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I N T R O D U C T I O N
motivations
Nowadays, passengers of all means of transport, such as aircraft, cars and trains,
expect high comfort levels, in terms of both vibrations and noise. This has led to
the development of always more efficient simulation tools, in order to speed up
the virtual design and prototype phases.

Despite the enormous computational power available, thanks to modern com-
puter and efficient algorithms, the development of new models is complicated
because of the wide frequency range of the excitation. In fact, the vibro-acoustic
behaviour of a structure is strongly influenced by the frequency range of analysis.

Let us consider a linear system (e.g. a plate), excited in a wide frequency range.
If the Frequency Response Function (FRF) is estimated, three main regions can
be identified, as described below.

• Low Frequencies (LF): the response exhibits isolated modal resonances and
it has local characteristics. In particular, the response is strongly dependent
on the positions of the excitation and of the response points, as well as the
type of constraints. This region is usually investigated through determinis-
tic methods, such as the Finite Element Method (FEM) and/or the Boundary
Element Method (BEM).

• High Frequencies (HF): the response is diffuse and does not present res-
onance. Furthermore, it does not depend on local parameters. Hence, the
structure can be investigated through probabilistic technique, such as the
Statistical Energy Analysis (SEA) and/or the Energy Distribution Approach
(EDA).

• Mid Frequencies (MF): the response in this region presents an intermedi-
ated behaviour, being a transition zone, for which well-established predic-
tion techniques are not yet available. Conventional deterministic methods,
based on finite elements, require an unacceptable computational effort due
to the huge size of models; on the other hand, the assumptions of proba-
bilistic methods are not yet valid.

In recent years, a huge effort has been done in the development of numerical
methods suitable for the mid-frequency range, some of which exploit the anal-
ysis of wave propagation through structures. The knowledge of the dispersion
relations and, in general, of the types of waves propagating through structures is
of interests for many applications involving the fluid-structure interactions, such
as transmission of structure-borne sound, shock response and so on.

Among the methods based on the wave propagation, the Wave and Finite Ele-
ment Method (WFEM) is gaining interest for the analysis of periodic structures,
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xii introduction
very common in engineering field. Periodic structures are supposed to be consti-
tuted by a set of identical elementary cell, repeated along one or two directions.
The Wave and Finite Element Method allows to investigate only one cell of the
structure, modelled through Finite Element. Once the mass, stiffness and damp-
ing matrices of the cell (eventually estimated through a commercial software)
are estimated, they are post-processed in order to formulate an eigenvalue prob-
lem, whose solutions constitute the propagation constants of the waves travelling
through the structure.

goals
The Wave and Finite Element Method appears to be very attractive because it
allows the use of huge Finite Element libraries of commercial softwares to model
the elementary cell of the periodic structure. Therefore, the goal of this disserta-
tion is exploiting the potentiality of the Wave and Finite Element method for the
analysis of structural waveguides, both one- and two-dimensional, using a com-
mercial code for the discretisation of the elementary cell. An own-code for the
analysis of such waveguides has been developed in MATLAB® environment, able
to import the matrices carried out through ANSYS®. The tool is now available at
the Department of Industrial Engineering – Aerospace Section of University of
Napoli “Federico II”.

dissertation outline
The dissertation is organised as follows.

Chapter 1 is dedicated to the literature review regarding the development of
the Wave and Finite Element Method for the analysis of wave propagation in
waveguides and the forced response in finite structures.

In Chapter 2, the theoretical basis on the wave propagation are summarised,
in order to provide to the reader all the concepts needed for the comprehension
of the thesis. First, the main parameters characterising the wave propagation are
defined, highlighting the meaning of the dispersion curves. Then, wave propaga-
tion in infinite media is explained, remarking the different nature of the waves
occurring. The influence of boundaries in finite structures is then introduced, in
order to describe the forced response of finite structures. At the end, an introduc-
tion of the wave propagation in layered media is presented, mostly referred to
sandwich structures.

Chapter 3 concerns the application of the Wave and Finite Element Method
(WFEM) for the analysis of uniform one-dimensional structures. The chapter is
basically arranged in three main sections. In the first one, the method is formu-
lated for the analysis of waveguides: since the generic waveguide is considered
a periodic structure, the Bloch theorem allows the investigation of only one, el-
ementary cell. The dispersion relations are carried out by solving an eigenvalue
problem based on stiffness and mass finite element matrices. Once dispersion
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relations are known, the analysis of the forced response through the wave prop-
agation approach is explained. In the second section, the code implementing the
WFEM for one-dimensional structures is briefly explained. In the last sections,
numeric results are presented for different type of structures (isotropic, compos-
ite, sandwich), both in terms of dispersion curves and forced response, in order
to exploit the potentiality of the developed method.

In Chapter 4, a first approach to the analysis of wave propagation in two-
dimensional waveguides through WFEM is presented. The chapter is arranged
as the previous one. First of all, the eigenvalue problem is formulated for a four-
node rectangular finite element. Then, the code is briefly explained, before to
report the first obtained results, oriented to the validation of experimental tests
conducted on a natural fibres composite panel.

At the end, in Chapter 5 concluding remarks and possible future works are
highlighted.
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1 L I T E R AT U R E R E V I E W
The analysis of the propagation of waves in structures is a fundamental task in
many engineering applications. The knowledge of dispersion relations, provid-
ing information on the type of propagating waves as well as their velocity, is of
interest for the prediction of forced response, acoustic radiation, non-destructive
testing, transmission of structure-borne sound and so on, which nowadays are
the subject of many studies in order to improve the vibro-acoustic comfort of
passenger carries.

Wave propagation in simple structures can be investigated through analytical
models, exact or approximated. However, the analysis of wave motion usually
involves assumptions and approximation concerning the stress, strain and dis-
placement states of the structure, and always more refined models are required as
the frequency increases since the wavelength may become comparable with the
cross-section dimensions. For example, if the propagation of bending waves in
a beam is investigated, Euler-Bernoulli, Rayleigh, Timoshenko or 3-dimensional
elasticity based theories might be used, depending on the frequency range of
interest [1, 2].

For complex structures, such as layered (composite and sandwich) beam [3–5]
and plate [6–12], or cylinders [13–15], the analytical formulation (if it is possi-
ble) becomes quite difficult: beyond the required assumptions and approxima-
tions in the models, the resulting dispersion relations are usually transcendental
and/or of high order, therefore their resolution is not straightforward (or requires
symbolic manipulation [15, 16]). For this reasons, for the analysis of complex
construction, semi-analytical or numerical methods have been developed for the
computation of dispersion curves.

However, if the structure under investigation presents characteristics which pe-
riodically repeat in one or more directions, different approach can be developed
by exploiting the periodicity [17]. In general, a generic structure obtained as an
assemble of identical elements, called cells, can be considered as periodic. Several
engineering structures can be assumed as periodic, starting from simply beams
and plates, moving to stiffened plate or car tyres, up to aircraft fuselage, railways
tracks, and so on.

Among several methods available in literature for the analysis of the wave
propagation, in the last ten years the Wave and Finite Element Method is be-
coming particularly attractive for the analysis of periodic structures for its direct
connection to conventional FE approach.

The Wave and Finite Element Method (WFEM) is a deterministic technique
which consider an homogeneous waveguide structure as a periodic system as-
sembled by identical elementary cells. Similarly to the Spectral Finite Element
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2 literature review
Method (SFEM) [18–20], the analysis of the waveguide is based on the analysis
of one single section, but it does not require the definition of specified spectral
elements because the cross section is discretised through standard Finite Element
Method [21, 22]. This allows the investigation of the wave motion in waveguide
having complex cross-sectional shape, with a reduced computational cost.

The WFEM integrates several positive aspects of previous works regarding
the analysis of wave propagation. In fact, the method start with the modelling
of a short section of the waveguide under investigation through conventional
Finite Element. Supposing time-harmonic motion, the equation of motion is then
expressed in discrete coordinates, relating nodal degrees of freedom q and forces
f of the undamped section:

(K −ω2M)q = f (1.1)

where K and M are the stiffness and mass finite element matrices. This relation
resembles the dynamic stiffness matrix introduced by Koloušek [23], despite the
matrix, in general, is not frequency-dependent. Generalising the concept of the
Transfer Matrix Method (introduced by Thompson [24] to relate displacements
and stresses at the top and the bottom free surfaces of a plate) by applying the
periodicity condition through the Bloch theory [17], it is possible to express the
nodal displacements and forces on a side of the section as a function of those on
the other side, taken as reference. This relation is expressed through a transfer
matrix, which is obtained directly from the dynamic stiffness matrix. The defi-
nition of the transfer matrix leads to the formulation of an eigenvalue problem,
whose solutions represent the wave propagation constants (eigenvalues) and the
wavemodes (eigenvectors) of the propagating waves.

As reported by Mead in his overview [25], the pioneering work by Orris and
Petyt [26] is the first to apply the use of the conventional Finite Element Method
for the analysis of wave propagation in one-dimensional infinite, periodic beams
and rib-skin structures. Abdel Rahman [27], applying the receptance method
[28], extends this FE approach for evaluating the dispersion curves of two di-
mensional waveguide, based on four nodes quadrangular elements, as well as
three dimensional periodic beam systems. Given the needed of describe the cross-
section deformation of railway tracks at high frequencies, Thompson [29] devel-
ops an FE model of a finite length of rail using beam elements for the head
and plates. Then, by imposing symmetric and/or antisymmetric boundary con-
ditions at both ends, obtained the frequency-wavenumber relations, assuming
wave propagation along the track axis. A similar approach is applied by Gry
[30].

Beside this first works, the research on the Wave and Finite Element Method
received new emphasis in the 2000’s, thanks to works conducted by Mencik and
Ichchou’s group [31–57] in France and those conducted under Mace’s supervision
[58–79] in UK.

contributions from lyon (france)
To the author’s best knowledge, the present Wave and Finite Element method is
formulated for the first time by Houillon et al. [31]. In this work, the dispersion
curves of thin walled structures, such as cylinders and rectangular plate box, are
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carried out, remarking the advantages connected to the possibility to use con-
ventional existing Finite Element models for modelling of an elementary section.
The comparison with analytical results are quite good. A well-posed implemen-
tation procedure is defined, highlighting the parameters playing a key role. This
work is further completed by by Ichchou et al. [34], who perform a parametric
analysis on a thin walled structure modelled using thin shell elements (one of
the investigated FE models is shown in Figure 1.1). The influence of the length of
the elementary cell (called propagation distance) and of the mesh of the model on
the accuracy of the results is investigated, in terms of dispersion curves, group
velocity and kinetic energy density.

Figure 1.1: Finite Element model of a thin walled tubular box [34]

Mencik and Ichchou also investigate through the WFEM the vibroacoustic be-
haviour of a slender structure containing a fluid [36]. The FE model of the ele-
mentary cell is made of three-dimensional linear elements, having steel material
properties for the the solid part and water properties for the fluid one. The forced
response is estimated for a duct assumed clamped on both edges, whereas the
fluid is excited by imposed displacements and coupled with a mass-spring sys-
tem. The boundary conditions are applied in the physical domain, by expressing
the displacements in terms of wavemodes obtained by the wave propagation
analysis.

Ichchou et al. [38] use the WFE approach to carry out the dispersion curves of
ribbed plates. In particular, analytical, numerical and experimental characteriza-
tions of flexural waves propagating along the rib are presented, comparing the
results with analytical and experimental [37] ones. In the WFE model, both the
plate and the rib are modelled with thin shell elements, and only the out-of-plane
motion is considered (vertical displacement and rotation about the rib).

The analysis of transmission and diffusion at joints between waveguides is in-
vestigated in several works by Mencik, Ichchou and other co-authors [32, 40, 43,
51]. In their first work on this topic, Mencik and Ichchou [32] analyse the multi-
mode wave propagation through waveguide by means of WFEM, thus they for-
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(a) isolated beam (b) coupled beams

Figure 1.2: FE models of one-dimensional structures [42, 45]

mulate the coupling, in terms of wave modes, between more waveguides at a
joint. The coupling conditions at the joint interfaces are expressed through La-
grange multipliers. The so-called diffusion matrix, relating incident and reflected
wavemodes, is obtained in a general way by applying the dynamical equilibrium
at the interfaces. Several numerical tests are conducted on different connections
between steel and aluminium waveguides, having rectangular cross-section. The
diffusion matrix model is also applied to the analysis of damaged structures,
wherein the damage is considered as a coupling element between two waveg-
uides modelled with the WFEM: examples are reported for damaged straight
[40] and curved beams [43] and for damaged stiffened panels [51].

Mencik [42, 45, 49] also focuses on the analysis of the forced response through
the Wave and Finite Element Method. Firstly, he formulates the eigenproblem in
one-dimensional finite structures [42], defining the positive and negative going
waves as incident and reflected, respectively (formally, this is not correct, but
this convention is clearly specified by the author and corrected in subsequent
works). The presence of the boundaries, as well as external forces, is treated by the
definition of a diffusion matrix, which is well suited for describing the Neumann
and Dirichlet boundary conditions. The importance of definition of a reduced
wave basis is remarked, showing the influence of the frequency response function
in the case of an isotropic cantilevered beam excited at the free tip, as well as in
the case of two isotropic beams connected through a joint. In the case of a layered
beam, instead, a regularization strategy [39] is involved to take into account the
different waves propagating in different layers. With the same approach, a hybrid
technique based on the Component Mode Synthesis is introduced for analysing
elastic joints [45].

On the other hand, Ichchou and other co-authors focus on the application of
the Wave and Finite Element Method for the analysis of the wave propagation in
random guided elastic media, by defining the so-called Stochastic Wave Finite El-
ement (SWFE) approach [46, 54, 55]. It is an extension of the WFEM for uncertain
periodic structures, using the first-order perturbation method. Within this tech-
nique, a Gaussian perturbation is applied to the dynamic stiffness matrix and
to the force and displacement vectors. In their first work on this topic [46], the
influence of the uncertain on elastic modulus, mass density and length cell on
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longitudinal and flexural waves of simple waveguides is investigated, showing a
good accordance with Monte Carlo simulations. Ben Souf et al. [54, 55] analysed
uncertain coupled structures: first the effect of an uncertain Young’s modulus on
the forced response of two coupled Euler-Bernolli beam is analysed [54], then
the variability of scattering properties in a stochastic coupling element is consid-
ered through a stochastic diffusion matrix [55], providing an expression for the
uncertain coupling loss factors [80] between two deterministic waveguides.

Chronopoulos et al. [48, 53, 57] analysed the vibroacoustics of layered panels
through the WFEM applied to two-dimensional waveguides. The sound trans-
mission loss of curved composite panel is investigated [48, 57] in a SEA context
by using the dispersion relations carried out through the WFEM, wherein the pe-
riodicity conditions on a four-noded plate element are imposed. Furthermore, it
uses the dispersion relations to define a frequency-dependent dynamic stiffness
matrix to evaluate the frequency response function of composite panels.

contributions from southampton (uk)
Mace et al. [58] investigate the free wave propagation in simple waveguides (at
the beginning the method is called waveguide-Finite Element) by using a com-
mercial FE package for the modelling of an elementary cell. The method is for-
mulated, providing also a description in terms of energy, power and group ve-
locity. The dispersion curves estimated through WFEM, for a rod, a beam and
a plate strip simply supported on two edges, well agree with analytical results;
furthermore, the analysis of a sandwich beam highlights the high potential of
this method if use in conjunction with FE software.

Duhamel et al. [59] study the formulation for calculating the forced response
on a beam and on a simply supported plate using a recurrence relationship, based
on the definition of propagating matrices.

Waki et al. [60, 61, 66] on the basis of previous works, perform a deep analysis
on several waveguides and finite structures. In particular, firstly the flexural wave
propagation in a plate strip with free boundaries is investigated, comparing the
results with the analytical one [60]. Then, the forced vibration of a tyre is carried
out [61], considering the tyre as a one-dimensional waveguide, uniform around
the circumference. Differently by Duhamel et al. [59] and Mencik [42], the esti-
mation of the forced response in finite structures is directly based on the wave
propagation approach [81–84]. Also in this case, the use of a commercial FE pack-
age allows the modelling of the complicated cross section, involving different
layer. The agreement with experimental results, completely reported in Waki’s
Ph. D. thesis [85] is very good. Finally, the numerical issues concerning the wave
and finite element method for the analysis of one dimensional waveguide is in-
vestigate [66]. This work is the first concerning both finite element discretisation
errors at low frequencies and the round-off ones in the high frequency range, pro-
viding suggestions to avoid them. The whole procedure for the evaluation of the
forced response is formulated by steps. Illustrative results are presented for sim-
ply supported thin plate, highlighting the influence of the high-order wavemodes
on the dynamic response.

In her Ph. D. thesis [86], Manconi is the first to formulate the Wave and Fi-
nite Element Method for the analysis of wave propagation in two-dimensional
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structures, including isotropic, orthotropic and laminated plates [63, 65, 70, 71],
as well as in axisymmetric structures such as curved panels, cylinders and fluid
filled-pipes [62, 67–69, 79]. In particular, Mace and Manconi [63] investigate the
wave propagation in plates by applying periodicity conditions to a four-noded
quadrangular element, formulating the eigenvalue problems in terms of a re-
duced dynamic stiffness matrix. Compared to one dimensional waveguide, the
eigenproblem has three parameters (the frequency and the propagation constants
along the two in-plane directions), and hence the different forms of the problem
are formulated. The presence of a viscoelastic material is taken into account sim-
ply supposing an hysteretic damping, i.e. by considering a complex stiffness ma-
trix [65, 70, 71]. In the case of curved panels or cylinders [68, 69], a transformation
matrix is defined into a system of cylindrical coordinates in order to express the
mass and stiffness matrices of the curved elementary cell. Pre-stressed structures
are investigated by calculating the effective loss factor through energy methods
[79].

Renno’s works focus on the analysis of the forced response of structures through
the WFEM [72, 73, 77, 78] and on the calculation of reflection and transmission of
joints [74, 76, 77]. On the basis of work by Waki et al. [66], Renno and Mace [72]
investigate the forced response of a laminated beam, showing the good accor-
dance with full Finite Element results. Besides these results, obtained for punc-
tual excitation, they formulate for the first time the response of a waveguide to a
convected harmonic pressure, leading to the analysis of the response to a general
loading (for instance an arbitrary distributed load). This case is thus extended to
homogeneous plates [73], investigate the response of a plate subject to an acoustic
load, and cylinders [78]. At the same time, Renno and Mace start to investigate
the scattering properties of joints between waveguides, in terms of reflection and
transmission coefficients, modelling the joints through conventional FEM and the
waveguides through WFEM [74, 77]. Furthermore, through consideration on the
power flow between two SEA subsystems [80], reflection and transmission coeffi-
cients are used for evaluating the coupling loss factors two beams connected at a
point joint [76].



2 T H E O R E T I C A L O V E R V I E W
In this chapter, the theoretical fundamentals regarding the wave propagation in
elastic solids are provided. The chapter starts with the definition of wave prop-
erties and parameters, introducing the dispersion relations which relate angular
frequency and wavenumber. Then, the analysis of free wave propagation in infi-
nite isotropic beam and plates is explained, remarking the several types of waves
occurring. Before to introduce the propagation in finite one-dimensional struc-
tures, the difference between travelling waves and standing waves is highlighted.
At the end, an introduction to the wave propagation in layered media, with par-
ticular attention to sandwich structures, is presented.

2.1 waves: properties and parameters
In general, a wave can be described as a disturbance that travels through a
medium, transporting energy from one location (its source) to another location
without transporting matter. A medium is intended as a material that carries the
wave, and it should be considered as a collection of particles capable to interact
with each other. When the wave travels in a medium, the single particles of the
medium are temporarily displaced from their rest position, but there is always a
force acting upon them that restore them to their original position. Hence there
is not matter transportation, but only the energy is transmitted.

