage of flies tested in Y-

tube olfactometer with fresh fruit (25g) 

(Treatment) or fresh fruit enclosed in a 

transparent plastic bag (Control) (n=100): 

raspberry (χ²=12.0; d.f.=1; P<0.001); 

blackberry (χ²=8.8; d.f.=1; P<0.01); cherry 

(χ²=16.5; d.f.=1; P<0.001); blueberry 

(χ²=27.2; d.f.=1; P<0.001); strawberry 

(χ²=10.1; d.f.=1; P<0.001). The comparison 

among fruits was not significant (χ²=9.1; 

d.f.=4; P=0.06). 

Following behavioral experiments, the headspace collections of fruits 

(blueberry, blackberry, cheery, raspberry and strawberry) used in the 

electrophysiological experiment using gas chromatography coupled with 

electro antennal detector (GC-EAD) (Fig. 8) gave information on 29 key 

volatile compounds that are antennally sensitive for female D. suzukii.  
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Figure 8. Schematic representation of gas chromatography coupled with electro-antennal 

detector. The chromatograph of 3 days old mated D. suzukii female antenna to headspace extract 

of blueberry (cv. Brigitta). Volatile compounds eluting from HP 5890 GC, Polar Innowax 

column. 

Of all potential volatile compounds, isoamyl acetate was found in all the fruit 

extracts identified on GC-MS and consistently elicited antennal response in all 

EAD runs for all headspace extracts. Based on the electrophysiological 

findings, isoamyl acetate tested on electroantenogram (EAG) with increasing 

doses ranging from 1pg/µL to 100µg/ µL, showed significant increase in the 

response at 10 and 100µg/µL concentration (Fig. 9). This result signified the 

importance of isoamyl acetate for the mated female. However, the EAG 

experiment by itself was not stand-alone data that could prove the behavioral 

significance of isoamyl acetate emitted from fresh fruits. So, it was again tested 

in the behavioral bioassay in the Y-tube olfactometer, and the results showed 

that 10µg/µL (χ²= 4.21; d.f.=1; P<0.05) concentration of isoamyl acetate when 

loaded on the rubber septa dispenser was significantly attractive to the mated 

female compared to 1 (χ²=0.92; d.f.=1; P<0.9) and 100µg/µL (χ²=0.67; d.f.=1; 

P<0.57) concentrations, respectively (Fig. 10). The emission rate of isoamyl 

acetate from 10µg/µL dispensers was comparable to those recorded from fresh 

fruits, which was at least 100 fold lower than in fermenting substrates (Cha et 

al., 2012).  
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Figure 9. Mean EAG (mV±SD) dose-

response curve of mated D. suzukii females 

to increasing doses of isoamyl acetate 

(n=10) (ANOVA, Tukey test: F=5.30; 

d.f.=99; P<0.001). 

 

 

 
Figure 10. Percentage of flies (n=120) showing preference for isoamyl acetate (1, 10, or 100 µg 

loaded on a red rubber dispenser) versus a solvent control (10 µL hexane). Asterisk indicates 

significant differences in the insect choice between stimulus and control at different isoamyl 

acetate loadings per dispenser: 1 µg/µL (χ²=0.92; d.f.=1; P=0.90); 10 µg/µL (χ²=4.21; d.f.=1; 

P<0.05); 100 µg/µL (χ²=0.67; d.f.=1; P=0.57), ii) Also preference of the flies (n= 100) to 10µL of 

synthetic isoamylacetate (10 µg/µL) versus fresh bluberry fruits (25 g) (χ² =0.05; P=0.73). 

Therefore, these results showed that isoamyl acetate is a key volatile 

compound that at optimum concentration in fresh fruits evokes oviposition 

response in the mated females. Accordingly, in a further Y-tube behavioural 

bioassay with mated D. suzukii female, no significant difference (χ²=0.05; 

P=0.73) of attraction was recorded for blueberry (25gr), the most attractive 

host fruit in the previous experiment (Figure 10: basal bar with intense-yellow 
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and blue color), and isoamyl acetate deployed at the attractive dosage (10 µL 

of 10µg/µL concentration per rubber septum). 

The gene assembly and phylogenetic analysis supported physiological and 

behavioural evidences that included D. suzukii, D. melanogaster and D. 

biarmipes. It is known that in D. melanogaster, at least ten odorant receptors 

are activated by isoamyl acetate, they are: OR2a, OR9a, OR10a, OR19a, 

OR42a, OR42b, OR43b, OR47a, OR67a and OR98a (Database of Odorant 

Receptors: (Galizia et al., 2010)). The orthologues encoding these receptors in 

D. suzukii genome revealed that they are extremely conserved and similar to 

the orthologues in D. melanogaster and D. biarmipes as suggested by high 

bootstrap support and similar branch lengths (Fig. 11). Interestingly, results 

show that OR67a experience a series of duplications in both D. suzukii and D. 

biarmipes (with a nomenclature, OR67a1-OR67a5). 

 
Figure 11. Phylogenetic tree of ten genes encoding a set of olfactory receptors (OR2a, OR9a, 

OR10a, OR19a, OR42a, OR42b, OR43b, OR47a, OR67a and OR98a) that bind isoamyl acetate in 

D. suzukii, D. biarmipes and D. melanogaster using Phyml. The numbers specify the bootstrap 

value, indicating the branch support for each node. The tree is rooted on midpoint. Three types of 

evolutionary events were studied: gene gain, gene loss and duplications (D). 
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5.3 To investigate from genome to behavioral level the possible 
role of cuticular hydrocarbons (CHs) involved in mating and 
species recognition (Paper III). 

The gene assembly and annotation of D. suzukii alongside other Drosophila 

species already sequenced and annotated, suggested that D. suzukii is unique as 

it has evolved differently even from its closest related species D. biarmipes 

(Paper I). These results suggested that further mining of the genome of D. 

suzukii for variation in the genes could possibly be pivotal  compared to other 

Drosophila species. It was noted that D. suzukii has all genes conserved 

responsible for the biosynthesis of species-specific cuticular hydrocarbons in 

Drosophila (Chertemps et al., 2007; Dallerac et al., 2000). Using solvent 

extraction and gas chromatography coupled with mass spectrometer the 

cuticular hydrocarbon (CH) profile of male and female D. suzukii were 

analyzed (Fig. 12A and B). The cuticular hydrocarbon profiles of male and 

female were isomorphic with minor differences but however, more 

surprisingly, D. suzukii male lacked cis vaccenyl acetate (cVA), a major CH 

component in most of the species of the melanogaster group, used as sex 

pheromone. Interestingly, no such compound cVA-like was detected in D. 

suzukii males. Tracking back further towards the production site of cVA, that is 

the ejaculatory bulb (EB), the microscopic dissection showed that the 

ejaculatory bulb in D. suzukii is significantly reduced in its size compared to D. 

melanogaster (Fig. 13A).  

It was then expected that D. suzukii has some evolutionary shifts even in the 

olfactory circuit, that do not code for cVA since the biosynthesis site is 

diminished completely. In D. melanogaster, cVA is detected as close contact 

pheromone by the specialized and abundant sensilla type called trichoid 

present on the third antennal segment. The T1 sensilla that express OR67d 

odorant receptor are innervated by the glomerulus DA1 present in the antennal 

lobe (Kurtovic et al., 2007). In D. suzukii, it was noted that the number of 

trichoid sensilla are more or less equal in number (Fig. 13B), but the T1 

sensilla are significantly lesser than in D. melanogaster, but have functional 

OR67d receptor highly conserved. On the contrary D. suzukii showed an 

increase in the number of T4 sensilla that houses OR65a receptors, compared 

to D. melanogaster. In D. melanogaster, it is shown that OR65a is involved in 

suppressing cVA-mediated male-male aggression and decreasing receptivity 

towards recently mated females. In D. suzukii, T4 sensilla were found to be 

highly conserved and sensitive to cVA. The results showed that D. suzukii 



 37 

responded to cVA prior touch stimulation (sensory recording probe 3-4 mm 

away), which otherwise in D. melanogaster, the response was seen upon close 

contact (less than 1mm closer) (Fig. 13C). 

Upon dissection to look into the antennal lobe (AL) of D. suzukii, it was 

noted that DA1 that receives signals from T1 sensilla was correspondingly 

reduced significantly in its size compared to D. melanogaster (Fig. 14). On the 

contrary, DL3 that innervates T4 sensilla was significantly enlarged.  

 
Figure 12. (A) Chromatograms showing female and male D. suzukii cuticular hydrocarbons. 

Arrow indicates retention time where cVA would elute. Inset: chromatogram of D. melanogaster 

with the arrow indicating cVA. IS= Internal standard (heptadecenyl acetate, 17:OAc), (B) 

comparison of the cuticular hydrocarbon profile of male and female D. suzukii (n=6 and n=5, 

respectively). Stars indicate significant differences between males and females (Mann-Whitney 

test, α<0.05). 
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Figure 13. (A) Micrographs of the ejaculatory bulb, lateral view, light and autofluorescence 

microscopy (insets). Overlay: volumetric estimates of the EB of D. suzukii (Ds) and D. 

melanogaster (Dm) (n=10 for each species, independent t-test; p<0.001). (B) Number of sensilla 

trichoidea and sensilla intermedia in D. suzukii and D. melanogaster females. (C) Top: sample 

trace of T1 sensilla to 0.5 s 1 µg cVA stimulation. Bottom: sample traces of T4 sensilla in D. 

suzukii and D. melanogaster to cVA, using the ‘touch’ stimulation, with the time (s) indicated at 

the bottom of the traces. Blue: before stimulation, orange: just prior to contact, red: contact. Side 

panel: dose response curves of T1 sensilla in D. suzukii and D. melanogaster to 0.5 s cVA 

stimulation (red bar). (D) Neurobiotin backfill of T1 neuron (a spurious fill of a neighboring AB7 

neuron toVM5v is also visible).  Letters indicate various anterior trichoid glomeruli. Arrowhead 

indicates DA1. 

It was then hypothesized that in D. suzukii cVA has a antagonistic role in 

courting and mating because of the switch in the size of DA1 and DL3 

glomerulus compared to D. melanogaster. To prove this, when D. suzukii 

virgin males were perfumed with D. melanogaster male equivalent synthetic 

cVA, it rapidly brought down the mating rate in four days old males. On the 

contrary, upon perfuming synthetic cVA on D. melanogaster, it increased the 

mating rate in males (Fig. 15 insets). However, upon degradation of cVA from 

D. suzukii males over time, the mating rate was found to increase which 

confirms that cVA acts as antagonistic compound in D. suzukii mating (Fig. 

15). This result invariably supports the previous findings of i) reduced 

ejaculatory bulb size and termination of cVA biosynthesis, ii) reduced number 
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of T1 sensilla and higher number to T4 sensilla compared to D. melanogaster 

and iii) reduction in the volume of glomeruli DA1 and enlargement of DL3. 

 

 
Figure 14. Volume of DA1 and other trichoid glomeruli, relative to the total volume of all 

glomeruli receiving input from sensilla trichoidea and intermedia. Red outlined bars: DA1 of D. 

melanogaster and D. suzukii ♂ and ♀. Insets are reconstructions of the antennal lobes, with in 

bright red DA1 and in light red other glomeruli that receive input from sensilla trichoidea and 

sensilla intermedia neurons. Scale bar 20 µm. 

The loss of cVA production in D. suzukii as a sex pheromone and the 

species’ inability of mating in the dark compared to D. melanogaster (Fuyama, 

1979) lead to the speculation that the wingspot on the forewings of males aid in 

mating at close range that might have replaced the role of cVA in D. suzukii. 

Therefore, two other species of suzukii subgroup that have wingspots in case of 

males, D. biarmipes and D. subpulchrella were checked for the cVA 

production and glomerulus size (DA1 and DL3). The former species feed and 

breed on fermenting fruits, while the later breeds on fresh fruits but feeds on 

the fermenting fruits. The results showed that D. biarmipes, which is D. 

melanogaster-like in its feeding habit, has functional ejaculatory bulb that 

produces cVA and also, the species has DA1 and DL3 glomeruli that 

correspond to the size of D. melanogaster-like ratio (Fig. 16). Contrary to this, 

D. subpulchrella, which is D. suzukii-like in its oviposition habit, has miniature 

sized ejaculatory bulb, reduced DA1 and enlarged DL3 similar to D. suzukii.  
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Figure 15. Effect of cVA perfuming on mating in D. suzukii and D. melanogaster. The relative 

mating rate is increasing (blue line) with a decreasing amount of cVA on the male flies. Insets: 

cumulative mating in D. melanogaster and D. suzukii in response to the perfuming with cVA 

(+cVA, red lines) or hexane (control, - cVA, grey lines). 

 
 

 

Figure 16. Reconstruction of antennal 

lobes of D. subpulchrella and D. 

biarmipes. In bright red DA1, which 

received input from T1 neurons, and in 

light red other glomeruli receiving input 

from sensilla trichoidea neurons (Scale bar 

20 µm). 

 

 

To verify all these results, oviposition experiment for D. suzukii was conducted 

to observe the behavior of the mated female when the fly encounter blueberry 

fruit treated with synthetic cVA (10µL of 1µg/ µL concentration). Preliminary 

results show that D. suzukii tend to avoid treated fruits compared to hexane 

treated fruits (control) (data not presented). Our hypothesis is that cVA 

represents for D. suzukii a signal of the presence of other Drosophilids in the 

rotten fruits, which in turn are not suitable for oviposition. So, it is possible 

that cVA or cVA-like compound can be used as oviposition deterrent on fruits 

in combination with other management methods for the effective damage 

control for D. suzukii. 
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6 Thesis outcome in a blink 

6.1 Paper I 

1. Protein-coding gene analysis confirmed the phylogenetic relatedness of 

suzukii subgroup with takahashi subgroup. 

2. D. biarmipes and D. subpulchrella are two other members of suzukii 

subgroup and are closely related to D. suzukii. 

3. D. suzukii has lower mutation rate and less number of generations per 

year and thus has significantly lower gene sequencing rate compared to 

its sibling species D. biarmipes. 

4. D. suzukii has lower selective pressure measured by the ratio dN/dS  

(Non-synonyms substitution/ synonymous substitution) compared to D. 

biarmipes. 

5. D. suzukii migrated towards higher altitude to avoid high temperature, 

survive on alternate hosts and undergo winter diapause. 

6. Molecular analysis suggests that D. biarmipes and D. suzukii got 

separated (speciation) from each 6 to 9 million years ago. 

6.2 Paper II 

7. In the Y tube olfactometer based behavioral experiment, blueberry was 

found to be highly attractive against control (blank) followed by cherry, 

raspberry, strawberry and blackberry. 

8. All fruit types included in the behavioral experiment are equally 

susceptible for female attraction. 

9. Identified 29 antennally active volatile compounds from 5 headspace 

extracts of blueberry, blackberry, cherry, strawberry and raspberry and 

their emission rate was calculated. 
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10.  Isoamyl acetate was present in all headspace collections and also 

elicited EAD response in all GC-EAD runs. 

11.  10 µg/µL isoamyl acetate in the rubber septa reproducing the release 

rate from fresh fruits was significantly attractive to the adult female 

compared to 1 µg/µL and 100 µg/µL in the Y tube olfactometer. 

12.  No significant difference was recorded between isoamyl acetate 10 

µg/µL and 25gr of blueberry to female D. suzukii in the Y tube 

olfactometer. 

13.  Alike D. melanogaster, D. suzukii also has all 10 odorant receptors 

involved in sensing isoamyl acetate, in addition has multiple copies (5x) 

of Or67a responsible for isoamyl acetate detection compared to D. 

melanogaster. 

6.3 Paper III    

14.  The cuticular hydrocarbon profile of D. suzukii male and female are 

isomorphic except few minor differences.  

15.  D. suzukii has all genes responsible for biosynthesis of species-specific 

cuticular hydrocarbon compared to D. melanogaster. 

16.  D. suzukii does not produce cVA or cVA-like cuticular hydrocarbon 

that mediate courtship and mating in Drosophila. 

17.  D. suzukii and D. subpulchrella (similar to D. suzukii in habitat) have 

miniature sized non-functional ejaculatory bulb, while another sibling 

species D. biarmipes has functional ejaculatory bulb similar to D. 

melanogaster. 

18.  Though D. suzukii has more or less equal number of sensilla trichoidea 

compared to D. melanogaster, but lesser T1 sensilla and abundant T4 

sensilla. 

19.  T1 sensilla that house Or67d influence cVA-mediated behavior like 

male-male aggression and courtship; T4 sensilla that house O65a 

suppress cVA-mediated behavior.   

20.  D. suzukii and D. subpulchrella have smaller DA1 (glomerulus that 

receive impulses from T1) and bigger DL3 (receive impulses from T4) 

glomerulus compared to D. melanogaster and D. biarmipes,  that is 

involved in cVA-mediated aggression in males and suppression of 

aggression, respectively. 

21.  The reverse sized glomeruli size of DA1 and DL3 suggests that cVA 

has antagonistic role in D. suzukii mating and courtship. 
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22.  Perfuming D. melanogaster male equivalent cVA on D. suzukii males 

significantly reduces mating, but in D. melanogaster perfuming males 

with cVA increases mating rate. 

23.  Sex-specific genes fruitless, sexlethal and transformer are conserved in 

D. suzukii alike D. melanogaster. 

24.  Fruitless genes Fru is translated in both sexes in D. suzukii contrary to 

D. melanogaster, where only males posses fruitless.   

25.  cVA  is a signal for D. suzukii for the recognition of substrates already 

occupied by congeneric species.  
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7  Conclusion and future prospectives 

Drosophila suzukii, an invasive pest reported for the very first time in 2008 in 

US and Europe and the very next year caused severe damage for the fruit 

production. The primary focus after invasion was only to find an immediate 

solution of controlling or decreasing the intensity of loss caused by female 

oviposition on fresh fruits. In the present work, instead the focus was also 

given to understand the basic aspects of the pest that included evolutionary 

origin, speciation and olfactory communications. Based on the existing 

information on D. melanogaster, an attempt was made to understand the 

differences in the behavior, ecology and physiology of the pest, which is a 

prerequisite to manage the menace in environmental-safe methods without 

using hazardous insecticides on the ready-to-harvest staged fruits. 

The genome based phylogenetic analysis placed D. suzukii in the suzukii 

subgroup close to another fly D. biarmipes that resembles D. suzukii males 

with wingspots. D. subpulchrella and D. pulchrella are two other species with 

similar habitat as D. suzukii, and are believed to be the members of suzukii 

subgroup (Mitsui et al. 2010). But this needs to be confirmed by further 

genome analyses. D. suzukii has undergone many behavioral and physiological 

changes from its ancestors by adapting for higher altitude temperature. This 

influenced the fly evolve to tolerate lower temperature by arresting the growth 

in winter through reproductive diapause. As a result, the species has lesser 

generations per year and lower gene sequencing rate (Paper I). 

Following this study, D. suzukii female was tested for the attraction towards 

its preferred host fruit volatiles in the behavior and electrophysiological assays. 

Of 29 antennally active volatiles, isoamyl acetate was found highly attractive 

to mated female at 10µg/ µL concentration with release rate comparable to 

fresh fruits. For the mated female, the same amount of isoamyl acetate loaded 

in the rubber septa was found equally attractive to blueberry. The attraction to 

isoamyl acetate is fine tuned in D. suzukii with additional gene duplication 
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compared to D. melanogaster. Isoamyl acetate in addition with other volatile 

compounds will be a potential combination of compounds to trap gravid 

females in the field (Paper II). 

