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Abstract  

Aim of the study 

 The present study is aimed at a phylogenetic reconstruction of Asperula L. sect. 

Cynanchicae (DC.) Boiss., the richest section for number of taxa belonging to the genus 

Asperula (tribe Rubieae, family Rubiaceae). Systematic boundaries in the tribe Rubieae 

are somehow artificial, as several genera resulted to be paraphyletic or even 

polyphyletic (i.e. Galium, Asperula). However, it is not conceivable to re-arrange 

generic assemblages without previously understanding and establishing intra-specific 

circumscriptions. 

 In addition to strictly phylogenetic issues, this work also includes a 

phylogeographic effort on a single species, the endemic Asperula crassifolia L., which 

was chosen as a model species to undertake a study focused on population diversity 

and conservation issues.  

Methods 

Different phylogenetic approaches (maximum parsimony, maximum likelihood 

and Bayesian inference) were employed for reconstructing the evolutionary history of 

approximately 70 entities of Asperula sect. Cynanchicae, using nuclear ribosomal 

Internal Transcribed Spacers sequences and two chloroplast spacers (trnC-petN, petN-

psbM). Moreover, divergence time within the section were estimated using a Bayesian 

approach and biological processes (e.g., reticulation, incomplete lineage sorting) 

subtending phylogenetic relationships were evaluated. 

Asperula crassifolia was sampled for its entire distribution range (the island of 

Capri, Sorrentine Peninsula and Sirenusae archipelago) and nuclear simple sequence 

repeats (SSR) were isolated for the species. Furthermore, rps16 intron variability was 

investigated in order to formulate phylogeographic hypothesis about the divergence of 

different populations. 
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Results  

Molecular homogeneity of Asperula sect. Cynanchicae is extremely evident; 

divergence time estimation indicates that the section originated during Miocene and 

terminal nodes are the outcome of geological and climatic vicissitudes occurred during 

the Tertiary and Quaternary. Probably, reproductive barriers between some taxa of 

the section are totally lacking, contributing to obscure phylogenetic signal. 

Hybridization is likely also involved, and this partly prevented the homogenization of 

the ITS sequences as a consequence of concerted evolution.  

As far as biogeographical history of A. crassifolia is concerned, the maximum 

number of haplotypes is recorded for Capri; therefore the origin of the species appears 

more plausibly to have occurred in this island. Nevertheless, the sympatric presence of 

A. aristata subsp. aristata does not allow to exclude crossing between the two entities. 

The rarity of A. crassifolia gives strong indications for safeguard by law. 
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Riassunto  

Scopo della ricerca 

 Il presente studio è incentrato sulla ricostruzione filogenetica di Asperula L. 

sect. Cynanchicae (DC.) Boiss., la sezione più ricca per numero di taxa appartenente al 

genere Asperula (tribù Rubieae, famiglia Rubiaceae). Le delimitazioni sistematiche 

nella tribù delle Rubieae sono spesso fittizie, in quanto numerosi generi risultano 

parafiletici o finanche polifiletici (ad esempio Galium, Asperula). Ad ogni modo, la 

riorganizzazione intergenerica non può prescindere da una preliminare comprensione 

dei limiti infraspecifici. 

 In aggiunta a un discorso prettamente filogenetico, col presente studio è stata 

avviata un’indagine filogeografica sulla specie endemica Asperula crassifolia L., scelta 

come modello per intraprendere uno studio focalizzato sulla diversità popolazionistica 

e le dinamiche di conservazione. 

Metodi 

Differenti approcci filogenetici (massima parsimonia, massima verosimiglianza e 

inferenza Bayesiana) sono stati impiegati per la ricostruzione della storia evolutiva di 

circa 70 specie appartenenti ad Asperula sect. Cynanchicae, usando gli spaziatori 

interni del DNA ribosomale (ITS) e due spaziatori intergenici plastidiali (trnC-petN, 

petN-psbM). Inoltre, è stata condotta una stima dei tempi di divergenza all’interno 

della sezione usando un approccio Bayesiano, e sono stati valutati i processi biologici 

(fra cui evoluzione reticolata, lineage sorting) alla base delle relazioni filogenetiche. 

Asperula crassifolia è stata campionata per l’intero areale di distribuzione 

(l’Isola di Capri, la Penisola Sorrentina e l’arcipelago di Li Galli) e per essa sono state 

isolate sequenze microsatellitari (SSR) nucleari. Inoltre è stata analizzata la variabilità 

dell’introne rps16, la quale è servita a formulare un’ipotesi filogeografica sulla 

divergenza delle differenti popolazioni. 
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Risultati 

Dallo studio è emersa l’estrema similarità tra i membri della Cynanchicae; la 

stima dei tempi di divergenza indica che la sezione si è originata durante il Miocene e i 

taxa attualmente noti sono il risultato di vicissitudini geologiche e climatiche avvenute 

durante il Terziario e il Quaternario. È inoltre molto probabile l’assenza totale di 

barriere riproduttive tra alcuni taxa della sezione, e ciò contribuisce a confondere il 

segnale filogenetico. Verosimilmente, un altro fenomeno coinvolto è l’ibridazione, e 

ciò ha parzialmente impedito l’omogeneizzazione delle sequenze ITS per opera 

dell’evoluzione concertata.  

Per quanto riguarda la storia filogeografica di A. crassifolia, il numero massimo 

di aplotipi rps16 è stato rinvenuto nella popolazione di Capri. Di conseguenza, appare 

molto più plausibile che Capri sia il centro di origine di questa specie. Ciononostante, la 

presenza simpatrica di A. aristata subsp. aristata non consente di escludere la 

presenza di ibridi tra le due specie. Infine, la rarità di A. crassifolia rende necessario 

attuare misure di protezione. 
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Chapter 1 – General introduction  
 

The family Rubiaceae and its subdivisions 

 Rubiaceae Juss. is the fourth-largest angiosperm family, with 13,000 species 

classified into approximately 600 genera (Govaerts et al., 2006; Davis et al., 2009). This 

family, differentiated about 90 mya (Bremer & Eriksson, 2009), has a cosmopolitan 

distribution with maximum diffusion at the tropical latitudes, where it represents up to 

20% of the biodiversity and has important ecological roles, supplying food for the 

faunal community by virtue of the abundant production of fruit, nectar and leaves. At 

these latitudes, Rubiaceae are mostly woody, whereas in the temperate regions they 

are represented by herbaceous, perennial plants. Besides the ecological relevance of 

the Rubiaceae, some species have remarkable economic importance. The coffee plant 

(Coffea arabica L. and allied species) belongs to this family; Cinchona spp. contain the 

alkaloid historically used for the treatment of malaria (Humphrey, 2000); Rubia 

tinctorum L. (the dyer's madder) is a tinctorial plant whose root is traditionally used as 

a natural dye (Cannon & Cannon, 2003). 

 In the last 20 years Rubiaceae have been the subject of at least 70 studies at 

different taxonomic levels (e.g., Bremer & Jansen 1991; Andreasen & Bremer, 1996; 

Bremer & Thulin, 1998; Andersson & Rova, 1999; Bremer et al., 1999; Nepokroeff et 

al., 1999; Bremer & Manen, 2000; Persson, 2000; Malcomber, 2002; Delprete & 

Cortes-B, 2004; Motley et al., 2005; Backlund et al., 2007; Bremer & Eriksson, 2009) 

aimed at the systematic revision of the family. Besides the clarification of the 

phylogenetic relationships at infra- and intergeneric levels, molecular analyses led to 

the assignation of Rubiales to order Gentianales, and to the suppression of the family 

Theligonaceae, whose members are now included in Rubiaceae (APGII, 2003). A 

correct understanding of the phylogenetic relationships in the family is crucial, 

especially in connection to the substantial presence of monotypic genera, which 

represent about 35% of the total number of genera (Davis et al., 2009). In spite of this, 

albeit a great part of them does not probably have reason to exist, several monotypic 

genera represent uniqueness from an evolutionary point of view: extinction of these 

taxa might represent the demise of entire lineages. Hence, it is essential to create 
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safeguards for the protection of these species. 

 Current knowledge allows to assert that Rubiaceae are monophyletic, divided 

into 3 subfamilies (Cinchonoideae, Ixoroideae, Rubioideae) and 43 tribes, several of 

which monogeneric and many which turned out to be paraphyletic or polyphyletic 

(e.g., Gardenieae, Morindeae). Only one tribe (Coptosapeltae) cannot be ascribed to 

any subfamily; it occupies, anyway, a rather basal position in the Rubiaceae 

phylogenetic tree, as sister group of the Asiatic genus Luculia Sweet, which is not 

attributable to any superior taxonomic rank as well (Bremer, 2009). 

This study focuses on the genus Asperula L., which belongs to tribe Rubieae, 

subfamily Rubioideae. The latter includes 11 of the 20 largest genera of Rubiaceae. 

Many molecular studies corroborated the hypothesis of monophyly for the subfamily 

(Natali et al., 1995; Bremer, 1996; Andersson & Rova, 1999; Bremer & Manen, 2000). 

In the work of Natali et al. (1995), phylogenetic support was obtained using chloroplast 

intergenic spacer atpB-rbcL, which showed a 204-nucleotides deletion for the sampled 

taxa. For the same spacer, members of tribe Rubieae showed an additional 50-bp 

deletion, which suggested the monophyletic nature of the group. Eventually several 

studies attested the monophyly of the tribe (Natali et al., 1996; Bremer, 1996; 

Andersson & Rova, 1999; Bremer & Manen, 2000; Nie et al., 2005; Backlund et al., 

2007; Bremer & Eriksson, 2009; Rydin et al., 2009; Soza & Olmstead, 2010). Concerning 

morphological peculiarities, Rubieae show a bilocular ovary with one ovule per locule, 

a rudimentary calyx, several pollen traits (Huysmans et al., 2003) and leaf-like whorls 

that differentiate Rubieae from the remaining Rubiaceae. Moreover, prevailing 

herbaceous habitus and temperate distribution are distinctive characters of the 13 

genera of Rubieae. 

Rubieae have mostly hermaphroditic or andromoecious flowers with 

entomophilous pollination. They are mainly self-incompatible outbreeders; autogamy 

has been documented for several annuals, (e.g., Galium aparine L. and Sherardia 

arvensis L.; Tao & Ehrendorfer, 2011) and, to date, only for the perennial A. daphneola 

O.Schwarz (Gücel & Seçmen, 2009). 

Rubieae evolutionary radiation appears to be relatively recent, as suggested by 

fossil pollen dating back to the Miocene (Van Campo, 1976; Menke, 1976; Graham, 

2009); although Asperula, Galium L., Rubia L. and Cruciata Mill. exhibit 
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indistinguishable pollen morphology (Huysmans et al., 2003), fossil pollen from Alaska 

was indicated and accepted as Galium pollen (Graham, 2009). The tribe is thought to 

have originated in Eurasia; subsequently it probably underwent at least 8 independent 

dispersion events in Northern America, followed by diversification in Southern America 

(Soza & Olmstead, 2010); the estimated divergence time of the tribe is 28.6 Ma with a 

crown age of 18.1 Ma (Bremer & Eriksson, 2009) 

 Molecular studies place Rubia as the basal-most genus, as however suggested 

from the habitus, the fruits (berries), the 5-lobed corolla and the whorls of 4-6 

elements (Natali et. al, 1995; Soza & Olmstead, 2010). The most recent classification 

indicates the presence of the following genera: Asperula, Callipeltis Steven, Crucianella 

L., Cruciata, Didymaea Hook.f., Galium, Kelloggia Torr. ex Benth. & Hook.f., 

Mericarpaea Boiss., Microphysa Schrenk, Phuopsis Benth. & Hook.f., Rubia, Sherardia 

L., Valantia L. (Govaerts et al., 2006; Soza & Olmstead, 2010; Tao & Ehrendorfer, 

2011). 

 

The genus Asperula L. 