In order to characterise the wave motion in solid medium, the mathematical
representation between time and space domains has to be explained. The basis
of the representation considers the variation of a generic quantity qi with time
t and space; the simplest definitions of a one-dimensional travelling wave are in
the form

q1(x, t) = g(x− ct) (2.1)

q2(x, t) = f(x+ ct) (2.2)

where c is the speed of propagation of the wave, also called phase speed. The wave
in Eq. (2.1) propagates in the positive x direction, whereas the one in Eq. (2.2)
propagates in the negative direction. Since any time function can be described
in the frequency domain as a superposition of harmonic components through
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8 theoretical overview
Fourier analysis, it is convenient to express the generic functions g and f in the
form of harmonic waves:

g(x− ct) = g cos
[
2π

λl
(x− ct)

]
(2.3)

f(x+ ct) = f cos
[
2π

λl
(x+ ct)

]
(2.4)

where g, f are the amplitudes of the waves, and λl is the wavelength of the wave,
which indicates the spatial period of the harmonic wave. Defining the wavenumber
k as the number of spatial wave per unit distance (i.e. the number of phase change
per unit distance)

k =
2π

λl
(2.5)

and the circular frequency ω as the number of phase change per unit time

ω =
2πc

λl
=
2π

T
, (2.6)

where T is the temporal period, it is possible to write the waves in usual form:

q1(x, t) = g cos (kx−ωt) = Re
[
gei(kx−ωt)

]
(2.7)

q2(x, t) = f cos (kx+ωt) = Re
[
fei(kx+ωt)

]
(2.8)

(Re indicates the real part and i is the imaginary unit).
The analogy between circular frequencyω and spatial frequency k is illustrated

in Figure 2.1. Any form of spatial variation can be investigate through Fourier
analysis into a spectrum of complex wavenumber components, just as any form
of temporal signal can be analysed into a spectrum of complex frequency compo-
nents. The relation between ω and k is defined as dispersion relation, depending
on the type of wave, as well as the medium in which the wave travels. In partic-
ular, the waves are called non-dispersive if the dispersion relationship is linear, i.e.
an arbitrary spatial form of disturbance is not modified during the propagation;
differently, waves are named dispersive. Circular frequency and wavenumber are
related by the phase velocity of the wave:

c =
ω

k
=
λl
T

. (2.9)

The phase velocity of a wave c is the rate at which the phase of the wave propa-
gates through space. It should be not confused with the group velocity of a wave
cg, which is the velocity with which the overall shape of the waves’ amplitudes
(known as envelope of the wave) propagates through space, and it is defined as

cg =
∂ω

∂k
. (2.10)

For non-dispersive wave, c ≡ cg.
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Figure 2.1: Analogy between circular frequency and wavenumber [87]

2.2 free wave propagation in unbounded isotropicsolids
The analysis of the wave propagation in unbounded media has been deeply
treated in classical books [1, 2, 87, 88], wherein more details can be found. How-
ever, the goal of this section is providing to the reader all the information needed
to understand the phenomena of wave propagation in waveguides. A waveg-
uide is defined as a wave-bearing medium which extends in one (or two) of
its dimensions (along which it is uniform) but confined within parallel bound-
aries in the other two (or one) dimensions (through which properties can vary).
Therefore, bars and beams can be considered as one-dimensional waveguides
since the waves travel along their longitudinal axis, whereas cylinders and plates
are general examples of two-dimensional ones. However, in special special cases
(i.e. simply-supported plate strip), two-dimensional structures can be assumed
as one-dimensional waveguides since waves may travel in only one direction.
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2.2.1 Longitudinal waves
In the case of longitudinal wave motion, classical books [2, 87] distinguish the
pure longitudinal motion and the quasi-longitudinal motion.

By definition, in pure longitudinal wave motion, the direction of particle dis-
placement is purely in the direction of wave propagation, causing a change in
volume. The motion can be displayed by considering the motion of two planes,
separated by a small distance δx, parallel to each other and perpendicular to
the direction of propagation. In pure longitudinal motion, these planes exhibit
absolute displacements from their position of equilibrium and their relative dis-
tance also change, as shown in Figure 2.2. The element may undergo a strain
εxx = ∂ξ/∂x, where ξ is the displacement of the parallel planes in the x direc-
tion. According to Hooke’s law, the longitudinal stress σxx is proportional to εxx.

Figure 2.2: Displacements from equilibrium and stresses in a pure longitudinal wave [87]

In pure longitudinal motion, there can be no lateral strain and hence Poisson’s
contraction can be no allowed. In fact, this constraint, applied mutually by ad-
jacent elements, creates lateral direct stress which determines that the constant
of proportionality between longitudinal stress is not the Young’s modulus of the
material, but the bulk modulus B (which takes into account the constraint of the
lateral motion [2]). The stress-strain relation for pure-longitudinal motion can be
expressed as

σxx = B
∂ξ

∂x
=

E(1− ν)

(1+ ν)(1− 2ν)

∂ξ

∂x
, (2.11)

where E is the Young’s modulus and ν is the Poisson’s ratio. The equation of
motion of the element shown in Figure 2.2 is [18]

(ρδx)
∂2ξ

∂t2
=
∂σxx

∂x
δx, (2.12)

where ρ is the density of the material. Substituting Eq. (2.11) in Eq. (2.12), the
wave equation for pure longitudinal waves is obtained:( ρ

B

) ∂2ξ
∂t2

=
∂2ξ

∂x2
. (2.13)

Eq. (2.13) resembles the classical wave equation, and hence the ratio

cl =
√
B/ρ (2.14)
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(a) quasi-longitudinal (b) shear (c) bending

Figure 2.3: Waves in beams [89]

represents the wave speed (i.e. the phase speed) of the longitudinal waves. It
is worth to notice that, as highlighted by Fahy and Gardonio [87], this kind of
motion can exist only in solid that extends in all directions to distance large
compared to the wavelength. Known the phase velocity, it is possible to calculate
the longitudinal wavenumber (according to Eq. (2.9)) as

kl =
ω

cl
. (2.15)

The proportional relation between circular frequency and wavenumber indicates
that longitudinal waves are non-dispersive.

Quasi-longitudinal waves differ from the pure-longitudinal one because lateral
stresses are not constrained. In the case of a bar, the cross-section dimensions can
be comparable to the wavelength and the Poisson contraction must be included.
In this case, the proportional relationship between longitudinal stress and strain
in a bar is expressed by the Young’s modulus E, and hence the phase speed
velocity is

c ′′l =

√
E

ρ
. (2.16)

In the case of a plate, the in-plane dimensions can be assumed large compared
to the wavelength: the phase velocity lies between the case of constrained media
and the case of a bar. In fact, it can be expressed as [2]:

c ′l =

√
E

(1− ν2)ρ
. (2.17)

Note that the relation between the phase speed velocity above defined is cl <
c ′l < c

′′
l .

2.2.2 Transverse waves
A transverse wave is characterised by the motion of the particles of the medium
in a direction perpendicular to the direction of energy transport, which causes
a change in shape. The resistance in changing in shape comes about because
a solid can support tangential stresses on any cutting plane, unlike a liquid or
a gas. Because these tangential stresses oppose shearing displacements parallel
to the cutting plane, they are called also shear stresses [2]. Considering again
two planes, a distance δx apart, delimiting a rectangular element. Under the
passing of a transverse wave, the transverse displacements of the two planes
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Figure 2.4: Displacements, shear strain and transverse shear stresses in transverse defor-
mation [87]

differ by ∂η/∂xδx, leading to the distortion of the rectangle into a parallelogram,
as shown in Figure 2.4. The difference in vertical shear stresses causes the vertical
acceleration ∂2η/∂t2 of he element. The equation of the transverse motion, hence,
results in

ρδxδy
∂2η

∂t2
=
∂τxy

∂x
δxδy (2.18)

where τxy is the shear stress (the first subscript indicates the axis normal to
the plane on which the stress acts, and the second indicates the direction of the
stress). The stress-strain relationship is

τxy = Gγxy = G
∂η

∂x
(2.19)

where γxy is the strain and G is the shear moduli (G = E [2(1+ ν)]). Thus the
wave equation is

ρ

G

∂2η

∂t2
=
∂2η

∂x2
, (2.20)

in which the phase velocity of the shear wave can be defined as

cs =

√
G

ρ
=

√
E

2ρ(1+ ν)
(2.21)

The following relations hold between shear and longitudinal phase velocities:

cs

cl
=

√
G

B
=

√
1− 2ν

2(1− ν)
(2.22)

cs

c ′l
=

√
G(1− ν2)

E
=

√
1− ν

2
(2.23)

cs

c ′′l
=

√
G

E
=

√
1

2(1+ ν)
(2.24)

(2.25)
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The shear waves, similarly to the longitudinal ones, are non-dispersive.

Besides shear waves, also torsional waves in solid bars can be defined as trans-
verse ones. In this case, the wave equation is [87]

∂2θ

∂t2
=
GJ

Ip

∂2θ

∂x2
, (2.26)

where θ and Ip are, respectively, the rotation and the polar moment of inertia per
unit length of the bar about its longitudinal axis; GJ is the torsional stiffness of
the bar, depending on its cross-sectional shape. The phase velocity of torsional
waves hence is

ct =

√
GJ

Ip
(2.27)

and it approaches to the shear phase velocity for rotationally symmetric cross-
sections. More details can be found in the book by Cremer et al. [2].

2.2.3 Flexural waves
Flexural waves involve both transverse and in-plane displacements: because of
the large transverse deflection, one might think to include them into the class of
transverse waves, but this would be wrong. In fact, stresses and strains act in the
longitudinal direction, and the governing wave equation is completely different.
The equation of bending wave is firstly obtained for a beam, and then for a plate.

2.2.3.1 Beams

It is calculated by imposing the equilibrium of a small element, undergoing to
flexural wave. The primary assumption of pure bending theory is that plane
cross sections remain plane during bending deformation of the element, accord-
ing to the Kirchoff assumption. In this case, the in-plane displacements can be
expressed as

ξ(x,y, t) = ξ(x, t) − yβ(x, t) (2.28)

η(x,y, t) = η(x, t) (2.29)

where β is the in-plane rotation of the cross-section, whereas ξ(x, t) and η(x, t) are
the displacements of the particle on the neutral axis (y = 0). Being εxx = ∂ξ/∂x,
the strain distribution over the cross-section is

εxx =
∂ξ

∂x
− z

∂β

∂x
. (2.30)

The bending moment acting on the cross section can be expressed by employing
the stress-strain relation as

M(x, t) =
∫
A
σxx(x,y, t)ydA = −EI

∂β

∂x
= −EI

∂2η

∂x2
, (2.31)
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being ∂β/∂x = ∂2η/∂x2. Similarly, the shear force acting on the cross section is

S(x, t) =
∫
A
τxy(x,y, t)dA. (2.32)

From the equation of motion in the transverse direction, it is obtained:

∂S

∂x
= ρA

∂2η

∂t2
. (2.33)

In the same way, imposing the moment equilibrium about the neutral axis of the
cross-section, it can be written:

S =
∂M

∂x
+ Iρ

∂2β

∂t2
, (2.34)

where I is the second moment of area of the section.
In conclusion, introducing Eq. (2.34) in Eq. (2.33), and considering the stress-

strain (Eq. (2.30)) and the bending moment-curvature relations (Eq. (2.31)), leads
to the following equation in terms of transverse displacements and in-plane rota-
tion:

∂2

∂x2

(
EI
∂β

∂x

)
+ ρA

∂2η

∂t2
−
∂

∂x

(
ρI
∂2β

∂t2

)
= 0. (2.35)

This equation can be simplified by employing different beam theories.
If Euler-Bernoulli beam theory is applied, the effects of rotary inertia (the third

term on left-hand side) are negligible compared with those of the linear inertia,
as well as the deformations associated with transverse shear. It is also assumed
that deflections are small, leading to

β ∼=
∂η

∂x
. (2.36)

This assumption yield to the Euler-Bernoulli beam equation:

∂2

∂x2

(
EI
∂β

∂x

)
+ ρA

∂2η

∂t2
= 0. (2.37)

which can be rewritten as

EI

ρA

∂4η

∂x4
= −

∂2η

∂t2
. (2.38)

This equation differs from those governing the previously considered forms of
wave motion in that the spatial derivative is of fourth, and not second, order:
the reason is that the bending wave is a hybrid between shear and longitudinal
waves [87]. Fourier analysis is applicable such that any time dependence can be
decomposed in pure tonal components and the propagation of those temporally
sinusoidal components investigated. Substituting in Eq. (2.38) of the complex
exponential expression for a harmonic waves in the form

η(x, t) = ηei(kx−ωt), (2.39)
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yields

k4 =
ρA

EI
ω2. (2.40)

The wavenumbers solution of Eq. (2.40) are

ke = ±ikb (2.41)

kp = ±kb (2.42)

where kb is the bending wavenumber

kb =
4

√
ρA

EI
ω2 =

√
ω

4

√
ρA

EI
(2.43)

The dependence of the wavenumber from the circular frequency indicates that
flexural waves are dispersive. In Eq. (2.41), ke wavenumbers are related to evanes-
cent (near-field) waves, whose amplitudes decay exponentially with distance. On
the other hand, kp is associated to propagating (far-field) waves. The sign of the
wavenumber is related to the direction (positive or negative) of the propagation.
In terms of wave velocity, being in general the phase velocity c = ω/k and the
group velocity cg = ∂ω/∂k, it results:

cb =
ω

kb
=
√
ω 4

√
EI

ρA
(2.44)

cbg = 2cb (2.45)

When flexural wavelengths become short with respect to the beam thickness,
shear deformation and rotary mass inertia become important, and hence the
Euler-Bernoulli model is no longer valid. In this case, higher order theories must
be employed, such as Rayleigh or Timoshenko beam ones [1, 88, 90]. Their deriva-
tion is beyond the scope of this thesis and can be found in classical books. Ac-
cording to the Timoshenko model, the wave equation for thick beam is [89]:

EI

ρA

∂4η

∂x4
−

(
I

A
+

EI

KAG

)
∂2

∂x2

(
∂2η

∂t2

)
= −

∂2η

∂t2
−

Iρ

KAG

∂4η

∂t4
(2.46)

where G is the shear modulus and K is known as the Timoshenko shear coeffi-
cient. The phase velocity is again calculated by considering an harmonic wave,
yielding

cb =

√√√√√√√√
√(

EI

KAG
−
I

A

)2
ω4 + 4

EI

ρA
ω2 −ω2

(
EI

KAG
+
I

A

)
2

(
1−ω2

Iρ

KAG

) (2.47)

This expression is much more complicated of that obtained through Euler-Bernoulli
theory. However, when shear resistance and rotary inertia are negligible (i.e.
waves with long wavelengths with respect to thickness), the wave equation and
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wave speed reduce to the simpler Euler-Bernoulli forms. Since long wavelengths
imply low frequencies, thin beam theory is sometimes called a low frequency
limit of the general thick beam theory. For very high frequencies, the shear re-
sistance terms become dominant, so that the flexural wave equation simplifies to
the shear wave equation, and the bending wave speed approaches the shear wave
speed, with the only difference of the presence of the shear correction factor for
finite structure.

2.2.3.2 Plates

Similarly to the beams, wave equation can be easily derived in the hypothesis
of thin plate (i.e. thickness of the plate smaller than the minimum flexural wave-
length), considering the assumption made by Kirchoff-Love for the plate. The
procedure is quite the same as for the beam, and it is here omitted for sake of
brevity and it can be found in several classic books [2, 91]. At the end, the wave
equation for a plate element lying in the x-z plane is the classical equation of free
vibration of a plate [92]:

D∇4η+ ρh∂
2η

∂t2
= 0 (2.48)

where

• ∇4 = ∇2∇2 is the biharmonic differential operator, with ∇2 = ∂2/∂x2 +

∂2/∂z2 ;

• h is the thickness of the plate;

• D is the bending stiffness, or flexural rigidity, defined as

D =
Eh3

12(1− ν2)
. (2.49)

Explicitly specifying the biharmonic differential operator, Eq. (2.48) becomes

Eh3

12(1− ν2)

(
∂4η

∂x4
+ 2

∂4η

∂x2∂z2
+
∂4η

∂z4

)
= −ρh

∂2η

∂t2
. (2.50)

As done for the beam, consider a plane bending wave, propagating in any direc-
tion of the plane of the plate, and described by

η(x, z, t) = ηei(ωt−kxx−kzz). (2.51)

(A certain disturbance propagates as a plane wave if its magnitude is constant
along planes perpendicular to the direction of propagation.) Substitution in Eq.
(2.50) leads to:[

Eh3

12(1− ν2)

(
k4x + 2k

2
xk
2
z + k

4
z

)
− ρhω2

]
η = 0 (2.52)

Eh3

12(1− ν2)

(
k2x + k

2
z

)2
− ρhω2 = 0 (2.53)

Eh3

12(1− ν2)
k4b − ρhω

2 = 0, (2.54)
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where the last relation is possible by considering k2b = k2x + k

2
z . Eq. (2.54) is

the plane bending-wave equation for a wave travelling in the direction at angle
θ = arctan(kz/kx) to the x axis, i.e. the direction given by the vector sum of the
wavenumber vector components kx and kz. In Figure 2.5, plane waves, propa-
gating in x-z plane, with different wave components are shown. In particular, in
Figure 2.5a the wave propagates only in x direction, without amplitude variation
along the z-axis, and hence the wave has only kx vector component; instead, in
Figure 2.5b the wave propagates in both x and z directions, with an angle θ = 19◦

respect to the x-axis.

(a) θ = 0◦ (b) θ = 19◦

Figure 2.5: Plane waves with different wave components (images courtesy of Dr. Dan
Russell [93])

In conclusion, a bending wavenumber vector can be defined by summing the
vector kb = kx + kz, whose amplitude is the bending wavenumber

kb =
√
ω

4

√
12ρ(1− ν2)

Eh2
. (2.55)

Again, the phase speed velocity is

cb =
ω

kb
=
√
ω 4

√
Eh2

12ρ(1− ν2)
. (2.56)

As in the case of the beam, the phase speed velocity calculated for thin plate
constitutes the low frequencies limit for the phase speed velocity calculated for
thick beam, referring to Mindlin theory [94, 95], which can be expressed as [89]:

cb =

√√√√√√√√√
√(

D

KhG
−
h2

12

)2
ω4 + 4

D

ρh
ω2 −ω2

(
D

KhG
+
h2

12

)
2

(
1−ω2

h2ρ

12KG

) . (2.57)

At high frequencies, flexural waves in plates approach pure shear waves too.

2.2.4 Dispersion curves
In the previous sections, the dispersion relations for the three basic waves propa-
gating in beams and plates are summarised. Usually, these relations are plotted,
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in terms of k vs. f, c vs. f or cg vs. f. This type of information is particularly
useful in structure-acoustic problems, since it is fundamental recognizing the fre-
quency, called critical, at which the flexural and the acoustic wavenumber are
equal [2, 87]. Furthermore, dispersion curves are widely used also in the field
of structural health monitoring (SHM), since the variation of wave speeds (com-
pared to the initial configuration of the structure) might be due to a damage in
the structure [91].
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Figure 2.6: Dispersion relations for a steel plate 0.1m thick

In Figure 2.6, the wavenumbers and the phase velocities of a steel plate 0.1m
thick are plotted against the frequency, according to the previous relations. As
can be seen, the thin plate phase velocity becomes invalid at high frequencies,
where rotary inertia and shear resistance are important; furthermore, at high
frequencies the thick plate phase velocity approach the shear one.
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2.2.5 Rayleigh and Lamb waves
Among the aforementioned waves, it seems that flexural waves is a combination
of shear and longitudinal ones. Actually, other types of waves are obtained as
sum of these two waves, mostly when the frequency increases and waves may
propagate through the thickness too (i.e. the minimum wavelength is shorter
than the minimum dimensions of the waveguide). In this case, waves propagate
freely in all directions, and hence three-dimensional elasticity should be used.

It is proved [91] that any wave is the combination of:

• a pressure wave (or compressional, axial, dilatational, longitudinal, or P-wave), in
which the particle motion is parallel to direction of wave propagation;

• two shear waves (or transverse, distortional, S-waves), in which the particle
motion is perpendicular to the direction of wave propagation. These two
waves travel with the same wave speed, expressed by Eq. (2.21), but they
act in two perpendicular planes, being indicated as shear-horizontal (SH-
wave) and shear-vertical (SV-wave) waves.

At this point, it can be useful to introduce new types of waves, Rayleigh and
Lamb waves, belonging to the class of guided waves, used in SHM application.
They are deeply described by Giurgiutiu [91].

Rayleigh waves, also called surface acoustic wave (SAW), are found in solids
containing a free surface (e.g. the sea-waves). They travel close to the free surface
with a little penetration in the depth of the solid (less than a wavelength), and
they are mathematically obtained as a combination P and SV waves. The motion
of particle of a Rayleigh wave is shown in Figure 2.7.

Figure 2.7: Rayleigh wave (SAW) [91]

Lamb wave, instead, are ultrasonic waves guided between two parallel free
surfaces (i.e. upper and lower surfaces of a plate), and they are mathematically
obtained as the simultaneously existence of P and SV waves. This type of guided
waves are the most common used in SHM application. Two basic type of Lamb
waves exist: symmetric (indicated with Sj) and antisymmetric (indicated with Aj)
Lamb-waves modes, where the subscript indicates the order of the wave. Both
types of Lamb wave are dispersive. The symmetric Lamb waves (Figure 2.8a) re-
sembles the quasi-longitudinal one described above, whereas the antisymmetric
ones (Figure 2.8b) are similar to the flexural ones. At lower frequencies, only the
basic Lamb waves S0 and A0 exist, and they approach respectively the longitu-
dinal and the flexural behaviour of a plate. At higher frequencies, instead, other
Lamb waves propagates, and the basic S0 and A0 approach the Rayleigh wave
confined to the plate surface. The trend of basic Lamb waves dispersion curves is
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(a) symmetric S0

(b) antisymmetric A0

Figure 2.8: Lamb waves [91]

shown in Figure 2.9, in which the wave speed dispersion curves obtained for an
aluminium plate 1mm thick are reported.

Figure 2.9: Wave speed dispersion curves for an aluminium plate 1mm thick [91]

2.3 travelling waves, standing waves and wavessuperposition
In order to investigate the forced response in finite structures through the wave
approach, it is needed to introduce the concept of standing waves. The waves
introduced so far are travelling waves since the wavefronts move in uninterrupted
manner along the waveguide.