In the following part the study it was earlier aimed to identify possible role 

of male pheromone that could potentially be used to attract opposite sex in the 

field. However, it turned out to be unique studies when it was noted that D. 

suzukii do not produce sex pheromone. With all potential genes conserved that 

are responsible for the biosynthesis of cuticular hydrocarbons and non-

functional small ejaculatory bulb, D. suzukii is in the intermediate state beyond 

which it is not possible to predict if the species will loose the genes responsible 

for sex pheromone biosynthesis because of selective pressure. However, the 

antagonistic role of cVA on D. suzukii mating in the behavioral experiment 

allows to predict that D. suzukii might lose the possible genes of cVA 

production over time. However, based on some preliminary oviposition assays, 

it is clear that cVA acts as deterrent for D. suzukii ovipositon. So, it is possible 

that cVA or cVA-like compound can be used as oviposition deterrent on fruits 

in combination with other management methods for the effective damage 

control. 

Based on behavior and physiology, it is also known that D. pulchrella and 

D. subpulchrella resemble D. suzukii, except for the economic damage of the 

fruit production. This makes the two closely related species very important to 

be understood in terms of genome and adaptation, temperature tolerance etc. so 

that the information can be used in the management of D. suzukii. It is also 

important to know the behavior and electrophysiological responses of these 

two species to isoamyl acetate as was done for D. suzukii for further 

understanding. 

Current control efforts for D. suzukii rely heavily on the use of insecticides. 

Unfortunately, the insecticides which are currently available to growers for 

control of D. suzukii are not very effective, since the use of highly efficient 

broad spectrum chemicals is being progressively restricted. In particular, 

organic production is seriously threatened because only few natural 

insecticides are admitted and their efficacy against D. suzukii is either not 

known or lower than the conventional insecticides (Walsh et al., 2011). 

Furthermore, the fast generation turnover requires many chemical interventions 

at the ripening stage, which can increase the risk of residues in fruits, promote 

insect resistance and negatively affect pollinators and other beneficial species. 

Hence, the uncontrollable wide spread of D. suzukii within a short time has 

made inevitable to combine different pest control methods in order to bring 

down the pest population densities. Biological control is another important 

management tool that can be adapted for the pest control. Rossi-Stacconi et. al 
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(2013) reported the presence of indigenous Drosophila pupal parasitoid 

Pachycrepoideus vindemiae in European and Oregon small fruit production 

areas. The lab experiments confirmed successful parasitization and hence could 

be mass-produced and released in the field at right time to bring down the 

population below the threshold level. More extensive efforts with integrated 

pest management, D. suzukii can be effectively control in US and Europe.  
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Abstract 

Drosophilid fruit flies have provided science with striking cases of behavioral adaptation and ge-

netic innovation. A recent example is the invasive pest Drosophila suzukii, which, unlike most oth-

er Drosophila, lays eggs and feeds on undamaged, ripening fruits. This not only poses a serious 

threat for fruit cultivation but also offers an interesting model to study evolution of behavioral in-

novation. We developed genome and transcriptome resources for D. suzukii. Coupling analyses of 

these data with field observations, we propose a hypothesis of the origin of its peculiar ecology. Us-

ing nuclear and mitochondrial phylogenetic analyses, we confirm its Asian origin and reveal a sur-

prising sister relationship between the eugracilis and the melanogaster subgroups. Although the D. 

suzukii genome is comparable in size and repeat content to other Drosophila species, it has the 

lowest nucleotide substitution rate among the species analyzed in this study. This finding is com-

patible with the overwintering diapause of D. suzukii, which results in a reduced number of genera-

tions per year compared with its sister species. Genome-scale relaxed clock analyses support a late 

Miocene origin of D. suzukii, concomitant with paleogeological and climatic conditions that sug-

gest an adaptation to temperate montane forests, a hypothesis confirmed by field trapping. We pro-

pose a causal link between the ecological adaptations of D. suzukii in its native habitat and its inva-

sive success in Europe and North America.  

Keywords: draft genome, genome evolution, population genetics, molecular clocks, Sophophora 

phylogeny.  

Introduction  

The genus Drosophila is one of the most studied in 

virtually all fields of biology because of an invaluable 

combination of reproductive (high fecundity and short 

generation time) and ecological (wide range of niches 

and fast adaptability) traits. These features have al-

lowed several Drosophila species to expand well out-

side their ancestral range. A classic example is Dro-

sophila melanogaster, whose worldwide distribution is 

the result of an out-of-Africa expansion approximately 

15,000 years ago (David and Capy 1988). A more re-

cent example of this invasiveness is Drosophila suzu-

kii, which in only a handful of years has invaded sev-

eral Western countries from its original Asian distribu-

tion. The global spread of D. melanogaster has little 

economic consequence, but the spread of D. suzukii is 

of significant concern.  

Unlike most of its close relatives, which lay eggs on-

ly on decaying or rotten fruits, D. suzukii lays eggs and 

feeds on unripe and undamaged fruits (Dreves 2011; 

Walsh et al. 2011; Rota-Stabelli, Blaxter, et al. 2013), 

and consequently, this species is quickly becoming an 

economically significant pest of fruit industries. This 

difference in ecology is reflected in morphological 

adaptations, such as an enlarged serrated ovipositor 

(used to break ripening fruits), and must also include 

additional neurological, lifecycle, and physiological 

adaptations to finding, and feeding on, unripe food 

sources. D. suzukii is thus a promising model for the 

study of the origins and bases of behavioral innovation. 

Understanding the cues by which D. suzukii finds its 

host fruits, and the mechanisms used for invading and 
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feeding thereon, is a key goal in research programs 

aiming to devise novel control systems (Cini et al. 

2012).  

To investigate the evolutionary history behind the 

switch in the reproductive behavior of D. suzukii from 

rotten to fresh fruit, and to better understand how this 

species established itself in western countries at such 

an impressive speed, we sequenced and annotated the 

genome and transcriptome of D. suzukii from an Italian 

Alpine population. On the basis of the combined re-

sults of phylogenetic and clock analyses, comparative 

genomics, and field observations, we propose a paleo-

ecological scenario to explain the peculiar D. suzukii 

ecological behavior.  

Materials and Methods 

Specimens and Sequencing 

Inbred D. suzukii lines were established from individu-

als collected at approximately 500 m above sea level 

(asl) in Valsugana, Trento, Italy, and subsequently 

maintained in the laboratory under standard conditions. 

Genomic DNA was extracted from 10 siblings of an F5 

inbred generation (five males and five females), 

whereas total RNA was extracted from 15 unrelated 

individuals at various developmental stages (five males 

and five females adults, three larvae, and two pupae). 

The pooled cDNA library and two short DNA libraries 

(180 base pairs [bp] and 300 bp) were sequenced at the 

GenePool Genomics Facility of the University of Ed-

inburgh, using 100 base paired-end sequencing on the 

Illumina Hiseq2000 platform (proportions were 0.2, 

0.4, 0.4 for the cDNA, 180 bp and 300 bp libraries, 

respectively). The raw data have been deposited in 

European Nucleotide Archive (study accession 

ERP001893) and the assembly in the ENA under ac-

cession numbers CAKG01000001–CAKG01061569. 

RNAseq Assembly 

The RNAseq sequencing generated a total of 35.7 mil-

lion 100 base paired reads. Data quality was evaluated 

with fastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fa

stqc/) and Tallymer (Kurtz et al. 2008). Low quality 

positions were trimmed using fastx (http:// han-

nonlab.cshl.edu/fastx_toolkit/) with a threshold of 0.3. 

We assembled the resulting 30,951,598 read pairs us-

ing two distinct approaches. First, we used Oases 

(Schulz et al. 2012) with k-mers ranging from 25 to 53, 

obtaining 24,358 contigs (length 100-15,000 bp). In the 

second approach, we used ABySS (Simpson et al. 

2009) with k-mer 45 and obtained 140,736 contigs. 

The two sets were merged using cd-hit (Li and Godzik 

2006) with an identity threshold of 100% and eventual-

ly super-assembled using CAP3 (Huang and Madan 

1999) using default settings. The final data set consist-

ed of 25,810 putative transcripts with lengths varying 

from 50 to 16,500 bp.  

Nuclear Genome Assembly 

Assembly of the nuclear genome was performed using 

both 180 bp and 300 bp libraries. The 180 bp library 

generated 67,153,264 100 base read pairs totaling 14.3 

gigabases (Gb) and the 300 bp library 51,792,255 100 

base read pairs covering 10.4 Gb. The insert sizes of 

both libraries were close to expectations. We initially 

partitioned the reads depending on whether they origi-

nated from nuclear, mitochondrial, or Wolbachia 

DNA. Nuclear genome assembly was based on reads 

that were not mappable to a reference database of the 

genomes of five Wolbachia strains (W. ananassae, W. 

melanogaster, W. simulans, W. willinstoni, and wRi) or 

to the D. melanogaster mitochondrial DNA (mtDNA). 

Mapping was performed using Smalt,  

(http://www.sanger.ac.uk/resources/software/smalt; see 

Table 3). Reads that passed this screening were further 

cleaned using sickle (https://github.com/najoshi/sickle) 

with a quality score cutoff of 25 (phred scale) applied 

to a sliding window of 40 bp. Following this step, 

reads had an average length of 93 bases (standard de-

viation [SD] = 14) and 94 bases (SD = 15) for the 180 

and 300 bp libraries, respectively, an average quality 

value of 35, and spanned a total of 20Gb. Assuming 

similar genome sizes in D. suzukii and D. melano-

gaster, this translates to a coverage of approximately 

168-fold. Genome assembly was carried out using 

ABySS (http://www.bcgsc.ca/platform/bioinfo/software/abyss) 

with k-mer size ranging from 48 to 64 (Table 4). After 

quality assessment of the assemblies, we retained as 

best assembly the one obtained using a k-mer of 64 

(Table 4). All contigs longer than 1kb have been sub-

mitted to the European Nucleotide Archive at EBI 

website (http://www.ebi.ac.uk) under ID 

CAKG01000001-CAKG01061569.  

Assembly of Drosophilid Mitochondrial Genomes 

All D. suzukii reads that matched the D. melanogaster 

mtDNA were assembled using Geneious 

(http://www.geneious.com), generating 15 contigs, the 

longest of which (14,736 bp) was identified as the 

nearly complete D. suzukii mtDNA. This fragment 

covers all genes but lacks the control region, whose 

length is unknown. To assist our phylogenetic anal-

yses, we also reconstructed the partial mitochondrial 

genomes of eight additional Drosophila species (D. 

biarmipes, D. bipectinata, D. elegans, D. eugracilis, D. 

ficusphila, D. kikkawai, D. rhopaloa, and D. 

takahashi). The draft genomes and transcriptomes of 

these species were kindly made available by the Baylor 

College of Medicine and modENCODE Consortium 

(https://www.hgsc.bcm.edu/content/drosophila-
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modencode-project). For each species, we separately 

compared the transcriptome and draft genome against 

the D. melanogaster mtDNA using Basic Local 

Alignment Search Tool (BLAST) (Camacho et al. 

2009). We used Geneious to assemble each set of con-

tigs identified by BLAST, using the D. melanogaster 

mtDNA as a reference. We compared by eye the result-

ing assemblies to the complete mtDNA genome avail-

able for 12 other Drosophila species (Drosophila 12 

Genomes Consortium et al. 2007), revealing many 

putative nuclear mitochondrial DNA (NUMTs). Final-

ly, we retained only the transcriptome-based assem-

blies. These contained a large number of undetermined 

sites due to the expected intraspecific mtDNA poly-

morphism in the source Drosophila populations.  

Repeat Identification 

To the genome of D. suzukii and the other eight Dro-

sophila species mentioned earlier, we added the (draft) 

genomes of 12 additional Drosophila species (D. mel-

anogaster, D. ananassae, D. sechellia, D. simulans, D. 

yakuba, D. erecta, D. pseudobscura, D. persimilis, D. 

willistoni, D. mojavensis, D. virilis, and D. grimshawi; 

downloaded from http://flybase.org). In each genome, 

we automatically annotated repeats using RepeatMask-

er (http://www. repeatmasker.org/), at default settings, 

and then used the Repbase database (Jurka et al. 2005) 

as a reference for de-novo identification. We analyzed 

the entire genome without distinguishing between eu-

chromatin and heterochromatin partitions, as these 

information are either incomplete or unknown for most 

of the Drosophila species used in this study. We used 

all fragments irrespective of their length, because the 

D. suzukii genome assembly and some of the other 

draft genomes contained many contigs shorter than the 

200 kb limit recommended (Drosophila 12 Genomes 

Consortium et al. 2007). We quantified the presence 

and size of repeats as the percentage of repeated se-

quences over the draft genome size. This approach has 

the advantage of reducing biases due to the uncertain 

draft genome size of the different species, which may 

vary due to the different assembly strategies and/or 

genome quality levels, and may not reflect the actual 

genome size. To account for this inaccuracy, we fur-

ther calculated the percentage of total repeats using 

two contrasting and conservative estimates of the puta-

tive average Drosophila genome size (a minimum at 

130 Mb and a maximum at 180 Mb).  

Orthologous Gene Set Identification  

For comparative genomic analyses, we collated data 

for 21 Drosophila species. We downloaded the latest 

coding sequences (CDS) data sets available for D. 

melanogaster (release 5.43) and D. ananassae (release 

1.3) from FlyBase, as well the masked alignments of 

all single-copy orthologues used in the 12 Drosophila 

project available from 

ftp://ftp.flybase.net/genomes/12_species_analysis/clark

_eisen/alignments/all_species.guide_tree.longest.cds.fa

sta (Drosophila 12 Genomes Consortium et al. 2007). 

We also downloaded the assembled RNA-Seq data of 

eight modENCODE Drosophila species 

(https://www.hgsc.bcm.edu/content/drosophila-mod- 

encode-project). We identified best-hit homologous 

sequences between the nine RNA-Seq and two CDS 

datasets using pairwise BLASTn (optimized using the 

parameter “-best_hit_overhang 0.15”).  

Rates of molecular evolution and tests of positive se-

lection were based on the set of orthologous genes 

identified in D. melanogaster, D. biarmipes, D. 

takahashi, D. suzukii, and D. ananassae. To minimize 

the possibility of spurious matches, we filtered matches 

to exclude any with less than 60% of the length of ei-

ther sequence aligned. We produced two lists of puta-

tive orthologues sets from this five-species set. In the 

first (“
STAR

orthologues”), we identified as orthologous 

genes the reciprocal best hits between D. melanogaster 

and each of D. biarmipes, D. takahashi, D. suzukii, and 

D. ananassae (fig. 6). Using this approach, we identi-

fied a total of 2,336 
STAR

orthologues quintuplets. 

The second, more conservative list, included only 

those genes found as reciprocal best hits for all pair-

wise comparisons between the five species 

(
WEB

orthologues; fig. 6). This data set included 1,021 
WEB

orthologues quintets and by definition is a subset of 

the 
STAR

orthologues dataset. All sequences within each 

orthologue set were oriented based on the D. melano-

gaster sequence and aligned with MUSCLE (Edgar 

2004). We then trimmed partial codons at the 5’ and 3’ 

ends based on the D. melanogaster sequence.  

For the orthologue groups used for molecular evolu-

tion analyses, we then extracted the portion of the 

alignments with representation from all taxa. Finally, 

all alignments were re-aligned using Prank (Loytynoja 

and Goldman 2008) as implemented in TranslatorX 

(Abascal et al. 2010), which aligns protein-coding nu-

cleotide sequences based on their corresponding amino 

acid translations.  

We removed from these two data sets all orthologues 

sets with alignments shorter than 100 bp. The resulting 

2,263 
STAR

orthologue quintuplets had a mean length ± 

Standard Error (SE) of 1,335.7 ± 29.0 bp (median = 

1,092 bp; mode = 942 bp), corresponding to 69.9 ± 

29.5% of the D. melanogaster gene length. The 1,007 
WEB

orthologue quintuplets had a mean length ± SE of 

1,575.1 ± 29.8 bp (median = 1,275 bp; mode = 606 bp) 

corresponding to 76.4 ± 26.0% of the D. melanogaster 

gene length. We found that the results of our analyses 

did not change qualitatively when based on 
STAR

orthologues or 
WEB

orthologues. Thus, for ease of 

presentation, and unless specified, we have presented 

only those obtained using the 
STAR

orthologues data set.  



4 

 

Analyses of the Rate of DNA and Protein 

Evolution  

Rates of molecular evolution were analyzed for both 

WEBorthologues and STARorthologues using PAML 

4.4 (Yang 2007). We estimated the rate of nonsynon-

ymous substitution, dN (leading to amino acid chang-

es), and synonymous substitution, dS (which should 

accumulate neutrally), over all branches of the phylo-

genetic tree using the “free-ratio" model (M0’ (Yang 

1998); model= 1 and NSsites= 0). This model allows 

ω= dN /dS, i.e. the level of selective pressure experi-

enced by a gene, to vary among branches of the tree. 

Following the results of the phylogenetic analysis (see 

later), the input unrooted tree had the structure (D. 

melanogaster, (D. ananassae,(D. takahashi,(D. biar-

mipes,D. suzukii)))). We then used PAML to test dif-

ferent models of substitution rates across coding sites 

(Yang and Nielsen 2000; Yang et al. 2000), with the 

aim of detecting genes that either evolved at a different 

rate or underwent positive selection along the D. suzu-

kii lineage. 

In the first test, we compared models that assumed 

one or more substitution rates across the phylogeny. 

The first of such models is the basic “one-ratio” branch 

model (M0), which assumes a constant ω across the 

phylogeny (model = 0 and NSsites= 0). Following the 

manual recommendations, this model was used to get 

the branch lengths for each gene tree, which were then 

copied into the tree structure file to be used with the 

“branch and site” substitution models. The likelihood 

of the M0 model was compared with that of a branch 

model that assumed two ω values, one for the D. suzu-

kii branch (the so called foreground branch) and one 

for the rest of the tree (the background branches; mod-

el= 2 and NSsites= 0). Subsequently, the value of twice 

the difference between the two likelihoods (2∆λ) was 

tested using a χ
2
 test with 1 degree of freedom.  

The occurrence of positive selection was tested by 

the branch-site test, which aimed at detecting positive 

selection affecting a few sites along the D. suzukii 

foreground branch. In this test (branch-site model A, 

test 2 (Yang et al. 2005), ω can vary both among sites 

in the protein and across branches on the tree (model= 

2, NSsites = 2). As for the branch model, we used tree 

structures with branch lengths estimated by model M0. 

The null model fixed ω2 = 1 (fix_omega= 1, ome-

ga=1), where as the positive selection model allowed 

ω2 > 1 (fix_omega= 0, omega= 1). The likelihood ratio 

test had 1 degree of freedom. To account for multiple 

testing, we also estimated the false discovery rate 

(FDR) of each test using the q value approach (Storey 

2002) implemented in R (R Development Core Team 

2009). We note that the reciprocal best-hit approach is 

prone to miss genes with high sequence divergence, 

including those that underwent particularly intense 

divergent adaptive evolution. Thus, we could have 

missed targets of positive selection among our se-

quenced genes.  

