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Abstract 

The focus of this PhD thesis is on clothes drying in home laundry, an 

energy-intensive operation of high societal impact due the high associated 

costs and carbon footprint. The main goal of this work is to improve the 

basic understanding of drying of cotton fabrics by combining classical 

thermal analysis with microscopy techniques. In particular, the proposed 

approach is to regard cotton fabrics as a porous medium where water can 

penetrate at different spatial scales. The well-known constant rate (CRP) 

and falling rate (FRP) phases of the drying process were related to cotton 

fabric porosity and our results show that drying is faster in a cotton fabric as 

compared to a dish filled with water with the same area of the fabric, during 

the CRP. Drying rate in fabrics can be enhanced by surfactants in diluted 

regime, in a concentration-dependent way. These effects were correlated 

with an increase of the interfacial area due to a decrease of the contact angle 

induced by the surfactant, by a single capillary model. All the drying curves 

overlap in the FRP, showing negligible effects of surfactants on drying rate. 

Both CRP and FRP can be qualitatively explained by considering the fiber 

as the base element of a multi-scale porous medium. Moreover, a single 

capillary model is proposed to study the evaporation process. 
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Sommario 

L’ambito di questa tesi di dottorato riguarda l’essiccamento dei tessuti 

nell’ambito della lavanderia, un'operazione ad alto dispendio energetico ed 

ampio impatto sociale, a causa degli alti costi e delle emissioni di anidride 

carbonica. Il seguente lavoro si promette di migliorare la comprensione del 

processo di essiccamento dei tessuti combinando analisi termica classica 

con varie tecniche di microscopia. In particolare l'approccio proposto 

consiste nel considerare il tessuto di cotone come un mezzo poroso in cui 

l'acqua può penetrare a diverse scale spaziali. La fase con velocità di 

essiccamento costante (Constant Rate Phase, CRP) e quella con velocità di 

essiccamento decrescente (Falling Rate Phase, FRP) sono legate alla 

struttura porosa del tessuto di cotone ed i risultati ottenuti hanno mostrato 

che l’essiccamento, durante la CRP, è più rapido in un tessuto di cotone 

rispetto ad una piastra Petri piena d’acqua avente la stessa superficie del 

tessuto. La velocità di essiccamento nel tessuto può essere incrementata, in 

base alla concentrazione, utilizzando tensioattivi in regime diluito. Tali 

effetti sono stati correlati, effettuando esperimenti su micro-capillari, con 

l’aumento dell'area interfacciale dovuta ad una diminuzione dell'angolo di 

contatto indotta dal tensioattivo. Tutte le curve di essiccamento si 

sovrappongono nella FRP, mostrando che l’effetto dei tensioattivi sulla 

velocità di essiccamento è trascurabile. Inoltre, un modello a singolo 

capillare si propone di studiare il processo di evaporazione. 
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Résumé 

L'objectif de cette PhD thèse est le séchage des vêtements dans la lessive, 

une opération à forte intensité énergétique et large impact social, en raison 

des coûts associés élevés et des émissions de dioxyde de carbone. Les 

travaux suivants promet d'améliorer la compréhension de base de séchage 

des tissus de coton en combinant l'analyse thermique classique avec des 

techniques de microscopie. En particulier, l'approche proposée consiste à 

considérer le tissu de coton comme un milieu poreux dans lequel l'eau peut 

pénétrer à différentes échelles spatiales. La phase ayant vitesse de séchage 

constante (Constant Rate Phase, CRP) et cela ayant vitesse de séchage 

décroissante (Falling Rate Phase, FRP) sont liées à la structure poreuse du 

tissu de coton, et les résultats obtenus ont montré que le séchage, au cours 

de la CRP, est plus rapide dans un tissu de coton par rapport à une boîte de 

Pétri remplie avec de l'eau ayant la même surface du tissu. La vitesse de 

séchage dans le tissu peut être augmentée, en fonction de la concentration, 

en utilisant des agents tensio-actifs dans le régime dilué. Ces effets ont été 

corrélés, en effectuant des expériences sur des micro-capillaires, avec 

l'augmentation de l'aire interfaciale en raison d'une diminution de l' angle de 

contact induite par l'agent tensio-actif. Toutes les courbes de séchage se 

chevauchent dans le FRP, montrant que l'effet d' agents tensio-actifs sur la 

vitesse de séchage est négligeable. En outre, un modèle seul capillaire est 

proposé d' étudier le processus d'évaporation.   
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Resumen 

El alcance de esta tesis es el secado de los tejidos dentro de lavandería, una 

operación con un alto gasto energético y amplio impacto social, debido a los 

altos costos y las emisiones de dióxido de carbono. El objetivo principal de 

este trabajo es mejorar la comprensión básica del proceso de secado de los 

tejidos mediante la combinación de análisis térmico clásica con diversas 

técnicas de microscopía. En particular, el enfoque propuesto consiste en 

considerar el tejido de algodón como un medio poroso en el que el agua 

puede penetrar a diferentes escalas espaciales. La fase con velocidad de 

secado constante (Constant Rate Phase, CRP) y que con la velocidad 

descendente (Falling Rate Phase, FRP) están relacionados con la estructura 

porosa de la tela de algodón y los resultados obtenidos han demostrado que 

el secado, durante el CRP, es más rápido en un tejido de algodón con 

respecto a una placa de Petri llena de agua que tiene la misma superficie de 

la tela. La velocidad de secado en el tejido puede ser mejorada, dependiendo 

de la concentración, el uso de agentes tensioactivos en el régimen diluido. 

Estos efectos se correlacionaron, mediante la realización de experimentos en 

los micro-capilares, con el incremento en el área interfacial debido a una 

disminución en el ángulo de contacto inducida por el agente tensioactivo. 

Todas las curvas de secado se solapan en el FRP, mostrando que el efecto de 

los tensioactivos en la velocidad de secado es insignificante. Además, se 

propone un modelo único-capilar para estudiar el proceso de evaporación. 
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摘要 

这份哲学博士学位论文焦点在衣裳烘干在洗衣店的，交付高的社会影

响的能源消耗量大的操作高伴生的费用和碳脚印。 

这工作的主要目标是改进对棉织物干燥基本的理解经过结合古典热分

析与显微学技术。 

特别是，提出的方法假设，水可能击穿棉织物个多孔媒介象一的用不

同的空间标度。 

众所周知恒定的率阶段(Constant Rate Phase, CRP) 和下降的率阶(Falling 

Rate Phase, FRP) 被连接到棉织物的孔隙率，并且我们的结果表示，烘

干是快速在棉织物与盘比较充满与织品的同一表面的水，在 CRP 期间。 

表面活性劑在稀釋的制度可以提高幹燥速率在織物中的濃度依賴的方

式。 

在一個單一的毛細管模型中觀察到同樣的效果, 和由於表面活性劑誘導

介面面積增加。  
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Drying of Porous Media. The Case of Cotton Fabrics. 