If two or more travelling waves propagate through a medium at the same time,
the superposition principle may be applied to calculate the wave sum: the net
displacement of the medium at any point in space or time is simply the sum of
the individual wave displacement.
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Now, let’s consider a medium in which two sinusoidal waves y1 and y2, having

the same frequency ω, wavelength k and amplitude y, are travelling in opposite
direction. The wave sum, y, can be expressed as:

y(x, t) = y1(x, t)+y2(x, t) = y cos(kx−ωt)+y cos(kx+ωt) = 2y cos(kx) cos(ωt).

(2.58)

It results that when the two waves are 180
◦ out of phase with each other they

cancel, whereas when they are exactly in phase with each other they add together.
Hence, the net result alternates between location with zero displacements (nodes)
and location with maximum displacements (antinode): this wave pattern oscillates
in the time, but it does not travel to the left or the right, and hence it is called
standing wave. From the mathematical point of view, this wave is no longer a
travelling wave because the position and time dependence are separated in Eq.
(2.58). In Figure 2.10, the standing wave pattern in three different times is shown.

(a) t = 0 (b) t = T/4 (c) t = T/2

Figure 2.10: Standing wave pattern in three different times by two waves of equal ampli-
tude traveling in opposite directions. N are nodes, A are antinodes

2.4 waves in one-dimensional finite structures
Up to now, the wave propagation in infinite uniform waveguide has been inves-
tigated. However, physical structures are spatially limited by boundaries, which
determine a changing in the wave, due to phenomena such as reflection, diffrac-
tion, refraction and scattering. In the analysis of the vibrational behaviour of
structures, the reflection of the wave at the boundaries, as well as the refraction
through the interface between two different media, are the most important as-
pects to be considered [2, 87]. In next chapter, the dynamic response of uniform
finite beams is investigated, without take into account a possible variation of the
properties of the structure along the longitudinal axis, i.e. no refraction occurs.
On the other hand, the presence of elastic boundaries at the edge of the structure
determines the reflection of the wave, which is here investigated.
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The change in amplitude and phase of a reflected wave, compared to the inci-

dent one, depends on the type of constraint. Compatibility of displacement and
equilibrium of forces must be satisfied at the constraint. Let’s consider, for sake of
simplicity, a bending positive-going wave travelling through an undamped semi-
infinite beam, terminated by a simple support (Figure 2.11a) [87]. The incident
wave displacement is

η+i (x, t) = ηie
−ikbxeiωt (2.59)

The presence of the simple support suppresses transverse displacement and pro-
duce shear force reaction, without restriction of rotational displacement because
it is not able to produce any moment reaction. The incident wave alone cannot
satisfy the condition of zero transverse displacements at the support all the times.
The incident wave, hence, determine negative-going propagating and near-field
reflected waves, which together make it possible to satisfy the boundary condi-
tions (Figure 2.11b). The solution of the Euler-Bernoulli beam equation Eq. (2.40),
taking into account both propagating and evanescent components of the negative-
going wave, is in the form

η−r (x, t) =
[
ηrpe

ikbx + ηree
kbx
]
eiωt (2.60)

The two unknowns ηrp and ηre can be easily derived by applying the compati-
bility and equilibrium at the simple support, considering that there is no wave
transmission [87]. In particular, it results

ηrp = ηi; ηre = 0 (2.61)

Simply supports, hence, provide only the reflection of propagating waves, with
zero near-field waves. This is not true for free ends or fully clamped support [96].
In conclusion, the beam displacement may be expressed as sum of the incident
and the reflected waves (Figure 2.11c):

η(x, t) = ηi
[
e−ikbx − eikbx

]
eiωt (2.62)

The displacement fields of the incident, reflected and sum wave are shown in
Figure 2.11. It is clear that the sum wave pattern has the form of a standing wave,
in which spatial and temporal variations of displacement are independent.

If the beam is of finite length, the analysis of the free wave propagation leads to
the determination of the natural modes of vibration of the structure. The analysis
of free wave propagation in finite structure, the determination of vibration mode
is based on the phase closure principle [97], which provides the condition for a
propagating wave to formulate a standing wave. The principle states that, in order
to give rise to a standing wave (i.e. a vibration mode), a propagating wave must
return to its starting point after completing one complete circuit of the system
with the same amplitude and phase, i.e. it close on itself [96]. Let’s consider a
finite beam, simply supported on both ends, through which a wave with a given
wavenumber is travelling in the positive direction after reflection on left support
(Figure 2.12a): this wave is incident upon the right support and, as in the case of
semi-infinite beam, is reflected with a change in phase equal to π (Figure 2.12b).
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(a) incident wave

(b) reflected wave

(c) sum wave

Figure 2.11: Wave fields generated in a simply supported semi-infinite beam (Faint solid
line: propagating incident and reflected wave components; dashed line: near-
field reflected wave component; thick solid line: sum wave (propagating +
near-field) [87]

This reflected wave is negative-going, therefore it is reflected again on the left
support, returning along the path of the original wave (Figure 2.12c). The relative
phase in change between the original wave and the returning one depends on the
free wavenumber and the length of the beam. In order to have phase coincidence,
and hence phase closure, it is required that the phase change over one return
journey is equal to 2πn, with n integer number. Since the wavenumber is defined
as the phase change per unit length, phase coincidence occurs when [87]

kb(2l) = n(2π) =⇒ kb =
nπ

l
(2.63)

(2l is the total length through which the wave travels). When phase coincidence
happen, a pure standing wave fields exists in the finite structure, and the fre-
quencies at which phase coincidence occurs are called natural or characteristics
frequencies of the structure. The corresponding spatial distributions of vibration
amplitudes are known as natural modes of the structure. In the case of bending
waves, substituting the expression of the bending wavenumber (Eq. (2.43)) in Eq.
(2.63) yields

ω =
n2π2

l2

√
EI

ρA
. (2.64)

An example of phase coincidence is shown in Figure 2.12 for kbl = 5π. Natural
frequencies depend only on the material properties and geometrical attributes of
the beam and play a fundamental role within the analysis dynamic response of a
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(a) Positive-going incident wave

(b) Negative-going reflected wave

(c) Returning positive-going wave

(d) Natural mode (standing wave field)

Figure 2.12: Wave fields generated in a finite beam simply supported on both edges for
kbl = 5π (bullet dots represents the wave fronts) [87]

system. In absence of damping, natural frequencies coincide with resonant ones,
and hence if the system is excited with a small amplitude harmonic force with an
angular frequency equal to a natural frequency of the system, this last exhibits a
very large response (theoretically infinite). In the case the system is excited by an
impulsive force, having an infinite frequency content, the Frequency Response
Function (FRF) of the system presents peaks in correspondence of all natural
frequencies [98].

Fahy and Gardonio [87] deeply describe the evaluation of the forced response
of a beam, based on the wave propagation approach. The calculation is based
on the application of the propagation laws to the waves directly excited by an
harmonic force acting on the structure, obviously taking into account the effect
of the constraints at the boundary. Since propagation laws and boundary effects
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have been previously treated, let’s consider the effect of a harmonic force onto an
infinite beam in terms of waves. Th equation of free motion in undamped beam

EI
∂4η

∂x4
+ ρA

∂2η

∂t2
= 0 (2.65)

applies to all points of the beam not subject to external forces. Suppose that a
harmonic point force acts in x = 0: in this case, the equation of motion in this
point is

EI
∂4η

∂x4
+ ρA

∂2η

∂t2
= F0δ(x− 0)e

iωt (2.66)

(where δ(x − 0) id the Dirac delta function). The two equation of motion are
equivalent at each point, except at the driving point, where the force is applied.
The complex solution, again, contains both positive and negative going waves,
but at x = 0 the wave amplitude must satisfy the conditions of equilibrium in
order to take into account the effect of the force. By imposing these conditions
[87], the complex transverse displacements generated by the complex point force
are

η(x, t) =


−

jF0

4EIk3b

[
e−ikbx − ie−kbx

]
e−iωt if x > 0

−
jF0

4EIk3b

[
eikbx − iekbx

]
e−iωt if x < 0

(2.67)

and the time dependence of the vibration field is shown in Figure 2.13. If the
beam is terminated by constraints, then the positive and negative going waves
interact at the boundary according to the relations previously investigated.

2.5 wave propagation in layered media
Layered media are obtained by superposing layers made by different material
and/or with different orientation. This is usually made in order to obtain a me-
dia with improved mechanical properties (compared to those of the individual
components). The analysis of wave propagation in layered media is much more
complicated compared to isotropic ones, mostly at high frequencies: when the
wavelength becomes of the same order of magnitude of the layers thickness, re-
peated reflections and refractions between the layers occur [99, 100]. For this
reason, the analytical theory employed to model the layered media should be
chosen accurately, depending on the frequency range of interest.

For what concerns laminated composite plates, the Equivalent Single Layer
(ESL) theories, within the composite is homogenised, are extension into com-
posite field of theories dedicate to isotropic material. Basically, the most used
methods belonging to this class are:

• the Classical Laminate Plate Theory (CLPT) [101], which is an extension of
the Kirchoff-Love theory;
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Figure 2.13: Bending vibration field generated by a harmonic point force acting on an
infinite beam [87]

• the First order Shear Deformation Theory (FSDT) [102], which revise the
basic assumptions of the first order theory proposed by Mindlin, and hence
it takes into account deformations associated with transverse shear and
rotational inertia of the cross section.

Both theories are suitable for analysing very thin plate in the low frequency range.
For thick layered plates and/or for high frequencies, high-order theories lead to
better results than ESL theories, as demonstrated by Carrera [103]. For instance,
Layer-Wise (LW) theory [11, 104] removes the homogenisation of the laminate by
considering each layer independently, leading on the other hand to an increased
computational effort.

Even more refined models are required for sandwich panel. In fact, a sand-
wich panel is a layered structure, constituted by two relatively thin and stiff
face sheets enclosing a low-density, thick and soft core. In this case, the shear
deformation within the core must be taken into account, and hence Higher or-
der Shear Deformation Theories (HSDT) are required [11, 105, 106]. However,
the analysis of wave propagation in sandwich structures has been widely inves-
tigated, mostly for their vibroacoustic characterisation [107]. In fact, sandwich
panels have lower sound transmission loss than homogeneous traditional pan-
els with similar stiffness because of their lower weight. Furthermore, sandwich
structures are strongly characterised by the coexistence of both anti-symmetric
and symmetric (or dilatational) wave modes, also at low frequencies, which de-
termines the presence of two coincident frequencies. (The coincidence frequency,
in general, is defined as the frequency at which the bending wavelength λb in
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the structure equals the wavelength of the acoustic wave λa of the surrounding
air. At this frequency, the structure is transparent to the incident acoustic wave.)

The first study concerning the vibroacoustics of sandwich was made by Kurtze
and Watters [6] who developed the so-called Shear Wall in 1959. In their work, the
possibility to shift the coincidence frequency out of the range of interest is inves-
tigated, in order to avoid the dip in the transmission loss curve and to extend
the validity of the mass law [2, 107]. The developed theoretical model assumes
that face sheets respond as thin elementary plates in bending, whereas the core
acts simply as an incompressible spacer and the dilatational motion is not con-
sidered. Shear effects are included in the core. The analysis of propagation speed
of both flexural and shear waves suggests that the use of an incompressible, soft
in shear core can favour the propagation of shear rather than bending waves in
sandwich panel, increasing the coincidence frequency: the behaviour of the sand-
wich panel gradually transforms from a global bending (the whole panel) to a
local one (the single face sheets) when the core is subjected to pure shear. An
update of Kurtze and Watters’ model is the one developed by Ford et al. [108],
which includes the dilatational modes since the core is considered compressible.
Although this model is not supported by physical reasons [8], it can be consid-
ered as a milestone in the vibroacoustic analysis of multi-layered structures since
it will be corrected and improved in several subsequent studies [8, 109]. In par-
ticular, Dym and Lang [8] were the first to consolidate the principal points of
sandwich behaviour into a single, formal model (further improved in 1976 [110])
for the theoretical prediction of the transmission loss in unidirectional symmet-
ric sandwich panels based on the analysis of wave propagation, highlighting the
inconsistencies of the previous works [6, 108, 109] and the possibility to analyse
separately flexural and dilatational modes of vibrations for a symmetric sand-
wich panel, which is no longer possible for an asymmetric one [9]. Moore and
Lyon [7, 111] extended all the previous work to the analysis of symmetric sand-
wich panels with orthotropic cores, evaluating the impedance of the structure
through the wave propagation approach. Their studies led to the patenting of
the so-called Mode Cancelling Panel [112], having a core very soft in compression
which moves the symmetric coincidence frequency to low frequencies. Nilsson
[10] investigates dynamic and acoustic properties of isotropic sandwich plates
through the wave propagation, obtaining results very similar to those of Kurtze
and Watters [6]. In his work, the displacements of the skins are described by
means of the theory for thin plates; instead, the displacements of the core are de-
rived by superposition of the transverse and the longitudinal waves propagating
in the core, expresses as function of a scalar stream function and a velocity poten-
tial, respectively. The continuity at the interfaces between the core and the skins
is imposed, and at the end the wave equations and the applied boundary condi-
tions lead to the determination of the overall propagation constant by means of
an iteration chain. A consistent Higher order Shear Deformation Theory (HSDT)
is proposed by Sokolinsky and Nutt [5] and used by Wang et al. [113], wherein
the thin face sheets are modelled as Euler-Bernoulli beam and the core as a two
dimensional medium in which both longitudinal and transverse displacements
vary non-linearly through the thickness.





3 W AV E A N D F I N I T E E L E M E N TM E T H O D F O R 1 - D I M E N S I O N A LP R O B L E M S
In this chapter, the Wave and Finite Element Method (WFEM) for the analysis of
uniform one-dimensional waveguides is introduced. This method is based on the
Finite Element analysis of a short segment of the waveguide (eventually using
a commercial package) under investigation. Once the stiffness and mass finite
element matrices are known, it is possible to formulate an eigenvalue problem
based on the transfer matrix of the elementary cell, which is obtained through
the application of periodicity conditions, continuity of displacements and equi-
librium of forces at the interface between two adjacent cells. Thus, wavenumbers
and wavemodes are calculated as solutions of this eigenproblem.

Furthermore, once the dispersion curves of an infinite waveguide are known, it
is also possible to describe the dynamic behaviour of a finite structure having the
same characteristics by using the wave approach: the motion can be described as
the superposition of several travelling waves.

The chapter is basically divided in three sections. In the first one, the Wave and
Finite Element Method is formulated, together with the wave approach for the
estimation of the forced response of finite structures. Then, the developed code is
briefly explained. At the end, the results, both in terms of dispersion curves and
Frequency Response Functions, are shown for different types of structure.

3.1 wfem for 1-dimensional waveguides
3.1.1 Dynamic stiffness matrix
Consider a one-dimensional waveguide, having infinite extension. The applica-
tion of the Wave and Finite Element Method (WFEM) [31, 32, 58, 59, 66, 72] for
the prediction of its dispersion relations starts with modelling a small segment
of length ∆ of the waveguide under investigation, as shown in Figure 3.1. The
waveguide is homogeneous along its axis x, but its properties can vary in an
arbitrary manner over its cross-section.

qL,fL qR,fR

∆

x

Figure 3.1: A segment of a uniform waveguide

29
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The length of the segment ∆, as specified later in the text, should be enough

small compared to the minimum wavelength in the frequency range of interest.
The finite element model of the elementary cell can be obtained by using the

analytical formulation [21, 22] or through a commercial FE package. The only
condition is that there must be the same number of nodes and degrees of freedom
(DOFs) on each side of the segment, and they must be numbered in the same
order.

The discrete dynamic equation of the cell obtained from the FE model at a
given circular frequency ω is given by (time harmonic dependence of the form
eiωt is assumed throughout this work, and it is suppressed for sake of brevity)
[72] (

K + iωC −ω2M
)

q = f + e (3.1)

where q, f and e are 2n× 1 vectors of nodal DOFs, internal nodal forces and exter-
nal nodal forces, respectively. K, C and M are the stiffness, viscous damping and
mass matrices. Damping can be included both by considering a viscous damping
matrix C or by K being complex (taking into account the structural damping co-
efficient). Eq. (3.1) can be written in a different form by introducing the dynamic
stiffness matrix, defined as

D̃ = K + iωC −ω2M. (3.2)

Nodal forces and DOFs can be decomposed into sets associated with the left (L)
and right (R) boundaries and interior (I) nodes. In this case, assuming there are
not external forces on the interior nodes, Eq. (3.1) turns into [59]D̃II D̃IL D̃IR

D̃LI D̃LL D̃LR
D̃RI D̃RL D̃RR




qI
qL
qR

 =


0

fL
fR

 . (3.3)

Any interior DOFs can be removed by condensation [59, 66]. In fact, from the first
row of the Eq. (3.3)

qI = −D̃−1
II

(
D̃ILqL + D̃IRqR

)
. (3.4)

This leads to[
D̃LL − D̃LID̃−1

II D̃IL D̃LR − D̃LID̃−1
II D̃IR

D̃RL − D̃RID̃−1
II D̃IL D̃RR − D̃RID̃−1

II D̃IR

]{
qL
qR

}
=

{
fL
fR

}
, (3.5)

which can be easily written as[
DLL DLR
DRL DRR

]{
qL
qR

}
=

{
fL
fR

}
. (3.6)

The new dynamic stiffness matrix is thus obtained after elimination of the interior
degrees of freedom. The partitions are of size n× n, where n is the number of
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DOFs at the left-hand (and right-hand) of the segment. Since D is symmetric, the
following relations hold:

DTLL = DLL, (3.7)

DTRR = DRR, (3.8)

DTLR = DRL, (3.9)

where the superscript T indicates the transpose matrix.

3.1.2 Wave analysis in a cell
The study of the wave propagation through the waveguide can be reduced to
the analysis of a single cell, by applying the periodicity conditions together with
continuity of displacements and equilibrium of forces at the interfaces between
two consecutive cells.

3.1.2.1 Periodicity conditions: the Bloch theorem

The possibility to investigate a periodic structure modelling just its representative
cell is based on the Bloch theorem (or Floquet-Bloch theorem), which gives a
rigorous and well-posed problem representing wave dispersion in undamped
media [17].

Figure 3.2 represents an infinite one-dimensional waveguide, obtaining by repli-
cating along its axis the elementary cell (green coloured), with length ∆. Each
point P in the structure can be expressed with respect to a corresponding point
U in the elementary cell, translated ncell along the x axis. Hence:

rp = ru +ncell∆i, (3.10)

being i a unit vector directed along x axis.

ru

U

rc

P

rp

Figure 3.2: Schematic representation of an infinite periodic waveguide. Green cell is the
considered unit cell

According to the Bloch theorem [17], the displacement u(rp,ω) in a generic
point P of the periodic system can be expressed in terms of the displacement
u(ru,ω) of the corresponding point in the reference unit cell, multiplied by an
exponential term defining amplitude and phase change as the wave propagates
from the reference cell to the considered one, which is function only on the num-
ber of cells between them (and hence is independent on the cell location within
the waveguide). The relation between the displacements of the two points is

u(rp,ω) = u(ru,ω)e−ik·(ncell∆i), (3.11)



32 wave and finite element method for 1-dimensional problems
where the symbol ·, in the exponent, indicates a scalar product. Hence, the ampli-
tude and phase change are determined by the wavenumber vector k. Given the
one-directionality of the problem, and considering two adjacent cells (ncell = 1),
Eq. (3.11) becomes

u(rp,ω) = u(ru,ω)e−ik∆ = u(ru,ω)λ, (3.12)

where λ is the propagation constant associated to the wavenumber k, defined as

λ = e−ik∆. (3.13)

It describes the amplitude and the phase change over a distance ∆ of the wave
characterised by the wavenumber k.

3.1.2.2 Continuity of displacements and equilibrium of forces: the transfer matrix

Once the primitive irreducible cell is identified, the boundary conditions at the
interfaces must be imposed. Suppose that no external forces are applied to the
structure, and consider two adjacent elementary cells of a waveguide, as shown
in Figure 3.3.

{
qNL
fNL

} {
qNR
−fNR

}
=

{
qN+1
L

fN+1
L

} {
qN+1
R

fN+1
R

}
Cell N Cell N+ 1

Figure 3.3: Two adjacent elementary cells of a waveguide

From continuity of displacements and equilibrium of forces at the interface
between the cell N and (N+ 1), it follows that [58]

qN+1
L = qNR , (3.14)

fN+1
L = −fNR . (3.15)

These relations can be expressed in matrix form as

T

{
qNL
fNL

}
=

{
qNR
−fNR

}
=

{
qN+1
L

fN+1
L

}
. (3.16)

T is the transfer matrix, relating the nodal displacements and forces (evaluated
on the left side) between two adjacent cells. The terms of the transfer matrix can
be easily derived by exploiting the relation between nodal displacements and
forces expressed through the dynamic stiffness matrix in Eq. (3.6). In fact, from
the first row (no interior DOFs or, if present, already condensed)

qN+1
L = D−1

LR

(
fNL − DLLqNL

)
(3.17)
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Substituting Eq. (3.17) in the second row Eq. (3.6) gives(

DRL − DRRD−1
LRDLL

)
qNL + DRRD−1

LRfNL = −fN+1
L (3.18)

Eqs. (3.16), (3.17) and (3.18) finally provide the transfer matrix

T =

[
−D−1

LRDLL D−1
LR

−DRL + DRRD−1
LRDLL −DRRD−1

LR

]
. (3.19)

It is worth to highlight that the transfer matrix T depends only on the dynamic
stiffness of one cell of the waveguide.