Codon Usage Analysis  

We inferred preferred codons and codon usage bias in 

D. melanogaster, D. ananassae, D. takahashi, D. 

biarmipes, and D. suzukii in the genes of the 
STAR

orthologues groups with more than 30 codons. We 

estimated codon bias using the effective number of 

codons, Nc (Wright 1990), and the frequency of opti-

mal codons, Fop (Ikemura 1981): Stronger synony-

mous codon usage bias is identified by larger Fop val-

ues and lower Nc values. Both indices were calculated 

using the program CodonW 

(http://codonw.sourceforge.net). Putative optimal (pre-

ferred) codons were identified as those that were sig-

nificantly over-represented in the 5% of genes with 

highest and lowest usage frequencies (supplementary 

table S1). Base composition affected synonymous co-

don usage, as shown by the strong correlation between 

GC and GC3 (GC in the third codon position) content 

and both Nc and Fop (Spearman correlation, P<10–

16). To remove the potential noise due to this correla-

tion, we estimated a version of the effective number of 

codons, Nc’, which accounts for background nucleo-

tide composition (Novembre 2002). We also used in 

our analyses the residuals of the regression between 

GC3 content and Fop and Nc.  

Transcriptome and mtDNA Data Sets for 

Phylogenetic Analyses  

We assembled a data set of 91 orthologous genes from 

the transcriptomes of 21 Drosophila species including 

D. suzukii. Strict orthology within the complete set of 

D. melanogaster genes (Drosophila 12 Genomes Con-

sortium et al. 2007) and the other 20 transcriptomes 

was assessed using the reciprocal best BLAST hits 

method. We first identified single copy 
WEB

orthologues 

between D. melanogaster, D. biarmipes, D. bipectina-

ta, D. elegans, D. eugracislis, D. ficusphila, D. kikka-

wai, D. rhopaloa, D. takahashi, and D. suzukii. We 

identified the masked alignments of all these 
WEB

orthologues in the 12 Drosophila alignments (Dro-

sophila 12 Genomes Consortium et al. 2007), thus 

selecting 97 groups of putative orthologues. A few of 

these were removed after manual inspection revealed 

that they contained incomplete, frame-shifted, and/or 

dubiously assembled sequences, leaving 91 highly re- 

liable orthologue groups. These were aligned using 

TranslatorX and concatenated into a superalignment of 

200,475bp, which was further inspected by eye and 

corrected for the correct frame of codons (inclusion of 

partial stop codons that altered the frame) and minor 

errors that escaped the first manual inspection.  

We translated this alignment into amino acids and se-

lected conserved regions using Gblocks (Castresana 
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2000) with parameters 1:11, 2:17, 3:8, 4:10, and 

5:half). We retained 90% of the sites, totaling 60,757 

amino acids. The final nucleotide alignment of 182,271 

bp, perfectly corresponding to the amino acid align-

ment, was used for further sequence analyses exclud-

ing third codon positions.  

A mitochondrial genome alignment was constructed 

by extracting CDS from available and newly assem-

bled (see earlier) mtDNA. The 12 CDS genes were 

checked for their correct codon frame and concatenat-

ed. We also excluded third codon positions from the 

mtDNA data set for further sequence analyses.  

Phylogenetic Analyses  

We performed Bayesian and maximum likelihood 

(ML) analyses on both the transcriptomic and the mi-

tochondrial genomic datasets. For the Bayesian anal-

yses, we used PhyloBayes3 (Lartillot et al. 2009) set-

ting two independent runs until the maxdiff was less 

than 0.1. We calculated the 50% majority rule consen-

sus trees by pulling sampled trees after a burn-in that 

minimized the maxdiff statistic in PhyloBayes3. Max-

imum Likelihood analyses were performed using 

Phyml (Guindon et al. 2010) on 100 non-parametric 

bootstrapped replicates. In all cases, a discrete gamma 

distribution (with four rate categories) was used to 

model among site rate variation. We performed three 

main experiments on both datasets using different da-

taset treatments and models of replacement:  

1. ML analyses on nucleotide alignments using all the 

three codon position and a single nt-general time 

reversible (GTR) model for all codon positions (nu-

cleotides positions 1+2+3, GTR+G, ML in fig. 1).  

2. Bayesian analyses on nucleotide alignments using 

the CAT model after exclusion of the third codon 

position (nucleotide positions 1+2, CAT+G, Bayes-

ian).  

3. Bayesian analyses on the corresponding amino acid 

alignments using a six category Dayhoff recoding 

and the CAT+GTR model (amino acids-Dayhoff, 

CAT+GTR+G, Bayesian).  

Molecular Clock Analyses  

We performed two different molecular clock analyses. 

We first used PhyloBayes (Lartillot et al. 2009) on 

both the transcriptomic and mitochondrial genomic 

datasets at the nucleotide level. We employed a CIR 

process clock model and a GTR+G model of replace-

ment on both datasets using the fixed tree topology of 

Figure 1A. We constrained four nodes as in 

Prud’homme et al. (2006) using their suggested bio-

geographical calibrations. To account for uncertainty 

in bio-geographical constrains, we allowed both mini-

ma and maxima to be soft, thus allowing the posterior 

dates to be sampled outside the set bounds (Yang and 

Rannala 2006). We employed a root prior of 80 Myr 

ago with a permissive SD of 40 Myr and assumed a 

birth-death process along all nodes. We modeled re-

placement using CAT and the clock using CIR as in 

Rota-Stabelli, et al. (2013b). In a second approach, we 

used BEAST (Drummond and Rambaut 2007) without 

constraining internal nodes and the random local clock 

but only a normally distributed root prior centered at 

80 Myr with SD 20 Myr. We assumed the initial muta-

tion rate of 0.0346 (SD=0.00281) suggested in Obbard 

et al. (2012). Because mutation rate refers to uncon-

strained sites, we used only the 4-fold degenerate sites 

of the genomic data set for the BEAST analysis.  

Field Monitoring and Trapping  

Field trapping for tests of distribution by altitude were 

carried out between 15 April (week 14) and 31 October 

(week 43) 2011. Forty sites across Trento Province 

were chosen representing both agricultural and natural 

ecosystems. Traps were deployed on a large-scale alti-

tudinal gradient and assigned to four altitudinal ranges 

(<250m asl [n=10], 250-600m asl [n=10], 600-1,000 m 

asl [n=10], >1,000 m asl [n=10]). At each trapping site, 

we placed, in a shady spot, one plastic transparent bot-

tle with multiple small lateral holes (diameter between 

5 and 10 mm) containing 250 ml of apple cider vinegar 

as bait. Weekly, traps were checked, insects collected, 

and vinegar replaced. Weekly captures of D. suzukii in 

each trap were averaged per altitudinal range.  

Results  

Genome, Transcriptome, Mitogenome, and 

Wolbachia Sequencing  

We sequenced and assembled a draft genome and tran-

scriptome of D. suzukii from an Italian Alpine popula-

tion. The draft genome was sequenced to high depth 

(an average of 80x coverage) and comprises 49,558 

contigs spanning a total of 160 Mb. The draft transcrip-

tome contains 25,810 unique sequences. Both the size 

of the genome and its repetitive element contents are 

comparable with that of D. melanogaster and other 

sequenced Drosophila (fig. 4). We also assembled the 

nearly complete mitochondrial genome for D. suzukii 

(~15 kb), whose size and gene content is similar to that 

of other sequenced Drosophila. Finally, we extracted 

and assembled the genome of a Wolbachia endosym-

biont (wSuzi, 1.3 Mb) harbored by the Italian D. suzu-

kii population. Preliminary analyses based on several 

genes identify wSuzi as closely related to wRi from D. 

simulans Riverside (Klasson et al. 2009). A more de- 

tailed characterization of wSuzi is presented in Siozios 

et al. (2013). 
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Figure 1. The evolutionary affinities of D. suzukii and the other Drosophila species inferred from phylogenomic and mitogenomic data. 

(A) Phylogenetic analyses of 91 orthologous nuclear genes (200,475 bp). (B) Phylogenetic analyses of 12 mitochondrial genes (11,139 

bp). Both data sets support an Asian affinity of D. suzukii. Drosophila images from Prud’homme and Gompel, used by permission. 

Molecular Phylogenetics Using Transcriptomic 

and mtDNA Data Sets  

We used data from the D. suzukii genome to conduct a 

comprehensive multi-locus phylogenetic and dating 

analysis in the context of genome data from 20 addi-

tional Drosophila species. We conducted two separate 

analyses using two distinct datasets.  

In the first analysis, we used 91 protein-coding genes 

extracted from the transcriptomes of the 21 species, 

covering more than 200,000 nucleotides (fig. 1A). We 

analyzed the aligned data both as nucleotides, exclud-

ing third codon positions to exclude likely saturated 

positions or characters associated with synonymous 

substitutions, and as amino acid sequences. We also 

employed different phylogenetic frameworks (Bayesi-

an and ML) and both homogenous and more sophisti-

cated heterogeneous models such as CAT+GTR on a 

Dayhoff recoded dataset (Rota-Stabelli, Lartillot, et al. 

2013). All analyses converged on a tree that supported 

a sister relationship between the suzukii and takahashii 

subgroups, and D. eugracilis as sister of the melano-

gaster subgroup (fig. 1).  

In a second analysis, we reconstructed a phylogeny 

from the mitochondrial genomes of the 21 Drosophila 

species. We assembled nearly complete mitochondrial 

genomes for eight additional Drosophila species for 

which whole transcriptome shotgun data were availa-

ble. Phylogenetic analyses using the same set of exper-

imental procedures used for the transcriptome dataset 

failed to support most of the findings of the genome-

derived transcriptome tree (fig. 1B).  

Molecular Clocks and (Paleo) Ecological 

Analyses  

We performed molecular clock analyses using both the 

transcriptome and the mtDNA datasets (fig. 2A, see 

Materials and Methods for details). Despite some dis-

crepancies for the ages of nodes closer to the root, the 

two datasets converged in supporting divergence of D. 

suzukii from D. biarmipes in a period between 9 and 6 

Mya (i.e., the Tortonian).  

To link these clock analyses with the current distri-

bution of D. suzukii in Asia, we mapped the current 

known distribution of D. suzukii and their sister species 

onto a previously compiled climatic model of the 

Asian Tortonian (fig. 2B). The current distribution of 

D. suzukii extends over the Tortonian montane temper-

ate forests, whereas D. biarmipes is confined to a more 

equatorial southern habitat. To investigate a possible 
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preference for temperate climate in D. suzukii (see 

Discussion), we monitored the distribution of D. suzu-

kii Italian populations along a gradient of altitude over 

1 year (fig. 2C). D. suzukii preferentially inhabits high-

er, more temperate altitudes, although the majority of 

human activity and fruit sources are concentrated at 

lower altitudes.  

Figure 2. Molecular timetrees, paleoclimate, and field trapping suggest a montane temperate origin of D. suzukii. (A) Relaxed clock anal-

yses of the Drosophila species using both the nuclear and mitochondrial data sets of figure 1. D. suzukii is predicted to have diversified 

toward the late Miocene (Tortonian) simultaneous with an increased uplift of the Himalayan/ Tibetan (H/T) plateau and an intensification 

of the monsoon cycles. Most speciation events (Asian radiation) within the melanogaster group happened just after the mid Miocene cli-

matic optimum in concomitance with further temperature decrease. (B) Current endemic geographical distribution of D. suzukii (stars) 

compared with that of D. biarmipes (dots) and D. takahashi (triangles); yellow line marks the border of temperate (mostly mountainous) 

forested area during the Tortonian age, the current area being similar but restricted toward the North East. These distributions suggest that 

D. suzukii speciated from D. biarmipes by adapting to more temperate mountainous environment. Some species distribution taken from 

Markow and O’Grady (2005). (C) Annual captures per trap at five different altitudes in the Alps confirm a montane/ forest optimum for D. 

suzukii, despite greater food resources from fruit production below 600 masl.  

 

Reduced Rate of Molecular Evolution and 

Reduced Effective Population Size in D. suzukii  

We explored the patterns of molecular evolution of the 

D. suzukii genome by studying a set of 2,336 ortholo-

gous genes from five key species carefully chosen to 

illuminate key points in its evolutionary history. D. 

suzukii genes are characterized by a slow rate of mo-

lecular evolution (fig. 3A; supplementary table S2). 

Both synonymous (dS) and non-synonymous (dN) 

substitutions rates are significantly lower compared 

with those of its sister species D. biarmipes (fig. 3B), 

consistent with a reduction in substitution rate along 

the D. suzukii branch. This finding is reinforced by a 

molecular clock analysis that showed that D. suzukii 

has the lowest substitution rate among the Drosophila 

species considered (fig. 3C).  

We next examined whether in D. suzukii the low 

substitution rate was accompanied by different levels 

of selective pressure compared with its close relative. 

The level of overall genomic selective pressure, as 

measured by the ratio dN /dS, is on average signifi-

cantly lower in D. suzukii than in D. biarmipes (fig. 

3B). Interestingly, there is a significantly larger dN /dS 

in autosomal genes of D. suzukii compared with those 

of D. biarmipes, whereas the opposite is true for X-

linked genes dN/dS (fig. 3B), consistent with a differ-

ence in levels of selective pressure between autosomes 

and the X chromosome.  



8 

 

To obtain a broader picture of the evolutionary pro-

cesses, we further analyzed the codon usage in these 

five species (table 4 and supplementary table S1). In 

many organisms, synonymous codons are used with 

different frequencies, leading to codon usage bias. 

Such bias can be under weak selection (|Nes|≈ 1), and 

is maintained by the concurrent action of selection, 

drift, and mutation. Thus, in principle, codon usage 

bias should be stronger in species with larger effective 

population size, Ne, compared with species with lower 

Ne. Both the effective number of codons, Nc (Wright 

1990), and the frequency of optimal codons, Fop 

(Ikemura 1981), are significantly different between D. 

suzukii and D. biarmipes (P< 10e-15; supplementary 

table S3) and are consistent with less codon usage bias 

in the former. Because GC and GC3 (GC in the third 

codon position) content are significantly correlated to 

codon usage bias measures in D. suzukii and D. biar-

mipes (Spearman’s rho> 0.68 for GC and rho< -0.65 

for GC3, P< 10e-15, for both species), we repeated the 

comparative analyses while correcting for composi-

tional bias. Codon usage bias measures Nc and Fop do 

not differ significantly between D. suzukii and D. 

biarmipes when correcting for GC or GC3 (P> 0.139, 

for both comparisons). The modified version of Nc, 

which accounts for background nucleotide composi-

tion, Nc’ (Novembre 2002), is significantly larger in D. 

suzukii than in D. biarmipes (P= 6 X 10e-11), suggest-

ing less codon usage bias in the former.  

Figure 3.The slowly evolving genome of D. suzukii can be linked to reduced number of generations per year due to winter sexual (female) 

diapause. (A) Consensus evolutionary analysis of 2,336 orthologous genes in five key species. Upper and lower are, respectively, the trees 

derived from analyses of non-synonymous (dN) and synonymous (dS) substitutions. The dN/ dS for each species are given in parentheses. 

(B) Branch-specific normally modeled mutation rates as optimized by BEAST using as initial value a mutation rate of 0.0346 neutral 

substitutions per base pair per million of year (SD= 0.00281). Branch thickness is proportional to the rate. D. suzukii is clearly character-

ized by the lowest rate. Other slower evolving genomes are those of the virilis–repleta radiation and of the pseudobscura group, which are 

also preferentially distributed in a temperate/ holoartic environment (North American and Central American plateaus). (C) A detailed 

comparison between the rate of molecular evolution in D. suzukii and its sister species D. biarmipes, for all genes (All) as well for auto-

somal (Aut) and X-linked genes (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, Wilcoxon test after controlling for gene length; 

see also table 3).  

The analysis of the rate of molecular evolution at the 

single-gene level revealed only few genes that evolved 

at different rates in the D. suzukii branch compared 

with the rest of the phylogenetic tree (D. melanogaster, 

D. ananassae, [D. takahashi, {D. biarmipes, D. suzu-

kii}]) or where branch-site models detected the occur-

rence of positive selection specifically affecting sites 

along the D. suzukii branch (tables 1 and 2).  
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Discussion 

The Evolutionary Affinities of D. suzukii and the 

Sister Group of the Drosophila Subgroup 

Analyses based on 91 nuclear protein-coding genes 

(fig. 1A) confirmed a sister relationship between the 

suzukii and takahashii subgroups (Yang et al. 2012). 

The melanogaster subgroup was found to be closely 

related to D. eugracilis, a new hypothesis of Sopho-

phora evolution that was extremely robust to various 

dataset treatments (exclusion of third codon positions 

in nucleotide sequences and translation into the corre-

sponding amino acid sequences) and experimental  

 

procedures (use of homogenous and heterogeneous 

substitution models in both a Bayesian and ML frame-

work; see legend of fig. 1A). Not all relationships were 

well resolved using this large dataset. The placement 

of D. ficusphila is dataset and model dependent, but 

the use of the sophisticated CAT+GTR model coupled 

with Dayhoff recoding of the amino acid dataset (per-

formed to reduce possible systematic errors in phylo-

genomic analyses; Rota-Stabelli, Lartillot, et al. 2013) 

points toward its grouping with D. rhopaloa and D. 

elegans. 

To corroborate our phylogenetic results, we further 

analyzed an mtDNA dataset, which failed to support 

all the findings of the nuclear gene set tree (fig. 2B). 

This is most likely because of a lack of phylogenetic 

signal in the mtDNA. Thus, the apparently robust boot-

strap support (97%) against the sister relationship D. 

eugracilis-melanogaster subgroup  

 

 

 

Table 1. Top 10 Genes identified as putative target of positive selection along the D. suzukii branch  

D. 

melanogaster 

orthologue 

P
a
 q-value

b
 P2 

c
 ω2 

d
 Function and phenotype (sex, neuron, thorax) 

Cyp4d20 7x10
-13

 8x10
-10

 0.0026 15.2 Predicted electron carrier activity. Protein with features of Cytochrome P450. 

Expression at moderate levels in the following post-embryonic organs or tissues: 

adult head, adult eye, adult heart, adult spermathecae, adult carcass 

 endos 0.00085 0.27948 0.0200 999.0 Predicted sulfonylurea receptor binding activity. Involved in regulation of meiotic 

cell cycle, mitotic spindle organization, oogenesis, water homeostasis and re-

sponse to nutrient. Phenotypically relevant in egg, oocyte and follicle cell. 

Ptp4E 0.00103 0.29554 0.0048 999.0 Predicted transmembrane receptor protein tyrosine phosphatase activity. Involved 

in motor axon guidance, central nevous system development, and open tracheal 

system development. Phenotypically relevant in ventral nerve cord. 

T48 0.00134 0.33996 0.0084 999.0 Unknown molecular function. Phenotypically relevant in ventral furrow. 

CG15626 0.00157 0.36001 0.0030 693.7 Unknown molecular and biological function. 