 Asperula includes approximately 130 species, generally perennial and 

suffruticose, rarely annual and herbaceous, divided into ten sections (Table 1; 

Ehrendorfer et al., 2005). Leaves are associated to stipulae in a variable number (up to 

14 elements); inflorescence is thyrsoid, with a corymbose, subcapitate or subspicate 

cyme. Flowers are hermaphrodite and bracteate with a calyx which is either null or 

consisting of short teeth; corolla, pentamerous or tetramerous (rarely trimerous), is 

hypocrateriform, infundibuliform or campanulate. Styles are two, with a globose 

stigma; fruit is a schizocarp (Ehrendorfer & Krendl, 1976; Ehrendorfer et al., 2005).  

 The genus appears really heterogeneous, in terms of morphological and 

karyological traits. In fact, its systematic boundaries have always been a challenging 

issue, especially in connection to other historical members of Rubiaceae (e.g., Galium, 

Sherardia). Among them, monotypic genus Sherardia is progressively losing reason to 

exist from a molecular point of view; in fact, it appears to be closer to Asperula sect. 

Hexaphylla Ehrend., rather than being external to the genus (Soza & Olmstead, 2010). 

Moreover, present separation between Asperula and Galium, based upon two 
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morphological traits i.e., loss of bracteoles in Galium and longer corolla-tube in 

Asperula (e.g., Ehrendorfer & Krendl, 1976), turned out to be related to homoplastic 

characters, and the non-monophyly of the two genera is confirmed (Manen et al., 

1994; Natali et al., 1996; Soza & Olmstead, 2010). Although several members of 

Asperula have been moved to Galium (e.g., A. odorata, A. aparine, etc.), the effort is 

far from its conclusion. Some Galium members appear to be phylogenetically closer to 

Asperula than to other co-generic species as, for instance, the representatives of the 

sect. Aparinoides (Jordan) Gren. and sect. Depauperata Pobed. (Natali et al., 1995; 

Ehrendorfer et al., 2005; Soza & Olmstead, 2010). Such a condition is probably due to 

the fact that Asperula is an assemblage of paraphyletic group, which share 

plesiomorphic traits. Loss of floral bracteoles (and often of the bracts), reduction of the 

corolla-tube and, finally, depigmentation of flowers gave rise to Galium (Ehrendorfer 

et al., 2005). 

 The origin of Asperula is traceable to Eurasia, and the center of its diversity is 

South-Western Asia, with a distribution ranging from Mediterranean and Western 

Europe to the Eastern Asia; some taxa belong to Australian and New Zealand floras 

(Sect. Dioicae Airy Shaw & Turril). From a phylogeographic and conservational 

perspective, it is interesting that several species are narrowly endemic.  
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Table 1 – Sections of the genus Asperula (Ehrendorfer & Krendl, 1976; Ehrendorfer et al., 2005; 
Govaerts et al., 2006) 

Sections # species (approx.) 

Asperula L. 3 

Cruciana Griseb. 8 

Crucianelloides Boiss. 1 

Cynanchicae DC. ex Boiss. 71 

Dioicae Shaw & Turrill 22 

Glabella Griseb. 9 

Hexaphylla Ehrend. 10 

Oppositifoliae Schischk. ex E. Schönb.-Tem. 13 

Thliphthisa (Griseb.) Ehrend. 14 

Trichodes Boiss. 2 

Tricostella Schönb.-Tem. & Ehrend. 1 
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Chapter 2 – Phylogenetic reconstruction of 
Asperula L. sect. Cynanchicae (DC.) Boiss. 
 

Introduction 

 The section Cynanchicae encloses about 100 entities, including species and 

subspecies (Appendix A). These plants are dwarf shrubby perennials, mainly 

calciphylous and growing on dry and rocky grounds. Leaves and stipules per node are 

at maximum in number of 4, the cauline being linear-lanceolate with a hyaline apex. 

Corolla is always tetramerous, hypocrateriform or infundibuliform, purplish, pink, 

greenish or yellowish. Anthers and stigma are generally not protruding; fruit is obovate 

and never entirely smooth (Ehrendorfer & Krendl, 1976; Ehrendorfer et al., 2005). 

 The section is predominantly distributed in the Mediterranean and Aegean 

areas, but the range covers Great Britain northerly and Caucasus easterly. In Anatolia it 

is represented by approximately 20 species, mostly endemic (Ehrendorfer et al., 2005; 

Minareci & Yildiz, 2010; Öztürk, 2013). The type species of the section is Asperula 

cynanchica L., whose geographical range covers the distribution of the whole section. 

In the past, the forenamed binomial included almost all the entities of the section 

(Parlatore, 1857; Fiori, 1925) and this reflects the extreme morphological similarity 

within the group; in fact, interspecific distinction is often hard, as it is based upon 

quantitative and poorly discriminating traits. Moreover, several authors pointed out 

the existence of intermediates between some different species (see Table 2; Del 

Guacchio & Caputo, 2013). Such a situation typically occurs when dealing with groups 

in which hybridization and polyploidization is widespread (Rieseberg et al., 1993; Popp 

et al., 2005; Guo et al., 2008; Schmidt-Lebuhn et al., 2012). Hybrid nature of many 

entities is presumed (A. x jordanii Perrier & Songeon, 1855; A. x portae Peruzzi; 

Bernardo et al., 2010; Ehrendorfer, 1976); furthermore, various taxa exhibit 

tetraploidy or incostant ploidy (see Appendix A); karyotypes, however, are not 

available for the majority of the sect. Cynanchicae. Regardless, it is possible to note 

that inconstant ploidy marks the most widespread entities of the section (e.g., A. 

cynanchica and A. aristata), whereas diploid species tend to be narrowly endemic. 

Such a circumstance might be not a coincidence; in fact, the wider the distribution, the 
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larger the number of sympatric situations which could represents the basis for 

hybridization, and subsequent introgression, if reproductive barriers are weak.  

 Reticulation due to hybridization phenomena obscures to a certain extent 

phylogenetic reconstruction, as repeated crossing between lineages may determine 

the impossibility to outline a tree-like phylogeny (Erixon & Oxelmann, 2008; Willyard et 

al., 2009). Clues to reticulate evolution may appear as a conflict between different 

sources of data (molecular, biogeographic and morphologic) or, referring to molecular 

data, as conflicting topologies deriving from datasets of different markers (McDade, 

1992). At a topology level, in particular, signals of the occurrence of hybrid taxa are the 

increase of the homoplasy in the dataset, a decrease in resolution and, lastly, the 

evidence of non-monophyly of conspecific entities (Fuertes Aguilar & Feliner, 2003), 

although, other phenomena such as the retention of ancestral polymorphism (i.e. 

incomplete lineage sorting), may also reasonably explain some of the above 

mentioned difficulties (Avise 1994, 2000; Comes & Abbott, 2001; Schimdt-Lebuhn et 

al., 2012). 

 A good starting point to unravel relationships when hybridization is suspected is 

to follow the phylogenetic positions of the endemic and isolated taxa.  

 As previously said, some diploid entities are narrowly endemic taxa; Gutermann 

& Ehrendorfer (2000) illustrated an interesting biogeographic hypothesis about a 

group of endemic members of Asperula sect. Cynanchicae, whose geographic location 

is probably the relic distribution of a diploid common ancestor dating back to Pliocene. 

 The above mentioned hypothesis arises from the observation that several 

Mediterranean chasmophytes exhibit similar ecological behaviors: small, isolated and 

specialized populations confined in stable habitats, residual of a wider geographic 

range fragmented by geological rearrangements occurred during the late Tertiary. The 

group of species in question is informally known as “Palaeomediterraneae”, and 

comprehends: A. crassifolia L., A. deficiens Viv., A. paui Font Quer, A. garganica Huter, 

Porta & Rigo ex Ehrend. & Krendl, A. calabra (Fiori) Gavioli, A. borbasiana (Korica) 

Korica, A. naufraga Ehrend. & Gutermann, A. visianii Korica, A. staliana Vis. (and 

relative subspecies), A. woloszczakii Korica (Gutermann & Ehrendorfer, 2000; see 

Appendix A for ploidy data).  

 The authors conjecture that some of these are probably involved in the origin 
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of tetraploid taxa which, in turn, played a role in the speciation of polyploid entities; it 

is known, indeed, that diploid genome represents the raw material on which 

speciation via polyploidization operates (Rešetnik et al., 2014). 
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Table 2 – Literature reports of intermediate and hybrid forms (Ehrendorfer & Krendl, 1976; 
Ehrendorfer & Schönbeck-Temesy, 1982; Schönbeck-Temesy & Ehrendorfer, 1991; Bernardo et 
al., 2010; Greuter, 2012) 

Taxon Intermediates indication 

A. aristata Extremely polymorphic and polyploid, often transitional towards A. cynanchica 

A. beckiana Sometimes difficult to distinguish from A. wettsteinii 

A. cynanchica Very variable species with local races, transitional towards A. aristata, A. rupicola and A. rumelica 
A. diminuta 
A. graveolens 
A. littoralis 

Indicated as geographical vicariants connected by transitional forms 

A. lutea  
A. mungieri 
A. rigidula 

Previously indicated as subspecies of A. lutea, they are prone to form intermediate in the areas of 
contact; sometimes indicated as vicariant at different altitudes 

A. nitida Highly polymorphic species 

A. pulvinaris Intermediates with A. lutea and A. rigidula occur 

A. rumelica Very polymorphic species 

A. stricta Highly polymorphic species 

A. tenella Intermediates with A. rumelica have been observed 

A. x jordanii 
Hybrid between A. aristata subsp. oreophila and A. cynanchica. 
Difficult to distinguish from A. rupicola and A. cynanchica subsp. pyrenaica 

A. x portae Hybrid between A. calabra and A. aristata subsp. oreophila  
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Materials and methods 

Sampling  

 50 species of the total 65 belonging to Asperula sect. Cynanchicae were 

employed in the analyses (Appendix B). Several entities were collected in the field, but 

most frequently DNAs were extracted from herbarium material, which was routinely 

re-identified. Some Rubieae were included as outgroup, by virtue of the evidence 

shown in the work by Soza & Olmstead (2010): Didymaea alsinoides (Cham. & Schltdl.) 

Standl, as genus Didymaea together with Rubia was reported as the basal-most of the 

tribe Rubieae; Asperula purpurea belonging to sect. Thliphthisa and Sherardia arvensis, 

which appeared to be closer to the section Cynanchicae than other Asperula sections. 

 

Molecular methods 

 DNA extractions were carried out with the CTAB method (Doyle e Doyle, 1987) 

For herbarium material extraction, the DNA precipitation steps were modified; some 

precipitation steps were carried out in isopropanol at -20°C for three days, some 

others in ethanol 90% overnight, followed by purification using GENECLEAN® II Kit (MP 

Biomedicals). These procedures allowed the extraction and the subsequent 

amplification of material more than a hundred century old. 

 Several primers were tested in order to select variable markers. The chloroplast 

spacers ndhF-rpl32, psbA-trnH and the gene matK were discarded as essentially 

invariable; primers for the spacers trnS-trnG, trnQ-rps16, atpB-rbcL failed to amplify a 

specific product, as well as the primers for the LEAFY gene. The intron rps16 gave 

interesting and unusual results: in the first part of the sequence it was very variable, in 

the remaining part of the sequence it was almost invariable. The intron turned out to 

be useful for intraspecific identification of haplotypes (see Chapter 3). Nuclear markers 

5S-NTS and ETS failed to be sequenced efficiently, as a result of non-specific signals. At 

last, two chloroplast spacers (trnC-petN, petN-psbM) provided good results in terms of 

variability and were chosen for the investigation; in the nuclear DNA, I chose Internal 

Transcribed Spacers of the ribosomal DNA (ITS), traditionally employed for 

phylogenetic analyses (Baldwin, 1992; Baldwin et al., 1995; Kårehed, 2008). Primers 
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used are listed in Table 3. 

PCR amplifications were carried out in a final volume of di 25 μL, with a variable 

DNA concentration (2-10 ng), DreamTaq DNA Polymerase 1 U (Fermentas, Thermo 

Scientific), DreamTaq Buffer 1X, MgCl2 0.5-2.5 mM, dNTPs 0.2 mM, primers 0.5 μM, 

water to the final volume and the following PCR program: initial denaturation at 94° C 

for 3 minutes, 30 cycles of 94° C for 30”, annealing for 30” at a variable temperature 

(Table 3), 45”-1 minute of extension at 72° C, followed by 7 minutes of final extension. 