1.Introduction 

1 
 

1 INTRODUCTION 
 “I feel more confident than ever that the power to save  

the planet rests with the individual consumer.”  

Denis Hayes 

Drying of porous media is a fundamental operation in a number of 

applications, including material processing (such as in the production of 

food, wood, paper, textiles, pharmaceuticals and washing powders), 

agriculture, soil technology, recovery of volatile hydrocarbons from oil 

reservoirs, cosmetics and building restoration. Although much work has 

been done in these application areas within the context of different 

disciplines, the current understanding of drying of porous media is still 

limited and the prediction of drying rates remains a challenging problem. 

The main objective of this PhD thesis is to investigate the driving forces of 

the process to identify the key parameters and the rate limiting steps. This 

problem was tackled by using a multi-scale approach combining the study 

of the governing mechanisms at the pore scale through advanced 

microscopy techniques with evaluation of physicochemical properties 

through thermal analysis. In fact, handling the different spatial and time 

scales relevant in the drying process of a porous medium is one of the most 

challenging problems in investigating fabrics drying. This work is relevant 

for the identification of rate enhancing additives of possible industrial 

application.  

1.1 Sustainability and innovation in laundry 
Golden et al.

2
 examined energy, carbon and water impacts from residential 

laundry in the United States in 2010. The report found washing and drying 

clothes in the average American household was responsible for consuming 

9718 gallons of water, 1991 kWh of electricity and 1 metric ton of CO2 

emissions (see Figure 1.1).  
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Figure 1.1 Electricity use in laundry according to Golden et al.
2
 

The large amount of energy used in household dryers has been estimated as 

66 billion kWh per year (or 5.8% of all residential electricity consumption) 

in US
3
 and as 25.2 billion kWh per year in Europe

4
, where the dryer market 

is undergoing a fast growth (the estimated number of dryers in 2020 is 70 

million units). These numbers show that even small improvements of drying 

efficiency can lead to major energy savings. The average home clothes 

dryer has a carbon footprint of approximately 2 kilograms (4.4 pounds) of 

CO2 per load of laundry dried
5
. Energy Star, a United States government 

program concerned with energy efficiency in consumer products, does not 

rate clothes dryers. 

In the European Union, the EU energy labeling system is applied to dryers; 

dryers are classified with a label from A (best) to G (worst) according to the 

amount of energy used per kilogram of clothes (kWh/kg). Sensor dryers can 

automatically sense that clothes are dry and switch off. This means over-

drying is not as frequent. Most of the European market sells sensor dryers 

now and are normally available in condenser and vented dryers. 

On this side, Europe is in a leading position as compared to US thanks to 

several initiatives, such as the introduction of an energy label for tumble 
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driers (Commission Directive 95/13/EC; 
6
), mostly targeted at increasing the 

efficiency of the drying machines. The latter is generally defined as the ratio 

of the heat required to remove water from a standard laundry load 

(containing 80% of initial moisture on a dry basis) and the energy actually 

consumed. It should be pointed out that in this definition of dryer efficiency 

the evaluation of heat requirement is only based on the latent heat of 

evaporation of water, without taking into account that textiles are porous 

media with a significant spatial confinement of moisture.  

In this respect, a review on thermodynamic calculation of heat requirement 

in fabrics drying will be made in chapter 2 as a basis for a rigorous 

expression of dryer efficiency and of its theoretical upper limit. This will 

help both manufacturers in setting meaningful standards and R&D 

benchmarks and consumers in better product selection.  

1.1.1 Carbon Friendly Dryers 

Recently, several progress have been done in improving dryers efficiency. 

Only in the UK more than 40% of households use a tumble dryer and 

almost 4 million dryers are sold every year. Tumble dryers account for a 

massive 4.3% of the UK’s entire domestic energy consumption. This 

percentage could be significantly reduced if the UK was to convert to gas 

tumble-drying. British manufacturers Crosslee launch in 2008 a 7kg 

capacity gas tumble dryer range. This product is of interest because it claims 

to have a very low carbon footprint and running costs. However, it must be 

remembered that it needs a gas supply to run as well as electric.  

The expansion of this new gas dryer range offers functions to cater for the 

technical needs of the energy conscious consumer. The range includes a 

reverse action model, working to reduce the possibility of tangled clothes 

leading to easy ironing. White Knight have released the 7kg sensing 

version, automatically switching off when the selected level of dryness is 

reached, avoiding further unnecessary CO² emissions. Gas dryers can be 

faster and 2/3 cheaper to run, saving time, money and of course the 
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environment. According to White Knight there are several benefits of using 

a gas tumble dryer as opposed to an electric model: lowest running costs, 

shortest drying times (the fastest drying domestic tumble dryer dries a full 

load in 60 minutes) and lowest carbon emissions. 

There are A rated electric dryers with heat pumps that are not too far off the 

efficiency and carbon figures for this gas dryer; however, they are still 

“higher”, are more complex and take much longer to dry clothes so a gas 

tumble dryer is a viable option to consider
7
. 

On the same year AEG-Electrolux release the Lavatherm T59800, the first 

A rated condenser dryer which takes as little as 85 minutes to dry cottons 

(Cotton cupboard dry program takes 110 minutes at 1400 spin. Cotton iron 

dry takes 85 minutes at 1400 spin), consumes half the energy of a similar 

sized C rated dryer (2.4 kWh) and dries clothes so gently that even wool and 

silks can be can be tumble dried it. The T59800 uses a specially developed 

‘Heat pump’ technology that works like a refrigerator in reverse to achieve 

this unprecedented energy efficiency. The Energy consumption is so low it 

exceeds the requirements for A Energy rating by 30%. 

The lower temperature drying (5°C less than conventional models) means 

even delicate fabrics like wool and silk can be dried safely. For consumers 

who plan to install a dryer in the kitchen, the heat pump technology is also 

far quieter than the traditional technology (65 decibel instead of 70 

decibel)
8
.   
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1.1.2 Low-Carbon Detergents 

Until now the recipe for a low-carbon load of laundry was to use liquid 

detergent instead of powder and to wash clothes in cool water and hang 

them out to dry
5
. 