3.1.3 Free wave propagation: the eigenvalue problem
Under the passage of a wave of the form ∼ ej(ωt−kx) along the waveguide, the
relation between the nodal displacements and forces on the left and on the right
sides of the elementary cell can be expressed through:

• the Bloch theorem, for which

qR = λqL, (3.20)

fR = −λfL, (3.21)

where λ depends on the cell length ∆;

• the transfer matrix defined in Eq. (3.19).

Thus, from Eqs. (3.16), (3.20) and (3.21), it is possible describing the free wave
propagation through the formulation of an eigenvalue problem in the form

T

{
qL
fL

}
= λ

{
qL
fL

}
. (3.22)

wherein the propagation constants λ are the eigenvalue of the transfer matrix.

3.1.3.1 Properties of eigenvalues and eigenvectors

The eigenproblem of Eq. (3.22) has 2n eigenvalues. In particular, the generic
eigenvalue λj (j = 1, 2, · · · , 2n) is related to the phase change (or decay) over the
length ∆ of the elementary cell, and hence it represents the propagation constants.
The associated eigenvector (or basis wave vector, or eigenwave) Φj represents a
wavemode containing information about both the displacements and the internal
forces over the cross-section. (Again, here n indicates the number of nodal DOFs
on each side of the cell.)

The eigenvector can be partitioned in two n× 1 vectors, associated with the
nodal DOFs and the nodal forces, i.e.

Φj =

{
Φ
q
j

Φfj

}
, (3.23)
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where the superscript q and f indicate the vectors related to DOFs and forces,
respectively.

It is worth to remark that the 2n eigenvalues of the eigenproblem come in n
independent pairs [59]. In fact, the first row of Eq. (3.22) leads to

fL = (DLL + λDLR)qL. (3.24)

Combining this with the second row of Eq. (3.22) gives(
DLL + DRR + λDLR +

1

λ
DRL

)
qL = 0. (3.25)

From Eq. (3.25), it results that the eigenvalues are the roots of the determinant∣∣∣∣DLL + DRR + λDLR +
1

λ
DRL

∣∣∣∣ = 0, (3.26)

but by taking the transpose of Eq. (3.25) and applying the symmetric properties
of the dynamic stiffness matrix, it can be also obtained that they are the roots of∣∣∣∣DLL + DRR + λDRL +

1

λ
DLR

∣∣∣∣ = 0. (3.27)

This leads to the fundamental properties that if λ is an eigenvalue, 1/λ is also an
eigenvalue for any shape or properties of the cell. The eigensolutions therefore
come in two sets whose eigenvalues and eigenvectors are (λj, Φ+

j ) and (1/λ, Φ−
j ),

which represent n positive-going and n negative-going waves, respectively. In
order to identify the two groups of waves, the positive-going waves are those for
which the magnitude is less than 1, or the carried power is positive going, i.e.∣∣λj∣∣ 6 1

Re
{

fHL q̇L
}
= Re

{
iωfHL qL

}
< 0, if

∣∣λj∣∣ = 1 (3.28)

where the superscript H represent the Hermitian operator. Eq. (3.28) implies that
either the amplitude of a wave decreases in the direction of propagation or that,
if the amplitude remains constant, there is time average power transmission in
the direction of propagation.

From Eqs. (3.26) and (3.27), it results that qL is both a right eigenvector associ-
ated with the eigenvalue λ (Eq. (3.26)) and a left eigenvector associated with the
eigenvalue 1/λ (Eq. (3.27)).

The right eigenvector (vector 2n× 1, partitioned in two vectors n× 1) of the
eigenproblem of Eq. (3.22) for the eigenvalue λj is given by

Φj =

{
Φ
q
j

Φfj

}
=

{
qL(λj)(

DLL + λjDLR
)

qL(λj)

}
, (3.29)

whereas the left eigenvector (vector 1× 2n) associated with λj is given by

Ψj =
{

Ψfj Ψ
q
j

}
=

{
TqL

(
1

λj

)(
DRR + λjDLR

)
TqL

(
1

λj

)}
. (3.30)
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However, for our purposes, the left eigenvector is rearranged as

Ψj =
{

Ψ
q
j Ψfj

}
(3.31)

Summarising, it is possible to write the right and left eigenproblems as follows:

TΦj = λjΦj (3.32)

ΨjT = λjΨj (3.33)

Obviously, the right and left eigenproblems provide the same eigenvalues, while
the orthogonality relations between the left and right eigenvector can be ex-
pressed as

ΨiΦj = diδij (3.34)

where δij is the Kronecker delta and di is arbitrary. The normalization may in-
volve either the displacement part of the eigenvector (i.e. q(λj), q(1/λ) [59] or the
whole eigenvector in a such a way that di = 1 [66, 72]. In the second case, which
is the normalisation adopted in this work, the wavemodes are normalised so that

ΨΦ = I, (3.35)

where I is the identity matrix. A consequence of this normalisation is that

ΨTΦ = diag(λj) (3.36)

where diag(·) represents a diagonal matrix.

3.1.3.2 Type of waves: propagating, evanescent and attenuating

In general, the j-th eigenvalue, which is the propagation constant of the corre-
sponding wave, can be written as

λj = e
−ikj∆ = e−µj∆e−ik

′
j∆ (3.37)

where the wavenumber kj = k ′j − iµj (with k ′j,µj ∈ R) may be complex. The
imaginary µj and real k ′j parts of the wavenumber kj are equal, respectively, to
the attenuation and the phase change per unit length associated with the j-th
wave. In Eq. (3.37), the signs of µj and k ′j have been chosen in a such a way that
they are positive for positive-going waves.

The waves can be classified depending on the nature (real, imaginary, complex)
of the eigenvalue. In the absence of damping, those eigenvalue having

∣∣λj∣∣ = 1,

with λj = e
−ik ′j∆ (i.e. µj = 0) represent freely propagating waves with wavenum-

ber k ′j, while those for which λj is real (i.e. k ′j = 0) represent evanescent waves.
Under certain circumstances (e.g. damped system, hence complex dynamic stiff-
ness matrix), there may be a pair of complex conjugate eigenvalues for which
λj is complex and

∣∣λj∣∣ < 1: these represent decaying but oscillatory waves. The
different types of waves are summarized in Table 3.1 and Figure 3.4 [114]. In the
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Table 3.1: Properties of eigenvalues and associated waves [114]

λ |λ| µ k ′ Wave Direction

imaginary 1 0 > 0 propagating
Positivereal < 1 > 0 0 evanescent

complex < 1 > 0 > 0 attenuating

imaginary 1 0 < 0 propagating
Negativereal > 1 < 0 0 evanescent

complex > 1 < 0 < 0 attenuating

(a) propagating (b) evanescent (c) attenuating

Figure 3.4: Different types of waves [114]

general case, a wave is either a slowly decaying propagating wave or a rapidly
attenuating, but slightly oscillatory, evanescent wave.

Numerical results are usually presented in terms of k ′j and µj (or, which is the
same, as Re{kj} and Im{kj}). For this reason, Eq. (3.37) can be rewritten as

k ′j − iµj = −
ln λj
i∆

. (3.38)

3.1.3.3 The wave motion and the wave basis

According to the Bloch theorem, propagation over a distance L is such that, for
motion given by the j-th wavemode, nodal displacement and forces at location x
and x+ L are related by

q(x+ L) = λjq(x) f(x+ L) = λjf(x). (3.39)

However, in general the motion of the waveguide is a sum of wave components,
therefore it is necessary to calculate the contribution of each wave. For this pur-
pose, the left and right eigenvectors can be grouped by partitioning the positive-
and negative-going waves, as follows

Φ+ =
[
Φ+
1 · · · Φ+

n

]
Φ− =

[
Φ−
1 · · · Φ−

n

]
Φ =

[
Φ+ Φ−

] (3.40)
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Ψ+ =


Ψ+
1
...

Ψ+
n

 Ψ− =


Ψ−
1
...

Ψ−
n

 Ψ =

[
Ψ+

Ψ−

]
(3.41)

Since the number of positive- and negative- going waves are equal to the number
of DOFs on each side of the cell, in their original sense Φ+ and Φ− are 2n× n
matrices, whereas Ψ+ and Ψ− are n× 2n.

These partitions of the left and right eigenvector can be further partitioned in
order to isolate the part of the eigenwaves related to the nodal DOFs and the one
containing to the nodal forces, e.g.

Φ+
q =

[
Φ+
q,1 · · · Φ+

q,n

]
, Ψ+

q =


Ψ+
q,1
...

Ψ+
q,n

 . (3.42)

Obviously, in the same way the matrices Φ−
q , Ψ−

q , Φ±f and Ψ±f can be defined,
and all of them have dimensions n× n since no considerations have been done
yet on the number of waves to be retained. These matrices, together with the or-
thogonality relation of Eq. (3.35), define the transformation between the physical
domain and the wave domain. In the physical domain, the motion is simply de-
scribed in terms of q and f; in the wave domain, instead, each wave belonging to
the basis, formed by the right (left) eigenvectors matrix Φ (Ψ), contributes to the
motion with an amplitude a+ or a−, depending on the direction of the travelling
wave.

In particular, the transformation between the two domains can be written as

qL = Φ+
qa+ + Φ−

qa−, (3.43)

fL = Φ+
f a+ + Φ−

f a−, (3.44)

or, in matrix form{
qL
fL

}
= Φ

{
a+

a−

}
, (3.45)

where a =

{
a+

a−

}
is the vector of the waves’ amplitudes.

3.1.4 Model reduction
Once the wave basis is defined, it is possible to consider only a limited number
of waves m to reconstruct to motion of the waveguide (as in modal analysis a
limited number of modes is considered). In this case, the matrices Φ±q,f and Ψ±q,f
(and similar) are n×m and m × n, respectively. The choice of the number of
waves to be retained is still a complicated task, since it can strongly affect the
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calculation of the motion of the waveguide. However, as a rule of thumb, all the
propagating waves (having

∣∣λj∣∣ = 1) must be retained, together with the slowest
attenuating waves (i.e. with

∣∣λj∣∣ < 1, but µj small ). The reasons for the reduction
of the size of the wave basis are basically two:

• the high-order wavemodes, i.e. the waves which decay very rapidly with
distance, have a negligible contribution to the response, and hence can be
neglected in order to reduce the computational cost;

• the calculation of high-order wavemodes is very prone to poor numerical
conditioning [66].

3.1.5 Numerical issues
The use of the Wave and Finite Element Method for the numerical calculation of
free wave propagation is characterised by various numerical issues, deeply dis-
cussed by Waki et al. [66] and here briefly summarised. These issues are due both
to the finite element discretisation of a periodic structures (at high frequencies)
and to the resolution of an eigenproblem based on the Dynamic Stiffness Matrix
(in the low frequency range).

discretisation
This type of issue occurs in general at high frequencies when the dynamic be-
haviour of a continuous structure is described by means of a discrete model. In
the case of Finite Element, the length of the element must be chosen as a function
of the minimum wavelength: as a rule of thumb, at least six element per wave-
length should be considered in order to reconstruct correctly the wave. These
errors also depend on the aspect ratio of the element used.

periodic structure effects
Periodic structures exhibit two own effects due to the periodicity. First of all, their
dynamic behaviour is characterised by pass-band (in which the waves are free to
propagate) and stop-band (in which the waves decay with distance) frequency
regions [25, 115]. The problem is that the bounds of the pass- and stop- bands
depend on the natural frequencies of the elementary cell under several boundary
conditions [116, 117]. On the other hand, at high frequencies an aliasing effect
occurs when the segment length becomes comparable to the wavelength: if k∆ is a
(dimensionless) wavenumber, solution of the eigenvalue problem, then also k∆+

2nπ yields to the same solution for any integer n. Hence, the eigenwaves and
frequencies are periodic functions of the propagation constant. Both the periodic
structure effects described can be overcome by properly choosing the length of
the cell.

truncation of inertia terms in the dsm
The numerical issues described above occur mostly at high frequencies and can
be solved by ensuring the length of the cell is enough shorter than the minimum
wavelength. However, if the size of the element is too small, round-off errors can
occur at low frequencies, due to truncation of inertia terms in the Dynamic Stiff-
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ness Matrix, defined in Eq. (3.2). Neglecting the damping for sake of simplicity,
the generic term of the matrix is Dij = Kij −ω

2Mij. At very low frequencies,
the stiffness term can be very large compared to the inertia term, determining
to the truncation of some digits of this last because of computer finite precision
arithmetic.

Obviously, round-off errors can be reduced by using a higher precision arith-
metic (if available) and/or by considering a longer cell, determining a decrease
of the stiffness, as well as an increase of the mass (i.e. the inertia term).

matrix inversion in the dsm and numerical conditioning
The eigenproblem described by Eq. (3.22) can suffer from poor numerical condi-
tioning, because the transfer matrix defined in Eq. (3.19) implies DLR is inverted.
This problem can be solved by conditioning the eigenvalue problem. Zhong et al.
[118, 119] reformulated the Eq. (3.22) only in terms of the displacement vectors,
leading to[
(DLR − DRL) − (DLL + DRR)

(DLL + DRR) (DLR − DRL)

]{
q

λq

}
=

1

λ+ 1/λ

[
0 DLR

−DLR 0

]{
q

λq

}
(3.46)

Eq. (3.46) has repeated eigenvalues (λ+ 1/λ)−1. Hence, propagation constants
can be easily determined, overcoming the numerical issues. However, the calcu-
lation of the eigenvectors of the original eigenproblem is not trivial [66], being
based on singular value decomposition.

3.1.6 Examples: dispersion curves
In this section, some simple examples are reported in order to allow the compre-
hension of the previous sections.

3.1.6.1 Infinite rod

The dispersion relation of the longitudinal waves travelling in an infinite rod are
calculated by applying the WFEM, and then compared to the analytic solution
[1, 2].

Consider a rod element of length ∆, as shown in Figure 3.5, having two degrees
of freedom. This element constitutes the elementary cell of the one-dimensional
waveguide under investigation.

u1

F1 F2

u2

∆

Figure 3.5: Rod element
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The analytic stiffness and mass finite element matrices for the rod element are

[22]:

K =
EA

∆

[
1 −1

−1 1

]
, M =

ρA∆

6

[
2 1

1 2

]
, (3.47)

where E and ρ are Young’s modulus and density of the material, respectively;
A is the cross-sectional area. The damping is taken into account by assuming
a hysteretic damping η, leading to a complex Young’s modulus Ec = (1+ iη)E.
These matrices lead to the following dynamic stiffness matrix [120]

D =


1−

ρ∆2ω2

3Ec
−1−

ρ∆2ω2

6Ec

−1−
ρ∆2ω2

6Ec
1−

ρ∆2ω2

3Ec

 . (3.48)

Given the expression of the propagation speed of longitudinal waves in solid
media (Eq. (2.16)), the corresponding wavenumber is

kl =
ω

c ′′l
= ω

√
ρ

Ec
=

√
ρω2

Ec
. (3.49)

It is worth to remark that the propagation velocity of longitudinal waves does not
depend on the frequency, i.e. the relation between the wavenumber and the fre-
quency is linear, therefore they are non-dispersive waves. Once the wavenumber
of longitudinal wave in thin rod is defined, it is possible to express the dynamic
stiffness matrix as a function of a dimensionless wavenumber kl∆,; in fact, sub-
stituting Eq. (3.49) in the expression of the dynamic stiffness matrix (Eq. (3.48),
this last can be rewritten as

D =


1−

(kl∆)
2

3
−1−

(kl∆)
2

6

−1−
(kl∆)

2

6
1−

(kl∆)
2

3

 , (3.50)

which leads to the transfer matrix (according to Eq. (3.19))

T =
1

1+
(kl∆)

2

6


1−

(kl∆)
2

3
−1

(kl∆)
2 −

(kl∆)
4

12
1−

(kl∆)
2

3

 . (3.51)

The eigenvalues of this matrix are given by

λ± =
1

1+
(kl∆)

2

6

1− (kl∆)
2

3
± ikl∆

√
1−

(kl∆)
2

12

 =

= 1± ikl∆−
(kl∆)

2

2
+ O

(
(kl∆)

3
)

.

(3.52)
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As expected, since there is one DOF on each side of the rod element, one pair
of eigenvalues is identified, representing propagating waves in the positive and
negative directions. It is possible to verify that, in absence of damping,

∣∣λ±∣∣ = 1

for (k∆)2 < 12, which represent the cut-off wavenumber for the FE model, i.e.
the frequency at which the stop-band begins.

Suppose that the waveguide has a cross-sectional area A = 10−6m2 and it is
made of aluminium (E = 70GPa, ρ = 2700 kg/m3). The elementary cell is long
∆ = 0.001m. No damping is included.
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Figure 3.6: Dispersion curves for thin aluminium rod cell

In Figure 3.6, the dispersion curves (wavenumber k as a function of the fre-
quency f) of the aluminium rod cell are plotted. On the top, the positive wavenum-
ber is reported; on the bottom, the negative one. The two dispersion curves (posi-
tive and negative) are the same, except for the sign of both the real and imaginary
parts. Hence, it is possible to consider only one of the two dispersion graph, re-
lated to the positive-going wave. In Figure 3.7, the longitudinal wavemode is
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represented at f = 10Hz for a portion of the waveguide (the cross-sectional di-
mensions are enlarged to improve the comprehension). The color bar indicates
the displacement along the axis x of the waveguide.

Figure 3.7: Longitudinal eigenwave at f = 10Hz in thin aluminium rod

In Figure 3.8, the numerical solution, obtained through WFEM, for the positive-
going wave is compared to the analytical one, showing that for this value of ∆
the numerical results are identical to the analytical ones in the whole considered
frequency range.
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Figure 3.8: Numerical-analytical comparison of dispersion curves of thin aluminium rod

In Figure 3.9, the dimensionless wavenumber k∆ (numerically estimated) is
plotted against the dimensionless frequency Ω = kl∆ = ω∆

√
ρ/E (analytically

calculated). It is possible to observe that in the low frequency range the numer-
ical solution is identical to the numerical one. When the aliasing effect occurs,
the numerical values move away from the numerical ones because of the discreti-
sation error. However, waves propagate freely up to Ωc = k∆ <

√
12, since the

imaginary part is zero.Ωc is the cut-off frequency of the model, and it defines the
end of the first pass-band region. For higher frequencies, the stop-band region
begins, therefore the finite element model predicts a pair of attenuating waves
(Im{k} < 0, i.e. µ > 0): this means that waves are no longer free to propagate, and
decay with distance.
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Figure 3.9: Dimensionless dispersion curves of thin aluminium rod

3.1.6.2 Infinite beam

Consider now an infinite uniform Euler-Bernoulli beam, undergoing the bending
vibration. As explained in Section 2.2.3.1, four dispersive waves are present in the
waveguide, grouped in two pairs of propagating and evanescent waves going in
the positive and in the negative directions.

Similarly to the previous example for the rod, in this section the numerical
dispersion curves of an Euler-Bernoulli beam, obtained through WFEM, are com-
pared to the analytical ones. Consider a small segment ∆ of the beam, being the
elementary cell of the waveguide. The finite element model of the cell has two
nodes, and at each node there are two DOFs, displacement and rotation, and cor-
respondingly two nodal forces, shear and bending moment. The beam element
is shown in Figure 3.10.

v1θ1

F1

M1
v2 θ2

F2

M2

∆

Figure 3.10: Beam element

The analytic stiffness and mass finite element matrices for the beam element
are [22]:

K =
EIz

∆3


12 6∆ −12 6∆

6∆ 4∆2 −6∆ 2∆2

−12 −6∆ 12 −6∆

6∆ 2∆2 −6∆ 4∆2

 , (3.53)
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M =
ρA∆

420


156 22∆ 54 −13∆

22∆ 4∆2 13∆ −3∆2

54 13∆ 156 −22∆

−13∆ −3∆2 −22∆ 4∆2

 . (3.54)

The cell is made of aluminium, and the cross-section have the following char-
acteristics: A = 10−6m2, Iz = 8.33× 10−14m4. The length of the segment is
∆ = 0.001m. A damping coefficient η = 0.01 is considered.
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Figure 3.11: Dispersion curves for aluminium Euler-Bernoulli beam
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The dispersion curves for the pairs of positive-going waves are shown in Figure

3.11. Analytical and numerical curves coincide in the considered frequency range.
Furthermore, according to Table 3.1, Figure 3.11a reports the dispersion relation
for the propagating wave, whereas Figure 3.11b shows that of the evanescent one.
The corresponding eigenwaves at f = 10Hz are shown in Figure 3.12. In particu-
lar, the bending wave is represented on the left (Figures 3.12a-3.12c), whereas on
the right the evanescent wave is shown (Figures 3.12b-3.12d). For both the eigen-
waves, the surface of the beam are coloured in terms of displacement along y axis
and in terms of rotation about z axis, in order to provide a complete information
since they are not visible from the graphical deformation of the waveguide. As
mentioned before, the evanescent wave vanishes soon with the distance.