Thermo Scientific Phire Plant Kit was used for recalcitrant DNAs, with the following 

concentration: Phire Hot Start II DNA Polymerase 1U, 1X Phire Plant PCR Buffer, 

primers 0.5 μM and water to the final volume of 20 μL. PCR program was modified as 

follows: initial denaturation at 98°C for 1 minute, 35 cycles at 98°C for 1”, variable 

annealing temperature for 30” and extension at 72°C for 45”-1 minute; final extension 

at 72°C for 1 minute. 

PCR products were purified with PolyEthylene Glycol 8000 protocol 

(http://www.mcdb.lsa.umich.edu/labs/olsen/files/PCR.pdf). When necessary, ITS 

amplification products were cloned using the CloneJet PCR Cloning Kit (Fermentas, 

Thermo Scientific). 

 Sequencing was carried out using BigDye Terminator Cycle Sequencing Kit v3.1 

(Applied Biosystems, Life Technologies). Capillary electrophoresis was conducted on an 

ABI 3130 Genetic Analyzer (Applied Biosystems, Life Technologies). 

 Electropherograms were inspected in search of incorrect assignments using the 

software BioEdit v7.2.5 (Hall, 1999). When chromatograms showed an overlapping 

peak of two nucleotides, a standard IUPAC ambiguity code was assigned (Y for C-T; W 

for A-T; R for A-G; S for C-G; M for A-C; K for G-T) if the lower peak was at least one 

third of the highest one. Sequences were aligned with Mesquite v2.75 (Maddison & 

Maddison, 2011) using the Muscle option (Edgar, 2004). Alignments were inspected 

and manually edited. Gaps were generally treated as missing data except an indel 

found in the chloroplast matrix, which was coded as binary characters. 

  

http://www.mcdb.lsa.umich.edu/labs/olsen/files/PCR.pdf
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Table 3 – Primers used for amplifications 
Marker Primer pairs Tm 
ITS (Aceto et al., 1999) 

 
F:  5’ – GGA GAA GTC GTA ACA AGG TTT CCG – 3’ 
R: 5’ – CCA AAC AAC CCG ACT CGT AGA CAG C – 3’ 
Internal pair: 
F:  5’ – TTG CAG AAT CCC GTG AAC CAT CG – 3’ 
R: 5’ – ATC CTG CAA TTC ACA CCA AGT ATC G – 3’ 

65° C 
63° C 
 
65° C 
64° C 

trnC-petN (Shaw et al., 2005; 
Soza & Olmstead, 2010; 
modified) 

 

F:  5’ – CCA GTT CRA ATC YGG GTG – 3’ 
R: 5’ – CTC GTT CTA CAA TCA CGA TGT C – 3’  
Internal pair: 
F:  5’ – ATG GAT ATA GTA AGT CTY GCT TGG GC – 3’ 
R: 5’ – GCC CAA GCR AGA CTT ACT ATA TCC AT – 3’  

56° C 
60° C 
 
65° C 
65° C 

petN-psbM (Shaw et al., 2005; 
Soza & Olmstead, 2010; 
modified) 

F:  5’ – GACATCGTGATTGTAGAACGAG – 3’ 
R: 5’ – ATG GAA GTA AAT ATT CTY GCA TTT ATT GCT – 3’ 

60° C 
63° C 
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Phylogenetic methods 

 Phylogenetic reconstruction was carried out using different analytical 

approaches: maximum parsimony (Kluge & Farris, 1969; Farris, 1970; Fitch, 1971), 

maximum likelihood (Felsenstein, 1981) and Bayesian inference (Yang & Rannala, 

1997).  

 For inferring the model of evolution that best fit the data, chloroplast and 

nuclear matrices were analyzed with jModelTest v2.1.3 (Posada, 2008) using the 

Aikaike Information Criterion (AIC; Akaike, 1974). 

 Firstly, Bayesian analyses were carried out on each single dataset, employing 

the software MrBayes v3.2.1 (Huelsenbeck & Ronquist, 2001; Ronquist & Huelsenbeck, 

2003), using the default prior options for the analyses of each marker. MCMC sampling 

was performed with 2 runs and a Metropolis coupling of 4 chains (1 cold and 3 heated); 

sampling frequency was 1000 generations and a relative burnin of 25%. After a 

number of generations equal to 5x106, the average standard deviation of split 

frequencies was less than 0.005 for the nuclear matrix and slightly less than 0.01 for 

chloroplast dataset. Consequently, one million additional generations were carried out 

for the latter matrix. Convergence diagnostics was obtained with Tracer v1.5 (Rambaut 

& Drummond, 2009).  

 Subsequently MrBayes analysis was carried out specifying two distinct 

partitions for nuclear and chloroplast datasets, for 40x106 generations, with a number 

of runs equal to 4 and 4 chains per run. In this case the analyses were run using a 

parallel version of MrBayes on the SCOPE supercomputing GRID facility of the 

University of Naples Federico II, gratefully acknowledged here. Convergence was 

assessed with Tracer v1.5 (Rambaut & Drummond, 2009) and AWTY online 

(Wilgenbusch et al., 2004; Nylander et al., 2008). The latter, in particular allows to 

examine different runs with the functions: “compare”, “cumulative” and “var”. They 

compare, respectively, split frequencies between the runs, split cumulative 

frequencies for each run and tree divergence between and among the runs (symmetric 

tree-difference score; Penny & Hendy, 1985).  

 PAUP* v4.0 (Swofford, 2003) was employed for the maximum parsimony 

analysis. Analysis was executed using a stepwise addition algorithm, with 500 

bootstrap repeats and a TBR branch swapping.  
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 A maximum likelihood hypothesis was obtained with the software RAxML 

v7.2.6 (Stamatakis, 2006), with the rapid bootstrap algorithm which allows to draw 

supports on the topology that maximizes the likelihood (Stamatakis, 2008). The 

optimal number of replicates was automatically determined with the bootstopping 

criteria, which allows to establish when stable supports values are obtained 

(Pattengale et al., 2009), under the autoMRE option and the GTR model.  
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Divergence time estimation 

Bremer & Eriksson (2009) conducted a thorough divergence time estimation for 

the whole family of Rubiaceae, in which all tribe ages were estimated. Consequently, a 

secondary calibration was possible for the group of the present study; in particular the 

crown age of Rubieae provided the age of the tree.  

Unfortunately, no fossil record assigned with certainty to Asperula is available 

to date; Graham (2009) reported a fossil pollen from Miocene attributed to Galium, 

but employing it for fossil calibration s not without peril, as Galium is clearly non-

monophyletic (Ehrendorfer et al., 2005; Soza & Olmstead, 2010). 

The software Beast v1.8.0 (Drummond & Rambaut, 2007; Drummond et al., 

2012) was employed to estimate divergence times. The .xml input file was created 

using the Beauti v1.8.0 software, assuming the model of sequence evolution specified 

for the previous analyses (GTR and GTR+G), a lognormal relaxed clock (Lepage et al., 

2007; Kishino et al., 2001) and a Yule process of speciation (Yule, 1925). The crown age 

of Rubieae (18.1 Ma) was used as the prior for the height of the root, which was 

approximated to a normal distribution with a standard deviation equal to one; the 

analyses were run for 30 million generations. Convergence was checked examining the 

log file with Tracer v1.5 (Rambaut & Drummond, 2009); in particular, the ESS (Estimate 

Effective Sample Size) was considered satisfactory if it reached at least the value of 200 

for each parameter. The maximum clade credibility tree was prepared using 

TreeAnnotator v1.8.0, setting a “burnin” depending on the likelihood examination in 

Tracer.  

An additional analysis was set up to assess how the presence of ambiguities in 

the ITS matrix may affect divergence time estimation. In general, Bayesian Inference 

software do not take into account the ambiguities, i.e. the latter do not contribute to 

the likelihood estimation; Beast, however, allows attributing different priors. In 

particular, the .xml file was edited in the command <treeLikelihood id="treeLikelihood" 

useAmbiguities="false">, substituting the “false” with “true”.  

The Beast software only depicts fully resolved topologies, even for the clades 

with inconsistent posterior probabilities; the latter are obviously not considered when 

speculating about divergence time estimations. 
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Inference of the species tree 

A further Bayesian approach was used to estimate a species tree of Asperula 

sect. Cynanchicae. The option *Beast (Heled & Drummond, 2010), implemented in the 

Beast v1.8.0 software allows to deal with situation of incomplete lineage sorting, which 

is one of the source of incongruence between gene tree and species tree. This option, 

in fact, combines the multispecies coalescent model (Rannala & Yang, 2003) and a 

Markov chain Monte Carlo sampling to generate a species tree drawn from the 

analysis of the single gene trees, in this case referring to nrDNA and cpDNA.  

Several exploratory analyses were conducted for parameter tuning, in order to 

detect possible reductions in the ESS values due to over-parameterization. 

Consequently, the RootHeight priors used in the previous Beast analyses were 

removed and GTR model was switched to HKY to avoid the artificial extreme decreases 

of the ESS values of posteriors, priors and likelihood. Furthermore, setting a mean 

value for the lognormal relaxed molecular clock allowed avoiding negative branch 

lengths in the gene trees. In particular, ucld.mean was set to uniform with a range of 

5x10-4 to 5x10-2 substitutions per site per My for the ITS matrix and 1x10-4 to 1.0x10-2 

s/s/My for the chloroplast dataset. These rates largely contain the estimates for plants 

ITS rates (1.7-8.3x10-3 s/s/My; Kay et al., 2006) and chloroplast rates (1.0-3.0x10-3 

s/s/My; Wolfe et al, 1987).  

Six independent runs of 50 million generations each were run, with a sampling 

frequency of 1000 generations; resulting trees were combined with LogCombiner 

v1.8.0, decreasing the frequency of sampling to 2000, and then summarized in a 

maximum credibility tree with TreeAnnotator v1.8.0. 
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Ancestral state reconstruction 

As previously stated, it is difficult to identify discrete morphological characters 

that clearly discriminate among members of Asperula sect. Cynanchicae; in fact, most 

of the taxonomic keys are based upon quantitative characters (e.g., Ehrendorfer & 

Krendl, 1976) which are hardly adequate to sharply separate the taxa of the section. 

There is only one character that, albeit not discrete, behaves in a broad sense as a 

categorical trait: the length of corolla-tube with respect to the lobes. The state of this 

character for each member of Asperula sect. Cynanchicae is indicated in the Appendix 

C. Therefore, this distinction was used to operate an ancestral state reconstruction, as 

implemented in Mesquite v2.75 (Maddison & Maddison, 2011). The reconstruction 

was carried out under parsimony and maximum likelihood, using the Mk1 model 

(Lewis, 2001) for the latter framework, which attributes equally probable changes. The 

software needs a categorical file which specifies characters attribution and a topology 

with a good resolution (virtually complete); consequently, the maximum clade 

credibility tree deriving from the Beast analysis was used. 
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Results 

 Alignment length and characters information are summarized in Table 4. ITS 

sequences resulted rich in ambiguous sites, so they required a relevant time of editing. 

Some regions of the alignments were excluded: 5,8S gene, sites difficult to align and 

regions corresponding to the internal primers annealing. Homoplasy level of the ITS 

dataset (CI= 0.38) notably affected the concatenated analysis (Table 4). 

 The most adequate model for nuclear matrix resulted the General Time 

Reversible model (GTR; Lanave et al., 1984; Tavaré, 1986), whereas for the chloroplast 

data, the model emerged was GTR with gamma distributed rate variation among sites 

(GTR+G).  

 In MrBayes analysis, convergence diagnostics on the outputs allowed to discard 

25% of the samples.  