That's the message shoppers get when they walk down the detergent aisles 

at Tesco PLC stores in the U.K. Starting this spring, the retailer began 

slapping footprint-shaped carbon labels on Tesco-brand laundry detergent. 

Along with the carbon-footprint number, the label offers tips about lowering 

the score. 

The carbon footprint of a load of laundry done with actual detergent varies 

from 0.6 kg to 0.9 kg, depending on what form of detergent is used. 

According to Procter & Gamble Co., the average American family does 

about 300 loads of laundry per year, or about six loads per week. That 

suggests a per-family carbon footprint from doing laundry of about 218 kg 

per year, or about 4.5 kg per week. And that doesn't include running the 

dryer. 

According to Tesco, as reported by the Wall Street Journal in 2009, solid 

capsules of detergent have the highest carbon footprint, followed by 

powder; liquid detergent has a significantly lower carbon footprint but the 

lowest footprint comes from concentrated liquid. That's because making 

solid detergent uses more energy than making the liquid variety. 

Most US household currently own and use the top-loading vertical axis (v-

axis) agitator type washers, which use large amounts of water as well as 

additional energy to heat the water. More sustainable laundry practices 

include the use of energy- and water-efficient front-loading horizontal-axis 

(h-axis) washers
9
. These washers have been demonstrated to use 38% less 

water and 58% less energy than the standard top-loading v-axis models
10

. 

Doing the wash in cooler water, 30°C instead of 40°C, will shave the carbon 

footprint of each load by 0.14 kg. That's as much of a reduction as you get 

from switching to liquid from powder. 
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The biggest way to cut the environmental impact of cleaning clothes, 

however, is to stop using a clothes dryer. Drying laundry outside on a line 

will cut the carbon footprint of every load by a whopping 2 kg CO2. 

1.1.3 Energy Efficient Laundry Process 

With the rising cost of energy and increased concerns for pollution and 

greenhouse gas emissions from power generation, increased focus is being 

put on energy efficiency. Between 2001 and 2004 a study developed by the 

Department of Energy of the United States looks at several approaches to 

reducing energy consumption in clothes care appliances by considering the 

appliances and laundry chemistry as a system, rather than individually
12

. 

The resulting solution to reducing the moisture at the end of the wash cycle 

was by improving the ribbed basket design. The ribs had a 20% 

improvement as compared to the baseline smooth plastic basket. 

The dryer system investigated several process techniques in addition to 

sensing and control. The process techniques, such as reversible drum, 

variable speed drum & fan, proved to be insignificant in effecting energy 

savings. Basic control techniques provided no energy savings and the effort 

focused on advanced control algorithms and sensor implementations. The 

final energy savings averaged 8% with one case as high as 17%. This gain 

was achieved by improving the end-of-cycle determination. 

Procter & Gamble (P&G) also contributed to the findings of this report. 

P&G explored chemistry additives that would enable faster evaporation 

rates in the dryer and increase moisture extraction in the washer. In the 

dryer, evaporation could be improved, but the concentrations and delivery 

methods required were incompatible with consumer requirements. Silicone 

surfactants were found to reduce moisture content by over 20%, however, 

compared to existing market products, this improvement was not sufficient 

to initiate new product development. 
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1.2 Research objectives 
The motivation of this PhD work lies in the high-costs associated with 

drying of porous media, which is one of the most energy-intensive 

operations not only at the industrial level, but also in housekeeping. In fact, 

a large fraction of home energy expenditure is due to clothes drying, which 

is as expensive as laundry (if not more) in countries where dryers are 

typically used (e.g., because of adverse weather conditions). The current 

industrial strategy to reduce drying costs is focussed on improving 

mechanical and thermal dryer engineering design, which basically neglects 

the fact that textiles are inhomogeneous materials. On the contrary, the idea 

behind this PhD project is to enhance clothes drying rate by turning the 

attention from the dryer machine to the drying process itself. The latter can 

be achieved by using appropriate additives in the washing machine. Such 

additives would also improve the rate of line drying indoors, with the 

advantages of lower energy withdrawal from house heating and less time of 

clothes hanging inside. In fact, people often switch from line-drying to 

machine drying because line-drying is too slow and they want to have their 

items dried faster. From the industrial side, high gains are also expected in 

the detergent industry, which would receive a technology boost in terms of 

product formulation. Elucidating the moisture-transport process in clothing, 

which is one of the most important factors influencing the dynamic comfort 

in practical wear situations and to be accounted for in clothing thermal 

engineering design6, is also relevant for the textile industry.  

1.3 Textile as Porous Media 
A textile is a flexible woven tissue made of a network of yarns or threads, 

which in turn consist of interlocked fibers of synthetic (e.g., polyester) or 

natural (e.g., cotton) origin. Laundry water is retained within the pores of 

the clothes microstructure, which are formed either between the yarns (100 

μm) or between the fibers inside a yarn (10 μm) or within a single fiber (0.5 
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μm). These different spatial scales are schematically shown in the following 

Figure 1.2.  

 

Figure 1.2 A computer-generated montage of cotton fabric on several scales, constructed 

from SEM images. 

One of the main challenges of this work was to take into account such water 

retaining fabric microstructure, which can be regarded as a porous medium 

with a complex hierarchical texture. Several mechanisms have been 

speculated to be at play at the pore scale: vapor diffusion, which is modeled 

by Fick’s law with a diffusivity dependent on pore tortuosity, capillary flow 

due to pressure differences depending on menisci curvature (Laplace 

equation), gas transport elicited by pressure gradients according to Darcy’s 

law. Another possible mechanism which has recently attracted much 

attention is liquid flow in the films developing along the corners of 

rectangular cross-section pores, which acts to increase the drying rate as 

compared to circular cross-section capillaries
15, 16

. The same effect has been 

invoked to explain the higher drying rate found from a cell filled with a 

dense packing of silica spheres as compared to an empty cell
17, 18

. Enhanced 

vapor diffusion is another mechanism of which, although often invoked, no 

direct experimental proof has been given so far
19

. The enhancement would 

be due to condensation/evaporation across isolated liquid islands, leading to 

a vapor pressure lowering (dependent on curvature according to Kelvin 

equation). Further complications, such as liquid or vapor transport induced 

by thermal gradients and variations of surface tension and contact angles 

with temperature, arise when heat transfer is also taken into account. 