(a) bending wave (displacement color) (b) evanescent wave (displacement color)

(c) bending wave (rotation color) (d) evanescent wave (rotation color)

Figure 3.12: Wavemodes at f = 10Hz for aluminium Euler-Bernoulli beam

3.2 vibration analysis using wave approach
The dynamic response of a one-dimensional periodic structure can be derived
through the wave approach, i.e. calculating the motion as the superposition of the
travelling waves [87]. In this sense, the dispersion relations, estimated by means
of the WFEM for free wave propagation, can be used to calculate the amplitudes
of the waves.

The work by Duhamel et al. [59] is the first concerning the evaluation of the
forced response through the WFEM, using a recursive technique based on the
number of cells used to discretise the structure. More recent formulations [42, 66,
72], instead, focus on the analysis of a single cell, exploiting the wave propagation
laws to evaluate the response in a given point of the structure [81, 121].
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Figure 3.13: Waves in a finite structure excited by point load [66]

In general, the forced response is calculated by projecting the equation of mo-
tion onto the wave basis defined in Eqs. (3.43),(3.44). Typically, the wave approach
involves the following steps [81, 121, 122]:

• calculation of the amplitudes of the direct excited waves in an infinite
waveguide, excited by a punctual excitation;

• calculation of the reflection matrices at boundaries or other discontinuities;

• calculation of the propagating waves in the waveguide;

• sum of all the involved waves, due to excitation, propagation and reflection;

• determining of the physical response by superimposing waves’ amplitudes
at a desired response point.

The problem is schematically represented in Figure 3.13. The force fext generates
n pairs of directly excited waves propagating in positive (e+) and negative (e−)
directions. The travelling waves propagate toward the boundaries. The incident
waves (c+ and d−) impinge on the boundaries, and then they are reflected (c−

and d+). Hence, in the steady state condition, at the excitation point, the sum
waves (a+ and g−) are obtained as the sum of the directly excited waves and
the waves propagating from the boundaries (g+ and a−). In next paragraphs, the
amplitudes of all the involved waves are calculated.

directly excited waves
Consider a point on an infinite one-dimensional waveguide excited by a har-
monic point force fext. Waves are then induced, propagating outwards from the
excitation point in both the positive and negative directions. In order to calcu-
late their amplitudes e+ and e−, continuity and equilibrium conditions at the
excitation point are projected onto the wave basis through the transformation de-
fined in Eq. (3.45). The transformation on the wave domain can be expressed in
extended form as:{

q

f

}
=

[
Φ+
q Φ−

q

Φ+
f Φ−

f

]{
e+

e−

}
. (3.55)
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Applying the continuity of displacements (q+ = q−) and the equilibrium of the
force (f+ − f− = fext) at the excitation point [84], it follows that

Φ+
q e+ − Φ−

q e− = 0, (3.56)

Φ+
f e+ − Φ−

f e− = fext, (3.57)

and in matrix form[
Φ+
q −Φ−

q

Φ+
f −Φ−

f

]{
e+

e−

}
=

{
0

fext

}
. (3.58)

In the case that all the n wavemodes are considered for the wave basis, the am-
plitudes of the directly excited waves can be determined from Eq. (3.58) as{

e+

e−

}
=

[
Φ+
q −Φ−

q

Φ+
f −Φ−

f

]−1{
0

fext

}
. (3.59)

However, the inversion of the matrix can lead to numerical errors since it could
be ill-conditioned, especially for complicated structures. As specified in Section
3.1.4, the highest order wavemodes are usually excluded from the wave basis,
leading to the matrix in Eq. (3.58) being no longer square: in this case, a pseudo-
inverse could be calculated, or singular value decomposition used [66]. A solution
to avoid this kind of problem is exploiting the orthogonality of the left and right
eigenvectors, expressed by Eq. (3.35). In fact, premultiplying Eq. (3.58) by the
matrix of left eigenvectors properly rearranged (in this work, the left eigenvectors
are partitioned differently from how is described by Waki et al. [66]), provides[

Ψ+
q Ψ+

f

Ψ−
q Ψ−

f

][
Φ+
q −Φ−

q

Φ+
f −Φ−

f

]{
e+

e−

}
=

[
Ψ+
q Ψ+

f

Ψ−
q Ψ−

f

]{
0

fext

}
, (3.60)

from which,{
e+

−e−

}
=

[
Ψ+
q Ψ+

f

Ψ−
q Ψ−

f

]{
0

fext

}
. (3.61)

In conclusion, the amplitudes of the directly excited waves are calculated as{
e+

e−

}
=

{
Ψ+
f fext

−Ψ−
f fext

}
, (3.62)

which is always well-conditioned.

behaviour of waves at boundaries
As a wave travels through a finite structure, it will reach the end of the medium
and/or encounter an obstacle or perhaps another medium through which it could
travel. Waves incident upon discontinuities are reflected and transmitted (if not
absorption is considered). Instead, in the case of elastic boundary conditions, an
incident wave is only reflected, without any transmission. In this work, only clas-
sic boundary conditions (force-free, clamped, simply supported) are considered.
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(Refer to works made by Mencik [32, 42] and Renno and Mace [77] for the calcu-
lation of scattering properties for general boundaries.)

When a generic wave h+, travelling in the positive direction, impinges on an
elastic boundary on the right end side, a reflected wave h−, travelling in the
opposite direction, is generated such that

h− = Rh+ (3.63)

where R is the matrix of reflection coefficients, which depends on the type of
constraint.

In general, each boundary condition can always be expressed in the form

Af + Bq = 0. (3.64)

Projecting the DOFs and force onto the wave domain through Eq. (3.55) gives

A
(
Φ+
f h+ + Φ−

f h−
)
+ B

(
Φ+
q h+ + Φ−

q h−
)
=

= h+
(
A Φ+

f +B Φ+
q

)
+ h−

(
A Φ−

f +B Φ−
q

)
= 0,

(3.65)

from which

h− = −
(
A Φ−

f +B Φ−
q

)−1 (A Φ+
f +B Φ+

q

)
h+ = Rh+. (3.66)

Hence, in general, the reflection matrix R can be expressed as

R = −
(
A Φ−

f +B Φ−
q

)−1 (A Φ+
f +B Φ+

q

)
. (3.67)

An analogous expression can be found for waves reflected from the left bound-
aries, such as h+ = Lh−, i.e.

L = −
(
A Φ+

f +B Φ+
q

)−1 (A Φ−
f +B Φ−

q

)
. (3.68)

The elements of the matrices A and B are in general complex and frequency
dependent. They can be expressed in terms of the dynamic stiffness matrix [84,
121], but simple expression exists for the most common boundary conditions.

• For fixed boundary, A = 0 and B = I, leading to

R = −
(
B Φ−

q

)−1 (B Φ+
q

)
, L = −

(
B Φ+

q

)−1 (B Φ−
q

)
. (3.69)

• For force-free boundary, A = I and B = 0, leading to

R = −
(
A Φ−

f

)−1 (A Φ+
f

)
, L = −

(
A Φ+

f

)−1 (A Φ−
f

)
. (3.70)

• For simply-supported boundary,

R = −I, L = −I. (3.71)

The reflection coefficient matrix R and L gives the amplitudes of the reflected
waves in terms of those of the incident waves. If R is a diagonal matrix, each
wavemode reflects at the boundary without wavemode conversion. Finite, per-
haps complex, off-diagonal terms in the reflection matrix represent wavemode
conversion such that one type of incident wave will be scattered to other wave-
modes.
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propagating waves
The amplitude of all the waves changes as they propagating, depending on their
own wavenumbers and the distance to be covered. Their variations can be derived
by applying the definition of propagation constant. According to Figure 3.14, for
instance, if the waveguide has n wave components, the waves’ amplitudes at two
points a distance x apart are given by

s+ = T(x)h+, (3.72)

where T(x) is the wave propagation matrix. It can be expressed as

T(x) = diag
(
e−ik1x, e−ik2x, · · · , e−iknx

)
. (3.73)

All the elements of the wave propagation matrix have a magnitude less or equal
to the unity, with the elements corresponding to the high order wavemodes being
approximately zero.

h+ s+

x

Figure 3.14: Waves propagation over a distance x

sum of waves
Once the amplitudes of directly excited, reflected and propagating waves are
known, it is possible to calculate the waves’ amplitudes at a given response point
by considering the excitation and reflection relations together with the wave prop-
agation laws.

First of all, the sum waves must be evaluated at a reference point, e.g. the
driving point. Consider the finite waveguide represented in Figure 3.13. At the
excitation point, the amplitudes of the waves a+ and g− are given by the sum of
the directly excited waves and the incident waves (which are the waves coming
from the reflection at the boundaries), i.e.

a+ = e+ + g+ (3.74)

g− = e− + a−. (3.75)

At the right and left boundaries, the following reflection relations can be written:

c− = Rc+ (3.76)

d+ = Ld−. (3.77)

Along the waveguide, the following propagation relations hold:

g+ = T(xe)d+ (3.78)

d− = T(xe)g− (3.79)

a− = T(L− xe)c− (3.80)

c+ = T(L− xe)a+ (3.81)
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According to Eqs. (3.74)-(3.81), it is possible to evaluate the unknown amplitudes
a+ and a−. In particular, they are given by

a+ = e+ + g+ =

= e+ + T(xe)d+ =

= e+ + T(xe)Ld− =

= e+ + T(xe)LT(xe)g− =

= e+ + [T(xe)LT(xe)]
(
e− + a−

)
=

= e+ + T(xe)LT(xe)e− + T(xe)LT(xe)T(L− xe)c− =

= e+ + T(xe)LT(xe)e− + T(xe)LT(L)Rc+ =

= e+ + T(xe)LT(xe)e− + T(xe)LT(L)RT(L− xe)a+

(3.82)

a− = T(L− xe)c− =

= T(L− xe)Rc+ =

= T(L− xe)RT(L− xe)a+ =

= T(L− xe)RT(L− xe)
[
e+ + (T(xe)LT(xe))

(
e− + a−

)]
=

= T(L− xe)RT(L− xe)e+ + [T(L− xe)RT(L)LT(xe)]
(
e− + a−

)
(3.83)

In conclusion:

a+ = [I − T(xe)LT(L)RT(L− xe)]−1
[
e+ + T(xe)LT(xe)e−

]
(3.84)

a− = [I − T(L− xe)RT(L)LT(xe)]−1
[
e− + T(L− xe)RT(L− xe)e+

]
− e−

(3.85)

The adopted approach allows numerical stability. In fact, the above solutions are
well-conditioned because the matrices being inverted are diagonally dominant
and the element of the wave propagation matrices are less than or equal to the
unity.

response calculation
In order to calculate the response at a desired point of the structure, the waves’
amplitudes must be calculated in this point. Considering the response point with
coordinate xr, as shown in Figure 3.13. Since the sum waves are calculated in a
reference point (in this case the driving point xe) their amplitude at xr depends
only on the relative distance from xe and can be easily evaluated by applying
propagation laws. In fact:

• if xr > xe, then

b+ = T(xr − xe)a+ (3.86)

b− = T(L− xr)RT(L− xr)b+ (3.87)

• if xr < xe, then

b− = T(xe − xr)g− (3.88)

b+ = T(xr)LT(xr)b− (3.89)
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• if xr = xe (driving point), then

b+ = a+ (3.90)

b− = a− (3.91)

Finally, the response in the physical domain can be obtained by substituting the
expression for the amplitudes of the waves b+ and b− in the Eq. (3.55).

3.2.1 Examples: forced response
Using the analytic definition of mass and stiffness matrices for rod and beam ele-
ments, defined in Section 3.1.6, the forced response of analogous one-dimensional
finite structures is estimated through WFEM, and then compared to theoretical
results.

3.2.1.1 Rod

Consider a rod, L = 2m long, obtained by replicating the rod cell described in
Section 3.1.6.1, and suppose it is clamped on the left side and free on the other
one. On the rod, a harmonic axial force with magnitude F = 1N acts on the free
edge. A damping coefficient η = 0.02 is considered. The cell length is ∆ = 0.001m.

The analytical solution for this problem is provided by [123]

u(x) =
F

klAEc

sin(klxr)
cos(klL)

=
F

2πf

cl
AEc

sin

(
2πf

cl
xr

)
cos
(
2πf

cl
L

) . (3.92)

In Figure 3.15, the Frequency Response Functions (FRFs) calculated at the free
edge (driving point) and at the half-length of the rod are represented, showing
that the numerical-theoretical correlation is perfect since the marks (theoretical
calculation) lie on the solid line (numerical estimation).

3.2.1.2 Beam

Consider now a beam, L = 1m long, modelled according the Euler-Bernoulli
theory. The structure is obtained by replicating along the longitudinal axis a beam
cell 0.001m long, as described in Section 3.1.6.2. The structure is damped, with a
hysteretic damping coefficient η = 0.02. Suppose the beam is simply supported
on both side, i.e. only rotations allowed. At xf = 0.75L (starting from the left
side), a harmonic vertical point force with magnitude F = 1N is applied.

The theoretical solution for calculation of the vertical displacement at a given
point of the beam can be obtained by superimposing an infinite number of natu-
ral mode shapes [123]

v(x) =
2F

ρAL

∞∑
j=1

1

ω2 −ω2j
sin
(
jπxf
L

)
sin
(
jπxr

L

)
, (3.93)
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Figure 3.15: FRFs of longitudinal displacements a clamped-free rod excited at the free
edge calculated through WFEM and theoretical approach

where the natural circular frequencies ωj are given by

ωj = (jπ)2

√
EcIz

ρAL4
(3.94)

As known, depending on the maximum frequency at which the dynamic re-
sponse is calculated, a finite number of modes can be taken into account since
the contribution of higher modes towards the response is negligible.

In Figure 3.16, FRFs of the vertical displacements calculated at the driving
point and at the half-length of the beam are shown. For the analytic response, 150
modes have been retained. As in the case of the rod, the correlation is perfect. It is
worth to remark that the accuracy of the WFEM calculation depends, as expected,
on the length of the cell. At the same time, the analytic response depends on the
number of natural modes taken into account. The great advantage of the WFEM
over the modal approach is that the decrease of the cell length does not affect the
computational time, whereas the increase of the number of modes determines
a longer computation. Furthermore, the WFE model, based on a beam element
0.001m long, has only 2 degree of freedom: if the beam was analysed by means
of a FE analysis, meshed using beam elements with the same length of the WFE
elementary cell, it should have 2000 DOFs.
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Figure 3.16: FRFs of vertical displacements of a simply-supported beam excited at 3/4L
calculated through WFEM and theoretical approach

3.3 the code for 1d-wfem
A software package has been written in MATLAB® for the numerical analysis
of wave propagation and forced response in periodic one-dimensional structures
by means of the Wave and Finite Element Method. The code WFEM1D.m is here
briefly described, according to the flow chart shown in Figure 3.17.

Before running the code WFEM1D.m, mass and stiffness matrices of the cell
under investigation must be defined in a pre-processor phase. This can be done:

• by analytically definition, as done in Sections 3.1.6, if the waveguide cell
can be modelled using simple finite elements;

• by importing the matrices from commercial finite element packages.

In the second case, the software ANSYS® is used as pre-processor to model the
cell, and then to export the matrices into a text file in order to allow the import-
ing in MATLAB® workspace. An example of the command list for ANSYS® is
reported in Appendix A. Besides the commands needed to create the model, in-
serting material properties, nodes and elements, ANSYS® allows the exportation
onto a text file of mass and stiffness matrices through the substructuring analysis,
performed with the command:

ANTYPE,SUBSTR
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Figure 3.17: Flow chart of the code WFEM1D.m
.
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The substructure analysis, in general, is used to reduce the system matrices to
a smaller set of degrees of freedom through condensation techniques [124, 125].
With the command

SEOPT,MATRICES_NAMES,3,1

both mass and stiffness matrices are carried out, whereas

M,ALL,ALL

defines the master nodes and DOFs on which the matrices must be projected.
In this case, all the nodes and relative DOFs are defined as master. Once the
matrices are written into text file, another MATLAB® function (readansys.m) is
used to import them in MATLAB® workspace.

After mass and stiffness matrices of the cell have been imported, the code
WFEM1D.m can be start. First of all, the frequency range, in which the analy-
sis must be performed, is defined. The Dynamic Stiffness Matrix is calculated
(Eq. (3.6)), and then the transfer matrix can be written according to Eq. (3.19).
At each frequency of interest, the eigenvalue and the eigenvectors of the transfer
matrix are calculated and sorted.

The sorting of the eigenvalues is a time consuming task, performed through the
calculation of the Modal Assurance Criterion (MAC) between the sets of eigen-
vectors carried out at two consecutive frequencies. The MAC is a mathematical
tool used to compare two vectors [98]. The MAC between two mode shapes Φω1
and Φω2, calculated at the two frequencies ω1 and ω2, is defined as:

MAC (Φω1, Φω2) =

∣∣Φ∗Tω1Φω2
∣∣2(

Φ∗Tω1Φω2
) (

Φ∗Tω1Φω2
) . (3.95)

A MAC value close to 1 indicates a high degree of correlation between the two
mode shapes. The time needed for the sort of the eigenvalues depends on the
number of DOFs of the model and on the number of frequency considered.

Once eigensolutions are obtained and sorted, the wave analysis continues fol-
lowing the steps described in Section 3.1.

• The higher order wavenumbers are filtered (see Section 3.1.3.3) in order to
define the reduced wave basis.

• Positive- and negative-going waves are identified (Eq. (3.28)).

• Right eigenvectors are normalised (Eq. (3.35)).

• The wavenumbers are calculated as a function of the frequency (Eq. (3.38)).

• The dispersion curves (and eventually the eigenwaves) are plotted.

Once the wave analysis is performed, the forced response starts, following the
steps listed in Section 3.2. The length of the finite structure must be defined, to-
gether with the position of the force along the structure and the position of the
response point. The load is hence set, according to the DOFs of the cell. Then, the
boundary condition matrices are defined (Eqs. (3.67) and (3.68)) and the ampli-
tudes of directly excited, propagating and reflected waves are calculated in the
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driving point. At the end, the amplitudes of the sum waves are evaluated at the
response point, and then transformed in the physical domain to calculate nodal
displacement and force to plot FRFs.

code restrictions
The code presents some limitations.

• The use of substructuring analysis in ANSYS® determines that the elements
must have constant stiffness, damping, and mass effects (e.g. material prop-
erties do not change with temperature).

• The filtering of higher order eigenvalues is still user-based, since it is not
possible yet to establish a general criterion.

• The structure can be excited only at one point, and the response can be
evaluated in one point as well.

• Only the classical elastic boundary conditions (free, clamped and simply
supported) can be applied to the sides of the structure.

3.4 results
In this section, the wave propagation and the dynamic response of different types
of one-dimensional waveguides and finite structures are investigated through
the Wave and Finite Element Method. Besides the examples reported in Sections
3.1.6 and 3.2.1, showing the perfect agreement with analytical solution for simple
waveguides, the goal of this section is to validate this approach comparing the
results with full FEM results, as well as with analytical, numerical and experi-
mental ones available in literature. At the end, the forced response of a hybrid
sandwich beam is estimated through WFEM and compared to those of performed
experimental test.

3.4.1 Effect of the Finite Element discretisation on dispersion curves
Consider a steel infinite beam, whose material properties and geometrical at-
tributes are reported in Table 3.2.

For this type of waveguide, different eligible finite elements are available in
the commercial package ANSYS®. Herein, four different elements are considered
(BEAM3, BEAM4, BEAM188, SOLID45 [126]) in order to analyse the influence of
the chosen finite element for modelling the cell, as well as the length of the cell,
on the results obtained through WFEM.

beam elements
The use of three different linear (2-node) beam elements, to model the elementary
cell, is investigated.

BEAM3 is a uni-axial element with tension, compression, and bending capabil-
ities. The element has three degrees of freedom at each node: translations in the
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Table 3.2: Characteristics of the elementary cell

Young modulus E 2.1e11 GPa

Poisson ratio ν 0.33

Density ρ 7800 kg/m3

Section Square

Cross-section area A 1e−6 m2

Moment of inertia Iz 8.33e− 14 m4

(a) BEAM3

(b) BEAM4

Figure 3.18: BEAM3 and BEAM4 elements [126]

nodal x and y directions and rotation about the nodal z-axis. Hence, it is able to
describe the motion only in the plane x-y.

BEAM4 is the same as BEAM3, but the motion is described in three dimensions.
In fact, it considers also the torsion capability and has six degrees of freedom at
each node: translations in the nodal x, y, and z directions and rotations about the
nodal x, y, and z axes.
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Usually, BEAM3 and BEAM4 (shown in Figure 3.18 [126]) are based on the

Euler-Bernoulli beam model, i.e. the effect of shear deformation is neglected.
These elements are usually used for analysing slender beams.

BEAM188 is a beam element in three dimensions with six degree of freedom at
each node, as BEAM4. The main difference is that this element is based on Timo-
shenko beam theory, and hence it is suitable for analysing slender to moderately
thick beam structures.