 

 

Table 4 – Alignments and parsimony information 
 # total analyzed 

characters  
# constant 
characters 

# parsimony 
informative characters 

CI (parsimony 
analysis) 

Tree length 
(parsimony analysis) 

ITS1-ITS2 620 451 69 0.38 335 
trnC-psbM 1234 1021 49 0.82 276 
Total matrix 
(indels included) 

1854 1490 118 0.40 625 
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Phylogenetic reconstruction 

 Bayesian inference revealed a poorly resolved topology for nuclear dataset, 

whereas chloroplast data gave better resolution; however topology was globally 

similar for both datasets (data not shown). When using the merged matrix, Bayesian 

approach produced the most resolved topology; maximum parsimony and maximum 

likelihood analyses provided an identical topology for the resolved clades but did not 

accomplish a satisfactory hypothesis of relationships in terms of global resolution. 

Bootstrap supports deriving from the aforesaid analyses are shown on the Bayesian 

phylogram Figure 1; for the geographical origin of the samples, see Appendix B.  

 Basal structure of the tree appears partly unresolved. Asperula bornmuelleri 

from Turkey seems to share only plesiomorphic states with the remaining part of sect. 

Cynanchicae, with a low posterior probability (0.55). A large basal politomy (Figure 1) 

encompasses predominantly Greek taxa, several of which are associated from a 

morphological point of view and are known to engender intermediate forms (Table 2). 

Interestingly, this politomy includes three of the four accessions of A. cynanchica 

analyzed in the study (sampled in Great Britain, Romania and Austria), and other non-

Greek species: A. rumelica, an extremely variable entity distributed in the Balkan 

countries, Turkey and Russia, A. pestalozzae from Turkey and, lastly, A. neilreichii and 

A. staliana subsp. arenaria, endemic of different locations of the Balkans. 

 In this collapse some sister group relationships and few partially resolved clades 

emerge. Sister group relationships involve: A. icarica and A lilaciflora subsp. runemarkii 

(PP 1), which populate west Aegean isles; Turkish elements A. affinis, A. woronowii, A. 

stricta s.l., A. nitida and A. tenuifolia constitute an unresolved clade, supported by a 

posterior probability of 0.9; ultimately, the clade composed by Russian taxa A. 

graveolens subsp. danilewskiana and A. diminuta (PP 1), which are allied to the sister 

species A. littoralis and A. tephrocarpa (respectively from Turkey and Russia; PP 0.65,) 

form the unstable sister group of Clade A (Figure 1). 

 Clade A is the most resolved group in the phylogram; A. supina and A. 

suffruticosa play an outgroup role (respectively with a PP of 0.9 and 1). The cluster 

groups members of A. aristata s.l. in different phylogenetic relationships: A. aristata 

subsp. aristata 8H is closer to the southern Italian endemic A. garganica, to A. calabra 

(PP 1) and to the putative hybrid A. x portae. Asperula aristata subsp. oreophila 131, 
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from central Apennines, is related to A. wettsteinii and A. rupicola, two Alpine species 

(PP 0.7). The subspecies A. aristata subsp. thessala and subsp. nestia, sampled on 

Mount Olympus (Greece), form a sister group (PP 0.8), giving evidence of being closer 

than the others intraspecific taxa of A. aristata. Other accessions of this species remain 

in uncertain position (Figure 1). 

 Clade A also includes several taxa of the informal “Palaeomediterraneae 

group”, in disparate and often collapsed positions (e.g., A. naufraga, A. crassifolia). 

Subclade 1 (PP 0.9) points out interesting connections concerning palaeo-endemic 

species A. deficiens, growing on the isle of Tavolara (Sardinia), A. paui, from Ibiza 

(Balearic Archipelago), and the Balkan assembly of A. staliana (except A. staliana 

subsp. arenaria), A. borbasiana, A. visianii, A. woloszczakii (PP 0.94). In this subclade, 

non-palaeo-endemic taxa are: the hypothetic hybrid A. x jordanii, A. cynanchica 128, 

from central Apennines, and A. neglecta, an endemic of the Gran Sasso massif 

(Apennines), which shares synapomorphies with A. staliana subspecies, A. visianii and 

A. borbasiana (PP 0.95). 
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Figure 1 – Total evidence phylogram; node values in black represent posterior probabilities, values in blue 
represent bootstrap supports (maximum likelihood analysis). Terminals in blue indicate the 
Palaeomediterraneae assemblage (sensu Gutermann & Ehrendorfer, 2000); red terminals are A. aristata 
accessions, whereas green terminals are A. cynanchica accessions. Colors in the map refer to the terminals.   
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Divergence time estimation 

The outputs of Beast analyses were checked for convergence in Tracer v1.5 

(Rambaut & Drummond, 2009); all parameters reached an ESS value greater than 200. 

Maximum clade credibility trees were summarized using a “burnin” value of 10%.  

The divergence time estimation yielded by Beast was reliable exclusively for 

some nodes of the chronogram, as posterior probabilities were generally low (Figure 2, 

Figure 3). 

The time of divergence of Asperula sect. Cynanchicae turned out to be 

approximately 8.5 mya, hence relatively recent with respect to the crown age of 

Rubieae (18.1 myr). Divergence ages are dating back to Pleistocene for almost all the 

supported terminal nodes. 

A comparison with the chronogram obtained after the treatment the 

ambiguities as indicated in Materials and Methods (Figure 3), reveals that the two 

approaches are essentially congruous: the time of divergence of the section 

Cynanchicae resulted the same, all the clusters which are simultaneously supported in 

both chronograms have approximately the same time of divergence and terminal 

nodes have a last common ancestor never more older than 2.5 My. Some clades are 

exclusively supported by one of the treatments and are accordingly absent in the other 

topology, e.g., the node separating A. bornmuelleri from the remaining taxa of the 

section (Figure 2, clades indicated by blue arrow), the node supporting the two main 

clades (Figure 3, clades indicated by blue arrow); however, the alternative clades that 

they constitute are not supported, so overlapping between the two topologies cannot 

be excluded. 

Another minor difference concerns the number of well supported nodes: 

ambiguities treatment yielded 18 supported nodes versus the 22 provided by the 

simple treatment.  

In terms of divergence times, it appears that the Turkish A. bornmuelleri 

diverged earlier than the remaining taxa of the section (8.5 mya, Figure 2). In Figure 3, 

the origin of sect. Cynanchicae begot the differentiation of two main clades, one 

predominantly composed by Turkish and Greek taxa and the other grouping taxa 

distributed in the western Mediterranean area and the Balkans.  
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Supported sister relationships are, in general, concordant with the framework 

outlined in Figure 1, except for the sister group relationship between A. suffruticosa 

and A. supina subsp. supina highlighted after the Beast analysis; they seem to have 

diverged about 2.5 mya.  

Sister species A. diminuta and A. graveolens subsp. danilewskiana are linked to 

the sister group made up by A. littoralis and A. tephrocarpa, from which they probably 

diverged more than 2.5 mya (Figure 2, Figure 3). Asperula icarica and A. lilaciflora 

subsp. runemarkii are, once again, close species diverged in the late Pleistocene. 

Politomy of Turkish taxa previously emerged from the Bayesian reconstruction 

(Figure 1) and composed by A. affinis, A. stricta s. l., A. tenuifolia, A. nitida subsp. 

nitida, A. woronowii diverged in the middle Pleistocene (Figure 2, Figure 3). 

The robust clade (PP 0.9 in both the chronograms) mainly containing the 

presumed Palaeo-endemism and Italian taxa (clade A, Figure 2, Figure 3), shows that 

the separation between the putative palaeo-endemic taxa A. calabra and A. garganica 

with respect to the remaining ones, had already occurred at the end of the Miocene 

(Figure 2, Figure 3), with a PP > 0.9 in both the chronograms. Latest divergence among 

palaeo-endemic taxa occurred from 2.5 mya: the Balkan group (except A. woloszczakii) 

diverged from a cluster composed by A. deficiens and A. paui and, indeed, A. 

woloszczakii. Asperula deficiens, A. paui and A. cynanchica (not belonging to the 

Palaeomediterraneae), in particular, seem the most recently diverged. Asperula 

borbasiana, A. visianii, A. neglecta (another non-palaeo-endemic) and A. staliana 

assemblage (except A. staliana subsp. arenaria), on the contrary, had their last 

common ancestor about 2 mya.  

Regarding infra-specific divergence, there are essentially three cases of deep 

divergence: 1) A. cynanchica taxa have their last (supported) common ancestor dating 

back to the Miocene, coinciding with the divergence time of the section; 2) the same 

circumstance is evident for A. staliana s.l., attributable especially to the disjoint 

position of A. staliana subsp. arenaria; 3) the A. aristata assemblage diverged about 

5.5 mya. 
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Figure 2 – Chronogram showing divergence time estimation for Asperula sect. Cynanchicae, based upon the 
ITS and trnC-psbM spacers merged dataset. The ambiguities are here treated as missing data. Nodes in 
evidence are supported by posterior probability values greater than 0.7.   

CLADE A 
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Figure 3 – Chronogram as in fig. 2, but with the treatment of ambiguities described in the text. Nodes in 
evidence are supported by posterior probability values greater than 0.7.   

CLADE A 
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Inference of the species tree 

Resulting log files from the *Beast analyses were inspected in order to assess 

that ESS> 200 was reached for all parameters. ITS and cpDNA trees are shown in Figure 

4. Positions of A. staliana subsp. arenaria and A. x jordanii are incongruent; A. staliana 

subsp. arenaria appears related to the other conspecific members exclusively in the ITS 

tree (PP 0.84), whereas it seems close to other taxa in the cpDNA tree. Asperula x 

jordanii is related to A. paui, A. deficiens and A. cynanchica 128 according to the ITS 

tree; chloroplast dataset reveals its connection with A. wettsteinii, A. rupicola and A. 

aristata subsp. oreophila 131. Anyway, ITS tree resolution is lacking and this obscures 

further contingent incongruences. 

*Beast analysis failed to generate a reliable species tree; the merger of trees 

obtained after the 6 separate analyses, in fact, did not provide posterior probabilities 

greater than 0.5. 
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Figure 4 – Cladograms showing “gene trees” obtained after the *Beast analysis. Terminals in colour indicate 
incongruent positions. Node numbers are posterior probability values. 
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Ancestral state reconstruction 

Corolla tube/lobe ratio shows a distribution which does not correspond to 

monophyletic units within the section, having homoplasiously varied several times 

within the inclusive group in study. Parsimony treatment as an unordered character 

(Figure 5) and likelihood estimation with Mk1 (Figure 6) gave similar pattern.  
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Figure 5 – Maximum credibility tree deriving from Bayesian estimation, displaying the parsimony 
ancestral reconstruction of the corolla tube/lobe ratio (see Appendix C), obtained using the 
Mesquite package.  
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Figure 6 – Maximum credibility tree deriving from Bayesian estimation, displaying the likelihood ancestral 
reconstruction of the corolla tube/lobe ratio (see Appendix C), obtained using the Mesquite package.   
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Discussion 

Approach to data analysis 

In the last decade, parsimony methods have been relegated to an exploratory 

role, due to the relative speed of this approach as compared to the time consuming 

Bayesian and maximum likelihood methods. The latter two represent, to date, the 

most complete method to retrace phylogenetic histories. In the present work, two 

different Bayesian software were employed and their outputs were compared.  

In the Beast software, the enormous flexibility in defining priors is a double-

edged sword, as doubtlessly it allows to obtain a very robust phylogenetic estimation, 

but only provided that biological process underlying the data are exhaustively known.  

Some authors suggest that the implementation of a relaxed molecular clock 

should be a normal routine in phylogenetics, not exclusively when the purpose is 

estimation of divergence (Drummond et al., 2006; Pybus, 2006; Wertheim et al. 2010). 

Moreover, applying the coalescent model (Rannala & Yang, 2003) offers the 

opportunity to detect biological processes, such as incomplete lineage sorting 

(obviously, unless other phenomena influencing coalescence – e.g., hybridization - are 

also at work) which cannot be detected with a common matrix concatenation method. 

(Kubatko & Degnan, 2007; Heled & Drummond, 2010; Degnan et al., 2012; Heled et al., 

2013).  