Surface tension gradients can also be induced by concentration gradient in 

multi-component liquid mixtures. 
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Although invasion percolation theory and pore network simulations have 

provided helpful insight in this problem, the physical understanding of 

drying dynamics is still incomplete and the prediction of drying rate is still a 

challenging issue even under isothermal conditions (slow drying). A further 

difficulty arises from the coupling between mass and heat transfer during 

the drying process, which is usually carried out by means of a stream of hot 

air (forced convection). While a complete analysis would require to include 

mass, heat and momentum transfer mechanisms, simplified models have 

been proposed for specific industrial drying application
20

.  

However, the complexity of the problem, together with the lack of a 

rigorous thermodynamic analysis, makes it difficult to obtain predictions of 

rate of drying. In particular, it is not clear, whether there is at the controlling 

mechanism of the process. It is likely that different regimes can become 

dominant depending on the pore size and thermodynamic parameters, as 

well as on non-dimensional parameters. 

In conclusion, several open key questions concerning the physics of fabrics 

drying at the micro-scale need still to be answered. How is water spatially 

distributed and what is the interface dynamics in the drying process? What 

are the physicochemical mechanisms governing fabric drying? What is the 

interplay between mass and heat transfer? Is there a controlling mechanism, 

which can be exploited in order to enhance drying efficiency? Resolving 

these challenging issues would be a scientific breakthrough in the general 

framework of transport in porous media and the rationale for the 

development of predictive models of clothes drying, which is a key step to 

address the problem of enhancing clothes drying rate. In the following 

chapter a deep theoretical review as a basis for the experimental section will 

be made, having the intention to answer some questions aroused in this 

chapter and to let other question arise. 
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2 THEORETICAL BACKGROUND 
“The lure of the distant and the difficult is deceptive.  

The great opportunity is where you are.”  
John Burroughs 

In this chapter the state of the art on the study of the flow of a multiphase 

fluid in a porous medium is presented. To understand the key role of this 

process in everyday life, some definitions are provided useful to the 

understanding of the structure of porous materials, such as porosity, 

permeability and the interfacial tension. Following the equations governing 

the mass and heat transport are presented, and then refer to an application of 

this physical phenomenon: drying rate process in cotton fabrics. This topic 

finds also application in similar fields like paper and food industry. Various 

experimental, theoretical, and computer simulation approaches to 

evaporation in textiles will be also reviewed. 

From the phenomenological point of view, clothes drying apparently follow 

the typical behaviour of porous media, which is sketched in the following 

figure. The fabric moisture content on a dry basis decreases at a constant 

rate until a critical point is reached, marking the transition to the falling rate 

regime. The commonly accepted interpretation of this behaviour is that 

water in the larger pores between yarns is free to move to the outer fabric 

surface, where temperature remains fixed at the equilibrium value (adiabatic 

saturation temperature). In this region drying should be essentially 

dominated by external heat transfer. Once water recedes in the smaller pores 

transport to the outer surface is hindered and drying proceeds at a falling 

rate. Since saturation conditions are not present any more at the outer 

surface, temperature does not remain constant and starts growing with time 

tending to the value of air temperature.  
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2.1 Flow in Porous Media The flow of a fluid in a porous 

medium is a topic of great interest in various fields, such as in the filtration 

of waste water, in the drying processes and in the study of leaching of 

pollutants within an aquifer; it also located strong response in the chemical 

industry, for the study of the flow of fluids in fixed bed reactors, and in the 

oil industry, for the extraction of fossil fuels. Issues that are common to all 

of these fields are the complexity of pore structure and its effects on the way 

the fluids of interest can flow and distribute throughout the porous media. 

Furthermore, different mechanisms can be at play, including heat and mass 

transfer, phase behavior and viscous, buoyancy, and capillary forces. There 

will be discussed flow phenomena only in a static porous medium, i.e., a 

medium whose morphology does not change during a given process. 

2.1.1 Porous Media StructureA porous medium consists of an 

interconnected three-dimensional network of pore space with non-uniform 

size and shape, characterized by a certain degree of vacuum and high 

specific surface. The variety of different pore shapes and sizes is different 

every time, depending on their origin. A porous medium can be described as 

a multiphase heterogeneous system made of both fluid and solid phases, 

whose physical properties are strongly influenced by the pores number, size, 

shape and degree of interconnection
21

. Two important macroscopic 

parameters to describe the internal structure of porous medium are porosity 

and permeability. Porosity, or vacuum degree φ is defined as the amount of 

voids contained in the porous medium. It is a dimensionless scalar 

parameter varying between 0 and 1, indicates the ability of the medium to 

contain fluids inside it, and is defined as:  

   
  

  
        (1) 

where Vb is the volume of the porous medium and Vp is the sum of the 

volumes of individual pores contained in the volume Vb. Permeability k 

describe the ability of a porous medium to allow the flow of a fluid through 
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it. k is a vectorial quantity, depending on the direction along which it is 

measured. The flow of a fluid in a porous media is described by the Darcy's 

law:  

 
 

 
  

 

 
             (2) 

where Q is the flow rate of a fluid of viscosity η; A is the surface area of the 

porous medium,    is a gradient of negative pressure (ie, the flow moves in 

the direction of decreasing pressure); ρ and g are the liquid density and 

gravity acceleration respectively. It is evident that the increase of k causes 

the decrease of the resistance offered to the flow
22

. 

Two characteristic length scales can be identified to describe a porous 

medium
23

, making basic differentiation between the macroscopic and 

microscopic level. In the former, a representative elementary volume REV, 

that is much larger than the characteristic dimension of the pore, defines the 

scale of the system. In this case the system parameters are averaged over the 

elementary volume. This approach is adequate when the molecular 

dimensions are negligible compared to the average size of the pores, as in 

the study of the mass or heat transport in porous media. Regarding the 

microscopic level (i.e. pore scale), the material structure can be defined by 

the degree of vacuum, the pore degree of interconnected exposed surfaces 

and the distribution of the pores. According to the International Union of 

Pure and Applied Chemistry, the classification of the pores is based on their 

sizes as follow: nano-pores, with sizes ≤ 2 nm; meso-pores, with sizes in the 

range 2–50 nm; macro-pores with sizes ≥ 50 nm
24

. An example of porous 

media structured on all length scales, with no exception for the pore one are 

the geological formations
25, 26

, that can also be characterized by non-

homogeneity and anisotropy, making their properties dependent on the 

direction in which they are being evaluate
27, 28

. 