Cyp4aa1 0.00199 0.39060 0.0024 999.0 Predicted electron carrier activity. Involved in insecticide catabolic and hormone 

metabolic processes 

Osi20 0.00205 0.39060 0.0078 747.8 Unknown molecular and biological function. Phenotypically relevant in trichogen 

cell 

CG13397 0.00271 0.47676 0.0024 200.4 Predicted alpha-N-acetylglucosaminidase activity. Protein domains suggest 

involvement in carbohydrate metabolic process 

yemalpha 0.00351 0.52651 0.0022 135.4 DNA binding activity. Involved in female meiosis. Phenotypically relevant in 

oocyte 

toe 0.00358 0.52651 0.0123 70.3 Predicted molecular function in sequence-specific DNA binding transription 

factor activity. Involved in compound eye development, and negative regulation 

of transcription from RNA polymerase II promotor. Phenotypically relevant in 

scutum and scutellum (mesothoracic tergum) development. 

a
Likelihood ratio test probability based on branch-site models of codon evolution, with D. suzukii set as foreground branch. 

 
b
Proportion of false positives (FDR) of the test. 

c
Proportion of sites under positive selection estimated in the foreground branch (D. suzukii) by the branch-site model A. 

do estimated for the sites under positive selection in the foreground branch (D. suzukii) by the branch-site model A.  

 

vanishes when highly saturated third codon positions 

are excluded, or when an amino acid dataset was em-

ployed, indicating that signal contradicting the nuclear 

phylogeny carried by mitochondrial genomes is con-

centrated in unreliable third codon positions and/or 
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synonymous substitutions. Overall, our phylogenetic 

analyses reveal that the African melanogaster sub-

group evolved from within a rapid Asian radiation, 

identifying D. eugracilis as a key intermediate species 

to polarize evolutionary traits of the melanogaster sub-

group. With respect to the placement of D. suzukii in 

the phylogeny, our analyses suggest that this species is 

the sister taxon of D. biarmipes. D. subpulchrella, an-

other little-studied fly in the suzukii subgroup, has been 

reported to have feeding behavior similar to that of D. 

suzukii (Mitsui et al. 2010). This species, is however, 

thought to be most closely related to D. pulchrella 

(hence its name), which is sister to the suzukii+ biar-

mipes clade (Yang et al. 2012), suggesting independent 

acquisition of unripe fruit feeding. It will be important 

to explore the relationships of D. subpulchrella using 

genome-scale data.  

Rate of Molecular Evolution Suggests Winter 

Diapause  

Our results indicate that gene sequences evolve at a 

significantly lower rate in D. suzukii than in its sister 

species D. biarmpes (fig. 3 and table 1). We hypothe-

size that the low substitution rate of D. suzukii could be 

due to an idiosyncratic, low mutation rate, and/ or be-

cause the species has a reduced number of generations 

per year compared with its relatives. The reproductive 

ecology of the species supports the second hypothesis, 

as in its distributional range D. suzukii reproduces only 

during the warm season and is able to over-winter as 

sexually immature, cold tolerant females (Mitsui et al. 

2010). Our genomic evidence supports the hypothesis 

that D. suzukii has a winter sexual diapause and thus 

had a reduced number of generations since its last 

common ancestor with D. biarmipes.  

  

 

Table 2. Top 10 Genes Evolving at a Significantly different rate along the D. suzukii Branch.  

D. 

melanogaster 

orthologue 

P
a
 q-value

b
 ω FB 

c
 ωR 

d
 Function and phenotype (sex, neuron, thorax) 

ran 6x10
-10

 0.000001 0.0752 0.0001 GTP and protein binding activity. Involved in regulation of meiotic spindle 

organization, cell cycle, cell shape, cell adhesion and actin filament organization. 

Phenotypically relevant in photoreceptor cell R7, meitotic spindle, karyosome, 

ommatidium and pigment cell. 

mtm 1x10
-9

 0.000002 0.1639 0.0190 Phosphatidylinositol-3-phosphatase activity. Involved in mitotic cell cycle, chro-

mosome segregation and response to wounding. Phenotypically relevant in sessile 

hemocyte and embryonic/ larval hemocyte. 

wcd 4x10
-8

 0.00003 0.3814 0.0782 Unknown molecular function. Involved in ribosome biogenesis and neuroblast 

proliferation and female germ-line stem-cell division. Phenotypically relevant in 

trichogen cell and mesothoracic tergum. 

I(3)72Dn 9x10
-8

 0.00005 0.4781 0.1330 Unknown molecular function. Involved in ribosome biogenesis and neurogenesis. 

Phenotypically relevant in mesothoracic tergum.  

CG9135 7x10
-7

 0.00031 0.2774 0.0150 Predicted guanyl-nucleotide exchange factor activity. Unknown biological 

function. Phenotypically relevant in mesothermic tergum. 

CG8562 3x10
-6

 0.00105 0.3100 0.0624 Predicted metallocarboxypeptidase activity. Protein domains suggest involvement 

in proteolysis. 

Oatp33Ea 0.00001 0.00175 0.2131 0.0556 Predicted organic anion transmembrane transporter activity. 

Ibk 0.00001 0.00175 0.0001 0.0435 Involved in chaeta morphogenesis and oogenesis. 

Iid 0.00001 0.00175 0.1231 0.0421 Histone acetyltransferase and demethylase activity. Involved in chromatin orga-

nization, and histone acetylation and demethylation. Phenotypically relevant in 

mesothermic tergum, imaginal disc, and embryonic/ larval optic lobe. 

dome 0.00001 0.00270 0.0186 0.0886 Transmembrane signalling receptor activity and protein heterodimerization acti-

vity. Involved in blastoderm segmentation, hindgut morphogenesis, border 

follicle cell migration, long-term memory, JAK-STAT cascade, open tracheal 

system development, and compound eye morphogenesis. Phenotypically relevant 

in spiracle, integumentary specialization, embryonic hindgut, and compound eye. 

a
Likelihood ratio test probability based on branch models of codon evolution, with D. suzukii set as foreground branch.  

b
Proportion of false positives (FDR) of the test. 

c
ω estimated for the focal (D. suzukii) branch. 

d
ω estimated for the rest of the phylogenetic tree.  
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Figure 4: Repeated elements in D. suzukii genome. The distribution and number of repeats in D. suzukii is similar to that of sister 

species D. biarmipes and D. takahashii, thus making sense of their phylogeny. In most other cases there is not a similarity be-

tween closely relates species, see for example D. yakuba and D. erecta.  

 

Reduced Effective Population Size Affects the 

Efficiency of Positive Selection in D. suzukii 

The level of overall genomic selective pressures, as 

measured by the ratio dN/dS, is lower in D. suzukii 

than in D. biarmipes (fig. 2B). This result is consistent 

with more relaxed selection along the D. suzukii line-

age, possibly because this species has a smaller effec-

tive population size, Ne, than D. biarmipes. A reduced 

Ne would allow the fixation of larger number of slight-

ly deleterious non-synonymous mutations (Charles-

worth 2009), as further supported by the observation 

that D. suzukii has a lower frequency of optimal co-

dons and a lower codon usage bias than D. biarmipes 

(Table 4 and supplementary Table S3). The alternative 

possibility that larger dN/dS values correspond to per-

vasive positive selection in the D. suzukii genome (i.e., 

increased fixation of beneficial mutations) is not sup-

ported by our data. First, the fixation of favorable al-

leles in multiple genes would lead to a high dispersion 

in the distribution of dN across the genome (Presgraves 

2005), whereas the variance in dN is significantly low-

er in D. suzukii than in D. biarmipes (2.9x 10e-5 vs. 

4.4x 10-5, F test P< 10e-15). Second, only a few genes 

were detected as significant targets of positive selec-

tion in D. suzukii (Table 1). Thus, the most likely ex-

planation for the low substitution rate of D. suzukii is a 

reduced number of generations per year and a smaller 

Ne compared with its relatives. It is unlikely that the 

reduced Ne is a direct consequence of the bottleneck 

associated with a colonization of Europe, as the inva-

sion took place only few generations ago (the first rec-

ord dates back to 2008, Cini et al. 2012), and thus the 

genome-wide pattern of substitutions should represent 

that of the ancestral population. We propose instead 

that the low substitution rate reflects the ecology and 

evolutionary history of this species. The winter dia-

pause, we suggest, explains both the low substitution 

rate and the reduced selection efficiency in D. suzukii 

compared with D. biarmipes. Overwintering diapause 

results in recurrent population size bottlenecks, par-

ticularly for males, and thus in a lower effective popu-

lation size Ne, and lower selection efficiency in remov-

ing slightly deleterious non-synonymous mutations, as 

indicated by its genome-wide higher dN/dS.  

The hypothesis that males undergo more severe bot-

tlenecks than females is supported by the discrepancy 

in levels of selective pressure between the autosomes 

and the X chromosome. As males contain only one 

copy of X (and two of the autosomes), sex-biased pop-

ulation size changes would alter relative levels of X-

linked and autosomal Ne, namely by decreasing Ne of 

autosomes 2-fold relative to X chromosome in males. 

We indeed observed a significantly larger dN
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Figure 5. Putative function of the D. suzukii genes. D. suzukii genes obtained through RNASeq sequencing were blasted against 

D. melanogaster genes. A total of 8,137 reciprocal best hits were retained as putative orthologues, representing 74% of the D. 

melanogaster annotated genes. Assuming conserved synteny and chromosomal organization between D. suzukii and D. melano-

gaster, we could verify that chromosomes were evenly covered by our RNAseq gene sequences (chromosome 2: 72.2%, chr. 3: 

76.4%, chr. X: 73.7%; exception is chr. 4: 53.8%). Putative function was assigned based on gene ontology (GO) terms of the D. 

melanogaster genes using the web tool available at http://go.princeton.edu. Only categories representing more than 7% of the total 

GO terms in the list are shown (the actual number of genes is given within the bars).  

 

/dS in autosomal genes of D. suzukii than of D. biar-

mipes, whereas in X-linked genes, dN/dS was lower in 

D. suzukii than in D. biarmipes (fig. 3B). If we assume 

that levels of dN/dS are a proxy for effective popula-

tion size, the X/autosome ratio of Ne values, NeX/NeA, 

seems to be higher in D. suzukii than in D. biarmipes, 

possibly leading to differences in the efficiency of se-

lection on the X and autosomes between the two spe-

cies. One hypothesis to explain this observation is a 

difference in the efficiency of purifying selection in 

removing recessive deleterious mutations in hemizy-

gous males, a phenomenon which can often lead to a 

faster-X effect (Charlesworth et al. 1987; Vicoso and 

Charlesworth 2009a). Thus, the bottlenecks associated 

with the winter diapause of D. suzukii could be directly 

responsible for the relative difference in NeX/NeA 

between the two species (Pool and Nielsen 2007). Oth-

er factors that may have affected the differences in the 

ratio NeX/NeA between D. suzukii and D. biarmipes 

include different recombination rates (Vicoso and 

Charlesworth 2009b) and variance in male reproduc-

tive success due to sexual competition among males 

(Andersson 1994; see Mank et al. 2010 for a review). 

Additional genetic and behavioral studies will be nec-

essary to disentangle these forces and evaluate their 

role in the evolution of D. suzukii.  

Paleobiology and Adaptation to Temperate 

Ecology  

The presence of a winter diapause in D. suzukii may be 

an adaptation that is relevant to the switch in ecology 

of the species. Relaxed clock studies of both nuclear 

and mitochondrial genomes (fig. 2A) converged on a 

scenario in which D. suzukii diverged from D. biar-

mipes approximately 9–6 Mya, towards the end of the 

Miocene (Tortonian). Climate modeling has shown 

that, during the Tortonian, the ecology of region be-

tween North India, Indochina, and the Chinese coasts 

(delineated by the yellow line in fig. 2B) was charac-

terized by extended montane temperate forests. To-

ward the present, forests reduced in extent to the North 

and East and alternated with scrublands or tropical 

forests (Pound et al. 2011). The present endemic distri-

bution of D. suzukii extends over this region, whereas 

D. biarmipes is endemic to a more equatorial, southern 

habitat. The distribution of the two species suggests 

that speciation of D. suzukii was accompanied by adap-

tation to temperate habitats, through the increase uplift 
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Figure 6. Orthologues search. Putative orthologues were identified using a reciprocal best-hit approach across Drosophila species. See 

Methods for details.  

 

of the Tibetean plateau and the concomitant intensifi-

cation of the monsoon regime in the Tortonian (Zachos 

et al. 2001).  

A strong preference for montane temperate climate in 

current invasive populations is supported by the results 

of trapping surveys. Although extensive soft fruit pro-

duction is concentrated below 600m asl in the surveyed 

Trentino Province of North Italy, the majority of the 

captures we made were at higher altitudes (fig. 2C). 

The proposal that D. suzukii originated in a temperate, 

montane ecology is congruent with its current life hab-

it. In temperate forests, fruit production, and thus the 

availability of rotting fruit, is highly seasonal, whereas 

in the tropics fruiting, and thus the production of rotted 

food sources, is near continuous (Willson 1991; Ting 

et al. 2008). For a species occupying a temperate eco-

system, ovipositing in fresh fruit is required to access 

food. Growing larvae can then accelerate decay and 

fermentation to provide food for the adult stage. Over-

wintering diapause bridges the winter months when 

fruits are scarce if not absent, and low temperatures 

limit both fermentation and fly activity.  

Preadaptations Suggest Invasive Success  

An innate predisposition to temperate climates might 

also explain why D. suzukii was able to invade Euro-

pean and North American regions so rapidly. D. mela-

nogaster has also invaded temperate climates, but the 

colonization originated from an ancestral tropical Afri-

can range and was accompanied by local adaptation 

(Ometto et al. 2005), whereas invading populations of 

D. suzukii are likely to have already had many traits 

adaptive in the newly occupied range. Genes under 

positive selection (Table 1) and those with fast evolu-

tionary rates (Table 2) are good candidates for loci 

involved in such adaptations. We found no evidence 

for a significant overrepresentation of Gene Ontology-

defined functional classes in these gene sets, but many 

of the identified genes are phenotypically linked 

(through their D. melanogaster orthologues) with biol-

ogy of the genitalia, the neuronal system and (particu-

larly and unexpectedly) with the mesothoracic tergum.  

The genetic and neurological bases of the adaptive 

behavioral and lifecycle traits of D. suzukii may hold 

the keys to understanding the origin of a novel behav-

ioral repertoire and lead to strategies for control of this 

pest in western countries. Because the current hypothe 
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Table 3: D. suzukii genome cleaning statistics. Number of reads in libraries and number of reads that blast against different 

Wolbachia genomes and D. melanogaster mtDNA. 

Columns “180bp” and “300bp” indicates the number of matching reads for the tow libraries. * After the quality checks reads had an aver-

age length of 93 bp (sd14) for the 180bp library and of 94bp (sd 15) for 300 bp library, and an average quality value of 35. 

 

Table 4: Genome assembly statistics. Abyss trials with different k-mer size. 

K-mer size N contigs n:200 n: N50 N80 N50 N20 Max Sum(MBp) 

48 1,399,155 93,256 7,826 1,369 4,756 18,300 208,969 185.3 

54 1,200,237 105,190 9,204 1,283 4,445 15,559 169,965 195.7 

64 961,286 131,597 12,820 1,089 3,565 11,309 169,947 209.6 

n:200 is the number of contigs shorter than 200 bp, n:N50 is the number of contigs longer than the median, N80 is the size of the 80 per-

centile, N50 is the median contig size, N20 is the size of the 20 percentile, sum is the overall contigs size in millions of base pairs. 

 

sis of the phylogeny within the suzukii subgroup has 

not yet been confirmed by whole-genome phylogenet-

ics, we cannot exclude the possibility that D. subpul-

chrella is sister to D. suzukii rather than D. pulchrella. 

Under this scenario, some adaptations currently mod-

eled as arising within D. suzukii may in fact be shared 

with D. subpulchrella. Genome sequencing of D. sub-

pulchrella will clarify this question. Our evolutionary 

analyses of the D. suzukii genome suggest an intri-

guing causal link between adaptation to temperate en-

vironments and its particular biology. The genetic ba-

ses of adaptation to temperature could be a key factor 

to develop new pesticides or containment strategies for 

this pest.  
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Supplementary table 

Table S1. Codon usage in Drosophila. Darker colors identify 

synonymous codons used at higher frequency among the 
STAR

orthologues. 

 

D. melanogaster= Dm 

D. ananassae= Da 

D. takahashi= Dt 

D. biarmipes= Db 

D. suzukii= Ds 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   D
m

 

D
a

 

D
t 

D
b

 

D
s 

 

Arg 

CGT 

 
     

  

CGC 

 
     

CGA 

 
     

CGG 

 
     

AGA 

 
     

AGG 

 
     

        
 

Leu 

TTA 

 
     

  

TTG 

 
     

CTT 

 
     

CTC 

 
     

CTA 

 
     

CTG 

 
     

         

Ser 

TCT 

 
     

  

TCC 

 
     

TCA 

 
     

TCG 

 
     

AGT 

 
     

AGC 

 
     

        
 

Thr 

ACT 

 
     

  
ACC 

 
     

ACA 

 
     

ACG 

 
     

        
 

Pro 

CCT 

 
     

  
CCC 

 
     

CCA 

 
     

CCG 

 
     

        
 

Ala 

GCT 

 
     

  
GCC 

 
     

GCA 

 
     

GCG 

 
     

        
 

Gly 

GGT 

 
     

  
GGC 

 
     

GGA 

 
     

GGG 

 
     

         

Val 

GTT 

 
     

  
GTC 

 
     

GTA 

 
     

GTG 

 
     

        
 

Lys 
AAA 

 
     

  
AAG 

 
     

         

Asn 
AAT 

 
     

  
AAC 

 
     

        
 

Gln 
CAA 

 
     

  
CAG 

 
     

        
 

His 
CAT 

 
     

  
CAC 

 
     

        
 

Glu 
GAA 

 
     

  
GAG 

 
     

        
 

Asp 
GAT 

 
     

  
GAC 

 
     

         

Tyr 
TAT 

 
     

  
TAC 

 
     

        
 

Cys 
TGT 

 
     

  
TGC 

 
     

        
 

Phe 
TTT 

 
     

  
TTC 

 
     

        
 

Ile 

ATT 

 
     

  ATC 

 
     

ATA 
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Table S2. Total branch length (tot) and rate of synonymous (dS) and non-synonymous substitution (dN) across 
WEB

orthologues along the 

Drosophila biarmipes and D. suzukii lineages. 

 

 D. biarmipes  D. suzukii  P 
b
 

 
n 

a
 mean SD 

 
n mean SD  raw resL 

tot 1002 0.1092 0.0479 
 

1002 0.0789 0.0372  1×10
-49

 0.0076 

dN 1002 0.0048 0.0056 
 

1002 0.0037 0.0046  3×10
-9

 0.0004 

dS 1002 0.1628 0.0765 
 

1002 0.1169 0.0575  6×10
-51

 0.0376 

dN/dS 999 0.0352 0.0662 
 

989 0.0365 0.0648  0.5799 0.0058 

a
 Exceedingly large dN/dS values corresponding to dS = 0 were ignored in the analysis. SD = standard deviation. 

b
 Wilcoxon test probability calculated for the raw data and after correcting for gene length (resL; we used the residuals of the correlation 

between gene length and the statistic of interest).  

 

 

 

Table S3. Mean (Standard deviation, SD) codon usage and GC content in 
STAR

orthologues.. 