Last but not least, the Beast software allowed exploring different treatments of 

ambiguities. The presence of ambiguities was restricted to the nuclear matrix, implying 

biological phenomena which contrast the ordinary concerted evolution of ITS 

sequences. Treatment of ambiguities in the Beast software did not affect divergence 

time estimation to a large extent. At any rate this may depend on the biological 

process that originated these ambiguities, and cannot be extended to other situations 

of ambiguous nuclear matrices. 
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Phylogenetic hypothesis  

The first evidence shown by the phylogenetic exploration is the incomplete 

global resolution. Basically, shared apomorphies define some widely collapsed clades 

but, within them, it is rarely possible to detect further sinapomorphies diagnostic of 

dichotomous relationships. Conversely, several terminals exhibit apomorphies, often 

consisting in the indels of the cpDNA dataset. The ITS dataset has a quite low 

phylogenetic signal and this is probably the main reason of the failure of species tree 

reconstruction. 

For various entities, however, probably real separation has never occurred (for 

instance in the case of collapsed Greek and Turkish entities). Morphological diversity 

may be attributable to ecological adaptations (i.e. altitudinal) and conclusive 

divergence will possibly occur in the future. 

The second evidence is the presence of non-monophyletic specific 

assemblages, exemplified by the disjoint positions of various A. staliana subsp. 

arenaria and A. cynanchica accessions and particularly by the A. aristata assemblage. 

Subspecific members of the latter, in particular, have disparate phylogenetic positions 

in the trees and some of them have a very high divergence time as compared to the 

other species of Asperula sect. Cynanchicae. 

Non-monophyly of a species is a well-known phenomenon documented in 

recent works of molecular phylogeny (Fuertes Aguilar & Feliner, 2003; Syring et al., 

2007; Schmidt-Lebuhn et al., 2012) occurring when not all the entities assembled in a 

single species share molecular apomorphies. The reason of this intra-specific 

heterogeneity may be attributed to taxonomic inaccuracy (i.e. wrong attributions), 

incomplete lineage sorting (consisting into the differential persistence of ancestral 

polymorphic alleles) or hybridization and introgression (reticulate evolution; Wendel & 

Doyle, 1998). Unfortunately understanding which – or the combination of which – of 

the said processes is involved in the problem at hands is arduous (e.g., Doyle et al., 

1999; Sang & Zhong, 2000; Maureira-Butler et al., 2008); it is possible, however, to 

formulate a hypothesis on which may be the most probable among the alternative 

explanations.  
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Hybridization hypothesis 

It may be argued that non-monophyly of the species is due to the absence of 

reproductive isolation among members of Asperula sect. Cynanchicae. Evidences for 

this hypothesis are: 1) a geographical structure rather than a taxonomic structure in 

the phylogenetic tree, in particular for the most widespread entities (e.g., A. aristata, 

A. cynanchica), which are often in simpatry with other members of the section; 2) the 

well documented presence of intermediate phenotypes; 3) the variable and often 

polyploid chromosome numbers; 4) the large amount of ambiguities in the nuclear 

matrix, suggesting incomplete concerted evolution. 

A conceivable scenario might be the following: hybridization could account for 

the relatively little divergence, virtually absent in the taxa without molecular 

apomorphies; reduced divergence in this case depends upon the continuous gene flow 

between species and, consequently, upon the homogeneity from both a morphological 

and a molecular standpoint (collapsed clade with short branches). High levels of 

homoplasy, especially in the nuclear matrix, is probably related to partial concerted 

evolution: ribotypes are unambiguous in some species (perhaps plesiomorphic or 

apomorphic and already subject to concerted evolution) whereas are ambiguous in 

other taxa. Indeed these ambiguities do not allow reliable phylogenetic reconstruction, 

because of reticulation.  

Specific examples in which hybridization is highly probable include A. 

cynanchica and A. aristata. The propensity of some plant species to “capture” genomic 

portions of other species via hybridization and introgression has been object of several 

studies (Harlan & De Wet, 1963; Fuertes Aguilar et al., 1999; Fuertes Aguilar & Feliner, 

2003), and entities with such behaviour were defined “compilospecies” (from the Latin 

compilo). Asperula cynanchica and A. aristata, whose intermediate forms are often 

observed (e.g., Ehrendorfer & Krendl, 1976; Schönbeck-Temesy & Ehrendorfer, 1991), 

may very well be compilospecies. If this is the case, they might be responsible of some 

biodiversity decline among Asperula sect. Cynanchicae. After the climatic vicissitudes 

of the Quaternary, range expansion may have caused contact of these “genetically 

aggressive” species with schizo-endemics. In spite of their differentiation because of 

fragmentation (Thompson, 2005), the absence of reproductive barriers may have 

made the involved endemics prone to be robbed out of their genomic unicity. 
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A case in which introgression was presumed concerns Asperula x portae, whose 

chromosome number (2n=35) was attributed to a hybridization/introgression. 

Phylogenetic reconstruction locates it as sister group of one of the putative parental 

species, A. calabra (its position is confirmed in the cpDNA tree), but with no special 

connection to the other putative parent, A. aristata subsp. oreophila of the same 

region (ORE1). ITS tree does not contribute to cast light on the issue but, however, the 

cpDNA identity between A. calabra and A. x portae is strongly suggestive of 

hybridization.  

Asperula x jordanii was described as an intermediate between A. cynanchica 

and A. aristata subsp. oreophila of the Alps. This hypothesis cannot be either 

confirmed or excluded; in fact, cpDNA tree shows its affinity to A. aristata subsp. 

oreophila 131, A. wettsteinii and A. rupicola, whereas it appears close to A. paui, A. 

cynanchica 128 and A. deficiens in the ITS tree. 

In the Balkan assemblage of A. staliana, non-monophyly is attributable to the 

cpDNA of subspecies arenaria (Figure 4), which diverges from those of the other 

intraspecific taxa. ITS DNA of A. staliana subsp. arenaria, on the contrary, does not 

depart to a great extent from those of other conspecific individuals, regardless of the 

subspecies. As morphological evidence attests the cohesiveness of the A. staliana 

complex (and indeed, of all the Balkans palaeo-endemics), inaccurate taxonomy can be 

excluded.  

Asperula staliana subsp. arenaria may have arisen from a crossing of a male 

belonging to A. staliana and an unknown tetraploid female individual (all subspecies of 

A. staliana are tetraploid), followed by repeated backcrossing with a male member of 

A. staliana. This would explain both the presence of cpDNA extraneous to A. staliana 

s.l. and, at the same time, nuclear and morphological homogeneity of subsp. arenaria 

with the other subspecies of A. staliana. The identity of the hypothetical contributor to 

the maternal lineage cannot be ascertained, as A. staliana subsp. arenaria haplotype is 

present also in various other members of sect. Cynanchicae.  
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Lineage sorting hypothesis 

A second possible explanation for the non-monophyly of some species in sect. 

Cynanchicae may be the existence of incomplete lineage sorting (Pamilo & Nei, 1988; 

Maddison, 1997).  

According to the nuclear dataset, A. staliana subsp. arenaria may be 

assimilated to the A. staliana complex; consequently, the incomplete lineage sorting 

may more probably have involved cpDNA. A hypothesis may be the following: cpDNA 

was heterogeneous in the ancestral population of A. staliana, but only subspecies 

arenaria retained a different haplotype. The observation of the chloroplast dataset 

reveals that the incongruence of A. staliana subsp. arenaria is based on the whole 

cpDNA haplogroup, not only on a single haplotype. This haplogroup is almost identical 

to the one of the Eastern members of sect. Cynanchicae (Turkish, Russian and several 

Greek taxa), so an incomplete lineage sorting hypothesis would imply the existence of 

an ancestral, nearly panmictic population which included also the ancestor(s) of the 

Eastern members of sect. Cynanchicae. Moreover this would entail that, after 

speciation, this haplogroup remained almost unvaried in the two lineages, in spite of 

the fact that both ITS and morphological characters in the A. staliana group moved 

toward cohesiveness. 

Referring now to A. cynanchica and A. aristata, doubtlessly the existence of 

wide-distributed large population makes the incomplete lineage sorting hypothesis 

more probable (Nei & Kumar, 2000). In spite of this, the clear geographical structure in 

the non-monophyletic assemblage that they constitute conveys the impression that 

incomplete lineage sorting may be only a concomitant factor, but not the prevailing 

one: hybridization, in fact, seems more likely to be at the foundation of the lack of 

monophyly at species level in A. cynanchica and A. aristata. 
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Chapter 3 – Analysis of the endemic Asperula 
crassifolia L.: conservation and biogeographical 
implications 

 

Introduction 

Asperula crassifolia L. is a narrowly endemic species of southern Italy. To date, 

its distribution is circumscribed to three locations: the island of Capri, the Sirenusae 

archipelago (also known as Li Galli) and a locality in the southern part of the Sorrentine 

Peninsula (Nerano; Figure 7). The largest population of A. crassifolia is located in Capri, 

where it is distributed in different areas of the island, ranging from Mount Solaro (589 

m) to the sea level (Marina Piccola). In the first decades of ‘900 the botanist Guadagno 

discovered the population located in the Sirenusae archipelago (Guadagno, 1913); 

finally, in the eighties of the same century, Caputo et al. found the population located 

in the Sorrentine Peninsula (1989-90).  

The entity was firstly described in pre-Linnaean era by Boccone (1697) as 

Gallium totum villosum, supinum, folio retuso; later, it was formally described by 

Linnaeus (1767). Afterwards, A. crassifolia was indicated by Tenore as Asperula 

tomentosa Ten. (1811) but, subsequently, the identity of descriptions associated to the 

two names was repeatedly noted (e.g., De Candolle, 1830; Nyman, 1879); the latter 

name is now accepted as a synonym (Ehrendorfer & Krendl, 1976; Govaerts et al., 

2006). 

Asperula crassifolia is a dwarf shrub, woody at the base (suffrutescent 

chamaephyte) growing on calcareous rocks (Figure 8). It is prevailing on well-exposed 

slopes, but is also found on shady rocks. Every element of the plant is generally hairy. 

Cauline leaves are lanceolate or linear, coupled from the middle part of the stem 

upwards; the basalmost leaves are obovate and crowded; leaf margins are revolute. 

Inflorescence is pyramidal and partial inflorescences are capitate. Corolla is 

hypocrateriform and yellowish, with a tube 2-3 times longer than lobes (Ehrendorfer & 

Krendl, 1976; Ehrendorfer, 1982).  
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This species is reported as a Tyrrhenian palaeo-endemism (Ehrendorfer, 1982; 

Gutermann & Ehrendorfer, 2000), belonging to the informal “Palaeomediterraneae 

group”; in this perspective, A. crassifolia modern distribution may represent the relict 

distribution of a previous larger geographical range. Unfortunately no reliable 

divergence time estimation was obtained for this taxon (Figure 2, Figure 3), although it 

is likely that the most common ancestor lived during the late Tertiary, as asserted by 

Gutermann & Ehrendorfer (2000). Current distribution of A. crassifolia populations 

may derive from a vicariance event rather than a dispersion event, although the latter 

hypothesis cannot be excluded in principle. If vicariance is accepted, then the origin of 

A. crassifolia predates the definitive separation of Capri and Sirenusae from the 

Sorrentine Peninsula, dating back respectively 18,000 to 15,000 ya for the former and 

approximately 12,000 ya for the latter (Barattolo et al., 1992; Lambeck et al., 2004; 

Lambeck et al., 2011). 

Asperula crassifolia embodies a good model for evolutionary study within sect. 

Cynanchicae; in fact, vicariant populations might be assimilated to the disjunct 

endemisms typical of the section and, moreover, the species may epitomize an 

ancestor, at least for a fraction of the Cynanchicae group, as suggested by Gutermann 

& Ehrendorfer (2000) on account of its diploid status. Indeed, its palaeomediterranean 

distribution and its diploid chromosome number may suggest similarity to the 

patroendemic responsible for the origin of (some) tetraploid and polyploid taxa 

(Thompson, 2005). 