In light of the important role that porous media play in many aspect of 

science and technology, they have been widely studied, and many different 
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techniques have been applied to describe their geometry characteristics
721

, 

such as mercury porosimetry
29, 30

, adsorption-desorption methods
31

, small 

angle neutron scattering (SANS)
32

 and nuclear magnetic resonance 

(NMR)
33, 34

. The latter is based on the fact that certain atomic nuclei absorb 

and re-emit electromagnetic radiation in a magnetic field, and it is 

applicable to any kind of sample that contains nuclei possessing spin. In the 

specific case of a porous medium, different relaxation times for the NMR 

induced excitations are expected for molecules in the surface area and in the 

bulk volume of the pore
35

. Thus, NMR is a well-established technique for 

the characterization of both homogenous and heterogeneous
36

 porous media, 

allowing the determination of characteristics
37

 such as porosity and pore 

size distribution, permeability, water saturation and wettability.  

2.1.2 Wettability and Contact Angle 

Since it is very arduous to represent the physical structure of a porous 

medium, is even more complicate to describe the fluid flow through it. One 

of the principal parameters that affects the flow characteristics and the fluid 

distribution within a porous medium is wettability, that influences the way 

whereby a fluid expands on a solid and forms wetting films
38

. Thus, the 

fluid distribution in a porous medium is controlled by wetting, consenting 

the achievement of the lowest possible energy content state
39-42

. Wettability 

affects relative distribution of fluids
43

, relative permeability
44

, electrical 

conductivity
45, 46

 and capillary pressure
47

. Otherwise, wettability can be 

affected by temperature
48

, chemical agents such as surfactants
49

 and by the 

presence of nano-particles dispersed in the liquid phase
50-53

. The degree of 

wetting of a solid surface is determined by the ability of a liquid to stay in 

contact with a solid surface, and is characterized by the contact angle θ. This 

is determined by a force balance when the interfaces of denser(water) and 

lighter(air) fluid meet a solid surface at a three-phase contact point, as 

illustrated in Figure 2.1. θ is defined by the Young's equation (Eq. 3) 

                           (3) 
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where σ is the interfacial tension (N/m), with subscripts indicating the 

phases. i.e. σsl is referred to solid and lighter fluid; σsd to solid and denser 

fluid; σld to lighter and denser fluids
54

.  

 

Figure 2.1 Water drop (denser fluid) on silica glass (solid) in air (lighter fluid) at room 

pressure and temperature on the left; contact angle schematic on the right. 

Different initial conditions may then lead to different final configurations. 

When θ<90° the denser fluid wets the solid surface, while when θ>90° the 

lighter fluid wets the solid surface. In Figure 2.2 a case of spontaneous 

imbibition is illustrated. Starting from a condition in which a pore is 

saturated solely by water or by oil (Figure 2.2.A) the resulting equilibrium 

situations (Figure 2.2 from B to F) correspond to decreased values of θ
42

. 

Complete water-wettability occurs when θ ≈ 0 (cos θ ≈ 1). In this case, a 

repulsive force between the surface and the oil across water occurs, and 

water shows a higher affinity for the surface, displacing the oil from the 

surface (Figure 2.2E and F).  
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Figure 2.2 Adapted from Drummond et al., 2004
42

. Equilibrium wetting configurations for 

decreasing water contact angles (irrespective of the initial conditions, A). Effective 

displacement of oil by water starts to occur for θ<90°. 

Low value of solid-lighter fluid interfacial tension σsl and high values of 

solid-denser fluid interfacial tension σsd are related to high values of cosθ 

and, consequently, low contact angle (Figure 2.2E); while low values of σsd 

mean low cosθ and high θ (Figure 2.2C). Thus, for effective displacement by 

water (θ<90°) (Figure 2.2D and E), the forces that acts between oil and 
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surfaces (across the water phase) must be repulsive or only weakly 

attractive.  In addition to contact angle, an useful parameter for evaluating 

wetting degree is the spreading coefficient, that indicates if a fluid 

completely (wetting fluid) wets a surface, creating a stable hydraulically 

continuous film even at low saturation, or only forms a fluid layer 

(spreading film) onto the interface (see Figure 2.3). 

 

Figure 2.3 Spreading of liquid on PMMA surface: in a) the liquid is a water drop, in b) the 

water contains a small amount (20000 ppm) of surfactant (Na-LAS). 

The wetting fluid can be advancing or receding: advancing contact angles 

occur in the displacement of oil by water, while the receding ones are 

operative when water is displaced by oil. On the other hand, when a fluid 

does not wet the solid is called non-wetting fluid
55-59

. Lenormand
60

, by 

using experiment and computer simulations demonstrated the existence of 

three types of basic displacement when a non-wetting fluid invades a two-

dimensional porous medium: i) capillary fingering (capillary forces > 

viscous forces), ii) viscous fingering (invading fluid less viscous than the 

defending), iii) stable displacement in the opposite case. The displacement 

have been characterized by statistical models: invasion percolation, 

diffusion limited aggregation (DLA) and anti-DLA
61

. Many transport 

process can be idealized as transport of fluid into a medium, but if the fluid 

path is determined by the medium and medium itself is random, the process 

is called percolation
62-64

, this concept was introduced by Broadbent and 

Hammersley
65

. 

In natural porous media, three phases often coexist, i.e. water, oil, and gas. 

The effect of both medium characteristics (pore geometry and wettability) 

and interfacial tensions can be combined in a single factor, the capillary 
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pressure, that controls fluids equilibrium configurations, as described in 

detail in the following section. Thus, changes in capillary pressure affect the 

entrapment and the displacement in a gas/oil/water system, modifying the 

wetting properties. For example, in a water-wet condition, water can form 

stable wetting film along the pore walls, while oil forms a spreading film of 

variable thickness depending on the pore structure and on the pressure of the 

gas entering the pores. When gas is injected in the oil-wet condition, 

instead, interface movements are controlled by either the oil-gas or the oil–

water interfaces, in dependence on the pore geometry, and on the values of 

interfacial tensions and capillary pressure. In this case, oil forms stable 

wetting films of thickness variable with the pore structure, and water and 

gas, being the non-wetting fluids, are cut apart by a spreading film of oil
59

.  