 

 

Fop 
a
 

 

Nc 
b
 

 

Nc’ 
c
  GC 

d
 

 

GC3 
e
 

 

Mean SD 

 

Mean SD 

 

Mean SD  Mean SD 

 

Mean SD 

D. suzukii 0.668 0.093 

 

43.9 6.7 

 

50.2 4.7  56.6 4.0 

 

72.3 8.9 

D. biarmipes 0.745 0.097 

 

41.0 7.1 

 

49.3 4.8  58.3 4.0 

 

76.9 9.1 

D. takahashi 0.724 0.094 

 

42.0 6.6 

 

49.5 4.8  57.5 4.0 

 

74.9 8.9 

D. melanogaster 0.613 0.086 

 

45.9 6.5 

 

50.9 4.4  55.6 3.7 

 

69.3 8.2 

D. ananassae 0.662 0.098 

 

45.6 7.2 

 

50.9 4.4  55.8 4.2 

 

70.0 9.4 

a
 Frequency of the optimal codon. 

b
 Number of effective codons.  

c
 Number of effective codons when accounting for background nucleotide composition.  

d
 Percentage of GC content across genes. 

e
 Percentage of GC content in the third codon position across gene 
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Abstract 

Drosophila suzukii, an endemic pest of South-east Asia, has invaded the EU and US. Unlike most 

closely related sibling species, its serrated ovipositor permits ovipositing in undamaged fresh fruits. 

There is an urgent need for complementing existing management techniques with novel, environ-

mentally safe ones. Here we identify volatiles from host plants, which potentially are involved in its 

host recognition and oviposition behaviour. We show that mated D. suzukii females are attracted to 

the volatiles emitted from intact fruits. Using gas chromatography coupled mass spectrometry (GC-

MS) and GC-electroantennographic detection (EAD) we identified an antennally active suite of 

compounds released from ripe fruits. In the olfactometer bioassay, mated D. suzukii females were 

significantly attracted to one of the most consistently elicited EAD-active volatile, isoamyl acetate, 

tested at the rate of 10 µg of synthetic compound loaded in the rubber septa with the release rate 

comparable to that of fresh fruits. In addition, a genomic survey showed that D. suzukii not only 

possess the full repertoire of genes encoding odorant receptors activated by isoamyl acetate in D. 

melanogaster, but shows that one of them, OR67a, is even represented by five duplicated copies. 

The results indicate that D. suzukii uses olfactory cues to select oviposition sites. The identification 

of behaviourally-active volatiles emitted by host fruits of D. suzukii may therefore aid in the devel-

opment of selective and efficient synthetic lures and also synergize the existing monitoring traps. 

As a close relative of D. melanogaster, the par-excellence model organism, D. suzukii provides a 

unique opportunity to understand the physiological mechanisms involved in the shift of this species 

from rotten to ripe fruits for oviposition.  

 
Key words: spotted wing drosophila, semiochemicals, kairomones, isoamyl acetate, olfactory receptors 
 

Introduction  

Most drosophilid flies feed on fermenting fruits. How-

ever, inasmuch as fruit preference is not ancestral in 

these fungophilic species (Begon, 1982), fruit flies 

repeatedly adapted to many different ecological peculi-

arities, to which their olfactory system seems adapted 

(Stensmyr et al. 2003; Dekker et al. 2006; Ibba et al. 

2010). Drosophila sechellia for instance is attracted for 

oviposition to n-caproic acid released from Indian 

mulberry, Morinda citrifolia (Dekker et al. 2006; Higa 

and Fuyama, 1993; Jones, 2005), as well as its esters 

(Dekker et al. 2006; Ibba et al. 2010). In contrast, in-

sects with a wider host range detect the oviposition 

substrate discriminating and responding to several key 

volatiles (Pellegrino and Nakagawa, 2009) and do not 

depend on the presence or absence of a particular com-

pound (Bruce et al. 2005).  

Drosophila suzukii (Matsumura) (Diptera: Droso-

philidae), member of Drosophila melanogaster group 

and native of South-east Asia, is a pest of fresh fruits 

first identified in Japan by Matsumura in 1931 on cher-

ry fruit. D. suzukii is one of the few Drosophilid with 

serrated ovipositor, which enables it to oviposit in un-

wounded fresh fruits thereby making them unmarketa-

ble. This ability may not be unique of D. suzukii: two 

of its closest related and geographical proximal sister 

species, D. subpulchrella and D. pulchrella, also pos-

sess a serrated ovipositor, whose biological signifi-

cance is however still largely unknown; indeed these 

species have not been reported as pests. D. suzukii is 

highly polyphagous and, at present, infests various soft 

skinned fruits including cherry, blueberry, blackberry, 

strawberry, raspberry, apricot and grapes and the po-

tential of the pest infesting other crops is not clear yet 

(Walsh et al. 2011; Cini et al. 2012). Recently, D. su-

zukii invaded western countries and is now a threat to 

both European and American fruit industry (Walsh et 

al. 2011; Cini et al. 2012; Rota-Stabelli et al. 2013).  

The perspectives of using conventional tools in com-

bating D. suzukii are poor. Insecticides efficacy is in-
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deed limited as larvae are protected within the fruit and 

very frequent sprays are required to have any effect, 

which conflicts with the preharvest interval require-

ments, as well as with common IPM protocols (Cini et 

al. 2012). New monitoring and control measures are 

therefore sorely needed. Among the environmentally 

safe monitoring strategies those based on the interfer-

ences with the insect olfactory communication are 

often the most effective in terms of management and 

are long lasting (Heuskin et al. 2011). In particular, 

monitoring of D. suzukii is now mainly relying on cup 

traps containing fermenting baits such as vinegar, wine 

and other sweet solutions, which likely serves as food 

cue for the fly. Although fermented baits, such as vin-

egar, ubiquitously trap Drosophilids (Zhu et al. 2003; 

Becher et al. 2010), as well as many other dipterans 

(Qian et al. 2013), lepidopterans (Knight et al. 2011), 

and coleopterans (Kirkendall et al. 2008; Kanga and 

Somorin 2011), their broad attractiveness for non-

targeted Drosophilid complicates their use. Notably, 

small and young male D. suzukii sometimes lack their 

unique wing spot (Hauser, 2011), which could lead to 

misidentification and necessarily requires expertise in 

identifying D. suzukii with other Drosophilid. So, ‘fi-

ne-tuning’ the traps with oviposition attractants may 

reduce misidentification and complement the effec-

tiveness of the trap and pest control (Landolt et al. 

2012a). Accordingly, a bunch of studies has been fo-

cusing in the selection of the most electrophysiological 

and behavioural active volatiles in the headspace of 

vinegar and wine baits, and a subset of only four com-

pounds was shown, in specific environmental condi-

tions, to be more attractive and selective to D. suzukii 

than the original bait (Landolt et al. 2012a, 2012b; Cha 

et al. 2013, 2012) 

Beside its economic relevance, D. suzukii is a close 

relative of the model organism D. melanogaster, and 

offers prospects for addressing some longstanding 

questions in the field of insect olfaction. D. suzukii, 

being one of the Drosophilid concerning fruit infesta-

tion, would show relevant differences in its ability to 

discriminate and prefer volatiles of fresh fruits over 

fermenting fruits (Mitsui et al. 2006) for oviposition.  

We therefore aim at identifying volatiles characteristic 

for ripe fruits that may be at the basis of D. suzukii’s 

evolutionary shift for ovipositional preference towards 

fresh fruits over fermenting fruits. Identification of 

attractive compounds released from the oviposition site 

may thus represent a step forward in the improvement 

of synthetic chemical lures.  

We have evaluated the responses of mated D. suzukii 

females for the odour released by fresh and ripe host 

fruits from the main host plants in behavioural assays 

(Y-tube olfactometer). The volatile compounds emitted 

by the fresh fruits were extracted and identified (GC-

MS). Comparative electrophysiological analyses (GC-

EAD) of D. suzukii to the extracted compounds were 

performed. A single component, isoamyl acetate, the 

most consistent EAD-active compound present in all 

fruit extracts, which approximated the release rates by 

fresh fruits, was used in further laboratory bioassays. A 

genomic survey was carried out in order to ascertain 

whether D. suzukii possesses the putative repertoire of 

the most important olfactory receptors (ORs) normally 

activated by isoamyl acetate in D. melanogaster. 

Material and methods  

Insect rearing  

D. suzukii population collected in Trento Province was 

reared on a standard Drosophila semi-artificial diet 

(Drosophila species stock center, 

https://stockcenter.ucsd.edu/info/food_cornmeal.php,2

013) at the temperature of 23-25°C, relative humidity 

(R.H.) of 65±5% and 16L:8D photoperiod. To obtain 

virgins, newly-eclosed flies were aspirated and sexed 

between 0830 to 1230 hr from the tubes with the larval 

diet. Two-day-old adult females were starved in a vial 

containing water soaked cotton swab for more than 12 

hr, mated with same aged males on the third day (for 3 

hr), and then used in all experiments. Fruits were 

picked on the day of experiment and kept at room tem-

perature (25°C) 1 hr before conducting the experiment. 

Dispensers 

The synthetic isoamyl acetate (purity >97%; Sigma-

Aldrich, Milan, Italy) was loaded in red rubber septa 

(Wheaton, 20 mm straight plug stopper, Millville, NJ, 

USA) at 1, 10, and 100 µg per septum. Solutions were 

prepared using hexane (>99% purity, Sigma-Aldrich) 

as solvent. Before analysis, dispensers were kept 1 hr 

in a climatic chamber (25 ± 2°C and 60 ± 5% R.H.) in 

order to allow solvent evaporation and to equilibrate. 

Y-tube olfactometer bioassays 

I) Testing host fruits against D. suzukii.  

The responses of mated D. suzukii adults to host fruit 

volatiles were investigated using a dual choice Y-tube 

olfactometer (stem, 30 cm; arm length, 20 cm; arm 

angle, 60°; internal diam., 4 cm) (Mazzoni et al. 2009). 

Each arm of the Y-tube was connected to a pyrex glass 

bulb (250 mL). One chamber held the test material (25 

g of fresh and ripe fruits), the other chamber served as 

the control, holding the same amount of fruits wrapped 

in a transparent odor proof plastic bag (Toppits, Melit-

ta, Sweden). Airflow was maintained from each cylin-

der through the olfactometer arms, using an air pump 

with the airflow adjusted with a flow meter to 250 

mL/min. The incoming air was passed through activat-
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ed charcoal and humidified with bubbled distilled wa-

ter. Flies were introduced singly into the olfactometer 

at the entrance of the main stem, and were observed 

until they reach the fruit source at the end of an arm or 

until 5 min had elapsed. Flies reaching the fruit source 

were considered as ‘choice’ while flies walking back 

and forth from one arm to another ‘without reaching’ 

fruit source were excluded. Flies that did not choose a 

side arm within 5 min were recorded as ‘no choice’. 

Flies were retrieved from the olfactometer irrespective 

of their choice after 5 min. The fruit samples were 

randomly assigned at the beginning of the bioassays, 

and they were reversed after having tested five indi-

viduals in order to minimize any spatial effects. After 

each day of trials during which approximately 20 flies 

had been released, the Y-tube was washed with deter-

gent, rinsed with distilled water and absolute ethanol, 

and baked overnight at 200°C. Either each fruit sample 

or odour dispenser were replaced after five single in-

sect releases. Treatments tested in a day were random-

ly chosen. The responses of 100 flies per fruit species 

were tested. The experiments were conducted in a la-

boratory at a temperature of 23±1°C, a relative humidi-

ty of 60±10%, 1,000 lux during experimental hour. 

The fruits tested were raspberry (cv. Heritage), black-

berry (cv. Dirksen), cherry (cv. Kordia), blueberry (cv. 

Brigitta) and strawberry (cv. Elsanta). 

II) Testing Isoamyl acetate against D. suzuki: 

With the same set-up and duration, an olfactory bioas-

say with synthetic isoamyl acetate was carried out with 

mated D. suzukii females. In this bioassay, one cham-

ber of the Y-tube held the test compound, loaded on 

the previously described red rubber dispensers, at in-

creasing doses (1, 10, or 100 µg of isoamyl acetate per 

septum); the other chamber served as control, holding 

a red rubber septum loaded with 10 µl of hexane. The 

solvent was allowed to evaporate for 1 hr before start-

ing the experiments. A total of 120 mated female flies 

were tested per dose. A chi-square test was used to 

compare the number of individuals that chose the 

odour source versus those that chose the control arm 

within each test fruit and in the isoamyl acetate bioas-

say. Differences among fruits were evaluated by con-

tingency table analysis based on Chi-square. Both Chi 

square were Yates corrected. 

III) Testing Isoamyl acetate and blueberry against D. 

suzukii 

Another olfactometer bioassay was performed with 

synthetic isoamyl acetate (10 µg per septum) and fresh 

blueberry. A similar experimental protocol was fol-

lowed as before. In total, 100 mated females were test-

ed for the choice between isoamyl acetate and blueber-

ries (25g). Chi square analysis was performed to eval-

uate the differences in the female choice. 

Chemical analyses  

Volatiles were collected from the headspace of freshly 

picked ripe fruits. Fruits weighing 200 g were placed in 

a 25 x 38 cm polyacetate bag for collection of volatiles 

(Anfora et al. 2009). Air from the headspace of the bag 

was pulled out at 150 mL/min through a sorbent car-

tridge (75 mg Super Q; Sigma-Aldrich) connected to a 

vacuum pump through teflon tubes. Charcoal-filtered 

air was pushed simultaneously in the bag by the same 

pump to maintain a constant pressure. Collections were 

done for 24 hr in a climatic chamber at 25±2°C, 

60±10% R.H., 16L: 8D photoperiod and 1,000 lux 

during the light period. Three collections from differ-

ent groups of each fruit species were carried. Volatiles 

were eluted from the sorbent cartridge by solvent de-

sorption at room temperature using 500 µl of hexane 

(>99% purity, Sigma-Aldrich). Collections were re-

duced to 50 µl using a slow stream of nitrogen and 

stored in 2-mL vials at -20°C until used for GC-EAD, 

GC-MS and oviposition experiments.  

Other fruit samples of the 5 fruit species were pre-

pared for chemical quantification, extracting the head-

space volatiles in a similar manner as described above. 

Three collections were done for each species. After 

eluting each sample with 500 µL of hexane 0.5 µg 

nonyl acetate (≥99% purity) was added as an internal 

standard (Bengtsson et al. 2001) and the collected ex-

tracts were reduced to 50 µL as described above. 

Chromatographic analyses were done with a Trace 

GC Ultra gas chromatography coupled with a TSQ 

Quantum XLS Tandem mass spectrometry (Thermo 

Electron Corporation, USA) and equipped with a PAL 

Combi-xt autosampler (CTC Analytics AG Zwingen, 

Switzerland). The separation module consisted of a ZB 

Wax PEG capillary column (30m × 0.25mm I.D. × 

0.25 µm film thickness, Phenomenex, Bologna, Italy) 

programmed to increase from 60°C (held for 3 min) at 

8°C min
-1

, to 220°C (held for 10 min) and finally to 

250°C at 10°C min
-1 

for 5 min. Helium was used as the 

carrier gas at a flow-rate of 1.2 mL min
−1

. The temper-

ature of the transfer line was 250°C. The electron im-

pact energy was 70eV and the filament current was 50 

µA. 

The putative identities of the compounds were char-

acterized by comparison with synthetic standards tak-

ing into account their GC retention indices and with 

mass spectra compared with Wiley mass spectra data-

base. The most abundant compound in each extract 

was quantified by comparing its peak areas to that of 

the internal standard (Faccoli et al. 2011). 

GC-EAD experiments 

Two µl of the concentrated fruit extracts were injected 

in an Hewlett-Packard 5890 GC in splitless mode, with 

a polar Innowax column (30 m x 0.32 mm; J & W Sci-

entific, Folsom, CA, USA) programmed from 60°C 
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(hold 3 min) at 8°C/min to 220°C (hold 7 min) with 

helium as the carrier gas and interfaced with the EAG 

apparatus (GC-EAD) (Riolo et al. 2012). The GC col-

umn effluent was combined with nitrogen make-up gas 

and then a 1:1 ratio between the flame ionization de-

tector (FID) and an antenna of D. suzukii female. A 

glass capillary indifferent electrode filled with 

Kaissling solution containing 5g/l polyvinylpyrroli-

done K90 was inserted in the severed fly’s head. The 

different electrode was a similar capillary, brought into 

contact with the distal end of fly’s antenna. Com-

pounds eluting from the capillary column were deliv-

ered to the antenna through a glass tube (12 cm × 8 

mm) by a charcoal-filtered and humidified air stream. 

The antennal signal and the FID signal were amplified 

and recorded simultaneously using Syntech software 

(Kirchzarten, Germany). Samples from fruit extracts 

were tested on different D. suzukii females. A com-

pound was considered electrophysiologically active 

when it elicited at least five antennal responses that 

were different from background noise as described in 

Anfora et al. (2009).  

EAG dose response curve 

Based on the GC-MS and consistent GC-EAD results 

in all fruit extracts, synthetic isoamyl acetate was used 

to record EAG dose-response curves on D. suzukii 

mated females. A standard EAG apparatus (Syntech), 

as previously described, was used. EAG response to 

increasing doses of isoamyl acetate (concentrations 

ranging from 0.1 pg/µL to 100 µg/µL) in hexane solu-

tions were recorded for the antennal activity. Aliquots 

(10 µL) of each solution were adsorbed on a piece (1.5 

cm
2
) of filter paper (Albet® 400), inserted in a Pasteur 

pipette; stimuli were applied in ascending order. The 

solvent was allowed to evaporate for 10 min before 

starting the experiments. Ten mated females were test-

ed for each dose. Before and after each recording, 

EAG responses to solvent (hexane) and to a common 

plant volatile Z3-hexen-1-ol (1 µg/µL in hexane, Sig-

ma Aldrich) as standard stimuli (Germinara et al. 

2011) were recorded. EAG responses were analysed 

with EAG2000 software (Syntech), and evaluated by 

measuring the maximum amplitude of negative deflec-

tion (mV) elicited by a given stimulus and then sub-

tracting the amplitude of the response to the hexane 

control.  

Parametric one-way ANOVA followed by the Tukey 

post-hoc multiple comparison test was used to assess 

the effect of isoamyl acetate dosage on the amplitude 

of D. suzukii female antennal responses; homogeneity 

of variance had been determined previously with 

Levene’s test (Statistica® 9, Statsoft Inc. Tulsa, Okla-

homa, US). 

Release rate of dispensers  

Isoamyl acetate collection. SPME samples were taken 

under static conditions to estimate the releasing rate of 

dispensers loaded with isoamyl acetate used in behav-

ioural experiments. Volatiles were adsorbed from the 

headspace on a fiber coated with polydimethyilsilox-

ane (100 µm; Supelco, Bellefonte, PA). Chemical 

analyses were performed on the GC-MS described 

above. Confirmation of the isoamyl acetate was ob-

tained by comparing its retention time with that of the 

synthetic standard (Sigma-Aldrich; purity≥97%). 

Estimation of collection efficiency. The SPME tech-

nique was used for a quantitative headspace sampling 

of the isoamyl acetate. The method for calculating the 

recovery capacity of the SPME-fiber and the optimal 

SPME recovery time was described in Anfora et al. 

(2005). Four dosages between 1 and 1000 ng of syn-

thetic isoamyl acetate were diluted in 2 µL of hexane 

in 10 mL vials. The solvent was allowed to evaporate 

for 10 min before starting the experiments. Following 

an equilibration period of 10 min, the SPME fiber was 

exposed in the vial for 1 hr. The amount of isoamyl 

acetate collected from the headspace was calculated by 

comparison of the GC areas obtained by direct injec-

tions of known amounts of synthetic isoamyl acetate. 