Apart from the evolutionary relevance, focus on A. crassifolia may have 

important conservational implications. The first step to adopt any conservation 

strategy, indeed, is the detailed assessment of the consistency and ecology of the 

populations of the involved species (Giam et al., 2011). The definition of endemism is 

not necessarily linked to rarity and vulnerability (Kruckeberg & Rabinowitz, 1985); 

abundance and habitat specificity are also important clues for considering a species as 

rare (Prober & Austin, 1990), whereas reproductive strategies, resilience and anthropic 

perturbations may also affect survival (Schemske et al., 1994).  

Some members of Asperula sect. Cynanchicae are already included in the Red 

List of Threatened plants (IUCN, 2001), whereas no status is currently provided for A. 

crassifolia. In particular, one member of the section, indicated as Vulnerable (VU), is A. 
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daphneola O.Schwarz. This entity is distributed in 5 localities of southern Greece, 

covering a total area of 2.5 km2 and a total number of individuals estimated in 

approximately 8000 (Gücel & Seçmen, 2009). An exhaustive study focusing on the 

pollination biology of this species demonstrated that autogamy is partially involved 

into the decline of the abundance for A. daphneola, to such an extent that the authors 

propose to change the IUCN category in Critically Endangered (CR; IUCN, 2001; Gücel & 

Seçmen, 2009). This proves that danger of extinction is not always strictly related to 

rarity. 

In order to elucidate the phylogeography of A. crassifolia and to outline the 

genetic structures of this entity, a population analysis has been undertaken, using both 

nuclear microsatellite fragments and cpDNA rps16 intron sequences. In addition, the 

abundance and the state of the habitat of A. crassifolia were assessed during the 

sampling procedure; this is mandatory to evaluate the level of risk (IUCN, 2001; 

Rodrigues et al., 2006) and to establish a possible status of protection (Rodrigues et al., 

2004). 
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Figure 7 – Asperula crassifolia distribution 

 

 

 

 

 

 

 

 

 

Figure 8 – Asperula crassifolia (right: detail of a partial inflorescence) 
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Material and methods 

Sampling  

Sampling was conducted during the flowering period of A. crassifolia; plants 

were searched in all the locations indicated in literature (e.g., Tenore, 1811; Guadagno 

1913; Ricciardi, 1996, Caputo et al., 1989-1990). In addition to field-collected plants, 

various historical herbarium specimens were also employed. In all cases, sampling was 

non-destructive. Collection and sample data are listed in Table 5 and Table 6. 

DNA extraction and SSR protocol 

Specific primers for Asperula are not available to date so the first effort was the 

isolation of repeated motifs suitable for primers construction.  

Isolation of microsatellites was conducted following the SSR-patchwork 

protocol (Di Maio & De Castro, 2013a). DNA was extracted from the sample K1 (Table 

5), with lysis in liquid nitrogen followed by CTAB method (Doyle & Doyle, 1990) 

including an RNase step. Two μg of genomic DNA were cut with restriction enzymes 

(MseI and EcoRI); the fragments of interest (ranging from 250 to 500 bp) were selected 

on 1% agarose gel, then purified using GENECLEAN® II Kit (MP Biomedicals). Adapters 

for the cut produced by the two restriction enzymes were prepared and ligated to the 

fragments; subsequently a first enrichment was performed, in which ligated fragments 

were amplified.  

The preparation of the biotinylated probe was carried out employing two 

motifs, GA12 e CAA10; probes were then hybridized to the products of the first 

enrichment. The isolation of the probe-product complex was operated using the 

Vetrex Avidin D (Vector Laboratories); afterwards, PCRs were performed for a second 

enrichment (for the PCR set-up, see Di Maio & De Castro, 2013a). 

PCR products were purified using PEG precipitation protocol 

(http://www.mcdb.lsa.umich.edu/labs/olsen/files/PCR.pdf) and cloned using the 

Thermo Scientific CloneJet PCR Cloning Kit. Colony PCR was performed in a final 

volume of 20 μL, using FIREPol DNA Polymerase 1 U (Solis BioDyne), Reaction Buffer B 

1X, MgCl2 2 mM, dNTPs 0.2 mM, primers 0.25 μM, and water to final volume.  

http://www.mcdb.lsa.umich.edu/labs/olsen/files/PCR.pdf
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Sequencing was carried out using BigDye Terminator Cycle Sequencing Kit v3.1 

(Applied Biosystems, Life Technologies), with the following thermocycler program: 25 

cycles of 96° C for 10”, 50° C for 5”, 60° C for 4 minutes. Capillary electrophoresis was 

conducted on an ABI 3130 Genetic Analyzer (Applied Biosystems, Life Technologies), 

after an EDTA-Sodium Acetate purification step of the sequencing products. 
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Table 5 – Sampling details 
Sample Location Sample Location 

S1 Capri - Monte Solaro G6 Gallo Lungo  
S2 Capri - Monte Solaro G7 Gallo Lungo  
S3 Capri - Monte Solaro G8 Gallo Lungo 
S4 Capri - Monte Solaro G9 Gallo Lungo  
S5 Capri - Monte Solaro G10 Gallo Lungo  
T1 Capri - Via Tragara N1 Nerano 
T2 Capri - Via Tragara N2 Nerano 
T3 Capri - Via Tragara N3 Nerano 
T4 Capri - Via Tragara N4 Nerano 
K1 Capri - Via Krupp N5 Nerano 
K2 Capri - Via Krupp N6 Nerano 
K3 Capri - Via Krupp N7 Nerano 
K4 Capri - Via Krupp N8 Nerano 
K5 Capri - Via Krupp N9 Nerano 
K6 Capri - Via Krupp N10 Nerano 
K7 Capri - Via Krupp N11 Nerano 
K8 Capri - Via Krupp N12 Nerano 
K9 Capri - Via Krupp N13 Nerano 

K10 Capri - Via Krupp N14 Nerano 
G1 Gallo Lungo  N15 Nerano 
G2 Gallo Lungo  N16 Nerano 
G3 Gallo Lungo  N17 Nerano 
G4 Gallo Lungo  N18 Nerano 
G5 Gallo Lungo N19 Nerano 

 

Table 6 – A. crassifolia herbarium specimens 
Herbarium specimens Label indications 
PAS1 (herbarium Pasquale NAP) “Scala di Anacapri” – 1868 
PAS2 (herbarium Pasquale NAP) “Scala di Anacapri” – 1868 
GUS1 (herbarium Gussone NAP) “Rupi di Capri” – 1808 
GUS3 (herbarium Gussone NAP) “Rupi di Capri” – 1808 
GUS5 (herbarium Gussone NAP) “Capri” – 1808 
BOR1 (herbarium Bornmueller B) “In rupibus insulae Caprearum” – 1901 
BOR2 (herbarium Bornmueller B) “Capri: Anacapri, ad rupes verticales” – 1933 
BOR3 (herbarium Bornmueller B) “Capri: ad Marina Piccola, in rupibus umbrosis” – 1933 
BAS (herbarium Baschant B) “Capri” – 1930 
GUA (herbarium Guadagno B) “Rupi. Isola di Capri” 1900 (approx.) 
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The rps16 intron  

The rps16 intron was amplified for each sample, using the primers rpsF (5'-GTG 

GTA GAA AGC AAC GTG CGA CTT-3') and rpsR2 (5'-TCG GGA TCG AAC ATC AAT TGC 

AAC-3') by Oxelman (1997), and an internal reverse primer designed ad hoc for 

Asperula (Asp-rpsRI: 5’-CCG GCA ATT AGT GAG ACG GTG-3’).  

Alignment of rps16 intron sequences were conducted with Muscle (Edgar, 

2004) as implemented in Mesquite v2.75 (Maddison & Maddison, 2011). The rps16 

haplotypes were inferred by the observation of the aligned sequences; indels were 

treated as point mutations (i.e., single-step events). A. parsimony-based phylogenetic 

network was constructed with TCS v1.21 (Clement et al., 2000). The outgroup was 

chosen on the basis of the observation of the haplotypes in related species: various 

members of the section Cynanchicae from Southern Italy (i.e. A. lactea, A. calabra, 

etc.) and especially the geographically close A. aristata subsp. aristata 8H from 

Sorrentine Peninsula (Mount Faito). 
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Results 

Habitat observation 

The habitat at Nerano is extremely deteriorated, surrounded by cliffs protected 

by containment nets and by dry stone walls. The populations in Capri are located 

mostly along tourists’ paths. The most undisturbed population is the one at Sirenusae: 

the Gallo Lungo Island, on which sampling was conducted, is in fact privately owned. 

 

 

Primer design 

Electropherograms were inspected and edited using BioEdit v7.2.5 (Hall, 1999). 

This step is crucial in order to design primers correctly, as it is essential to remove the 

part of the sequence which belongs to the cloning vector and the part belonging to the 

restriction enzyme adaptors (which occasionally can be found interspersed in the 

sequence and not necessarily at the ends).  

Approximately 150 clones were screened; the majority of them showed the 

same sequence, others gave sequences not suitable for primer constructions and 

others again provided no repeated motif. Isolated microsatellites are shown in Table 7. 
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Table 7 – Isolated repeats for A. crassifolia 
  SSR repeats 

Clone 1 (AG)5 

Clone 2 (AG)18 

Clone 3 (GA)4(AG)5(AG)4 

Clone 4 (GA)15(AG)6 

Clone 5 (GA)9 

Clone 6 (GA)26 

Clone 7 (GA)3(GAGG)3 

Clone 8 (GA)24GT(GA)10 

Clone 9 (AG)10 

Clone 10 (AG)4(GA)8 

Clone 11 (GAAA)2(GA)4(GAAA)4 

Clone 12 (AG)15C(GA)5A(GA)10 

Clone 13 (CT)28 

Clone 14 (TCC)5 

Clone 15 (AG)3(GT)4(CT)5 

Clone 16 (CT)20 

Clone 17 (CT)6C(CT)9 

Clone 18 (GA)10 

Clone 19 (TC)13 

Clone 20 (TC)63AAATATT(CT)4A(TC)7C(CT)11(AT)8 

Clone 21 (AG)7 

Clone 22 (AG)4(GT)4(CT)20 

Clone 23 (AG)3TG(GA)4(GT)4A(GT)3GA(GT)3 

Clone 24 (AG)6 

Clone 25 (AG)8AA(AG)12 

Clone 26 (CT)9(TC)4 

Clone 27 (TC)19 

Clone 28 (CT)6 
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(continued) 
  SSR repeat 

Clone 29  (GTT)5(GGTTT)3G(GTT)3GTA(GGTTT)3 

Clone 30  (GTT)4 

Clone 31  (TGG)5 

Clone 32  (GT)5(TG)4(GT)3 

Clone 33  (GTT)4 

Clone 34 (AG)4(GT)9 

Clone 35 (TGG)5 

Clone 36 (GTT)3(AG)3 
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The rps16 intron 

The observation of the rps16 sequences in closely related species allowed to 

determine the putative ancestral haplotype, that was invariant in the chosen 

outgroup. 

The rps16 intron is highly variable in the first part of the sequence, which 

includes indels; four haplotypes were globally detected (Appendix D). Populations of 

Nerano and Sirenusae share the same haplotype, whereas populations of Capri show 

all the detected haplotypes. Network is shown in Figure 9: the most represented 

haplotype is that indicated with A, found in 52% of the entities sampled; then 

haplotype C, which coincides with the ancestral one and is present in the 27% of the 

individuals. Haplotype B has a percentage of 19%; haplotype D is the least represented 

(2%), being present in one single accession. 

The hot spot of A. crassifolia diversity turned out to be the island of Capri. In 

particular, 3 of the 4 haplotypes (B, C, D) were observed in recently sampled 

accessions; haplotype A belongs to an historical herbarium specimen (PAS2; Table 6). 