2.1.3 Capillarity Effect Inside Pores 

Capillary pressure, together with geometrical parameters such as size of 

pores, tortuosity of capillaries, and porosity, as previously described in 

Section 2.1.2, is a key factor in the permeability processes in a porous 

medium. The motion of a finite liquid volume constrained between solid 

surfaces is governed by a complex interplay of capillary, viscous, and 

gravitational forces. In the absence of external force (pressure) and 

negligible gravity the flow of a wetting liquid into a porous medium is 

governed solely by capillary force
66, 67

. The potential gradient and liquid 

flow are caused by a difference in the capillary pressures on the free liquid 

at the porous medium surface (inlet) and at the liquid interface within the 

porous medium. The classical theory of capillarity, developed by Gibbs, 

postulate that the internal energy U of the interface is a function of the 

entropy S, the mole number Ni of the i components, the surface area A, and 

of the two principal curvatures of the surface c1 and c2
68

. If the concept of 

surface tension is introduced and a moderate curvature is assumed, the 

equation is:   

                       (4) 
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where T is the temperature, μi the chemical potential of the i component and 

  the surface tension. The well-known Laplace equation is based on eq. 4 as 

follows:  

                (5) 

where J=c1+c2 is the mean curvature and P1-P2 is the pressure drop between 

two adjacent phases
68

. A particular expression of the Laplace equation is 

reported in eq. 6.  

          
    

 
         (6) 

where R is the capillary radius, θ is the contact angle, σ is the interfacial 

tension between the non-wetting and the wetting fluid, PN and PW are the 

pressure of the non-wetting and the wetting fluid respectively, and Pc is the 

capillary pressure. Note that PC = Poil - Pwater, for a water-wet system, while 

Pc = Pwater - Poil for an oil-wet system. If PC <0 a wetting reversal occurs. In 

presence of air as non-wetting fluid, as happens for air/water and air/oil 

systems, air pressure is often neglected, taking the liquid pressure in respect 

of atmospheric pressure
69

. Since eq. 5 and 6 are referred to situations of 

weakly curved interfaces, they can’t be applied to cases in which the 

surfaces curvature is large. Boruvka and Neumann’s theory
70

 fulfills all the 

thermodynamics and mathematics conditions, generalizing the classical 

Laplace theory and maintaining the curvature terms in the interface 

fundamental equation
71, 72

. In addition to theoretical studies, a number of 

experimental approaches has been used to study the capillary flow in porous 

media, such as capillary rise
73, 74

 and slug
75

 and plug
76

 motion in a capillary 

tube, as shown in the following sub-sections. 

2.1.3.1 Capillary Rise 

Because of the complexity of the pore network structure, capillary flow in 

porous media has been often simplified by using a two-phase model system 

in a single capillary tube flow
70, 76-81

. For decades, the capillarity phenomena 
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(also known as wicking) has been described by the Washburn equation
82

 that 

derives the Poiseuille’s law 

 
  

  
 

  
 

  

  

 
       (7) 

where h is the height reached by the liquid menisci at time t, R is the mean 

hydrodynamic radius, η is the fluid viscosity and ΔP is the difference 

between capillary pressure PC and hydrostatic pressure:  

                 (8) 

It is important to underline that RD is dependent on the tortuosity of these 

pores, while in PC is present R, that corresponds to the geometrical radius of 

pores. Thus, in the case that the hydrostatic pressure can be neglected 

(h<<heq), integration of eq. 7 leads to the Washburn’s equation
83

,  

     
       

  
         (9) 

where r= R
2

D/R. When r and θ are unknown, commonly a total wetting fluid 

is used (θ=0, cosθ=1) to calculate r, and then columns of constant packing 

dimensions can be used to calculate the non-wetting fluids contact angle. 

Siebold et al.
74

 used the Washburn’s equation in capillary rise experiments 

to measure the contact angles of several total wetting liquids, using both 

glass capillaries and packed powders columns. The capillary rise of a liquid 

in the gap between two cylinders has also been studied:
73

 the relation 

between the height of the liquid meniscus at equilibrium and the gap 

between the cylinders is found to be nearly inversely proportional. The 

wicking behavior has been carefully predicted by both theoretical 

calculations and experimental tests. The same approach has been used for 

textile fibers, as example of complex porous media, but due to the very 

complex structure and the many parameters involved, the wicking in textile 

structures and its mechanism has been not fully understood. To overcome 

experimental difficulties, computational simulation
80

 has been used to 

observe some processes at the micro- and nano-scale level. In a recent work, 
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many-body dissipative particle dynamics (MDPD) method has been applied 

to the study of water-oil displacement in capillaries
79

, allowing the change 

of some fundamental parameters, such as wettability and miscibility of 

water and oil.  

2.1.3.2 Surface Tension vs. Contact Angle 

Two-phase flow regime in small circular tubes have been the subject of a 

number of studies
84-87

, founding that surface tension is an important 

parameter, for the determination of different flow regimes. Concerning 

motion and evaporation in a capillary, an important parameter that 

determines the flow characteristics in a tube is the contact angle. Many 

theories have been developed to quantify how contact angle can be affected 

by several factors
88

, such as by the capillary number
89, 90

, tube diameter
91

, 

driving pressure, temperature, and liquid plug length.
76

 It has been found 

that, in a capillary tube, the flow resistance of a fluid is significantly 

affected by the advancing contact angle. Recently, three-phase flows 

behavior in capillaries with different internal diameter has been analyzed, 

predicting the spontaneous motion of the water/oil/gas system
77

.  

In conclusion, the surface tension gives indications about fluid-fluid 

interaction while the contact angle also contains information about the fluids 

interaction with the solid surface and its geometry; as often occurs, theory 

and practice collide: surface tension is much easier to be calculated, while 

experimental measures for contact angle can give different values and, on 

the micro- and nano- scale, the very definition of contact “angle” is no more 

valid, but it start to be named as “apparent” contact angle (as discussed in 

the next session).  
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2.2 Drying Process in Porous Media 
Drying of porous media is an intensive energy process: a huge amount of 

energy is needed to force the liquid phase out from the smallest pores. In 

addiction energy is consumed in various means by the washing process. 

Electricity is required to power the motor for spin and agitation and for the 

automatic controls. Hot water energy is used is heating water from the house 

supply. The recent trend for energy conservation has been to develop 

washers that utilize less hot water. Horizontal-axis (HA) or front-loading 

washers use less water than conventional top loading or vertical axis (VA) 

machines and have been gaining market share. HA machines are still 

considerably more expensive than conventional top-loading machine (VA) 

and have longer cycle times than VA machines. HA machines currently 

have limited market penetration with about 15% of washer sales being HA1. 

This project focuses on improvements for traditional VA machines. 