The amount of isoamyl acetate emitted by rubber septa 

was therefore corrected according to the recovery effi-

cacy of the synthetic compound. 

Collection of the effluvia from dispensers. Headspace 

collection from dispensers has been described in An-

fora et al. (2008). Rubber septa were placed in a 10 mL 

vial. The solvent was allowed to evaporate for 10 min 

before starting the experiments. The SPME collection 

started after 10 minutes of equilibration and lasted 60 

minutes. The SPME fiber was then injected into a GC-

MS.  

Gene assembly and phylogeny 

 Apart from D. melanogaster, D. biarmipes was chosen 

for the comparative genomics in this study, since it is 

the only genome available, predicted as the closest 

relative of D. suzukii (Ometto et al. 2013). We mined 

the recently released draft genome and transcriptome 

of D. suzukii (Accession number: CAKG00000000.1, 

Ometto et al. 2013) in search of odorant receptors (OR) 

OR2a, OR9a, OR10a, OR19a, OR42a, OR42b, OR43b, 

OR47a, OR67a and OR98a. These genes were chosen 

because of their highest mean positive responses to 

isoamyl acetate in single cell recording (SSR) experi-

ments and excitatory responses at antennal lobe level 

(de Bruyne et al. 2001; Hallem et al. 2004; Hallem and 

Carlson 2006, see also the DoOR database: Galizia et 

al. 2010). For comparative reasons we mined the D. 

biarmipes draft genome (Accession number: 

AFFD00000000.2). We used the above D. melano-

gaster OR orthologs extracted from FlyBase 
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(www.flybase.org: Pierre et al. 2014) as query to T-

BLASTN D. suzukii and D. biarmipes genomes; con-

tigs with e-values higher than 1e-10 in the blast 

searches were pulled and assembled individually using 

Geneious (Geneious 5.6.5). The ten putative ORs of D. 

suzukii and D. biarmipes were translated into amino 

acid using the universal code, aligned with those of D. 

melanogaster using Muscle (Edgar, 2004), and the 

resulting alignment processed for phylogenetic infer-

ence with Phyml (Guindon and Gascuel, 2003) using 

the LG (Le and Gascuel, 2008) model of sequence 

evolution plus a discrete Gamma distribution using 

four categories (Yang, 1996), and repeating the search 

on 100 bootstrap pseudoreplicates. Three types of evo-

lutionary events were inspected on the tree topology: 

gene gain, gene loss and duplications. 

Results 

Y-tube olfactometer bioassays 

Testing host fruits against D. suzukii: 

Results are summarized in Figure 1. One fruit type was 

tested each time in the Y-tube olfactometer. Flies 

choosing the treatment arm generally remained on the 

fruits, whereas flies choosing the control arm were 

hyperactive often observed to move back and forth in 

the olfactometer. All fruit types included in the exper-

iment were significantly attractive for D. suzukii fe-

male. Blueberry (χ=27.2; d.f.=1; P<0.001) was signifi-

cantly more attractive compared to control, followed 

by cherry (χ=16.5; d.f.=1; P<0.001), raspberry (χ=12.0; 

d.f.=1; P<0.001), strawberry (χ=10.1; d.f.=1; P<0.001) 

and blackberry (χ=8.8; d.f.=1;  P<0.01). However, 

there was no significant differences among the fruit 

types recorded (χ=9.1; d.f.=4; P=0.06). 

 
Figure 1. Percentage of flies choosing one of the arms in a Y-

tube olfactometer that was either holding fresh fruit (25g) 

(Treatment) or fresh fruit enclosed in a transparent plastic bag 

(Control) (n=100): raspberry (χ²=12.0; d.f.=1; P<0.001); black-

berry (χ²=8.8; d.f.=1; P<0.01); cherry (χ²=16.5; d.f.=1; P<0.001); 

blueberry (χ²=27.2; d.f.=1; P<0.001); strawberry (χ²=10.1; d.f.=1; 

P<0.001). The comparison among fruits was not significant 

(χ²=9.1; d.f.=4; P=0.06). 

Electrophysiological analyses 

Compounds identified from five fruit types are shown 

in Table 1. Analyses of Super Q extracts revealed 91 

compounds, of which 29 compounds elicited consistent 

antennal responses in female D. suzukii. Of 29, ten 

compounds belongs to esters group, six are alcohol, 

five monoterpenes, acids and aldehydes two each, ke-

tone, aromatic, irregular terpenoids and sesquiterpenes 

one each. In a total of 29 EAD active compounds, 

raspberry shared 20 EAD active compounds, 15 in 

blueberry, 10 in blackberry, 14 in strawberry and 10 in 

cherry. Female antenna responded to several odour 

compounds with low relative quantity (Relative Quan-

tities are relative to the most abundant compound, set 

at a value of 100, in each species - RQ) in all fruits. 

(Z)-3-hexen-1-ol gave a strong antennal response 

(0.20±0.09) in spite of low RQ (0.8). Similarly, (Z)-3-

hexenyl acetate (RQ 1.3; EAD 0.15±0.06) and linalool 

gave strong antennal response (RQ 4.1; EAD 

0.17±0.08) with low RQ. In blueberry, ethanol (RQ 

1.7; EAD 0.2±0.09) gave a strong response followed 

by linalool (RQ 11.9; EAD 0.11±0.06) and ethyl ace-

tate (RQ 51; EAD 0.11±0.06). In blackberry, ethyl 

acetate (RQ 25.1; EAD 0.15±0.08) elicited strong re-

sponse followed by ethyl hexanoate (56.5 ± 13.4 ng/hr; 

EAD 0.11±0.04). Ethyl acetate gave a strong response 

in strawberry (RQ 15; EAD 0.46±0.15) followed by 

isoamyl acetate (RQ 12.7; EAD 0.2±0.07), methyl 

hexanoate (RQ 99.4; EAD 0.16±0.06), ethyl hexanoate 

(80.9 ± 17.7 ng/hr; 0.15±0.07) and then by (Z)-3-

hexenyl acetate (RQ 4.8; EAD 0.1±0.03). In case of 

cherry, compounds that elicited strong antennal re-

sponse were (α)-ionone (RQ 6.4; EAD 0.2±0.08), me-

thyl salicylate (RQ 12.4; EAD 0.15±0.06) followed by 

(Z)-3-hexen-1-ol (RQ 95.5; EAD 0.1±0.04). Ethyl 

hexanoate with highest RQ of 100 elicited varying 

EAD responses in blueberry (0.003±0.001), blackberry 

(0.11±0.04) and strawberry (0.15±0.07). While most of 

the monoterpenes in raspberry, (α)-phellandrene (RQ 

62.3; EAD 0.003±0.001), Beta-phellandrene (RQ 30.7; 

EAD 0.001±0.001), limonene (RQ 11.3; EAD 

0.004±0.002) and p-cymene (RQ 4.8; EAD 

0.002±0.001) gave fairly weak antennal responses in 

spite of higher RQ. Beta-phenylethanol consistently 

elicited low antennal response in raspberry (RQ 9.5; 

EAD 0.03±0.008), blueberry (RQ 3.2; EAD 

0.06±0.0.03) and strawberry (RQ 0.1; EAD 

0.02±0.008). Acetic acid gave a fairly higher response 

in raspberry (RQ 1; EAD 0.09±0.03) and blueberry 

(RQ 0.9; EAD 0.09±0.07) but the response was lower 

in blackberry (RQ 2.4; EAD 0.02±0.07). Interestingly, 

isoamyl acetate gave a fairly consistent antennal re-

sponse in all fruits; raspberry (RQ 1.6; EAD 

0.06±0.02), blueberry (RQ 21.4; EAD 0.09±0,02), 

blackberry (RQ 5.2; EAD 0.05±0.02), strawberry (RQ 
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12.7; EAD 0.2±0.07) and cherry (RQ 13.6; EAD 

0.03±0.007). 

 

 

 

Table 1: Relative quantities of volatile compounds collected in the headspace of bagged fresh mature fruits be-

longing to raspberry (cv. Heritage), blackberry (cv. Dirksen), cherry (cv. Kordia), blueberry (cv. Brigitta) and straw-

berry (cv. Elsanta) and antennally active in GC-EAD experiments on Drosophila suzukii mated females. 

aRQ: Relative Quantities are relative to the most abundant compound (set at a value of 100) in each species.  

bEAD: Mean ± SD antennal responses (mV) elicited by compounds contained in headspace extracts. The average amount of the most 

abundant compound collected from 200 g of freshly picked mature fruits: raspberry) 274.3 ± 97.4 ng/hr of ethyl acetate; blueberry) 29,8 ± 

8.7 ng/hr of ethyl hexanoate; blackberry) 56.5 ± 13.4 ng/hr of ethyl hexanoate; strawberry) 80.9 ± 17.7 ng/hr of ethyl hexanoate; and cher-

ry) 26.6 ± 11.0 ng/hr of (E)-2-hexenal. cCompounds were identified by comparison of their mass spectra with Wiley mass spectra database 

and of their retention indices with authentic standards.

Biological activity of isoamyl acetate 

Isoamyl acetate elicited antennal response from all 

fruits we tested on GC-EAD: for this reason we per-

formed specific EAG analyses on this likely key com-

pound of fresh fruit. Analysis of the EAG responses to 

increasing doses of isoamyl acetate showed a signifi-

cant dose-response relationship (F=5.30; d.f.=99; 

P<0.001) (Figure 2). In particular, mated D. suzukii 

females showed significant increases in their EAG 

response at 10 and 100 µg/µL concentration of isoamyl 

acetate. 

In the Y-tube olfactometer behavioural bioassays, 

isoamyl acetate showed significant attractiveness to 

mated D. suzukii females when loaded on rubber septa 

dispensers at the dosage of 10 µg (χ²=4.21; d.f.=1; 

P<0.05). Conversely, D. suzukii was not attracted to 

isoamyl acetate deployed at dosages of 100 µg 

(χ²=0.67; d.f.=1; P=0.57) and 1 µg (χ²=0.92; d.f.=1; 

P=0.90) (Figure 3). The release rate of rubber septa 

loaded with 1, 10 and 100 µg isoamyl acetate was 

0.5±0.1 ng/hr, 2.4±0.6 ng/hr and 9.8±1.6 ng/hr, respec-

tively. 

In a similar Y-tube behavioural bioassay with mated 

D. suzukii female, no significant difference (χ²=0.05; 

P=0.73) of attraction was recorded for blueberry (25g), 

the most attractive host fruit in the previous experiment 

(Figure 1), and isoamyl acetate deployed at the attrac-

tive dosage (10 µg per rubber septum). 
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Figure 2. EAG dose-response curve (mean [mV]±SD) of D. 

suzukii mated females to isoamyl acetate (0.1 pg/µL to 100 

µg/µL tested on filter paper) (n=10). Responses with the same 

letter are not significantly different (ANOVA, Tukey test: 

F=5.30; d.f.=99; P<0.001). 

 
Figure 3. Percentage of flies (n=120) showing preference for 

isoamyl acetate (1, 10, or 100 µg loaded on a red rubber dis-

penser) versus a solvent control (10 µL hexane). Asterisk indi-

cates significant differences in the insect choice between stimulus 

and control at different isoamyl acetate loadings per dispenser: 1 

μg (χ²=0.92; d.f.=1; P=0.90); 10 μg (χ²=4.21; d.f.=1; 

P<0.05); 100 µg (χ²=0.67; d.f.=1; P=0.57), ii) Also preference 

of the flies (n= 100) to synthetic isoamylacetate (10 µg) versus 

fresh bluberry fruits (25 g) (χ² =0.05; P=0.73). 

A complete set of isoamyl acetate specific 

odorant receptors in D. suzukii 

According to literature, isoamyl acetate activates with 

high specificity at least ten odorant receptors (OR) in 

D. melanogaster: OR2a, OR9a, OR10a, OR19a, 

OR42a, OR42b, OR43b, OR47a, OR67a and OR98a 

(Database of Odorant Receptors: Galizia et al. 2010). 

We have identified all the orthologs encoding these 

receptors in D. suzukii genome (Ometto et al. 2013), 

retrieved and annotated their full length sequence and 

nearly full length or partial sequences for the others 

(due to genes being placed at scaffold boundaries. Phy-

logenetic analysis revealed that these receptors in D. 

suzukii are extremely conserved and similar to the 

orthologs in D. melanogaster and D. biarmipes as sug-

gested by high bootstrap support and similar branch 

lengths (Figure 4). Interestingly, results show that 

OR67a experience a series of duplications in both D. 

suzukii and D. biarmipes (with a nomenclature, 

OR67a1-OR67a5).  

Discussion 

A specific and selective attractant blend for a reliable 

monitoring of the D. suzukii presence is the first step 

for a successful integrated pest management. At pre-

sent, D. suzukii management is very much based on 

insecticides, several other conventional methods (Van 

Timmeren and Isaacs, 2013), as well as baits of fer-

menting products (e.g., wine and vinegar, Cha et al. 

2013, 2012). Fermentation baits-based traps as a food 

attractant catch other Drosophilids in general (Wu et 

al. 2007; Landolt et al. 2012a), but they could possibly 

be more efficient if complemented with oviposition 

attractants specific for D. suzukii. Becher et al. (2012) 

reported that D. melanogaster is more attracted to fer-

menting yeast Saccharomyces cerevisiae compared to 

‘non-fermenting’ grape juice or growth media. On the 

contrary, gravid D. suzukii females, unlike D. melano-

gaster, are likely attracted to the odours produced by 

fermenting fruits for feeding but prefers to find un-

damaged ripening fruits for oviposition (Mitsui et al. 

2006; Walsh et al. 2011). Hence, identifying the cues 

by which D. suzukii finds the host fruits is crucial to 

understand the olfactory circuit and devise novel moni-

toring and control systems.  

It is evident from the olfactometer results that all 

fruits included in the experiment are significantly at-

tractive to egg-laying female D. suzukii. Such results 

indicate that D. suzukii uses olfactory cues to select 

oviposition sites. Furthermore, the absence of a signifi-

cant difference in attractiveness across different fruit 

types may be an indication of the fact that D. suzukii is 

capable of infesting a wide range of hosts (Bellamy et 

al. 2013) for oviposition and larval feeding (Cini et al. 

2012; Lee et al. 2011; Walsh et al. 2011). Similar re-

sults were reported recently by Bellamy et al. (2013) 

through multiple choice oviposition assays by individ-

ual D. suzukii females, where they show no difference 

in choosing blueberry, raspberry, blackberry, cherry 

and strawberry extracts. It may be only subtle differ-

ences in the bouquet that cause differential attractive-

ness in flies. Possibly, similarities in the odour profile 

(based on the GC-EAD results) across fruit types are 

decisive in attraction. 

The previous literature reporting EAD-active com-

pounds for D. suzukii used headspace extracts from 

wine and vinegar (Cha et al. 2013, 2012). Here we 

identified EAD-active compounds from the host plants 

of D. suzukii. We identified 29 active volatile com-

pounds through GC-EAD from commercial varieties of 

blueberry, blackberry, raspberry, cherry and strawberry 

that elicited electrophysiological response in female D. 

suzukii. EAD active compounds include esters, alco-
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hols, acids, aldehydes, ketones, aromatics, monoter-

penes, sesquiterpenes and irregular terpenoids. While 

most of the monoterpenes were detected only in the 

raspberry extract (except linalool in blueberry, black-

berry and strawberry) had fairly higher RQ but gave 

weaker EAD response. Some of these compounds were 

reported to be repellent in other insects (Jaenson and 

Pålsson, 2006). Both the absolute amounts and relative 

ratios of compounds released varied substantially 

across different fruit types. Regardless of the amount 

released, most of the esters and volatile alcohols from 

ripening fruits were found to be EAD-active. A num-

ber of the EAD active compounds identified are known 

to elicit electroantennographic responses from other 

fruit fly species (e.g., Zhu et al. 2003). Ethyl hexano-

ate, was one such compound generally present in fruit 

extract and Drosophila feeding substrate (Stensmyr et 

al. 2003) was present in all fruit types (except cherry) 

and elicited notable EAD responses.  Female adult D. 

suzukii responded also to few key volatiles like etha-

nol, acetic acid and Beta-phenyl ethanol, which are 

major byproducts of fermentation. These are also pre-

sent in the fresh fruits at lower concentration and are 

attractive to a diverse set of insect species (Zhu et al. 

2003).  

Within D. suzukii biology, fruits infested by the lar-

vae collapse and undergo decay thus providing feeding 

site for the adult flies (Beers et al. 2011). The females 

use fermenting fruits as a mate finding and feeding 

site, whereas ripening fruit for oviposition (Ometto et 

al. 2013). Generally, fermenting fruits attract Droso-

philids with two major volatile components: ethanol 

and acetic acid (Zhu et al. 2003; Stökl et al. 2010; 

Becher et al. 2012). Our GC-EAD and GC-MS results 

show ethanol and acetic acid in small amount in rasp-

berry, blueberry, and blackberry extracts. However, 

both acetic acid and ethanol were not detected in the 

fresh cherry fruit, which is consistent with similar re-

ports (Mattheis, 1992; Sun et al. 2010). Yet, cherry is 

the primary host fruit for D. suzukii (Kanzawa, 1939). 

This may indicate that the ethanol+acetic acid based 

mixes, commonly used for attracting D. suzukii (Lan-

dolt et al. 2012b) will attract the flies as feeding at-

tractant but bears little relevance for oviposition-site 

searching. Mixtures that mimic suitable oviposition 

sites therefore likely require other compounds.  

Ethyl acetate was another abundant volatile com-

pound recorded in all fresh fruits except cherry and 

elicited strong electrophysiological response. It is a 

highly volatile ester and is attractive to several insect 

species (Larry and Hengchen, 1991; Stensmyr et al. 

2003). Interestingly, Cha et al. (2012) demonstrated 

that a mixture of acetic acid and ethanol by itself was 

strongly attractive to D. suzukii, while ethyl acetate 

along with acetic acid and ethanol proved to be deter-

rent. Based on the responses of female D. suzukii on 

GC-EAD, ethyl acetate needs further behavioural tests 

with different concentrations similar to isoamyl acetate 

in order to elucidate its ecological/ behavioural role for 

D. suzukii.  

Isoamyl acetate, ubiquitous in the odour bouquet of 

both ripening, ripe and early fermenting fruits and elic-

iting a response in many Drosophilids (Stökl et al. 

2010), was considered a key compound for D. suzukii 

as (i) it was present in the headspace of all fruits, (ii) 

always induced relative EAD response across runs in 

mated female. Hence its relevance as a oviposition cue 

for D. suzukii was evaluated in the olfactometer. The 

attraction in the olfactometer was significant at 10 µg 

concentration than at 1 and 100 µg, respectively. Inter-

estingly, the release rate from rubber septa at 10 µg is 

comparable to that we have recorded from fresh fruits 

and, in accordance, also from Y-tube bioassay there 

were no statistical differences in attraction recorded 

between isoamyl acetate and blueberries, pointing out 

the crucial role of the release rate for the discrimina-

tion between unwounded and fermenting fruits. As a 

matter of fact, isoamyl acetate is also one of the major 

compounds produced in the fermentation process of 

fruits but at a rate of about 100-folds higher than in 

fresh fruit (Cha et al. 2012; Zhu et al. 2003). Both the 

absolute and the relative amount of ubiquitous plant 

volatiles was shown as one of the critical factors medi-

ating the recognition and the species specificity of the 

host-plant profiles (Bruce et al. 2005; Tasin et al. 