In Figure 3.19, the dispersion curves (related to the positive-going waves) ob-
tained by using the three beam elements are shown. No damping is considered.
As can be observed, the three elements lead to the same results, corresponding to
the analytical ones as well. Obviously, since the element BEAM3 has only verti-
cal displacement and rotation as nodal DOFs, the dispersion curve related to the
shear wave cannot be predicted. Furthermore, elements BEAM4 and BEAM188

describe the motion in three dimensions, and hence they are able to describe
the wave motion involving both cross-section displacements. In this case, since a
square cross-section is considered, the wavenumbers corresponding to the bend-
ing in the two flexural planes are coincident. The effect of the length of the el-
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Figure 3.19: Effect of different ANSYS® beam elements on the dispersion curves (∆ =

0.001m)

ementary cell is also investigated. In Figure 3.20, the dispersion curves for the
steel cell are plotted for three different lengths. The cell is modelled by using a
BEAM4 element. The results show that the calculation of the longitudinal and the
shear wavenumbers does not depend, in this frequency range, on the cell length.
These wavenumbers, in fact, correspond to wavelength which can be well discre-
tised even using the longest elementary cell (∆ = 0.01m). For what concerns the
bending wavenumbers, instead, in the high frequency range the dispersion curve
obtained with the longest cell deviates from the analytical solution, predicting
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lower wavenumbers. In Figure 3.21, the zoom in the high frequency range al-
lows to appreciate the difference between the curves, due exclusively to the finite
element discretisation. Furthermore, it can be also observed that the curves ob-
tained with the two shortest cells are overlaid, which means that the solution
converges to the analytical one. However, the use of very small cell length can
lead to numerical errors.
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Figure 3.20: Influence of the length of the cell on dispersion relations (BEAM4)
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solid elements
The use of beam elements does not allow to get information about the defor-
mation of the cross-section, since both stiffness and matrix are projected on the
neutral axis of the structures. Sometimes, the modelling of the waveguide by us-
ing brick elements can be very useful, as in the case of complex shape sections or
when the beam is layered (as in the case of composite or sandwich beams). Be-
sides the brick elements offered by ANSYS®, the use of the element SOLID45 is
here investigated. SOLID45 is a 8-nodes element, with three degrees of freedom
at each node, corresponding to the translations in x, y, and z directions (Figure
3.22).

Figure 3.22: SOLID45 element [126]

The use of a solid element generally leads to an increasing of the number
of degree of freedom of the model compared to the beam ones. In fact, beam
elements have only two nodes (and maximum six DOFs per node). Instead, using
solid elements, at least eight nodes must be taken into account if the waveguide
is meshed with only one brick. Obviously, the number of DOFs increases as the
number of solid elements used for discretise the section. First of all, similarly to
the sensitivity analysis performed on the beam elements in the previous section,
the effect of the length of the cell described in Table 3.2 is investigated. One solid
element is used to model the cross-section. An example, obtained for ∆ = 0.001m,
is shown in Figure 3.23: the violet colour indicates the defined master degrees of
freedom.

In Figure 3.24, the dispersion curves for two different lengths of the cell are
shown. A damping coefficient η = 0.01 is included. In this case, the shortest cell
is not able to describe the bending wavenumber at high frequency (as for the
beam element), because the length of the cell is comparable to that of the wave.
Furthermore, the use of SOLID45 leads to a wrong prediction of the bending
wavenumber at low frequencies for both the lengths.

The error at low frequencies is due to the truncation of inertia terms in the
Dynamic Stiffness Matrix, described in Section 3.1.5. This issue strongly depends
on the material of the waveguide under investigation (among the length of the
cell), in particular on the elastic modulus. Only with the goal to demonstrate that,
it is possible to investigate how the accuracy of the numerical dispersion curves



3.4 results 61

Figure 3.23: Waveguide cell modelled using one SOLID45
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Figure 3.24: Influence of the length of the cell modelled using a SOLID45 element

respect to the analytical ones changes at low frequencies (range 0− 500Hz) as
a function of Young modulus. Let’s consider the same cubic cell of Figure 3.23,
having a density ρ = 7800kg/m3. In Figure 3.25, the dispersion curves are plot-
ted for different elastic moduli (continuous curves: WFEM solution; only marks:
analytic solution). It is evident that low values of Young modulus guarantee the
convergence of the numerical solution to the analytical one. Instead, numerical
errors occurs starting from E = 1× 109 Pa.
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Figure 3.25: Influence of the elastic modulus on the bending wavenumber obtained
through WFEM using SOLID45 element

Obviously, the material properties are fixed and they are not design variables,
hence the round-off errors must be reduced in other ways. Waki et al. [66] sug-
gest the use of finite element models with internal nodes, and then condense
them. This technique is adopted in the case of the cubic cell under investigation,
introducing an increasing number of internal nodes (in Figure 3.26, the FE model
of the cell with 36 internal nodes is shown) by projecting the finite element ma-
trices only onto the nodes on the edges of the cell. The dispersion curves of the
steel cubic cell are reported for different number of condensed nodes in Figure
3.27. The number of condensed nodes strongly influences the numerical solution.
Starting from the cell modelled without internal nodes, there is a reduction of the
error by increasing the number of condensed nodes up to 12 (3 rows of internal
nodes). However, condensing more nodes can lead to other numerical errors at
low frequencies.

In conclusions, it can be highlighted that if solid elements are used to model
the waveguide cross-section, the number of design variables further increases,
because the round-off errors of the Dynamic Stiffness Matrix must be taken into
account in the low frequency range. This issue must be addressed by the analyst,
since it depends on the computer on which the code is working and its precision.
As the frequency increases, the numerical solution of the bending wavenumber
converges to the analytical one if the length of the cell is enough small compared
to the wavelength (as in the case of the beam).
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Figure 3.26: Waveguide cell modelled with 36 internal nodes
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Figure 3.27: Influence of the number of condensed nodes on the bending wavenumber
obtained through WFEM using SOLID45 element

During this work, using a double precision arithmetic, it has been possible the
identification of given lengths, which guarantee the convergence of the solution
at low frequencies on the computer used, but no criteria can be fixed since they
depend on the type of computer machine and on the FE model of the waveguide
section under investigation. For instance, if the steel waveguide with square cross-
section is modelled by using one element, a length ∆ = 0.0015m guarantees a
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good agreement at low frequencies, but if the waveguide is modelled using 2× 2
element then the best length is ∆ = 0.001 71m.

3.4.2 Forced response: first comparisons with full Finite Element Method
A cantilever aluminium beam, subject to different loads, is investigated through
WFEM and FEM. The geometry is shown in Figure 3.28, where L = 0.2m, b =

0.02m and h = 0.004m. A damping η = 0.01 is included. The goal is to compare
the WFE and FE results using different element, such as BEAM3, BEAM4 and
SOLID45.

L b

h

Figure 3.28: Clamped beam

beam3
A vertical load of magnitude Fy = 1N and a bending moment Mz = 1Nm are
applied at the half length of the beam. For the WFE model, the elementary cell
is long ∆ = 0.002m and it is modelled using a BEAM3 element. The FE model of
the beam is carried out in ANSYS®, using the same spatial mesh (leading to 100
beam elements).

In Figure 3.29, vertical displacement and rotation at the free side of the beam
are plotted. The results obtained through WFEM and FEM are the same. Of
course, the FE model presents 202 DOFs, whereas the WFEM only 2 with a cor-
responding reduction of the computational cost.

beam4
The same beam is modelled using BEAM4 elements, both for the ANSYS® model
and for the elementary cell for the WFE model, in order to obtain the motion
of the beam along the three principal axes x,y, z. The same spatial mesh, as in
the previous case with BEAM3, is used. Thus, in this case the FE model has
606 DOFs, against the 6 of the WFE. Three unit forces, (Fx, Fy, Fz) are applied
at the free tip of the beam, and corresponding displacements are estimated at
xr = 3/4L = 0.15m. Also in this case, the accordance between FE and WFEm
results is perfect, since the curves in Figure 3.30 are overlapped.

solid45
The beam, subject to the same load conditions of the case modelled with BEAM4,
is now modelled using SOLID45 elements. Depending of the number of elements
used to discretise the cross-section, this kind of modelling can be attractive for
more complex structures, where detailed information could be required. The ele-
mentary cell, shown in Figure 3.31a, is modelled by using 20 SOLID45 elements
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Figure 3.29: Vertical displacement and rotation about z direction at the free tip of a can-
tilever beam, excited at half length, modelled with BEAM3
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Figure 3.30: Displacements along x, y and z directions in the response point xr = 3/4L

for a cantilever beam modelled with BEAM4, excited on the free tip

(i.e. 2× 10 elements). The whole cantilever beam, modelled using the same el-



66 wave and finite element method for 1-dimensional problems
ement and same spatial discretisation, is shown in Figure 3.31b, constituted by
2000 brick elements.

In this case, Timoshenko theory is assumed to be valid, and the including of the
shear deformation effects determines a variation of the previous results, as can
be highlighted by comparing Figures 3.30 and 3.32. However, the FEM-WFEM
comparison shows a very good accordance on the three displacement curves.

(a) SOLID45 cell (∆ = 0.002m) (b) Cantilever beam - SOLID45

Figure 3.31: Elementary cell and cantilever beam modelled using SOLID45 elements
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Figure 3.32: Displacements along x, y and z directions in the response point xr = 3/4L

for a cantilever beam modelled with SOLID45, excited on the free tip
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3.4.3 Comparison with literature results
In this section, the results obtained through the code WFEM1D.m are compared
to those available in literature in terms of dispersion curves and forced response,
providing an overview of the potential of the implemented method for different
type of one-directional structures.

3.4.3.1 Dispersion curves of a thin walled tubular waveguide

In the previous sections, the results concern the analysis of solid beam structures.
However, the method is also suitable to investigate thin walled structures. Con-
sider, for instance, a steel waveguide (E = 210GPA, ρ = 7850 kg/m3, ν = 0.3),
having a tubular cross-section 40mm× 60mm, with a wall thickness 2mm. Ich-
chou et al. [34] investigate through the WFEM the aliasing effect, providing also
indication about the post-processing for the estimation of group velocities and
energy velocities. In that work, the walls of the waveguide are modelled using
thin shell elements. In this case, the elementary cell is modelled using SOLID45

elements. Each element has a square cross-section (length of the side l = 2mm)
in order to uniformly mesh the waveguide cell. The length of the elementary cell
is ∆ = 1.2mm. The finite element model, realised in ANSYS®, is shown in Figure
3.33.

Figure 3.33: Thin walled tubular section modelled using SOLID45

In Figure 3.34, the dispersion curves of this waveguide are plotted, showing
the good agreement with results available in literature. The small difference ap-
preciable starting from 2500 Hz is probably due to the different finite element
chosen for the discretisation.
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Figure 3.34: Dispersion curve for a tubular structure. Continuous curves: own WFEM
code. Only marks: literature results [34]

3.4.3.2 Dispersion curves of a simply supported plate strip

Using the one-dimensional WFEM, it is also possible to investigate the bending
waves travelling along a simply supported plate strip [58, 87], like that shown in
Figure 3.35.

L
b

hx

y

z

Figure 3.35: Simply supported plate strip

It is known that, for this kind of boundary conditions, propagating waves have
a y dependence of sinusoidal form, whereas the variation along the longitudinal
axis for the j-th wave can be expressed as [58]

k2p,n = k2p −
(nπ
b

)2
k2e,n = k2p +

(nπ
b

)2
, (3.96)
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where kp =

√
ρhω2/D is the free plate wavenumber, withD =

√
Eh3/12(1− ν2)

being the bending stiffness. Results are obtained for a steel strip, having thickness
h = 0.001m and width b = 1m. Since the strip is very thin, compared to the
width, a plane element is suggested for FE modelling. In this case, SHELL63

element is used. This element has six degrees of freedom at each node: nodal
translations in x, y, and z directions and rotations about the x, y, and z axes.
The segment of the plate, with ∆x = 0.02m, is modelled in ANSYS® using 50

rectangular SHELL63 elements along y direction. Only the in-plane DOFs are
considered in order to reduce the computational cost, and hence the model has
149 DOFs (considering also the boundary conditions). In Figure 3.36, analytical
and numerical dispersion curves are shown for the first five positive-going waves.
It is evident that for frequencies for which kp > nπ/L, the wavenumber kp,n
represents a propagating wave, otherwise it is evanescent. The accordance of
WFE results with the analytical ones (Eq. (3.96)) is quite good.
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Figure 3.36: Dispersion curves for a plate strip modelled using SHELL63 elements
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3.4.3.3 Forced response of laminated beam

In the previous test-cases, only structures made of isotropic materials are investi-
gated, but WFEM is suitable to analyse laminated and sandwich beams as well.
For example, a cantilevered laminated beam is here investigated, as made by
Renno and Mace [72]. The beam is made of four orthotropic layers of 1mm
thick glass-epoxy, having a density ρ = 2000 kg/m3, with a stacking sequence
[0/45/− 45/0] degrees.

Table 3.3: Mechanical properties of a glass/epoxy ply [72]

Young’s moduli Shear moduli Poisson’s ratios

[GPa] [GPa]

Ex ′ Ey ′ Ez ′ Gx ′y ′ Gx ′z ′ Gy ′z ′ νx ′y ′ νx ′z ′ νy ′z ′

54 4.8 54 1.78 3.16 2.33 0.313 0.06 0.028

(a) Beam dimensions [72]

(b) Cell modelled in ANSYS®

Figure 3.37: Characteristics of the laminated beam
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The mechanical properties of each glass-epoxy layer along their principal axes

of orthotropy (x ′,y ′, z ′) are reported in Table 3.3. The dimension of the beam,
shown in Figure 3.37a, are L = 0.2m, b = 0.02m and h = 0.004m. The ele-
mentary section, long ∆ = 0.002m is modelled using 4× 4 SOLID45 elements,
as shown in Figure 3.37b: different colors represent different orientation of the
layers. The single section, hence, presents 75 DOFs on each side of the segment.
The beam is excited in point A (0.5L, h/2, −b/2), and the response is evaluated
in B (L, h/2, 0), C (L/2, h/2, 0), D (0.25L, h/2, 0). The results obtained through
WFEM are compared to those of ANSYS® (7575 DOFs) in terms of displacement
for a point force. Firstly, Fx = 1N is applied in A, and then longitudinal dis-
placements are reported in Figure 3.38. Vertical and transverse displacements are
reported in Figures 3.39-3.40, for a unit force direct respectively along y and z
axis. The WFEM results are obtained by retaining 16 wavemodes pairs, neglect-
ing the higher-order ones. It can be noted that the FEA and WFEM results are in
very good agreement, except for small differences at the anti-resonances of FRFs
estimated on point C.
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Figure 3.38: Longitudinal displacements of a cantilevered laminated beam [72] subject to
a longitudinal point force in point A
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Figure 3.39: Vertical displacements of a cantilevered laminated beam [72] subject to a
vertical point force in point A
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Figure 3.40: Transverse displacements of a cantilevered laminated beam [72] subject to a
transverse point force in point A
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3.4.3.4 Dispersion curves of sandwich beams

A sandwich configuration allows a strong increase of the bending stiffness to
mass ratio by including a thick, low density core between two thin and stiff face
sheets. At the same time, the general drawback is in the resulting poor acous-
tic performances, and for this reason many works in literature investigate the
vibroacoustics of sandwich structures [107]. In most of them the analysis is per-
formed through the wavenumber estimation [6, 7, 10, 109, 127], therefore a WFE
approach may be very helpful for the analyst.

Tavallaey [128] proposes an analytical model for wave propagation analysis
in three layered structures, assuming face sheets and core as homogeneous and
isotropic. The governing equation are derived and solved using a winding-integral
technique. The results are reported for a sandwich beam having a width b =

116mm, made by a 50mm thick PVC core enclosed in glass reinforced plastic
face sheets, 2.5mm thick. Both the core and the face sheet are assumed to be
isotropic, and the mechanical properties are reported in Table 3.4.

Table 3.4: Material properties of the investigated sandwich beam [128]

Face Sheet Core

E [GPa] 9.8 0.094

ν 0.3 0.3

ρ [kg/m3] 1580 101
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Figure 3.41: First-order propagating wavenumbers of an isotropic sandwich beams [128]

The sandwich is modelled in ANSYS® with 10× 16 SOLID45 elements, with
∆ = 0.002m. In Figure 3.41, the comparison between the analytical model and the
WFE results are shown in the frequency range 40− 10 000Hz for the first-order
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propagating waves of the isotropic sandwich panels. The correlation is quite good
in the whole frequency range.

3.4.3.5 Dispersion curves of natural composite sandwich beams

Due to environmental awareness and constraints of legislative authorities, there
is a growing interest in using natural vegetable fibres as reinforcement of poly-
meric based composites and/or as cores for sandwich panels. Natural fibres offer
several advantages such as biodegradability, low cost, low density and accept-
able specific strength properties. In recent studies, the dynamic and damping
[129–135] analysis of eco-friendly structures is performed. In particular, Sargia-
nis et al. [133] report an experimental study on the measurement of the bending
wavenumber of several sandwich beams, comparing natural fibre and carbon/e-
poxy face sheets. In Table 3.5, the mechanical properties of the considered mate-
rial are listed, whereas in Table 3.6 the dimensions of the beam are summarised.
Some mechanical properties are assumed as an average from those available in
literature, since no information are provided by Sargianis et al. [133].

For each beam, once the elementary cell is chosen, a different FE model is cre-
ated because of the different cross-section dimensions. In Figure 3.42, the results
obtained through WFEM are compared to the experimental ones. The agreement
is enough good, considering the uncertainty on the mechanical properties (mostly
for the sandwich having balsa and pine wood as cores).

Table 3.5: Face sheet and core properties of natural beams [133] (∗: literature value)

Material Elastic Modulus Poisson ratio Density

E1 [GPa] ν13 ρ [kg/m3]

Carbon fiber-epoxy face sheet 100 0.3 (∗) 1600

Bamboo-vinyl ester face sheet 2.38 0.3 (∗) 1150

Rohacell 51 WF core 0.075 0.499 52

Balsa wood core 2.2 (∗) 0.22 332

Pine wood core 9.1 (∗) 0.3 475

Table 3.6: Dimensions of natural beam [133]

Face sheet Core Beam

Name Materials thickness thickness width

[mm] [mm] [mm]

CE-R Carbon fiber-Rohacell 0.38 18.4 25.4

B-R Bamboo fiber-Rohacell 1.9 17.0 41.1

B-B Bamboo fiber-Balsa 1.9 18.2 40.1

B-P Bamboo fiber-Pine 1.9 9.5 40.5
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Figure 3.42: Dispersion plot of beams with bamboo-fiber face sheets, compared with car-
bon fiber face sheets. Continuous curves: WFEM. Only marks: literature re-
sults [133]

3.4.4 Forced response of a hybrid sandwich beam: WFEM and experimentalresults
Experimental results concerning the forced response of a sandwich beam are
compared to numerical ones. The beam under investigation is a hybrid structure,
obtained by coupling traditional aluminium face sheets to an innovative core
such as a polypropylene honeycomb. A vibration test is performed in order to
measure the Frequency Response Functions of the beam, which is is compared
with numerical results obtained through WFEM and FEM.

3.4.4.1 Test specimen

The investigated sandwich beam, shown in Figure 3.43 has in-plane dimensions
395mm× 60mm. It is made by enclosing a polypropylene honeycomb core (with
thickness tc = 19mm) between two aluminium face sheets, having thickness
ts = 0.7mm. The polypropylene honeycomb core is assumed to be isotropic,
since only few mechanical properties are available. The material characteristics
of face sheets and core are reported in Table 3.7
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(a) Top view (with experimental mesh)

(b) Lateral view

Figure 3.43: Aluminium-Honeycomb PP sandwich beam

Table 3.7: Material properties of the Aluminium-PP Honeycomb sandwich beam

Aluminium PP Honeycomb

Face Sheet Core

E [GPa] 6.9 0.48

ν 0.33 0.4

ρ [kg/m3] 2750 1000

3.4.4.2 Experimental setup

The dynamic response of the sandwich beam was experimentally investigated
through a modal test, adopting the so-called roving-hammer technique. The
beam was suspended using elastic cords in order to simulate free-free bound-
ary conditions. This particular boundary condition has several advantages, in
particular the reduction of added damping due to the constraint. An uni-axial ac-
celerometer (PCB 333B32, Figure 3.44a) was used to measure the response along
the direction perpendicular to the plane of the beam. The accelerometer was
placed on a free tip of the beam. An impact hammer (ENDEVCO Modal Ham-
mer 2302, Figure 3.44b) was preferred over an electro-dynamic shaker to provide
the excitation since the beam is small and light. Excitations were provided over
all the points of the experimental mesh, constituted by 11 equally spaced nodes
along the longitudinal axis of the beam (only the flexural waves were estimated).
Vibration measurements were taken in the frequency range 200− 1600Hz, with a
frequency step ∆f = 1Hz. The frequency response data were recorded using the
acquisition system LMS SCADAS III (Figure 3.44c) and then analysed by means
of the software LMS Test.Lab 8B.

3.4.4.3 Experimental result: modal parameters

The post-processing of the FRFs through LMS Test.Lab 8B allowed the extraction
of the modal parameters, in terms of natural frequency, modal damping and
modal shapes. In Table 3.8, these are reported for the frequency range of analysis.
The extraction of the modal damping is useful in order to consider it in the
numerical models.
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(a) accelerometer (b) modal hammer

(c) acquisition system

Figure 3.44: Experimental instrumentation

Table 3.8: Experimental modal parameters of the Aluminium-PP Honeycomb sandwich
beam

Mode n. Frequency Damping

[Hz] (%)

1 525.7 3.2%

2 912.0 4.0%

3 1374.6 4.4%

3.4.4.4 Numerical models

The beam is numerically investigated through WFEM and FEM, retaining only
the displacement along the vertical direction (as made for the experimental test).