Nearly one-half of all energy consumed during the laundry process is in the 

form of hot water. About 40% of the total energy is used for heating the air 

in the dryer and the remaining 10% is used to power the motor and control 

systems. There are several opportunities to reduce the energy usage for the 

clothes washing process. The obvious energy reduction opportunity for the 

washer machine is hot water reduction. Advances in laundry chemistry will 

one day enable effective low temperature detergents for significant energy 

savings. 

A second opportunity for improving energy efficiency via the washing 

machine is by improving water extraction. The amount of moisture 

remaining (RMC) in the clothes after the final spin cycle in the washer is 

transferred to the dryer and must be removed by evaporation. Reducing the 

RMC reduces the heat required during the drying cycle. The goal of this 

project is to reduce RMC by 20% from the baseline washer. Only about 

15% of the energy used in the drying process is due to the mechanical action 

of the washer. Extending the spin time or increasing spin speed comes with 
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a very low energy cost. According to literature
92-94

, approximately 40% of 

the laundry process energy is used by the dryer, 50 by hot water usage, and 

10% in electricity for the washer motor and controls. The dryer energy is 

impacted by the amount of water remaining in the clothing after the final 

spin of the wash cycle. This water content, or Remaining Moisture Content, 

RMC, is defined as the amount of water, by weight, which remains in the 

clothing tested, shown as a percentage of the bone-dry weight of the 

clothing in Eq. 10. 

     
     

  
          (10) 

Dryers are one of the highest electrical energy users in U.S. households. The 

drying time for a load of clothes can be up to twice as long as washing time, 

bottlenecking the laundry process. The falling rate stage presents the core 

difficulty in detecting when the cycle is complete. The RMC and most other 

process values are asymptotic to the steady-state value and have very low 

slopes. High sensitivity sensors are not currently available to detect this type 

of event. Two areas of improvement are evident: improve the efficiency of 

the constant rate stage and improve end-of-cycle (EOC) detection to reduce 

energy usage in the drying stage.  

Water extraction can also be affected by chemistry. The primary force 

holding moisture in the clothing fabric is capillary action. Small pores and 

channels in the fibers create large capillary forces that cannot be overcome 

by the centrifugal forces of the spin cycle. A prime driver of capillary action 

is surface tension of the water. Using chemical additives, the surface tension 

can be reduced, improving the water extraction. In this paragraph the heat 

and transport processes concerning drying were illustrated, at first for all the 

porous media and then for the specific case of the laundry. 

2.2.1 Transport Phenomena 

The collective behavior of a porous medium is dependent on transport 

phenomena such as diffusion, conduction, convection, the way the fluids are 
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spread in the medium and, most of all, system morphology
33, 95-97

. As 

outlined in Helmig et al.
98

, the relevant flow processes can be described for 

the different length scales described in section 2, i.e. the pore scale and the 

representative elementary volume REV. Here, the equations that govern 

multiphase flow in porous media at the REV scale
99, 100

, derived from the 

balance of quantities as mass, momentum, and energy are generally 

introduced, allowing their application to a number of works present in the 

literature. The balance equations for the mass of a component in a 

multiphase system is:  

 
 

  
       

             
      

     
    

   (11) 

where ρ is density, φ is porosity, S is fluid-phase saturation, X is mass 

fraction, u is velocity, J is diffusive flux, I is interphase mass exchange, and 

q the external sources and sinks. The subscripts k and α denote the 

component and the phase, respectively. Apart from the solid phase, a system 

can be made of an aqueous (w), a non-aqueous (n), and a gas (g) phase and 

of N components: 

                          α                 (12) 

Given the following constraints and definitions 

   α
          α

          α
   α         α

   α            

    
                       

         (13) 

The balance equation (11) can be expressed as one equation for each phase 

 
 

  
                             (14) 

or one equation for each component 

  
 

         
              

      
        (15) 

The flux of a fluid phase is generally expressed by the extended Darcy 

equation (2) as previously described in section 2.1.1, while a separate 
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momentum balance equation is usually not taken into account
99

. The 

diffusive flux can be well defined by a Fickian approach 

   
     

           
       (16) 

where D is the diffusion tensor and        the molar density of phase α. 

When the transport results in a nonlinear growth of the variance of 

displacement with time is said to be non-Fickian
101

, being impossible to 

described it by Fick’s law. Experimental works demonstrated the non-

Fickian nature of dispersive processes in heterogeneous porous media from 

pore to macro scales
102-104

 even if the relationship between pore structure, 

velocity field, and transport is still unclear. In a recent paper, the non-

Fickian transport
105

 has been numerical simulated for systems as 

homogeneous bead-packs and more complex geological porous media.  

In light of the complex physical phenomena discussed in section 2.1.3.2 for 

multiphase flow in porous media, mostly due to the peculiar geometric 

structure, none of the previous mass balance equations allows to describe, as 

it is, the transport processes that occur in some environmental applications 

such as groundwater remediation, CO2 storage in geological formations, and 

oil recovery from rock reservoirs. In these cases, in fact, there is the need of 

highly non-linear, strongly coupled, parabolic equations. Thus, model 

coupling is needed when the processes are described by different sets of 

equations, for example, in the presence of chemical reactions, i.e. transport 

of dissolved chemicals and contaminants
106-108

, the addition of heat transfer 

(see the following subsection) and multi-porosity models. The latter occurs 

when the porous medium consists of two or more distinct structures 

characterized by significantly different flow properties, as happens in 

fractured systems, where very fast flow with almost no storage is present in 

the fractures while there are little or no flow and very large storage capacity 

in the matrix
109-111

.  

For the phenomena that occur at the pore scale, the presented mass balance 

equations (11-16) are not valid any more. At the pore scale, as previously 
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highlighted, the mass transport is controlled by different forces, such as 

pressure gradients
112

, buoyancy
113

, viscous
114

 and capillarity
115

, and the 

relative relevance of these forces outlines the flow characteristics in the 

porous media. Thus, when the fluid that enters the medium (invading fluid) 

is less viscous than the one that is already present (defending fluid), there is 

a grown of the viscous fingering instability. The latter determines the 

formation of invading fluid channels, also called fingers
116-120

. At the 

contrary, when the invading fluid is as viscous as, or more viscous than the 

defending one, capillary instabilities can occur, mostly determined by 

heterogeneity in pore geometries and/or fluid saturation
121

.  Since the 

formation of this kind of channels can affect the macroscopic (Darcy-scale) 

fluid release, a fractal approach
30, 33

 has been widely used. Horvath et al.
122

 

characterized the surface geometry evolution during immiscible viscous 

phases displacement, founding that the interface evolution is controlled by 

dynamic scaling and also that this experimental path are much different 

from the prediction of a two dimensional model based on partially stable 

interfaces. Yu and Li
123

 developed an unified model to treat fractal 

characteristic of porous media, being this model able to describe exact or 

statistically self-similar structures. By using fractal statistical property they 

also discerned from medium that can be characterized by fractal theory or 

not. Yu and Chen
124

 developed a model for permeability based on the fractal 

characteristics of pores in the media. The fractal permeability model is 

found to be a function of the tortuosity fractal dimension, pore area fractal 

dimension, sizes of particles and clusters, micro-porosity inside clusters, and 

the effective porosity of a medium. They analytically calculated the pore 

area fractal dimension by approximating the unit cell by the Sierpinski-type 

gasket
125-127

. All the fractal dimension involved in the model were 

calculated by the box counting method
127, 128

. They found agreement 

between the fractal model prediction of permeability and experimental data.  