2010), and as such we expect that both the amount of 

isoamyl acetate and the mixture in which it is embed-

ded is of significance in oviposition stimulation.  

Our genomic survey seems to fit with behavioural 

and electrophysiological results since it indicates that 

D. suzukii not only possess the complete putative full 

repertoire of genes encoding odorant receptors normal-

ly activated by isoamyl acetate in D. melanogaster, but 

also shows that one of them, OR67a (Hallem and Carl-

son, 2006) underwent a series of duplications. Within a 

general pattern of balanced birth and death process of 

evolution (Robertson and Kent, 2009), indeed, OR67a 

gene duplications may have an adaptive role in D. su-

zukii biology such as an increase affinity for fresh fruit. 

Counter intuitively, the same duplications are shared 

with sister species D. biarmipes, suggesting that an 

affinity for fresh fruit is not unique to D. suzukii but 

was already present in the common ancestor with D.  
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Figure 4. Phylogenetic tree of ten genes encoding a set of olfactory receptors (OR2a, OR9a, OR10a, OR19a, OR42a, OR42b, OR43b, 

OR47a, OR67a and OR98a) that bind isoamyl acetate in D. suzukii, D. biarmipes and D. melanogaster using Phyml. The numbers specify 

the bootstrap value, indicating the branch support for each node. The tree is rooted on midpoint. Three types of evolutionary events were 

studied: gene gain, gene loss and duplications (D).

biarmipes. We know virtually nothing of the biology 

of D. biarmipes, nor we know where these genes are 

expressed: further behavioural, functional characteriza-

tion, and expression studies are required to assess the 

fate of the duplication event in D. suzukii. OR67a du-

plicates are however good candidates to explain fruit 

odour perception in D. suzukii females; these genes 

may become targets of functional characterisation by 

orthologous expression in empty neuron systems (Do-

britsa et al. 2003) aimed at identifying the most effec-

tive agonist or antagonist compounds for field applica-

tions. 

Isoamyl acetate is also released by microbe-infested 

fruits (Witzgall et al. 2012), such as through the epi-

phytic community on fruits surface as well as in fer-

menting substrates. According to our protocol, we 

however do not know what would be the relative ratio 

of isoamyl acetate emission between fresh fruits and 

the natural community of microbes on their surface.  

The identification of the most behaviourally-active 

volatiles emitted by hosts of D. suzukii other than iso-

amyl acetate and those responsible for the different 

susceptibility of fruits to oviposition, might help the 

process of the development of more selective and pow-

erful attractant lures. Further research is hence required 

to test isoamyl acetate activity in the presence of other 

EAD-active compounds from the host fruit. Apart from 

the monitoring and control, the species provides a 

unique opportunity to unravel the changes in the olfac-

tory circuitry that accompany the shift from rotten to 

ripe for oviposition. The whole spectrum of the present 

and future studies would help to understand the evolu-

tion of the olfactory code among the closely related 

species of Drosophila and, as a consequence, contrib-

ute to alternative control methods of D. suzukii. In-

deed, comparison of D. suzukii with sibling species and 

D. melanogaster could shed light on the evolution of 

morphological, behavioural and physiological innova-

tions (as shown in other Drosophila flies, Dekker et al. 

2006) and help researchers in understanding what 

makes a species to be an invasive pest.  
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Abstract 

Pheromones are often species specific and play an active role in species recognition and the specia-

tion process. The Drosophila pheromone cis-11-octadecenyl acetate (cVA), however, does not 

seem to fit such a role: it is used by species throughout the melanogaster group (Dahanukar & Ray, 

2011; Symonds & Wertheim, 2005), and therefore does not seem to convey species identity. In-

stead, cVA has a generic function in assessing sex, mate quality, mating status, and social interac-

tions (Dahanukar & Ray, 2011; Dickson, 2008). In spite of the primal role of cVA signaling in 

Drosophila, we report here that Drosophila suzukii, an invasive species that oviposits in undam-

aged soft fruit, does not produce cVA. In fact, its production site, the ejaculatory bulb (Guiraudie-

Capraz et al., 2007), was atrophied. Yet, T1 sensilla, which express Or67d neurons and are essen-

tial in cVA-mediated behaviors (Kurtovic et al., 2007; Liu et al., 2011; Stockinger et al., 2005; 

Weng et al., 2013), were fully functional. T1’s were though rare in D. suzukii, and the correspond-

ing antennal lobe glomerulus, DA1, minute. As in D. melanogaster the behavioral response to cVA 

is determined by the input balance from Or67d neurons (driving cVA-mediated behaviors) and 

Or65a neurons (modulating cVA-mediated behaviors), we hypothesized that the shift in glomerular 

balance observed in D. suzukii would reverse cVA’s role in mating from an aphrodisiac sex phero-

mone to an inhibitor of sexual behavior. Indeed, perfuming D. suzukii males with the same levels of 

cVA found in D. melanogaster strongly reduced mating, whereas perfuming D. melanogaster 

males with cVA did not negatively affect mating. In D. suzukii, cVA has thus evolved from an ge-

neric aphrodisiac sex pheromone signal to a heterospecific signal that disrupts mating, a saltational 

shift mediated through offsetting the input balance that is otherwise highly conserved in congeneric 

species. 

Keywords: Drosophila suzukii, cis vaccenyl acetate, Drosophila melanogaster, or67d. 

Introduction 

Melanogaster-clade species generically use male-

produced cVA as sex pheromone (Symonds & 

Wertheim, 2005). The underlying cVA is arguably the 

best studied pheromone communication system, from 

production to detection, and from processing to result-

ing muscle output (Dahanukar & Ray, 2011) (Yu et al., 

2010). Different from ‘typical’ sex pheromone in in-

sects, cVA acts at short range and not only fulfills a 

role in orientation and sexual attraction, but also most 

prominently in a variety of sexual and social behaviors 

in Drosophila melanogaster: increases mate ac-

ceptance by females (Kurtovic et al., 2007; Weng et 

al., 2013), reduces attractiveness of newly mated fe-

males, reduces male-male courtship, while increasing 

aggression between males (Liu et al., 2011; Wang & 

Anderson, 2010). cVA is a sex pheromone found 

throughout and basal to the melanogaster group spe-

cies, such as in the obscura and immigrans group spe-

cies (Symonds & Wertheim, 2005), underlining its 

primal role in Drosophila. 

The fact that all melanogaster group species studied 

thus far use cVA as volatile sex pheromone (Symonds 

& Wertheim, 2005) would preclude a role of cVA in 

species recognition, a function that is otherwise typical 

for insect sex pheromone (Symonds & Elgar, 2008). 

Moths in particular are well known for their species-

specific pheromone blends, which are used to discrim-
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inate between conspecific and heterospecifics (Löfstedt 

1993). Whereas males are finely tuned to their conspe-

cific female-produced pheromone, they often also dis-

play acute sensitivity to pheromones of other, often 

neighboring, species. In the latter case, such phero-

mones elicit responses on sensory neurons that mediate 

behavioral antagonism, and typically disrupt orienta-

tion to conspecifics (Baker, 2008). 

 

Figure 1 (A) Chromatograms showing female and male D. suzukii cuticular hydrocarbons. Arrow indicates retention time where 

cVA would elute. Inset: chromatogram of D. melanogaster with the arrow indicating cVA (see also Supplementary Fig. S1). Note 

the dominance of tricosenes in both sexes. Tricosenes are more abundant in male D. melanogaster’s CH profile. IS=internal 

standard (heptadecenyl acetate, 17:OAc). X= unknown double bond position. (B) Comparison of the cuticular hydrocarbon profile 

of male and female D. suzukii (n=6 and n=5, respectively). Stars indicate significant differences between males and females 

(Mann-Whitney test, α<0.05).  

Perhaps due to the complex role cVA fulfills in a 

range of sexual and social behaviors, Drosophila 

evolution of the signal to convey species-specificity 

may be constrained. Besides, other, non-volatile Dro-

sophila pheromones fulfill a function in species-

recognition instead (Ferveur, 2005). These are non-

volatile pheromones, produced by oenocytes and 

embedded in the cuticular hydrocarbons, and sensed 

through the taste sensilla on the legs and proboscis 

(Billeter et al., 2009, 2012; Miyamoto & Amrein, 

2008). 

However, in spite of the evolutionary constraints 

cVA may have, here we report how this conserved 

pheromone has undergone a radical functional rever-

sal in Drosophila suzukii, a melanogaster group spe-

cies. D. suzukii does not produce cVA. Here we de-

scribe the changes that are at the basis of the inver-

sion of the role of cVA from a broadly used sex 

pheromone to a behavioral antagonist in this species. 

Results and Discussion 

Using gas chromatography coupled mass spectrome-

try (GC-MS), we analyzed the cuticular hydrocarbon 

(CH) profile of D. suzukii. Unlike the CH profile of 

D. melanogaster, D. suzukii’s CH profile was iso-

morphic, with just small quantitative differences be-

tween sexes (Fig.1A, B). This was also true for its 

sibling species D. biarmipes and D. subpulchrella 

(Supplementary Fig. S1 B, C). We note that D. suzu-

kii and D. biarmipes lacked the desaturase desat2 and 

the elongases eloF, which have been implied in the 

biosynthesis of species-specific and sexual dimorphic 

CH profiles in Drosophila (Chertemps et al., 2007; 

Fang et al., 2009; Wicker-Thomas & Chertemps, 

2010) (Supplementary Fig. S4). However, more strik-

ing was the lack of cVA in the chemical profile of D. 

suzukii (Fig. 1A, arrow, verified with D. suzukii from 

the USA- Supplementary Fig. S1D). The lack of cVA 
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in D. suzukii casts the question of whether this pher-

omone might have been replaced by another com-

pound similar to cVA. However, no other cVA-type 

compounds (including the C20 variant present in 

some species (Symonds & Wertheim, 2005)) were 

found in D. suzukii cuticular extraction (Fig1A, B 

and Supplementary Fig. S1D). In fact, the ejaculatory 

bulb, the production site of cVA (Brieger & Butter-

worth, 1970), was dramatically reduced in volume in 

D. suzukii compared to that of D. melanogaster 

(7.0x, p<0.001, n=10, unpaired t-test, Fig. 2A). In 

fact, conserved homologues of corresponding genes 

for cVA production, elo68 and desat1, were never-

theless present in the genome of D. suzukii (Table 1 

and Supplementary Fig. S3 A1, A2, B), as were 

miRNA-124 binding sites upstream of transformer, a 

factor involved in cVA production in male D. mela-

nogaster (Weng et al., 2013) (Supplementary Fig. 

S4D). 

Figure 2 (A) Micrographs of the ejaculatory bulb, lateral view, light and autofluorescence microscopy (insets). Overlay: volumet-

ric estimates of the EB of D. suzukii (Ds) and D. melanogaster (Dm) (n=10 for each species, independent t‐ p<0.001). (B) Number 

of sensilla trichoidea and sensilla intermedia in D. suzukii and D. melanogaster females. (C) Top: sample trace of T1 sensilla to 

0.5 s 1 µg cVA stimulation. Bottom: sample traces of T4 sensilla in D. suzukii and D. melanogaster to cVA, using the ‘touch’ 

stimulation (Van der Goes van Naters & Carlson, 2007), with the time (s) indicated at the bottom of the traces. Blue: before stimu-

lation, orange: just prior to contact, red: contact. Side panel: dose response curves of T1 sensilla in D. suzukii and D. melanogaster 

to 0.5 s cVA stimulation (red bar). (D) Neurobiotin backfill of T1 neuron (a spurious fill of a neighboring AB7 neuron toVM5v is 

also visible).  Letters indicate various anterior trichoid glomeruli. Arrowhead indicates DA1. 

We then determined how loss of cVA might have 

influenced its corresponding olfactory circuitry. In D. 

melanogaster, the trichoid sensillum T1 and its cog-

nate Or67d-expressing neuron (Kurtovic et al., 2007) 

are key in cVA-mediated behaviors. T1 project to a 

large glomerulus, DA1 (Couto et al., 2005; 

Stockinger et al., 2005). T1s are the most abundant 

sensillum type in D. melanogaster (Shanbhag et al., 

1999). Although T1s were fully functional (Fig. 2C), 

and its receptor, Or67d, highly conserved (Table 1 

and Fig. 5), T1 sensilla were rare in D. suzukii anten-

na: we identified only around 7-10 per individual, 

compared to 55-60 found in D. melanogaster  (two-

tailed independent t-test, p<0.0001 Fig. 3, Supple-

mentary Fig. S2). 

At close range cVA also induces responses in 

Or65a expressing OSNs housed in antennal trichoid 

T4 (Couto et al., 2005; Ejima et al., 2007; Van der 

Goes van Naters & Carlson, 2008). Or65a neurons 

counteract behavior induced through Or67d OSNs, 

reduces cVA-mediated male-male aggression (Liu et 

al., 2011), as well as male attraction to recently-

mated females (Ejima et al., 2007). In D. suzukii 

Or65a was highly conserved (Table 1), and T4 sensil-

la were abundantly present and responded to cVA 

touch stimulation (Van der Goes van Naters & 

Carlson, 2008) (Fig. 2C). The neurons may be slight-
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ly more sensitive to cVA in D. suzukii than in D. 

melanogaster, responding prior to contact, unlike in 

D. melanogaster (less than 1mm distance). The cog-

nate antennal lobe glomerulus, DL3, which receives 

input form Or5a neurons, was enlarged in D. suzukii 

(two-tailed independent t-test p<0.001, Fig. 3) and 

19% larger in male than female D. suzukii (two-tailed 

independent t-test, p=0.021). Other glomeruli inner-

vated by sensilla trichoidea and sensilla intermedia 

neurons (Couto et al., 2005; Shanbhag et al., 1999) 

were similar in volume between the two species (ex-

cept for DA4m) and sexually isomorphic (Fig. 3). 

The total number of trichoid sensilla was similar 

between species (Fig. 2B). Or65a and DL3 provide 

sensilla context dependent suppression of cVA re-

sponses in D. melanogaster, putatively by suppress-

ing output of DA1 via antennal lobe inhibitory inter-

neuronal connections (Liu et al., 2011). We therefore 

hypothesized that the reversal of glomerular volume 

ratios in D. suzukii’s cVA circuit (DA1/DL3 from 3.3 

in D. melanogaster to 0.41 in D. suzukii, Fig. 3) 

would favor Or65a-mediated behavioral responses to 

cVA, generating opposite behavioral outputs to those 

observed in D. melanogaster. We tested this by ap-

plying cVA to male D. suzukii cuticle with doses 

equivalent to those found on male D. melanogaster, 

and assaying the effect on conspecific courtship be-

havior. Because mating rates are low in D. suzukii, 

and because applied cVA rapidly decreases over time 

on the cuticle (Fig. 4, red line), we grouped virgin 

males and females to ensure sufficiently high court-

ship and mating rates in the bioassay. As we predict-

ed, application of cVA on male D. suzukii strongly 

suppressed mating (Fig. 4 insets, Kaplan Meier esti-

mator, Z=4.45, p<0.001, n=150). In contrast, perfum-

ing male D. melanogaster with cVA did not affect 

the mating rate (Fig. 4 insets, Kaplan Meier, Z=0.33, 

p=0.36, n=110, (Kurtovic et al., 2007; Weng et al., 

2013)). Following an initially near to complete shut-

down of mating in D. suzukii–when cVA doses were 

high, the mating inhibition slowly dissipated with 

time (Fig. 4, blue line, the relative mating rate of 

perfumed or non perfumed flies). This was signifi-

cantly correlated with a gradual loss of cVA on the 

cuticle (Fig. 4, Pearson’s r=0.93, t=4.38, p<0.025). 

The down regulation of T1 sensilla expression, the 

volume decrease of DA1 and the suppression of mat-

ing in cVA-perfumed D. suzukii support a model in 

which Or65a and DL3 suppress Or67d-mediated 

behaviors similar to observed in D. melanogaster 

(Ejima et al., 2007; Liu et al., 2011; Wang & 

Anderson, 2010). Apparently, in D. suzukii the bal-

ance of DA1 and DL3 input and output shifted 

though evolution, resulting in a chronic suppression 

of cVA-induced behaviors in this species, when 

compared to other melanogaster group species. This 

effectively has reversed the role of cVA from a pher-

omone to a heterospecific signal that inhibits mating. 

Figure 3 Volume of DA1 and other trichoid glomeruli, relative to the total volume of all glomeruli receiving input from sensilla 

trichoidea and intermedia. VL2a, which receives input from coeloconic Ac4a neurons, is included as it is part of the fru circuitry. 

Red outlined bars: DA1 of D. melanogaster and D. suzukii ♂ and ♀. Insets are reconstructions of the antennal lobes, with in 

bright red DA1 and in light red other glomeruli that receive input from sensilla trichoidea and sensilla intermedia neurons. Scale 

bar 20 µm. 

The concurrent miniaturization of DA1 volume and 

the behavioral shift in response to cVA is reminiscent 

of observations in Drosophila’s coding of general 

odor preference (Dekker et al., 2006; Ibba et al., 
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2010) and preference coding of pheromones in moths 

(Kárpáti et al., 2010). In these studies changes in 

relative glomerular volume were associated to shifts 

in olfactory preference. Increased glomerular volume 

is associated with an increased preference for the 

ligand of these glomeruli. In the present study, how-

ever, we observed the opposite: a severe reduction in 

glomerular volume converts attraction into inhibition, 

suppressing the cascade of behaviors associated with 

its ligand. 

What factors underlie the reduced T1 expression 

and diminution of DA1 are unknown. An important 

factor in driving sexual behaviors in D. melanogaster 

is the transcription factor fruitless (fru). A male-

specific splicing variant of fru, FruM, causes sex-

specific neuronal growth, targeting and correspond-

ing behavior (Cachero et al., 2010; Datta et al., 2008; 

Demir & Dickson, 2005; Ruta et al., 2010; 

Stockinger et al., 2005). Our gene annotations show 

nevertheless that the fru region, spanning 100kb of 

genomic DNA, contains all putative exons to build 

the various isoforms found in D. melanogaster, in-

cluding FruM (Supplementary Fig. S4, (Stockinger et 

al., 2005)). Other well-known genes involved in sex-

ual dimorphism of the olfactory circuitry, such as 

sexlethal (sxl, (Billeter et al., 2006; Rideout et al., 

2011), transformer (tra, (Billeter et al., 2006; 

Fernández et al., 2010), and doublesex (dsx, (Billeter 

et al., 2006; Rideout et al., 2011) were also well con-

served in D. suzukii (Supplementary Fig. S4). How-

ever, we noted that the volume of DA1 is sexually 

isomorphic in D. suzukii (Fig. 3). This contrasts with 

D. melanogaster, where Fru causes a substantial di-

morphism in volume and behavior between males 

and females (Demir & Dickson, 2005; Stockinger et 

al., 2005). Similarly, the two other glomeruli receiv-

ing input from sensory neurons in the fru circuitry, 

VA1v and VL2a, were also sexually isomorphic (Fig. 