The label of this specimen indicates “Scala di Anacapri”, a location in which, 

unfortunately, no accession was found recently. The A haplotype is the only haplotype 

found in Nerano and Sirenusae as well. 
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Figure 9 – The network displaying the haplotypes detected in the populations of A. crassifolia. Below: 
geographical distribution of haplotypes. Coloured areas are proportional to the number of individuals. 
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Discussion 

Biogeographic hypothesis 

Asperula crassifolia represents a rare and endemic species whose peak of 

variability was recorded for the Isle of Capri. Hypothesis on its origin may be 

reconstructed in two different ways. 

It may be argued that A. crassifolia originated on the mainland during the late 

Tertiary, as generally indicated in Chapter 2; the original population split on the nearby 

islands (Capri and Sirenusae) as a consequence of the eustatic oscillations occurred 

during the Quaternary. This scenario need further assumptions to justify the reason of 

the greater variability recorded for Capri population. In this context, Nerano 

population may really be the residual of a previous larger distribution on the mainland, 

and a bottleneck led to the persistence of a unique haplotype in Nerano; in this 

perspective, the existence of the same haplotype in Sirenusae may be ascribed to the 

connection of these little islands to the mainland or to a dispersion event occurred 

after separation, approximately 12,000 ya (later than the estimated separation of 

Capri; Barattolo et al., 1992; Lambeck et al., 2004; Lambeck et al., 2011). The variability 

for the Island of Capri might be depending on ancient polymorphism, but may also be 

the result of outcrossing with the sympatric A. aristata subsp. aristata (Ricciardi, 1996). 

Unfortunately, individuals belonging to the foresaid species were not found (albeit 

repeatedly searched) during the sampling. 

A second possibility to justify the results shown here is that A. crassifolia 

originated in Capri, where the genetic variability is highest, and subsequent events of 

vicariance or dispersion towards Nerano and Sirenusae. However, not even in this case 

possible outcrossing with the sympatric A. aristata may be ruled out. 
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Proposed IUCN conservation category  

The habitat inspection revealed that, albeit A. crassifolia is not in a forthcoming 

danger, there are several reasons for which the species should be considered 

vulnerable. Unfortunately, no precise estimation of the relative abundance of each 

population was possible, as the specie grows on rocky slopes not easy to monitor. 

Consequently data concerning the risk of decline are lacking as well.  

Populations of Nerano and Capri, the latter in particular, are exposed to 

anthropogenic impact (tourism); moreover, Nerano belongs to a regional park, but 

safeguards are not guaranteed. The habitat of A. crassifolia, in fact, is surrounded by 

cultivations and dry stone walls covered with containing nets. Population of Sirenusae 

is probably the least threatened, as two of the three isles are inaccessible and the 

largest one is a private estate.  

On the basis of observations, A. crassifolia should be considered as Vulnerable 

(VU), and in particular it should be attributed to the VU-D2 category (IUCN, 2001). In 

fact, a taxon qualifies for this category if the area of occupancy is very restricted 

(typically less than 20 km2, although the numerical threshold is not intended to be 

interpreted strictly), or the taxon exists at typically five or fewer locations. Moreover, a 

necessary requisite to be included in this category is the plausibility of a stochastic 

event (anthropogenic or natural) which leads to make the taxon Critically Endangered 

or even Extinct within one or two generations after the event (IUCN, 2013). Tourism in 

Capri and downfall of boulders in Nerano (where, furthermore, nearby cultivations are 

present) constitute serious threats to A. crassifolia individuals. 

  



  

55 

General conclusions 

Phylogeny of Asperula sect. Cynanchicae appears as a mixture of different 

evolutionary histories, in terms of distributions, ecological needs and interactions with 

allied species; on account of this, it is impossible to seek an univocal evolutionary 

explanation without examining each species at population level. 

The failure of species tree reconstruction and, to a genetic level, the extensive 

failure of complete concerted evolution leads to the conclusion that recent 

hybridization is the predominant force affecting the evolution of Asperula sect. 

Cynanchicae. Probably hybridization has periodically occurred during the whole 

Quaternary as a consequence of repeated range expansions and contractions, 

contributing to entangle relationships to such an extent as to compromise a reliable 

tree-like phylogeny. In addition, possible further subtle events of reticulation may be 

concealed, due to the lack of molecular resolution. 

Besides hybridization, probably many species of the section are not sharply 

differentiated, as corroborated by the absence of clear morphological synapomorphies 

(Schmidt-Lebuhn et al., 2012) 

Another important evidence arisen from the study is that using single 

accessions of widely distributed taxa may be extremely misleading for phylogenetic 

reconstruction, as shown for other organisms (Comes & Abbott, 2001; Spinks et al., 

2013). This is due to the possible occurrence of different selective pressures or other 

biological phenomena which may have differentially affected individuals of the same 

species. 

Asperula crassifolia embodies an emblematic example for section Cynanchicae; 

population-level analysis disclosed an unexpected variability. If we extend the 

peculiarity of rps16 intron to the whole genome, the populations of Nerano and 

Sirenusae represent an evolutionary unicum and, as such, they deserve safeguards.  
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Appendix A – Members of Asperula sect. Cynanchicae 
(DC.) Boiss. 
From Govaerts, 2006; Ehrendorfer & Krendl, 1976; Ehrendorfer, 1982; Schönbeck-Temesy & 
Ehrendorfer, 1991; Peruzzi et al. 2004; Bernardo et al., 2010; Gutermann & Ehrendorfer, 2000; 
Ehrendorfer, 2005; Brullo et al., 2009; Gücel & Seçmen, 2009; Caputo & Del Guacchio, 2013.  

Species Author Distribution Ploidy 

Asperula abchasica V.I. Krecz. Caucasus  
Asperula abbreviata (Halàcsy) Rech. f. Greece (Cyclades: Naxos, Amorgos)  
Asperula affinis Boiss. & A.Huet Turkey  
Asperula aristata L.f.   
     subsp. aristata  S Europe, France and N-W Balkans Variable: x= 10-11 
     subsp. condensata (Heldr. ex Boiss.) Ehrend. & Krendl W-C Balkan Peninsula Diploid: 2n=20 
     subsp. nestia (Rech. f.) Ehrend. & Krendl N Greece; S Bulgaria Tetraploid: 2n=40 
     subsp. oreophila (Briq.) Hayek S Alps, E. Pyrenees, Apennines Variable: x= 10-11 
     subsp. thessala (Boiss. & Heldr.) Hayek E Greece  Tetraploid: 2n=44 
Asperula beckiana Degen Croatia, Slovenia, Bosnia (Dynaric Alps)  
Asperula boissieri Heldr. ex Boiss. Greece (Mount Kyllini) Diploid: 2n=22 
Asperula borbasiana (Korica) Korica Croatia (Krk) Tetraploid: 2n=40 
Asperula bornmuelleri Velen. ex Bornm. C Turkey  
Asperula brachyphylla Trigas & Iatroù Greece (Euboea)  
Asperula bryoides Stapf Turkey  
Asperula calabra (Fiori) Gavioli Italy (southern Apennines) Tetraploid: 2n=40 
Asperula capitellata Hausskn. & Bornm. Turkey  
Asperula crassifolia L. Italy (Isle of Capri, Sorrentine Peninsula, 

Sirenusae isles) 
Diploid: 2n=20 

Asperula cretacea Willd. ex Roem. & Schult. Krimea  
Asperula cynanchica L.   
     subsp. cynanchica  Europe up to GB e EIRE (except Portugal, 

Corsica, Czech Republic and Slovakia) 
Variable: x=10-11 

     subsp. occidentalis (Rouy) Stace N Spain; S-W France; S-W Great Britain; 
Ireland 

 

     subsp. pyrenaica (L.) Nyman France, Spain (Pyrenees)  
Asperula daphneola O. Schwarz Turkey (Nif Mountain - Kemalpaşa)  
Asperula deficiens Viv. Sardinia (Tavolara) Diploid: 2n=20 
Asperula diminuta Klokov S Russia to Caucasus  
Asperula garganica Huter, Porta & Rigo ex Ehrend & 

Krendl 
Italy (Mount Gargano) Diploid: 2n=20 

Asperula graveolens M.Bieb. ex Schult. & Schult.f.   
     subsp. 
danilewskiana 

(Basiner) Pjatunina SE Russia to C Asia  

     subsp. graveolens  E Bulgaria, E Romania, Russia  
     subsp. 
leiograveolens 

(Popov & Chrshan.) Pjatunina C Ukraine  

Asperula glareosa Ehrend. Lebanon, S Turkey  
Asperula gussonei Boiss. N Sicily (Madonie)  
Asperula icarica Ehrend. & Schönb.-Tem. Greece (Icaria)  
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(continued) 
Species Author Distribution Ploidy 

Asperula idaea Halàcsy Greece (Crete) Tetraploid: 2n=44 
Asperula inopinata Schönb.-Tem. Iraq  

Asperula x jordanii E.P. Perrier & Songeon Alps, Pyrenees  
Asperula lactea (Porta) Brullo, Gargano, N.G.Passal. 

& Peruzzi 
SW Italy (Calabria) Tetraploid: 2n=40 

Asperula lilaciflora Boiss.   
     subsp. coa (Rech. f.) Ehrend. Greece (Kos isle)   
     subsp. lilaciflora  Turkey  
     subsp. mutensis Schönb.-Tem. S Turkey (Içel)  
     subsp. phrygia (Bornm.) Schönb.-Tem. W Turkey  
     subsp. runemarkii Ehrend. & Schönb.-Tem. Turkey (Aegean isles)  
Asperula littoralis Sm. NW-SW Turkey  
Asperula lutea Sm.   
     subsp. euboea Ehrend. Greece (Euboea)  
     subsp. griseola Greuter Greece  
     subsp. lutea   SC Greece  
Asperula lycia Stapf SW Turkey  
Asperula malevonensis Ehrend. & Schönb.-Tem. Greece  
Asperula mungieri Boiss. & Heldr. S Greece  
Asperula naufraga Ehrend. & Gutermann Greece (Zakynthos) Diploid: 2n=20 
Asperula neglecta Guss. Central Apennines(Abruzzo, Italy)  
Asperula neilreichii Beck NE Alps Diploid: 2n=20 
Asperula nitida  Sm.   
     subsp. hirtella (Boiss.) Ehrend.  W & C Turkey  
     subsp. mytilinica Ehrend. Greece (Lesbos)  
     subsp. nitida  NW Turkey (Olympus Bithynicus)  
     subsp. subcapitellata Ehrend. N Turkey  
Asperula oetaea (Boiss.) Heldr. ex Halácsy S Greece  
Asperula ophiolithica Ehrend.  Greece (NW Euboea)  
Asperula paui    
     subsp. paui Font Quer Balearic islands Diploid: 2n=22 
     subsp.dianensis (Font Quer) De la Torre, Alcaraz & 

M.B. Crespo 
Spain (Alicante)  

Asperula peloritana C.Brullo, Brullo, Giusso & Scuderi NE Sicily  
Asperula pestalozzae Boiss. N & C Turkey  
Asperula pinifolia (Boiss.) Heldr. ex Ehrend. & 

Schonb.-Tem. 
Greece  

Asperula pontica Boiss. N Turkey to W Transcaucasus  
Asperula x portae Peruzzi Southern Apennines (Calabria, Italy) 2n=35 
Asperula pulvinaris Heldr. ex Boiss. S Greece Tetraploid: 2n=44 
Asperula pumila Moris Sardinia (Oliena)  
Asperula rigidula (Halácsy) Halácsy SE Greece (including Euboea) Tetraploid: 2n=44 
Asperula rumelica Boiss. SE & E Europe to NW Turkey  
Asperula rupicola Jord. SW Alps  
Asperula samia D.H.Christ & Goeriadis Aegean islands (Samos)  
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(continued) 
Species Author Distribution Ploidy 