The finite element model of the elementary cell is shown in Figure 3.45a,
meshed with 6 × 6 SOLID45 elements over the cross-section, with ∆ = 5mm.
The WFE model has 49 DOFs. The cell model is replicated along the x-axis in
order to obtain the FE model of the whole beam, reported in Figure 3.45b, to be
investigated through the ANSYS® harmonic analysis. This model have a total of
3920 DOFs. In Figure 3.45, different colors stand for different materials used for
face sheets and core.
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(a) Elementary cell (b) Beam

Figure 3.45: Aluminium-PP Honeycomb sandwich beam. Elementary cell and beam mod-
elled using SOLID45 elements

3.4.4.5 Numerical-Experimental comparison

Numerical and experimental FRFs are compared. The response function shown
in Figure 3.46 are obtained by applying a force on a free tip of the beam and
evaluating the displacement on the other free tip.

As can be observed in Figure 3.46, numerical FRFs are not able to perfectly
describe the experimental one, mostly for the first peak. This is due to the as-
sumption made on the isotropy of the honeycomb core, as well as the effect of
the boundary conditions. However, the error on the magnitude of the peaks is
negligible. It is worth to highlight the good agreement between WFE and FE
results.
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Figure 3.46: Comparison between experimental and numerical FRFs of the Aluminium-
PP Honeycomb sandwich beam



4 W AV E A N D F I N I T E E L E M E N TM E T H O D F O R 2 - D I M E N S I O N A LP R O B L E M S
This chapter concerns a first approach to the analysis of uniform two-dimensional
waveguides through the Wave and Finite Element Method, based on the works
made by Manconi and Mace [63, 86]. The procedure is carried out mostly to
validate experimental tests on natural fibres composite panel, presented at the
end of the chapter. The developed code, validated through benchmarks available
in literature, allows the estimation of the wave propagation along one of the
principal axis of the plate under investigation (designed with the angle θ = 0◦).

4.1 wfem for 2-dimensional waveguides
The procedure introduce by Manconi and Mace [63, 86] for the analysis of two-
dimensional periodic waveguides basically follows the same steps listed for one-
dimensional once, except that the eigenvalue problem is formulated directly on
the dynamic stiffness matrix, and not on the transfer matrix. The first step is
always the identification of an elementary cell of the structure, which has to be
modelled through finite elements. The structure, in this case, is homogeneous
along the two in-plane directions, but the properties might vary through the
thickness.

A schematic example of periodic waveguide is shown in Figure 4.1. The pe-
riodic structure is obtained by replicating the reference squared elementary cell
n1,n2 along the in-plane directions x and y. All other cells can be expressed as
a function of the reference one.

The simplest FE model of the elementary cell is shown in Figure 4.2, represent-
ing a 4-noded rectangular element.

In this case the nodal DOFs q, and the nodal forces f vectors can be written as

q =
[
qT1 qT2 qT3 qT4

]T
f =

[
fT1 fT2 fT3 fT4

]T
. (4.1)

It is worth noting that qj is the vector of the nodal DOFs of all the elements nodes
which lie on the j-th corner. Likewise the vector fj.

In order to analyse the wave investigation in the same way of one-dimensional
waveguide, it is needed to express all the nodal DOFs and forces as a function
of those of a reference node. The starting point of the method is always the
equation of the motion of the cell, which assuming time-harmonic behaviour can
be written as:(

K + iωC −ω2M
)

q = f (4.2)

79
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Figure 4.1: Schematic representation of a two-dimensional periodic waveguide

1 2

3 4

x

y

z

∆x

∆y

Figure 4.2: Four nodes Finite Element of the elementary cell

Also in this case, the mass, damping and stiffness matrices of the cell can be
obtained using commercial FE packages. In the case of uniform and structural
damping, a complex stiffness matrix can be considered.

Using the Floquet-Bloch theory, the displacements at each node can be ex-
pressed as a function of the displacements at one single node. The main differ-
ence with one-dimensional waveguides analysis is the fact that two propagation
directions have to be considered. Thus, if the node 1 of the element of Figure 4.2
is taken as reference, the other nodal displacements can be written as

q2 = λxq1 q3 = λyq1 q4 = λxλyq1 (4.3)

where

λx = ei∆xkx λy = ei∆yky (4.4)

are the propagation constants along x and y axes, respectively. Thus the nodal
displacements of the cell can be written in terms of the only nodal displacements
q1 as

q = ΛRq1, (4.5)
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where the propagation matrix ΛR is

ΛR =


I

λxI

λyI

λxλyI

 . (4.6)

Furthermore, assuming the absence of external excitation, equilibrium at node 1

implies that the sum of the nodal forces of all the elements connected to node 1

is zero, consequently

ΛLf = 0, (4.7)

where

ΛL =
[
I λ−1x I λ−1y I (λxλy)

−1I
]

(4.8)

Through the propagation matrices ΛR and ΛL, a reduced form of the stiffness,
damping and mass matrices can be obtained, and hence a reduced form of the
equation of motion. In fact, defining the reduced form of the matrices as

Kr(λx, λy) = ΛL K ΛR (4.9)

Cr(λx, λy) = ΛL C ΛR (4.10)

Mr(λx, λy) = ΛL M ΛR (4.11)

the equation of motion becomes

(Kr + iωCr −ω2Mr)q1 = 0. (4.12)

If n is the number of degrees of freedom per node, the dimensions of the mass,
damping and stiffness matrices of the cell are 4n× 4n, whereas the dimensions
of the corresponding reduced forms are n×n.

Similarly to the analysis of one-dimensional waveguides, it is possible to define
the reduced Dynamic Stiffness Matrix as

Dr(λx, λy,ω) = Kr + iωCr −ω2Mr, (4.13)

and hence Eq. (4.12) can be written as

Dr(λx, λy,ω)q1 = 0.. (4.14)

In this case, the eigenproblem is directly formulated on the Dynamic Stiffness
Matrix, without the definition of the transfer matrix. If the DSM of the cell is
partitioned as

D =


D11 D12 D13 D14
D21 D22 D23 D24
D31 D32 D33 D34
D41 D42 D43 D44

 , (4.15)
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the reduced eigenvalue problem of Eq. (4.14) can be expressed as

[(D11 + D22 + D33 + D44) λxλy + (D12 + D34) λ2xλy+

+(D13 + D24) λxλ2y + D32λ2x + D23λ2y + (D21 + D43) λy+

+(D31 + D42) λy + D14λ2xλ
2
y + D41]q1 = 0

(4.16)

4.1.1 Other FE implementations
Beside the four-noded rectangular element, other typical finite elements can be
employed for modelling two-dimensional waveguides. Depending on the ele-
ment, different periodic and equilibrium conditions must be imposed. The use
of rectangular element with mid-size nodes is here reported [27, 86] since it can
be helpful if round-off error occurs (as suggested by Waki et al. [66]), whereas
the use of a triangular element is explained by Manconi [86]. Obviously, as in
the case of one-dimensional waveguides, if the elementary cell presents internal
nodes, the DOFs can be partitioned into boundary and internal, imposing that
the nodal force on the internal nodes are zero. Therefore, internal DOFs can be
removed by condensation.

4.1.1.1 Rectangular element with mid-size nodes

In Figure 4.3, a generic rectangular element with mid-size nodes is represented.
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Figure 4.3: Rectangular Finite Element with mid-size nodes

The nodal displacements vector, here, is

q =
[
qT1 qT2 qT3 qT4 qT5 qT6 qT7 qT8

]T
. (4.17)

By defining the propagation matrix ΛR as

ΛR =

I λxI λyI λxλyI 0 0 0 0

0 0 0 0 I λxI 0 0

0 0 0 0 0 0 I λyI

 (4.18)

it is possible to express the periodicity condition:

q = ΛR

q1
q5
q7

 (4.19)
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Equilibrium of forces at the mid-size nodes on the left and bottom side leads,

respectively, to

f5 + λ−1x f6 = 0 (4.20)

f7 + λ−1y f8 = 0 (4.21)

and hence

ΛL =

I λ−1x I λ−1y I λ−1x λ−1y I 0 0 0 0

0 0 0 0 I λ−1x I 0 0

0 0 0 0 0 0 I λ−1y I

 (4.22)

Manconi [86] suggests an approximation for reducing the size of the resulting
eigenvalue problem, by enforcing further periodicity conditions between nodes
1, 5 and 7. In fact, it is possible to project the displacement vectors q7 and q5 on
the node 1, by writing

q7 = λ
1/2
x q1, (4.23)

q5 = λ
1/2
y q1. (4.24)

In this case, the matrices ΛR and ΛL become

ΛR =
[
I λxI λyI λxλyI λ

1/2
y I λxλ

1/2
y I λ

1/2
x I λ

1/2
x λyI

]T
(4.25)

ΛL =
[
I λ−1x I λ−1y I (λxλy)

−1I λ
−1/2
y I λ−1x λ

−1/2
y I λ

−1/2
x I λ

−1/2
x λ−1y I

]T
(4.26)

4.2 the eigenproblem
The eigenproblem expressed by Eq. (4.14) takes various forms, depending on the
physical nature of the problem and the type of result which have to be achieved.
The eigenproblem, whose solutions provide FE estimation of dispersion relations
and wavemodes for continuous structures, clearly involves three parameters: λx,
λy and ω.

Among the increased complexity of the formulation, some analogies can be
found with the one-dimensional problem. In particular, since mass, stiffness and
damping matrices are real and symmetric, then the Dynamic Stiffness Matrix is
the same too. Furthermore, if Eq. (4.16) is divided by λxλy and then transposed,
it can be demonstrated that, if (λx, λy) is a solution for a given circular frequency
ω, then also (λx, 1/λy), (1/λx, λy), (1/λx, 1/λy) are solutions of the eigenproblem:
these represent the same disturbance travelling along the positive and negative
in-plane directions.

Since the eigenvalue problem is three-parametric, three different algebraic eigen-
value problems can be defined [63, 86]. If both propagation constants are known
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and real, a linear eigenvalue problem results in ω for propagating waves. In-
stead, if the circular frequency and the direction of wave propagation are known,
a polynomial eigenvalue problem or a transcendental eigenvalue problem results
in the wavenumber k, depending on the ratio of propagation constants. Finally,
if one propagation constant and the circular frequency are known, a quadratic
polynomial problem must be solved for the other propagation constant.

4.2.1 Linear eigenvalue problem
If kx and ky are chosen and real, the problem (4.16) results a linear eigenvalue
problem in ω2. This approach can be used to calculate the dispersion relations
for free waves propagating through an undamped structure with wavenumber

k =
√
k2x + k

2
y in a direction θ = arctanky/kx. Indeed, it can be proved that

in undamped structures the reduced matrices in Eq. (4.8) are positive definite
Hermitian matrices, i.e. real values of propagation constants will lead to n real
solutions for ω. The corresponding eigenvectors of the problems define the wave-
modes at these frequencies, although some of them are artifacts of the Finite Ele-
ment discretization and periodicity (as in the case of one-dimensional problem).

4.2.2 Polynomial eigenvalue problem (PEP)
Another type of eigenproblem must be solved if the circular frequency ω and
the direction of wave propagation θ are fixed. The direction of propagation can
be expressed as a function of propagation constants. In fact, being λx = ei∆xkx

and λy = ei∆yky , the ratio of wavenumbers’ amplitude is related to the wave
propagation angle:

tan θ =
ky

kx
. (4.27)

The form of the eigenproblem is strictly connected to the this ratio. In fact, if
ky/kx = m2/m1 is rational, i.e. integers with no common divisor, a polynomial
eigenvalue problem (PEP) results in λx and λy. Instead, the eigenvalue problem
becomes transcendental if the ratio is irrational [86].

In the case of polynomial eigenvalue problem, the propagation constants can
be expressed as a function of (integer) m1, m2:

kx∆x = m1σ, ky∆y = m2σ (4.28)

Then, introducing γ=eiσ the eigenvalue problem is written as

[A8γ2m1+2m2 + A7γ2m1+m2 + A6γm1+2m2 + A5γm1+m2 + A4γ2m1+

+A3γ2m2 + A2γm2 + A1γm1 + A0]q1 = 0
(4.29)
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where, given the DSM expressed in Eq. (4.15), the matrices A are:

A8 = D14
A7 = (D12 + D34)

A6 = (D13 + D24)

A5 = (D11 + D22 + D33 + D44)

A4 = D32
A3 = D23
A2 = (D21 + D43)

A1 = (D31 + D42)

A0 = D41

(4.30)

Since the matrices A are of order n× n, the polynomial problem of Eq. (4.29) is
of order 2(m1 +m2), with 2n(m1 +m2) solution for γ.

Furthermore, if the given direction of propagation is parallel to the x-axis or
to the y-axis, i.e. θ = 0 or θ = π/2, the eigenvalue problem becomes a quadratic
eigenvalue problem (QEP), which is the investigated eigenproblem.

4.2.3 Quadratic eigenvalue problem (QEP)
If the frequency ω and one component of the wavenumber k are known, a
quadratic eigenvalue problem(QEP) results. For example this might represents
the wave propagation in a closed cylindrical shell where the wavenumber around
the circumference can only take certain discrete values. Considering known the
component ky, the eigenproblem of Equation (4.16) becomes quadratic in λx:

[A2λ2x + A1λx + A0]q1 = 0 (4.31)

where

A2 = (D14 + D12 + D34 + D32)

A1 = (D31 + D42 + D11 + D22 + D33 + D44 + D13 + D24)

A0 = (D41 + D23 + D21 + D43)

(4.32)

QEPs are an important class of nonlinear eigenvalue problems that are less fa-
miliar and less routinely solved than the standard eigenvalue problem (SEP) and
the generalized eigenvalue problem (GEP), therefore they need special attention
[136, 137].

4.2.4 Solving PEPs through linearisation
Besides the numerical methods which treat polynomial eigenvalue problems in
their original form, there are some which linearise a PEP in a generalised eigen-
value problem (GEP), and then apply GEP techniques [138]. Through linearisa-
tion, it is possible to transform an eigenvalue problem of order n in n generalised
eigenvalue problems (similarly to the transformation of an ordinary differential
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equation). For a general PEP, there are several linearisations: it is important to
choose one respecting the symmetry and other structural properties of the prob-
lem.

Given a generic QEP in the form Q(λ), one linarisation of the problem could
be as following

L = A − λB (4.33)

if there are two unimodular matrix polynomials E(λ) and F(λ), i.e. det(E(λ)) and
det(E(λ)) are non-zero constants, such that

E(A − λB)F =

[
Q(λ) 0

0 In

]
. (4.34)

Given the properties of matrices E and E, det(A − λB) agrees with det(Q(λ))

up to a non-zero constant multiplier, hence L and Q have the same eigenvalues
[136]. The companion linearisation is the most frequently used [137] in its several
existing forms. Companion linearisations have a number of desirable properties:

• they are always linearisations even if Q(λ) is non-regular. Moreover they are
strong linearisations, i.e. they preserve the partial multiplicities of infinite
eigenvalues [139];

• the left and right eigenvectors of Q(λ) are easily recovered from those of
the companion form [140];

• they have good conditioning and backward stability properties in the ma-
jority of the cases.

For instance, consider the quadratic eigenvalue problem defined in Eq. (4.31).
The easiest way to construct a linearisation is to use the following substitution

u = λxq1 (4.35)

and rewrite Eq. (4.31) as

A2λ2xu + A1u + A0q1 = 0. (4.36)

This leads to the following generalised eigenvalue problem[
0 I

−A0 −A1

][
q

u

]
− λ

[
I 0

0 A2

][
q

u

]
= 0 (4.37)

which corresponds to the first companion form. The best known companion lin-
earisation are the first and second companion, given respectively by

C1 =

[
0 I

−A0 −A1

]
− λ

[
I 0

0 A2

]
(4.38)

C2 =

[
−A0 0

0 I

]
− λ

[
A1 A2
I 0

]
(4.39)
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Other two companion linearisations can be obtained directly from the first two:

C3 =

[
A1 0

A0 A1

]
− λ

[
0 A1

−A2 0

]
(4.40)

C4 =

[
0 −A1

A2 0

]
− λ

[
A2 A0
0 A2

]
(4.41)

The choice between the various forms may depend on the nonsingularity of A2
and A0: if A2 is singular, C3 is the linearisation to be used, but if A0 is singular
C4 is preferred.

4.3 the code for 2d-wfem
Another code has been written in MATLAB® for the numerical analysis of wave
propagation in two-dimensional waveguides by means of the Wave and Finite
Element Method. The code is named WFEM2D.m and it is here briefly described,
according to the flow chart shown in Figure 4.4. As mentioned above, only
quadratic eigenvalue problem with θ = 0◦ are solved, describing the wave prop-
agation along the x axis.

Wave
analysis

FE cell model

(mass and stiffness matrices)
Imported

from ANSYS®

Analytical

defined

Definition of the reduced Dy-

namic Stiffness Matrix (DSMr)

Linearisation of QEP and
estimation of propagation

constants

Ordering of eigenvalues

Calculation of wavenumbers
Dispersion

curves

Figure 4.4: Flow chart of the code WFEM2D.m

The flow chart is shorter than that of WFEM1D.m, since the analysis of two-
dimensional structures has involved only the wave propagation and not the
forced response. First of all, mass and stiffness finite element matrices of the
elementary cell are imported in MATLAB® workspace from ANSYS® during the
pre-processing phase, and then the reduced Dynamic Stiffness Matrix is defined.
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Once the quadratic eigenvalue problem is formulated, it is linearised by means
of the first companion linearisation, and hence the eigenproblem is solved. Given
the estimated eigenvalues, they are sorted in descending order of their real part
(the sorting through the Modal Assurance Criterion does not work well because
the eigenvectors are parallel to each other). For the two-dimensional case, in
fact, only dispersion relations are carried out, without information on the wave-
modes. Thus, wavenumbers are calculated, and dispersion curves plotted. Since
the eigenvalues are not tracked (as made for one-dimensional case), the results
are presented through scatter plots.

4.4 results
In this section, the dispersion curves of different kind of infinite plates are cal-
culated through the Wave and Finite Element Method. These results constitutes
only a first approach to two-dimensional waveguides, since all the analysis con-
cerns the resolution of a quadratic eigenvalue problem with θ = 0◦.

Comparisons with analytical results allow to validate the approach for simple
waveguides, as in the case of isotropic infinite plates. Furthermore, for complex
waveguides such as orthotropic or layered plates, the numerical results are com-
pared to the ones available from the literature. At the end, the dispersion curves
of natural fibres composite are evaluated, comparing the results with those of
experimental test.

The waveguides analysed in this section are flat. As done for the one dimen-
sional waveguides, the application of different ANSYS® elements is exploited.
The analysis of dispersion curves is performed by modelling the cell of the waveg-
uide using two different elements: SHELL181 and SOLID45.

4.4.1 Isotropic plates
The simplest two-dimensional waveguide is constituted by a thin isotropic plates,
whose analytical dispersion relations are described in Chapter 2. The reference
plate is assumed to be made of aluminium (E = 70GPa, ν = 0.33, ρ = 2700kg/m3),
0.005m thick.

The cell is firstly modelled by employing the simplest considered plate element:
SHELL181. This element is suitable for analysing thin to moderately-thick shell
structures, since it is based on the Mindlin-Reissner shell theory (which takes into
account the effect of shear deformation and rotary inertia). SHELL181, shown
in Figure 4.5, is a 4-node element with six degrees of freedom at each node:
translations in x, y, and z directions, and rotations about the x, y and z-axes.

The dispersion curves for freely propagating waves of an infinite aluminium
plate (no damping is considered) are shown in Figure 4.6, together with the ana-
lytic solutions. The results are shown in the frequency range 0− 20 kHz since this
is the range in which the acoustical analysis of structures is usually performed.
The waveguide cell is modelled by using a square SHELL181 element, having
∆x = ∆y = 0.006m. The length of the cell is chosen through a compromise to
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Figure 4.5: SHELL181 element [126]

avoid round-off errors at low frequencies and finite element discretisation ap-
proximation at high frequencies. A very good agreement between the numerical
curves and the analytical ones can be appreciated for the three branches (from
the top: flexural, shear and longitudinal waves) in the whole frequency range.
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Figure 4.6: Dispersion curves of a thin (h = 0.005m) aluminium plate. Numerical results
obtained by modelling the cell with a SHELL181 element (Δx = Δy = 0.006m)

Obviously, by changing the size of the cell, numerical errors may occur, simi-
larly to what happens for one-dimensional waveguides. The branch more influ-
enced by numerical errors is the flexural ones. In particular, in Figure 4.7 the
bending dispersion curves are plotted for three different size of the element. The
choice of a small segment (Δx = Δy = 0.01m) leads again to errors at high
frequencies due to the finite element discretisation effect: starting from 4000Hz,
the curve deviates from the ones obtained by using Δx = Δy = 0.006m. On the
other side, by decreasing the size of the cell up to Δx = Δy = 0.001m, round-off
errors occur at low frequencies due to the arithmetic precision of the computer.
The considerations made for the one-dimensional cell are valid again, but in this
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case the round-off errors influence the bending wavenumber at high frequencies
as well (the bending wavenumber is overestimated), therefore the size of the cell
must be chosen accurately as a function of the thickness, of the material and of
the frequency range of interest.
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Figure 4.7: Effect of the size of the cell on the dispersion curves of a thin (h = 0.005m)
aluminium plate (cell modelled with SHELL181 element)

If the minimum wavelength becomes comparable to the thickness of the plate,
this last can be no longer considered thin. Therefore, at high frequencies (depend-
ing on the thickness of the plate under investigation) the plate should be analysed
as thick. In this case, first-order theories for flat plate may lead to inaccurate re-
sults, and it is necessary refining the model. For this reason, the same waveguide
is now modelled by using brick elements, e.g. SOLID45 in ANSYS®. In Figure
4.8, the ANSYS® model of the elementary cell is shown, meshed by using five
elements through the thickness. The length of the side is ∆x = ∆y = 0.001m.