3). However, DL3 was 19% enlarged in male com-

pared to female D. suzukii, whereas DL3 is isomor-

phic in D. melanogaster (Stockinger et al., 2005). 

This may indicate an altered expression of Fru in the 

olfactory circuitry of D. suzukii males and females. 

This notion of an altered expression pattern in D. 

suzukii is substantiated by the observation that, con-

trary to D. melanogaster, Fru is translated in brains 

of both sexes of D. suzukii, whereas in D. melano-

gaster only in males (Yamamoto et al., 2004). 

Figure 4 Effect of cVA perfuming on mating in D. suzukii and D. melanogaster. The relative mating rate is increasing (blue line) 

with a decreasing amount of cVA on the male flies. Insets: cumulative mating in Dm and Ds in response to the perfuming with 

cVA (+cVA, red lines) or hexane (control, -cVA, grey lines). 

The loss of cVA as D. suzukii’s sex pheromone may 

be an adaptation associated with its new niche, or 

reflect this species’ higher reliance on visual cues 

(males have a conspicuous wing spot) over olfactory 

cues in sex discrimination. It may also be simply the 

result of drift, although the presence of cVA 

throughout the melanogaster group may render this a 

less likely scenario. We therefore compared D. suzu-

kii to the other two suzukii group species, D. subpul-

chrella and D. biarmipes, males of which also have 

conspicuous wing spots (Rota-Stabelli et al., 2013). 

Whereas both species were found to have sexually 

monomorphic CH profiles (Supplementary Fig. S1), 



6 

 

D. biarmipes, a species that oviposits on rotten fruit, 

produced large amounts of cVA, whereas D. subpul-

chrella, a species with a similar ovipositor and ovi-

position preference as D. suzukii, lacked cVA. As 

expected, the relative volume of DA1 in D. subpul-

chrella was much reduced and comparable to DA1 in 

D. suzukii, whereas that of D. biarmipes was similar 

to D. melanogaster (Fig. 6). Apparently, loss of cVA 

is not associated with the use of a conspicuous wing 

spot. Instead, our data suggests that the loss co-

occurs with the shift to fresh fruit. Although this 

study does not exclude the existence of other volatile 

pheromones in D. suzukii, the CH extracts and the 

‘relictual’ size of the ejaculatory bulb  

 

Figure 5 cVA odorant receptors are conserved in D. suzu-

kii. Phylogenetic tree of Or67d and Or65a in D. suzukii and 

other Drosophila. The tree is rooted with the Or coreceptor 

Orco. Abbreviations and supports are as in Supplemental 

Fig. S3. 

indicate otherwise. Furthermore, we show that in 

spite of the fact that cVA signaling fulfills a primal 

role and is highly conserved in the melanogaster 

group, it can rapidly evolve to serve a radically oppo-

site behavioral and ecological function, mediated by 

offsetting the balance of sensory input. 

Materials and methods 

Flies 

D. suzukii colony was established from locally col-

lected specimen in Valsugana, Trentino Province, 

Italy, whereas the US strain of D. suzukii was derived 

from a colony established by D. Walsh (Washington 

State University, Prosser, WA, USA). D. biarmipes 

(14023-0361.02) and D. subpulchrella (14023-

0401.01) were obtained from the San Diego stock 

center. Flies were reared in a quarantine facility on a 

standard cornmeal-yeast-agar medium at 21°C under 

L:D=12:12. 

Behavioral assays 

Sexes were separated within 1 hr post emergence and 

placed in groups of 5 (females) and 7 (males). They 

were placed in standard food vials, and flipped after 

3 days to new food vials. After 4 days 7 males were 

placed into the vial containing 5 females. We used 

groups to increase the mating incidence of D. suzukii, 

which has a lower mating rate compared to D. mela-

nogaster. The higher ratio of males to females offset 

any potentially negative effect of the shaking on 

‘availability’ of male mates, although no clear nega-

tive effects of the procedure of perfuming flies (shak-

ing) were observed. No individuals died during the 

course of the experiment. Since individuals could not 

be reliable recognized and followed during the course 

of the experiments, we scored mating rates only.  

Perfuming flies 

Three ml vials were coated on the inside with a total 

of 50 µg cVA. The procedures were roughly similar 

as described in (Billeter et al., 2009). Fifty µl hexane 

with or without 1 µg of cVA was pipetted in a 3 ml 

glass screw cap vial. The hexane was slowly evapo-

rated while the vial was placed in a horizontal posi-

tion and slowly rotated. Seven males were briefly 

immobilized on ice (1 min), and placed in a 3 ml 

treatment or control vial. Vials, coated with cVA or 

hexane treated only and containing 7 flies, were 

placed on a rotator and rotated at 4500 rotations/min 

for 2 minutes, in a cycle of 6 s on, 4 s off. In D. mel-

anogaster cVA deposits are mostly found on the 

abdominal segments. However, perfuming the fly 

with cVA results in more equal distribution of pher-

omone across the body. We therefore increased the 

total amount of cVA slightly to compensate for lower 

local concentrations on the fly (see Fig. 3). After 

shaking, treatment (+cVA) and control (-cVA) male 

flies, both shaked on the rotator, were introduced into 

the food vial containing 5 virgin females. Matings 

were noted every 15 min. As D. suzukii exhibits low 

mating rates compared to D. melanogaster, we ob-

served the mating behavior for both species during 5 

consecutive hours. 

Chemical analysis 

Pheromones were extracted from the fly cuticle by 

leaving individual flies in 100 µl of hexane for 5 min 

at room temperature. Hundred ng of heptadecenyl 

acetate was added as an internal standard. These ex-

tracts were analyzed on a gas chromatograph coupled 

with a mass spectrometer (GC-MS; 6890 GC and 

5975 MS, Agilent technologies Inc., Santa Clara, 
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CA, USA). Extracts were concentrated to ca. 10 µl 

and 2 µl were injected into a HP-5MS silica capillary 

column (30 m x 0.25 mm x 0.25 µm film thickness; 

Agilent technologies Inc.) that was temperature- pro-

grammed from 50 (2 min) - 8°C/ min- 300°C. 

Compounds of interest were identified based on 

their mass spectrum, retention time, comparison with 

already published works on D. melanogaster cuticu-

lar hydrocarbons (Everaerts et al., 2010) and injec-

tion of synthetic corresponding compound (for cVA). 

They were quantified by peak integration and com-

parison with the response of the internal standard.  

Sensory physiology 

Using a strong airflow flies were pushed head first 

into a truncated pipette tip. The pipette tip was cut 

distally from the head and the fly was gently pushed 

forward until the head protruded from the narrow 

end. The pipette tip was placed on a wax surface on a 

microscope slide, and using a glass micropipette the 

right antenna was gently bent backwards and stably 

positioned on a cover slip. The fly was placed under 

a microscope (Olympus BX51W1), with a magnifica-

tion ≤1500 x. Via a glass tube a 1 L/min charcoal 

purified and humidified airflow was constantly 

blown over the fly head. Tungsten microelectrodes, 

sharpened in a KNO2-solution, were used for record-

ing of action potentials of antennal sensory neurons. 

A motor-controlled micromanipulator (Märzhauser 

DC-3K, Wetzlar, Germany) equipped with a piezo 

unit (Märzhauser PM-10) was used for fine position-

ing. A reference electrode was inserted into the eye 

with a manually controlled micromanipulator 

(Narishige MM33, Tokyo, Japan). Touch stimulation 

was performed using an additional piezo unit to 

move the electrode at micrometer scale toward the 

sensillum. A glass electrode drawn to a sharp tip was 

dipped briefly in a 1 µg/µl cVA solution, air dried 

and used for stimulation. After A/D conversion 

(Syntech IDAC PCI card), spikes were visualized 

and stored on a PC. Analysis was done using Au-

toSpike 3.2 software (Syntech, Kirchzarten, Germa-

ny). 

Counts of sensilla trichodea 

Antennae were mounted using spacer rings (Secure-

Seal TM imaging spacers, Sigma-Aldrich) and Vec-

tashield mounting medium Hard Mount (Vector La-

boratories, Burlingame, CA). High-resolution confo-

cal scans (Zeiss LSM 510 confocal microscope, Carl 

Zeiss, Jena, Germany) using a 20x objective, were 

made through the antennae. The contrast of the rela-

tively thick walled trichoid sensilla permitted identi-

fication and counting on the entire antennal surface.  

Ejaculatory bulb  

D. suzukii and D. melanogaster adult males were 

collected 2 days after  emergence. For each species, a 

total of 10 males were selected. After brief anaesthe-

tization in the freezer, individuals were dissected in 

phosphate buffered saline (PBS). The abdomen was 

clipped and immersed in 5% KOH for 5 hr to remove 

soft tissues and expose intact hard cuticular struc-

tures, washed in distilled water and partly dehydrated 

in 70% ethanol. Afterwards, the ejaculatory bulb 

(EB) (Bairati, 1968; Chen, 1984) was separated from 

the rest of the male genitalia and mounted on a glass 

slide with glycerin. Observations were made with 

microscope (Leica LMD7000, Wetzlar, Germany). 

The EB dimensions were measured by Leica 

LMD7000 microscope with Leica Application Suite 

Image Analysis Software. Width and height and 

depth of the gland were measured (n=10). As indi-

viduals within and among species differed in size and 

in order to obtain values comparable from one animal 

to the others, the values of EB width were normal-

ized by the body length of each individual according 

to the formula: EB width/body length x 100. Volume 

was calculated by assuming a sphere (4/3*π* 

{w/2}*{h/2}*{d/2}). All measurements were aver-

aged among the 10 observations and two-tails un-

paired t-test was used for statistical comparison. 

Immunocytochemistry 

We verified antennal lobe projection patterns of T1 

neurons in D. suzukii using anterograde-neurobiotin 

(Molecular Probes, Carlsbad, CA, USA) backfills. 

Neurobiotin is readily taken up by neurons and trans-

ported throughout the neuron, including its axonal 

targets in the antennal lobes. A glass microelectrode 

with a 0.25 M KCl + 2% neurobiotin was placed over 

the tip of a T1 neuron. Neurobiotin was allowed to 

diffuse into the sensillum and taken up by the neuron 

for 1 hr. Preparations were then fixed in 0.1 M PBS 

with 0.25% Triton-X+4% formaldehyde for 3.5 hr at 

4°C, dissected, washed 3x with PBS containing 

0.25% Triton-X (PBST), and incubated with fluores-

cein-avidin. Ten percent mouse α-synapsin antibody 

(Hybridoma, Univ. of Iowa, Iowa, IA, USA) was 

included to identify targeted glomeruli in the AL. 

After 24 hr at room temperature on the rotator brains 

were washed 3x with PBST, and incubated with anti-

mouse conjugated with Alexafluor 546 (Molecular 

Probes). After another 24 hr on the rotator at RT, 

brains were washed 3x with PBST and mounted in 

Vectashield Hard Mount (Vector Laboratories, 

Burlingame, CA), 0.12 mm thick, using spacer rings 

(Secure-Seal TM imaging spacers, Sigma-Aldrich). 

The above-described technique for mouse α-synapsin 

antibody staining was also used for overview stain-
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ings and reconstructions of antennal lobes of D. su-

zukii, D. biarmipes, and D. subpulchrella. 

 

Figure 6 Reconstructions of the antennal lobes of D. sub-

pulchrella and D. biarmipes. In bright red DA1, which 

received input from T1 neurons, and in light red other glo-

meruli receiving input from sensilla trichoidea neurons. 

Note: the small volume of DA1 in D. subpulchrella, which 

was comparable to D. suzukii (see Fig. 3).   

Confocal microscopy and reconstructions 

Whole-mount brains were viewed in a Zeiss LSM 

confocal microscope (Carl Zeiss, Jena, Germany) 

equipped with a 40x, 1.4 oil-immersion DIC objec-

tive lens. Structures labelled with Fluorescein Avidin 

were excited with an Argon laser at 488 nm with 

detection of reflected light in the range of 505-515 

nm. Alexa 546-labeled structures were excited with a 

HeNe laser at 543nm and detected using a 560 nm 

long pass filter. Stacks of 50-200 confocal images 

were scanned and the images were stored at a size of 

1024 x 1024 pixels. The three-dimensional recon-

structions, volumetric measurements of the glomeruli 

were done using AMIRA 3.0 software (Visage Imag-

ing, Berlin, Germany). In every optical section the 

contours of glomeruli were demarcated by hand (i.e., 

image segmentation) and interpolated. Volumes were 

obtained from Amira, based on reconstructed images. 

 

 

 

 

 

 

Table 1 Olfactory receptor, desaturase and elongase genes are conserved and under purifying selection. Values are Ka/Ks (dN/dS) 

with the actual value of the ratio (omega) in brackets. Values have been calculated using http://services.cbu.uib.no/tools/kaks 

under a Maximum Likelihood framework providing input trees according to trees from Fig. 5 and Supplementary Fig. S3 and 5. In 

all cases D. suzukii has an omega substantially lower than 1, suggesting purifying selection and therefore conserved function. 

*values obtained using topology: (((mel1, (ere1, ere2)), (bia, (suz1, suz2))), ana); similar result were obtained when using an 

alternative topology: ((((mel1, ere1), (bia,suz1)), ana), (suz2, ere2)); compare with the tree of Supplemental Fig. S4. 

Bioinformatics and phylogenetics.  

Orthologs searches and assembly. We downloaded 

various type of genome data (gene, transcript and 

protein sequences) for odorant receptors and other 

cVA related genes (Desat, Elongase, Fruitless, 

Transformer) of D. melanogaster, D. simulans, D. 

sechellia, D. erecta, and D. anannassae from Flybase 

(Marygold et al., 2013) and OrthoDB (Waterhouse et 

al., 2013) repositories. For D. biarmipes and D. suzu-

kii, the protein sequences of D. melanogaster were 

used queries to identify the corresponding orthologs 

through exhaustive blast searches. First, TBlastN 

(BLOSUM 62 matrix with an e-value threshold of  

10
-5

) (Altschup et al., 1990) was applied for prelimi-

nary search of all the gene families. For the elongases 

superfamily alone, orthologs were searched using 

HMMER (http://hmmer.janelia.org/ v3.1b1, using an 

e-value threshold of 10
-5

). The profile “hmmbuild” 

was constructed from GNS1/SUR4 HMM profile 

from the PFAM database (Punta et al., 2012), the 

result of which was run against D. suzukii and D. 

biarmipes genomes using “hmmsearch”. The output 

was manually checked for all the positive hits, specif-

ically looking for the presence of elo-specific domain 

HXHH and hydrophobic transmembrane regions. For 

Fruitless, we underwent a complex manual curation 

directly from D. suzukii genome contigs, using the 11 

main isoforms of D. melanogaster to construct puta-

tive exons in D. suzukii. This is because Fru gene 

spans over a long genome region, contains long in-

trons, and codes for 15 different isoforms; these 
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isoforms are unlikely to be present in transcriptomic 

data or being correctly annotated in gene models. 

Phylogenetics.  

For each of the gene families (Desaturases, Elongas-

es, Fruitless and Odorant receptors) we constructed 

nucleotide datasets and correct frame was further 

checked. The translated protein datasets were aligned 

using MUSCLE v3.8.31 (Edgar, 2004), and prelimi-

nary tree searches were done to assess the actual 

orthology of genes. These preliminary analyses lead 

to recognition of few wrong orthologies (false posi-

tives due to gene loss), and characterization of new 

orthologs in not annotated genomes. After this manu-

al curation, a second round of MUSCLE alignment 

using option–refine was done followed by phyloge-

netic reconstruction using PHYML (Guindon et al., 

2010) and employing 100 non-parametric bootstrap 

replicates and the LG+G model (Le & Gascuel, 

2008) of replacement.  
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Supplementary material 

Figure S1. Drosophila melanogaster, (B) D. biramipes, (C) D. subpulchrella and (D) D. suzukii (US strain) males and females 

(n=2 or 3 for each). Numbers refer to compounds listed at the bottom of the figures. cVA is peak 2 in 2A and 2B. Red arrows in 

D. subpulchrella’s and D. suzukii’s chromatograms indicate where cVA would have eluted. cVA is not detected in the male CH 

profiles of either species. 
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Figure S2. Confocal stack (α- synapsin background staining) and corresponding reconstructed images of a male D. suzukii brain 

antennal lobe. Images are arranged from anterior (1) to posterior (6). Corresponding putative homologous glomeruli of D. mela-

nogaster glomeruli are indicated. 
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(S3 B) 

Figure S3. The complex phylogeny of Elongase and desaturase genes, which have implied in cVA production (Wicker-Thomas & 

Chertemps, 2010). (A1 and A2) Phylogenetic tree of elongase genes of Drosophila. A comprehensive  bioinformatic analysis of 

orthologs in various Drosophila species reveals a complex scenario in which eloF and elo68a are part of a large family of elongas-

es. The naming of these putative genes is done using alphabetic letters from A to Q, leaving the F for eloF. Most of these putative 

elongases are conserved throughout the species tested. Elo68a, which is directly involved in the loss of cVA production, is present 

in D. suzukii, but eloQ is missing in D. suzukii and eloC is likely duplicated. These genes are possible candidates involved in the 

loss of cVA production in D. suzukii. Interestingly, monomorphic D. suzukii and D. biarmipes lack eloF. EloF is active in hydro-

carbon pathway of the D. melanogaster subgroup females (Wicker-Thomas & Chertemps, 2010). The same gene is not expressed 

(although present in its genome) in the also monomorphic D. simulans (Jallon and David, 1987). (B) Phylogenetic tree of desatu-

rase genes in Drosophila. The genome of D. suzukii contains a conserved copy of desatF, involved in CH biosynthesis in males. 

D. suzukii and D. biarmipes have lost desat2, which is involved in female hydrocarbon biosynthesis (Wicker-Thomas & Cher-

temps, 2010). Species code used in the tree: D.ana= Drosophila ananassae; D.bia= D. biarmipes; D.suz= D. suzukii; D.mel= D. 

melanogaster; D.ere= D. erecta; D.sim= D. simulans; D.sec= D. sechellia. Values at nodes are bootstrap support from the analysis 

of 100 pseudo-replicates in PHYML, using LG+G model. 
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Figure S4. Fruitless/ cVA signaling pathway is conserved in D. suzukii. (A) SexLethal is present with both its two main isoforms 

in D. suzukii. (B) Transformer is also conserved and capable of both main female and male isoforms in D. suzukii. One of the 

binding sites of miRNA124 is variable in D. suzukii, but still capable of binding miRNA (see panel E). (C) Cladogram of possible 

Fruitless isoforms in D.suzukii compared with known isoforms in D. melanogaster. The comparison has been done by aligning all 

known Fruitless gene region. Cladogram shows that D. suzukii fru gene region contains all putative exons to build all D. melano-

gaster isoforms. We did not explore the mRNA in D. suzukii, due to low coverage of RNAseq libraries available. Results are pre-

liminary and the D. suzukii putative isoforms should be validated by proper mRNA expression data. (D) Cladogram of possible 

isoforms in accordance with the phylogeny of species. This is due to shared synapomorphies of closely related species (or apo-

morphies of that group). (E) Transformer gene of D. suzukii contains both miRNA-124 binding sires. Left shows the binding site 

3’ UTR of Transformer in D. melanogaster (upper) and D. suzukii (lower). Right panel shows the binding site at the last Trans-

former exon. 

 