Asperula sintenisii Asch. ex Bornm. Turkey  
Asperula staliana Vis.  Tetraploid: 2n=40 
     subsp. arenaria  Korica Biševo (Croatia)  
     subsp. diomedea Korica, Lausi & Ehrend. Tremiti isles (Adriatic sea, Italy)  
     subsp. issaea Korica Vis (Croatia)  
     subsp. staliana  Biševo (Croatia)  
Asperula stricta Boiss.   
     subsp. elmaniensis Schönb.-Tem. SW Turkey  
     subsp. grandiflora Schönb.-Tem. S Turkey  
     subsp. latibracteata (Boiss.) Ehrend. C & SE Turkey  
     subsp. monticola Ehrend. SW Turkey  
     subsp. stricta  S Turkey to Lebanon  
Asperula suberosa Sm. N Greece, SW Bulgaria Tetraploid: 2n=44 
Asperula suffruticosa Boiss. & Heldr. Greece (C Euboea)  
Asperula supina M. Bieb.   
     subsp. supina  Russia to Caucasus Diploid: 2n=20 
     subsp. caespitans (Juz.) Pjatunina Krimea  
Asperula tenella Heuff. ex Degen Ungary, Bulgaria, Greece, Russia, Turkey  
Asperula tenuifolia Boiss. Eastern Aegean Islands to SW Turkey  
Asperula tephrocarpa Czern. ex Popov & Chrshan. E Ukraine to Russia  
Asperula visianii Korica Svetac (Croatia) Tetraploid: 2n=40 
Asperula wettsteinii Adamovic Bosnia, Montenegro (Dynaric Alps)  
Asperula woloszczakii Korica Croatia (Kvarner isles) Diploid: 2n=40 
Asperula woronowii V.I.Krecz. NE Turkey  
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Appendix B: accessions analyzed 
Accession Specimen origin Geographical information 

Didymaea alsinoides 259233557; FJ695442.1 
288190803; GU357441.1 

Central America 

Sherardia arvensis Sampled in this study Southern Italy 
Asperula purpurea Herbarium of E. Del Guacchio Southern Italy 
Asperula abbreviata UPA Naxos (Cyclades, Greece) 
Asperula affinis G Gümüşhane (Northern Turkey) 
Asperula aristata subsp. aristata 2H Herbarium of E. Del Guacchio Potenza (Southern Italy)  
Asperula aristata subsp. aristata 8H Herbarium of E. Del Guacchio Mount Faito (Southern Italy) 
Asperula aristata subsp. condensata CP Mount Kerkini (or Belasica; 

Greece)  
Asperula aristata subsp. nestia CP Mount Olympus (Greece) 
Asperula aristata subsp. oreophila 
131 

Sampled in this study Scanno (Central Apennines, 
Italy) 

Asperula aristata subsp. oreophila 
ORE1 

Herbarium of E. Del Guacchio Serra Dolcedorme (Southern 
Apennines, Italy) 

Asperula aristata subsp. oreophila 
TRM11 

Herbarium of E. Del Guacchio Mount Terminio (Southern 
Apennines, Italy) 

Asperula aristata subsp. thessala CP Mount Olympus (Greece) 
Asperula beckiana CP Velebit (Croatia) 
Asperula boissieri  B Giona Massif (Greece) 
Asperula borbasiana  NAP Krk (Croatia) 
Asperula bornmuelleri G Kastamonu (Northern Turkey) 
Asperula calabra  Herbarium of E. Del Guacchio Serra Dolcedorme (Southern 

Apennines, Italy) 
Asperula crassifolia K1 Sampled in this study Capri (Southern Italy) 
Asperula crassifolia N2 Sampled in this study Nerano (Southern Italy) 
Asperula cynanchica 128 Sampled in this study Gran Sasso-La Madonnina 

(Central Apennines, Italy) 
Asperula cynanchica Cyn3 CP Transylvania 
Asperula cynanchica Cyn5 CP  England 
Asperula cynanchica Cyn7 CP  Austria 
Asperula deficiens FI Tavolara isle (Sardinia) 
Asperula diminuta CP Dagestan 
Asperula garganica Herbarium of R.P. Wagensommer Mount S. Angelo (Puglia, 

Southern Italy) 
Asperula graveolens subsp. 
danilewskiana 

CP Kazakhstan 

Asperula gussonei CAT (Madonie massif) Sicily 
Asperula icarica  G Icaria (Greece) 
Asperula idaea  CP Crete 
Asperula lactea  CLU Mount Consolino (Southern 

Italy) 
Asperula lilaciflora subsp. 
runemarkii 

UPA Chios (Greece) 

Asperula littoralis  B Istanbul (Turkey) 
Asperula lutea s.l. CP Mount Parnassos (Greece) 
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(continued) 
Accession Specimen origin Geographical information 

Asperula lutea subsp. lutea CP Peloponnese (Achaea, Greece) 
Asperula mungieri L Mount Taygetus (Greece) 
Asperula naufraga  NAP Zakynthos (Greece) 
Asperula neglecta 132 Cult. Hort. CRFA acc. n°488/11 (legit F. 

Bartolucci, N. Ranalli) 
Vado di Corno (Central 
Apennines, Italy) 

Asperula neglecta AN1 Sampled in this study Campo Imperatore (Central 
Apennines, Italy) 

Asperula neilreichii  L Raxalpe (Austria) 
Asperula nitida subsp. nitida L Mount Ulu Dagh (Turkey) 
Asperula oetaea  CP Peloponnese (Achaea, Greece) 
Asperula ophiolithica  ACA Euboea (Greece) 
Asperula paui subsp. paui B Ibiza (Balearic Islands) 
Asperula peloritana  CAT Mount Scuderi (Sicily) 
Asperula pestalozzae E (http://data.rbge.org.uk/herb/E00639182) Turkey 
Asperula pinifolia UPA Mount Tymfristos (central 

Greece) 
Asperula pulvinaris  UPA Mount Pateras (Greece) 
Asperula pumila  FI Sopramonte d’Oliena (Sardinia) 
Asperula rigidula CP Peloponnese (Greece) 
Asperula rumelica Mustafa Kemal University Hatay (Southern Turkey) 
Asperula rupicola  L Alps (France) 
Asperula sp.* ACA Mount Ochi (Euboea Greece) 
Asperula staliana subsp. arenaria  B Biševo (Croatia) 
Asperula staliana subsp. diomedea  Herbarium of E. Del Guacchio San Nicola, Isole Tremiti (Italy) 
Asperula staliana subsp. issaea  B Vis (Croatia) 
Asperula staliana subsp. staliana B Biševo (Croatia) 
Asperula stricta subsp. grandiflora E (http://data.rbge.org.uk/herb/E00639181) Turkey 
Asperula stricta subsp. latibracteata E (http://data.rbge.org.uk/herb/E00270784) Turkey 
Asperula suberosa  CP Mount Athos (Greece) 
Asperula suffruticosa  ACA Mount Dirphis (Euboea, 

Greece) 
Asperula supina subsp. supina MWG  Krasnodar(Russia) 
Asperula tenuifolia E (http://data.rbge.org.uk/herb/E00639174) Turkey 
Asperula tephrocarpa B Saratov (Russia) 
Asperula visianii  NAP Svetac (Croatia) 
Asperula wettsteinii  G Dinaric Alps (Serbia-

Montenegro) 
Asperula woloszczakii  NAP Krk (Croatia) 
Asperula woronowii E (http://data.rbge.org.uk/herb/E00639173) Turkey 
Asperula x jordanii   CP Alps (France) 
Asperula x portae Herbarium of E. Del Guacchio Serra Dolcedorme (Southern 

Apennines, Italy) 
*this specimen has been left unidentified after multiple attempts by various botanists; 
it is probably related to A. rigidula (Dr. Panayiotis Trigas, Pers. Comm.). 

 

http://data.rbge.org.uk/herb/E00639182
http://data.rbge.org.uk/herb/E00639181
http://data.rbge.org.uk/herb/E00270784
http://data.rbge.org.uk/herb/E00639174
http://data.rbge.org.uk/herb/E00639173
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Appendix C: corolla tube/lobes ratio 
Character states of corolla tube/lobes ratio in Asperula sect. Cynanchicae; scoring is as follows: 

• 0: corolla tube 2-5 times as long as lobes; 
• 1: corolla tube shorter than lobes (only for the outgroup A. purpurea); 
• 2: corolla tube 1-2 times as long as lobes; 

Didymaea alsinoides has a corolla which is not comparable with those of Asperula, so it was 
scored as not applicable; (Ehrendorfer & Krendl, 1976; Ehrendorfer, 1982; Schönbeck-Temesy 
& Ehrendorfer, 1991; Bernardo et al., 2010; Gutermann & Ehrendorfer, 2000; Ehrendorfer, 
2005; Brullo et al., 2009). 
Taxa Corolla tube 

Didymaea alsinoides Not applicable 
Sherardia arvensis long tube 
Asperula purpurea long lobes 
Asperula abbreviata long tube 
Asperula affinis long tube 
Asperula aristata subsp. aristata  long tube 
Asperula aristata subsp. aristata long tube 
Asperula aristata subsp. condensata long tube 
Asperula aristata subsp. nestia long tube 
Asperula aristata subsp. oreophila long tube 
Asperula aristata subsp. oreophila long tube 
Asperula aristata subsp. oreophila long tube 
Asperula aristata subsp. thessala long tube 
Asperula beckiana short tube 
Asperula boissieri  long tube 
Asperula borbasiana  long tube 
Asperula bornmuelleri short tube 
Asperula calabra  long tube 
Asperula crassifolia  long tube 
Asperula crassifolia  long tube 
Asperula cynanchica  short tube 
Asperula cynanchica short tube 
Asperula cynanchica short tube 
Asperula cynanchica short tube 
Asperula deficiens long tube 
Asperula diminuta short tube 
Asperula garganica long tube 
Asperula graveolens subsp. danilevskiana short tube 
Asperula gussonei long tube 
Asperula icarica  long tube 
Asperula idaea  long tube 
Asperula lactea  short tube 
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(continued) 
Taxa Corolla tube 

Asperula lilaciflora subsp. phrygia short tube 
Asperula lilaciflora subsp. runemarkii short tube 
Asperula littoralis  short tube 
Asperula lutea s.l. long tube 
Asperula lutea subsp. lutea long tube 
Asperula mungieri long tube 
Asperula naufraga  long tube 
Asperula neglecta  short tube 
Asperula neglecta  short tube 
Asperula neilreichii  short tube 
Asperula nitida subsp. nitida long tube 
Asperula oetaea  long tube 
Asperula ophiolithica  long tube 
Asperula paui subsp. paui long tube 
Asperula peloritana  long tube 
Asperula pestalozzae short tube 
Asperula pinifolia long tube 
Asperula pulvinaris  long tube 
Asperula pumila  long tube 
Asperula rigidula long tube 
Asperula rumelica short tube 
Asperula rupicola  short tube 
Asperula sp. long tube 
Asperula staliana subsp. arenaria  long tube 
Asperula staliana subsp. diomedea  long tube 
Asperula staliana subsp. issaea  long tube 
Asperula staliana subsp. staliana long tube 
Asperula stricta subsp. grandiflora long tube 
Asperula stricta subsp. latibracteata long tube 
Asperula suberosa  long tube 
Asperula suffruticosa  long tube 
Asperula supina subsp. supina short tube 
Asperula tenuifolia long tube 
Asperula tephrocarpa short tube 
Asperula visianii  long tube 
Asperula wettsteinii  long tube 
Asperula woloszczakii  short tube 
Asperula woronowii short tube 
Asperula x jordanii   long tube 
Asperula x portae long tube 
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Appendix D: rps16 haplotypes found in Asperula 
crassifolia  
Specimen Haplotype Specimen Haplotype 

S1  C N1  A 
S2  C N2  A 
S3  C N3  A 
S4  C N4  A 
S5  C N5  A 
T1  C N6  A 
T2  C N7  A 
T3  B N8  A 
T4  C N9  A 
K1  B N10  A 
K2  C N11  A 
K3  C N12  A 
K4  C N13  A 
K5  D N14  A 
K6  C N15  A 
K7  C N16  A 
K8  C N17  A 
K9  C N18  A 

K10  B N19  A 
G1  A PAS1  B 
G2  A PAS2  A 
G3  A GUS1  B 
G4  A GUS3  B 
G5  A GUS5  B 
G6  A BOR1  B 
G7  A BOR2  B 
G8  A BOR3  B 
G9  A BAS  B 

G10  A GUA  C 
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