First of all, a mesh convergence study is performed on the number of elements
to be used through the thickness. In Figure 4.9, the propagating waves, i.e. cor-
responding to purely real wavenumbers, are shown up to 500kHz, calculated by
using an increasing number of elements through the thickness: 20 SOLID45 are
sufficient to obtain a good accuracy. Furthermore, among the primarily flexural,
shear and extensional branches propagating since the lowest frequencies, other
waves cut-on at very high frequencies. This is even more evident if the range
of the analysis is increased. The complete dispersion plot (obtained using the
model with 20 SOLID45) is shown up to 700kHz in Figure 4.10, wherein both
real (Figure 4.10a) and imaginary (Figure 4.10b) parts of the wavenumbers are
plotted. From the plots, it is possible to understand that for frequencies less than
312kHz there are only three propagating waves (i.e. having imaginary part equal
to zero), corresponding to bending, shear and longitudinal waves. At 312kHz,
two pure imaginary wavenumbers, corresponding to evanescent waves, become
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Figure 4.8: Elementary cell of an aluminium plate modelled with five elements SOLID45
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Figure 4.9: Mesh convergence study for a thick plate modelled with SOLID45 elements

pure real, meaning that two high-order waves start to propagate. This frequency
is called cut-on frequency of the waves. Furthermore, at 569kHz, a pair of complex
conjugate wavenumbers bifurcates into a pair of propagating waves. One of them
has a particular behaviour, later explained. Other two higher-order waves cut-on
at 634kHz.

In Figure 4.11, the dispersion curves are shown in logarithmic y-axis and in a
reduced frequency range in order to highlight the behaviour of the wave which
cuts on at 569kHz. As said above, the pair of complex wave a bifurcates into
a pair of propagating waves b-c. In particular, the curve b has a negative gradi-
ent, i.e. the wavenumber decreases as the frequency increase. According to the
definition of group velocity (Eq. (2.10)), this wave has a negative group velocity:
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Figure 4.10: Dispersion curves of an aluminium plate

the wave carries energy in the negative direction, but with a positive wavenum-
ber. Quoting Mace et al. [58], the motion thus resembles a Michael Jackson Moonwalk
[141]. Waves with negative group velocity are object of discussion in literature
[142–147], since Tolstoy and Usdin [148] tried to explain the significance of neg-
ative group velocity. Recent works [145–147] agree in associating this behaviour
to higher order symmetric Lamb waves (starting from S1 wavemode).
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Figure 4.11: Dispersion curves of an aluminium plate - Zooming at high frequencies (Y-
axis log)

4.4.2 Composite and laminated plates
Beside the isotropic plates, the WFEM is suitable to investigate also orthotropic,
composite or sandwich panels. In this section, dispersion curves are calculated
for orthotropic and laminated infinite panels, comparing the results obtained
through Wave/Finite Element Method to those obtained with the Spectral Finite
Element Approach developed by Barbieri et al. [149].

4.4.2.1 Orthotropic plate

Consider the carbon/epoxy composite plate 0.005m thick, having a mass den-
sity ρ = 1590kg/m3, whose mechanical properties along its principal axes of
orthotropy (x ′,y ′, z ′) are described in Table 4.1.

Table 4.1: Mechanical properties of an orthotropic carbon/epoxy plate

Young’s moduli Shear moduli Poisson’s ratios

[GPa] [GPa]

Ex ′ Ey ′ Ez ′ Gx ′y ′ Gx ′z ′ Gy ′z ′ νx ′y ′ νx ′z ′ νy ′z ′

171.42 9.08 9.08 5.29 5.29 3.97 0.32 0.32 0.499

The FE model of the elementary cell consist of one SHELL181 element, with
dimensions ∆x = ∆y = 0.001m. The dispersion curves of the carbon/epoxy plate
are plotted in Figure 4.12, in which both the WFEM and SFEM results are shown.
As can be observed, the accordance between the two methods is quite good,
but SFEM requires the definition of a spectral element case-by-case, whereas the
WFEM exploits the ANSYS® elements library.
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Figure 4.12: Dispersion curves of an orthotropic infinite plate

4.4.2.2 Laminated composite plates

Barbieri et al. [149] investigate the wave propagation in laminated composite
plates, composed by two different materials. The properties of the plate are sum-
marised in Table 4.2. (Barbieri et al. [149] report only few of them, fixing the
others in order to satisfy the assumptions of plane stress. Herein the missing
properties are assumed and reported). The Finite Element model of the elemen-
tary cell is obtained with 12 elements SOLID45, one for each layer, i.e. the reduced
WFE model has 72 DOFs. The dispersion curves obtained by means of the two
approaches are shown in Figure 4.13.

4.4.3 Sandwich panels
As last example, the dispersion curves a of sandwich panel are calculated through
WFEM and then compared to literature results.

Consider an isotropic sandwich panel. Shorter [150] employs a SFEM method
to describe the dispersion relations of a sandwich panel having a foam core (E =

0.03GPa, ν = 0.2, ρ = 48 kg/m3, h = 15mm) and aluminium skins (E = 71GPa,
ν = 0.33, ρ = 2700 kg/m3, h = 0.6mm).

The FE model of the elementary cell is build in ANSYS® with 27 SOLID45

elements having height 0.6mm. The in-plane dimensions of the cell are ∆x =

∆y = 2mm. In Figure 4.14, the dispersion curves of the isotropic sandwich are
shown. The agreement of the WFEM results with the literature ones is quite
good, mostly at high frequencies. Slight differences are instead appreciated at low
frequencies, due to round-off errors. It is worth to highlight again the presence
of a wave with negative group velocity, predicted by both methods.
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Table 4.2: Mechanical properties of a laminated composite plates [149]

Material A Material B

Young’s moduli [GPa]
Ex ′ 65 145

Ey ′ 65 7.79

Ez ′ 6.5 1.45

Shear moduli [GPa]
Gx ′y ′ 3.86 4

Gx ′z ′ 7.15 1.59

Gy ′z ′ 5.85 1.30

Poisson’s ratio
νx ′y ′ 0.05 0.34

νx ′z ′ 0.01667 0.113

νy ′z ′ 0.01667 0.113

Density [kg/m3] ρ 1467 1550

Thickness [mm] h 2.37 2.37

Lay-up sequence [0A, 45B, 90B, 45B, 0B, 90B]s
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Figure 4.13: Dispersion curves of a laminated composite plate [149]

4.4.4 Natural Fibre Composite Laminate: comparison with experimental results
The use of Natural Fibre Composites (NFC) in transportation engineering appli-
cations is increasing, especially in automotive industry. For instance, Mercedes
S-class uses SI43kg of natural fibre reinforced thermoplastics in door cards, seat
based and other internal applications [151], whereas 2005 Ford Mondeo presents
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Figure 4.14: Real valued dispersion curves for an isotropic sandwich panel [150]

door linings made of polypropylene reinforced with kenaf [152]. Several works
about bio-based panels have been carried out by the author’s research group
[131, 132, 134]. Within this wide experimental campaign, the dispersion relations
(in terms of group velocity) of flat NFC panels were experimentally carried out,
and reported by Petrone [153], and one of the goal of this work is to validate
experimental results with numerical ones.

4.4.4.1 Test specimen

The panel under investigation is an unidirectional laminated NFC, constituted
by 8 plies of Flax/PE with a lay-up sequence [0]8. The panel have dimensions
0.706m× 0.496m× 0.0036m and density ρ = 1025kg/m3. Its mechanical proper-
ties are reported in Table 4.3.

Table 4.3: Mechanical properties of the unidirectional Flax/PE panel

Young’s moduli Shear moduli Poisson’s ratios

[GPa] [GPa]

Ex Ey Ez Gxy Gxz Gyz νxy νxz νyz

9.5 1.3 1.3 0.55 0.55 0.4 0.4 0.4 0.6

4.4.4.2 Experimental setup

The experimental test is basically based on the identification of a given type of
wave propagating in the plate, properly excited. These kind of waves are known
as guided waves, since they may travel at large distance in structures with a very
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small attenuation. They are usually used for structural health monitoring appli-
cations (SHM) [91]. Besides structural health monitoring, guided waves can be
used also in the fields of non-destructive testing and material characterization
[154–156].

Among the various available waves [157], Lamb waves are ultrasonic waves,
guided between two parallel free surfaces (i.e. upper and lower surfaces of a
plate). The setup of the experimental test was arranged in order to excite the
specimen with a known Lamb wave, and then to evaluate how much time this
wave spends to cover a finite distance in different directions. Four piezoelectric
PICERAMIC PIC 255 (Figure 4.16c), having diameter d = 10mm and thickness
t = 0.25mm, were bonded on the plate surface. The first one is positioned onto
the centre of the panel, and used as actuator. The other ones, instead, are used as
sensors: they are placed 150mm far away from the actuator, along three different
directions (0◦, 45◦ and 90◦, according to the longitudinal axis of the panel).

The specimen was excited by a known excitation. In this case, a 4.5 sine cy-
cles curve with Hanning window was used, in order to obtain a narrow-band
bell curve in the frequency domain, as shown in Figure 4.15. Narrow-band exci-
tations are needed in order to limit the problem of the dispersiveness of Lamb
waves, strongly dependent on the frequency. The excitation, provided by the actu-
ator, was generated by a signal generator HP Agilent 33120A (Figure 4.16a). The
complete acquisition process was performed by using an oscilloscope Agilent In-
finiiVision DSO7014A (Figure 4.16b). In Figure 4.17, a schematic representation
of the experimental setup is shown on the panel surface.
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Figure 4.15: Excitation curve (4.5 sine cycles with Hanning window) at 25 kHz

Once the excitation is provided by the actuator, the wavefront starts to propa-
gate in an omni-directional way, with different group velocities depending on the
mechanical properties along a specific direction. The experimental setup allows
to evaluate the group velocity of the waves travelling along three direction. For
each sensor, the time spent by the wavefront to travel across 150mm must be
measured. This is performed through the Short-Time Fourier Transform (STFT)
of the signals acquired at the actuator and at the receivers positions, which allow
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(a) signal generator (b) oscilloscope (c) piezoelectric

Figure 4.16: Experimental instrumentation setup

Figure 4.17: Schematic representation of the experimental setup onto the panel surface

to estimate the time of flight (TOF), i.e. the time interval between the maximum
energy of the actuator and of the receiver wavefronts.

For example, the Figure 4.18 shows the signals of the actuator and of the re-
ceiver in the 0◦ direction for an excitation frequency 25 kHz. The TOF is high-
lighted as the time interval between the points of maximum energy of the signals.
Once the TOF is measured, the group velocity is simply calculated as the ratio of
the distance (150mm) over the time of flight. It is worth to notice the presence of
a second wavefront in Figure 4.18: it represents the acquisition of wave package
reflected at the boundaries of the plate. (For this reason, the sensor should be
placed as far away from the edges as possible).

The tests were performed in the frequency range 10− 40 kHz, with a a step of
5 kHz. The upper frequency limit is defined by the reflection of symmetric Lamb
wave from the plate edges, overlapping the antisymmetric wave package under
investigation at the sensor position.
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Figure 4.18: TOF of unidirectional Flax-PE panel at 25 kHz along 0◦ direction

4.4.4.3 WFE model

The WFE model of the waveguide is realised, as usual, through ANSYS®. The el-
ementary cell has in-plane dimensions 0.1mm× 0.1mm: the cell is small to guar-
antee that the side are at least 10 times shorter than the minimum wavelength
in the whole frequency range of analysis. The FE model of the cell is modelled
with an element SHELL181 (in this range, the plate can be assumed as thin). The
material properties are those reported in Table 4.3.

Since the code is able to estimate the wavenumbers associated to waves prop-
agating only along x axis (θ = 0◦), in order to evaluate the group velocity also
along the y axis (θ = 90◦), the FE model of the cell is rotated of 90◦ around z
axis.

Once the wavenumbers are known as a function of the frequency, the group
velocity is numerically evaluated according its definition.

4.4.4.4 Numerical-Experimental correlation

In Figure 4.4, experimental and numerical, results in terms of wave propagation
speed along x and y axes, are shown. The same results are summarised in Table
4.4 as well. The WFEM allows a very good prediction of the experimental results
in the whole frequency range, since the relative error is always lower than 10%.
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Figure 4.19: Group velocity for the unidirectional Flax/PE panel

Table 4.4: Group velocity for the unidirectional Flax/PE panel

θ = 0◦ θ = 90◦

f cg−exp cg−WFE ∆cg cg−exp cg−WFE ∆cg

[Hz] [m/s] [m/s] % [m/s] [m/s] %

10 719 655 8.9 436 451 −3.4

15 712 703 1.2 539 508 5.7

20 733 721 1.6 597 545 8.7

25 759 726 4.3 609 569 6.6

30 755 726 3.8 610 585 4.0

35 774 722 6.7 600 595 0.0

40 786 718 8.6 586 601 −0.3



5 C O N C L U S I O N S
In this dissertation, some investigations have been performed on the use of the
Wave and Finite Element Method. The analysis have concerned: (i) the wave anal-
ysis of one- and two-dimensional periodic waveguides; (ii) the forced response
of one-dimensional structures.

From the analysis of the literature, it emerged that the Wave and Finite Ele-
ment Method has received an increasing attention in the last 10 years for the
analysis of periodic structures. In fact, differently from other numerical methods,
this technique allows to model a single, elementary cell by using conventional
Finite Element packages, avoiding the definition of special elements. Mass and
stiffness finite element matrices of the element are post-processed by applying
the Bloch’s theory, together with continuity of displacements and equilibrium of
forces at the interface, in order to define a dynamic stiffness matrix. This leads to
the formulation of an eigenvalue problem whose solutions are the waves’ prop-
agation constants. Once the propagation constants are known, it is possible to
obtain the dispersion curves of the waveguide under investigation. From the dis-
persion relations, furthermore, it is possible to estimate the forced response of a
finite structure by applying the wave propagation approach.

The Wave and Finite Element Method for one-dimensional waveguides has
been explained. Once mass and stiffness finite element matrices was defined, the
eigenproblem has been formulated on the transfer matrix, expressed as a func-
tion of the dynamic stiffness matrix. Starting from the eigenvalues of the problem,
the wavenumbers have been calculated in order to plot the dispersion relations,
whereas the eigenvectors have been used to evaluate the forced response of finite
structures. In the case of complex shapes, it has been highlighted the necessity
of a reduced wave basis, neglecting high order evanescent waves. The forced
response of finite structures have been estimated through a wave propagation ap-
proach, based on the calculation of the amplitudes of the propagating waves and
of the reflection coefficients at the boundaries. The analysis of one-dimensional
structures, both in terms of wave propagation and forced response, has been per-
formed through a MATLAB® code, named WFEM1D.m, able to import the finite
element matrices of the elementary cell carried out with ANSYS®. The code has
been validated with available analytic solutions for rod and beam elements, both
in terms of dispersion curves and forced response. A sensitivity analysis has been
performed in order to evaluate the influence of the cell length on the dispersion
curves. Errors at high frequencies may occur if the flexural wavelength becomes
comparable with the cell length. Furthermore, the use of brick elements to mesh
the cross-section of the elementary cell may lead to low-frequencies errors too,
due to the finite precision arithmetic of the computers. It has been shown that
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this errors strongly depends on the material properties and on the cell length.
For this reason, the cell length should be chosen through a compromise in order
to reduce finite element discretisation errors (at high frequencies) and round-off
errors (at low frequencies). WFEM has been used to investigate one-dimensional
structures with different cross-section, in order to exploit its potentiality. In par-
ticular, the dispersion curves of a thin-walled tubular section, a simply supported
strip plate and a sandwich beam, as well as the Frequency Response Function of
a layered beam, have been carried out, showing a good agreement with results
available in literature. Furthermore, the forced response of a hybrid sandwich
beam, constituted by aluminium face sheets and polypropylene honeycomb, has
been estimated and compared to experimental results, obtained through a modal
test. The comparison of the numerical and experimental FRF has shown an ac-
ceptable correlation, considering that the honeycomb core has been assumed as
isotropic.

A first approach to two-dimensional waveguides has been introduced, with
the primary scope to validate some experimental tests on the wave propagation
through natural fibres composite panels. In the case of infinite panels, the eigen-
problem has been formulated on a reduced dynamic stiffness matrix. Eigenprob-
lems of different forms have arisen because of the three-parametric dependence.
In particular, for our purposes a quadratic eigenvalue problem has been consid-
ered, in order to investigate the wave propagation along the direction θ = 0◦.
The eigenproblem has been linearised through first companion linearisation, and
solved in order to evaluate the eigenvalues, i.e. the propagation constants. In
this case, the forced response has not been analysed, since some issues arose
in the eigenvectors tracking. In order to plot the dispersion relations of infinite
panels, the WFEM for two-dimensional waveguides has been implemented into
another MATLAB® code, named WFEM2D.m, in which the finite element ma-
trices are imported from ANSYS®. A sensitivity analysis has been performed
on shell and solid elements, showing the same numerical issues as in the one-
dimensional code. The analysis of a thick aluminium plate at high frequencies
has highlighted the capability of this method to predict dispersion relations also
for waves having negative group velocity. Dispersion curves for laminated and
sandwich panels have been carried out and compared to SFEM results available
from the literature, showing a very good agreement. Finally, the group velocities
along 0◦ and 90◦ directions have been estimated for a natural fibres composite
panels and compared to experimental results. The experimental test regarded
the propagation of ultrasonic guided waves, i.e. Lamb waves, whose group veloc-
ities were estimated at different frequencies by measuring the time spent by the
excited waves to travel over the distance between the actuator and the receivers.

In conclusion, the Wave and Finite Element Method has allowed the analysis
of different types of waveguides through the Finite Element discretisation of an
elementary cell, together with the application of periodicity conditions.

The main advantages of this technique can be summarised as follows.

• The elementary cell can be discretised through conventional Finite Ele-
ments, and then FE libraries of commercial packages can be used without
the definition of specific elements.
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• The computational cost is independent of the length of the elementary cell,

as well as the size of the structure. This property makes the WFEM partic-
ularly appealing for the analysis of structures in the mid-frequency range,
where full FE models are computational expensive and SEA results are ap-
proximated.

On the other hand, some drawbacks can be highlighted, on which future works
will focus:

• the finite arithmetic precision of computer determines round-off errors in
the dynamic stiffness matrix, which arise at low-frequencies mostly if the
cross-section is discretised with brick elements. However, this issue does
not affect the results in the mid- and high-frequency range.

• The tracking of eigenwaves, performed through a Modal Assurance Cri-
terion, is a time-consuming task, and it does not work correctly for two-
dimensional waveguides.

• There is not a well-posed criterion for the definition of the reduced wave
basis, needed for the calculation of the forced response.
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A E X A M P L E O F C O M M A N D L I S TF O R A N S Y S ®
Command list to import in ANSYS® in order to obtain mass and stiffness matri-
ces of a cell made of steel, 0.001m long, having square cross-section with area
A = 10−6m.

/BATCH,list

/CLEAR

/PREP7,Solid Steel Beam !Preprocessor session

/TITLE,Solid Steel Beam !Title of the job

/REPLOT

!DEFINITION OF MATERIAL PROPERTIES

Em=2.0E+011 !Young modulus

rho=7.8E+003 !Density

nu=3.3E-001 !Poisson ratio

!DEFINITION OF THE MATERIAL

MP,EX,1,Em

MP,PRXY,1,nu

MP,DENS,1,rho

!DEFINITION OF THE NODES

n,1,0,-5.e-4,-5.e-4

n,2,0,5.e-4,-5.e-4

n,3,0,5.e-4,5.e-4

n,4,0,-5.e-4,5.e-4

n,5,0.001,-5.e-4,-5.e-4

n,6,0.001,5.e-4,-5.e-4

n,7,0.001,5.e-4,5.e-4

n,8,0.001,-5.e-4,5.e-4

!DEFINITION OF THE FINITE ELEMENT

ET,1,SOLID45 !Finite element SOLID45

KEYOPT,1,4,0 !Options of the element

E,1,2,3,4,5,6,7,8 !Connecting the nodes.

!SOLUTION

/SOLU !Solution session

ANTYPE,SUBSTR !Type of analysis: substructuring

SEOPT,steel_square,3,1 !Substructure analysis options

M,ALL,ALL !Definition of master degrees of freedom
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/OUTPUT,steel_square.txt !Definition output file

SOLVE !Analysis

/OUTPUT !Writing the text output to the file

FINISH !End of the job
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