Mass transport phenomena in porous media have also been widely 

investigated in experimental works. For example, experiments of flow front 
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instability either in homogeneous or heterogeneous porous media have been 

provided, using scaling laws to describe the spacing of fingers and their 

growth rates
117, 129

. Moreover, nuclear magnetic resonance NMR has been 

used to measure statistical average of different parameters over a range of 

spatial and temporal scales, allowing an easy comparison with averaged 

transport theories
130, 131

. 

Recently, micro-fluidics has been successfully used to model the pore scale 

of porous media
112, 132

. The origin of micro-fluidic is found in medicine and 

biotechnology 
133-135

, due to the related advantages, as the small sample 

volume required, the small transport length scales, low cost, precise control 

over fluid volumes and contact surfaces, increased safety and capacity for 

high pressures
133

. In the last decades this promising technique has been 

applied in different areas related to chemical reactions
136, 137

 and to energy 

and fuels
138

. Examples can be found in the manipulation of instabilities in 

fluid-fluid systems in a Hele-Shaw cell
139-142

 and in the diffusion process by 

using nano- and micro- fibrous media
143, 144

, electrospun membranes
144

 

offering small diffusive resistance thanks to their good breathable 

properties. On the other hand, a wide range of numerical methods, such as 

dissipative particle dynamics
145

 and lattice Boltzmann
146-148

 (LBM) have 

been used to study pore-scale processes in a multiphase fluid flow 

environment.  

2.2.1.1 Heat Transfer  

One of the most common coupling model for porous media is the one 

between flow and transport of fluid phases and thermal energy. Thus, a 

balance of internal energy equation has to be solved together with mass 

balance equations (15-16), as in the following 

  
           

  
      

        

  
                

                   (17) 
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where T is the temperature, Uα and Hα are the internal energy and the 

enthalpy of the fluid phases respectively, and the density ρs, the heat 

capacity cs, and the thermal conductivity λpm are referred to the solid phase. 

In eq. 18 the Darcy velocity vα depends on the pressure pα, on the saturation 

Sα via the relative permeability krα, and possibly on the composition of the 

phases, i.e., on the mass fractions X
k

α, via the viscosity μα. Moreover, the 

density ρα depends on the pressure pα and possibly the phase composition, 

and the phase enthalpy Hα also depends on the phase composition. On the 

other hand, the densities ρn and the viscosities μn can be strongly 

temperature-dependent. 

The heat transfer processes in porous media has been the subject of a 

number of studies
149-151

. In 90’s, a lot of work on the influence of the 

thermal dispersion effects as well as the inertial effects, the boundary effects 

and the porosity on the transport processes in porous media has been carried 

out
152

. The conditions in which the boundary can affect heat transfer have 

been investigated, founding that it has more importance when the thickness 

of the thermal boundary layer is comparable or less than the one of the 

momentum
153

. More recently, both experimental studies and numerical 

simulation has been performed to investigate heat transfer phenomena at the 

micro-scale. Examples of the former are measurements of the heat transfer 

coefficient for different combinations of water and nitrogen flow rates by 

using a microchannel
154

, and  the study of the effects of electrical double 

layer (EDL) on three dimensional heat transfer characteristic and pressure 

drop of water flow through a rectangular micro-channel are investigated
155

. 
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2.3 Modelling Drying Process in Fabrics 

In the study of a drying process, lots of research has been focused on 

characteristic studies of the textile materials. In the study of their properties 

in a drying process, cotton fabrics can be treated as porous materials like 

wood and bricks.
156, 157

 The process in the drying of porous media has 

consisted of two separated periods, i.e. constant drying rate (CDR), so called 

because of the constant value of the drying rate, and falling drying rate 

(FDR) period, in which the drying rate decrease gradually until the moisture 

equilibrium value. A full investigation of a textile material drying process 

will be given in this section, beginning with an essential investigation in the 

enhancement of a drying process. As the drying process for porous materials 

cannot simply be described by linear heat transfer equations, some 

differential form heat/mass transfer equations
151, 158

 and numerical 

simulation techniques have been proposed to give better modeling results 

for porous materials
159-163

. 

2.3.1 Air/water transport phenomena in porous media 

Despite of conduction and radiation theories, convective heat transfer 

principles
164, 165

 describe more accurately the characteristics of a hot air 

drying process, in particular for textile materials. When the hot air is used as 

the drying medium and blown on fabrics, as it happens also in the dryer, the 

moisture (liquid phase) in the fabric absorbs energy from impinged air and 

changes to vapor (gas phase) after gaining enough of thermal energy. The 

vapor then leaves the fabric structure after the breaking up the internal 

adhesive force. The reducing of moisture content and increasing of fabric 

temperature is a complicated heat/mass transfer process. Kowalski
166

 has 

discussed a hot air drying process that can be divided into three periods and 

labeled as “Preheating period”, “Constant drying rate period” and the 

“Falling drying rate period” as illustrated in Figure 2.4. 
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Figure 2.4 Adapted from Kowalski
166

.A typical drying curve for porous type materials. 

During the preheating period, thermal energy transfers from air to fabric and 

heats up the fabric surface. The moisture content (θ) reduction rate is low as 

the temperature is still low because air is not a good thermal conductor. 

While the fabric absorbs more thermal energy, the moisture content at θs on 

the fabric surface will change to vapor by evaporation. The moisture content 

reduction keeps at a constant rate at this period as it is just a simple 

conductive and convective heat transfer process between hot air stream and 

the moisture on the fabric surface. Water moves from fabric core to surface 

by capillary action to maintain a balance of the change of the gradient of 

moisture content. The rate of water transport in the fabric depends upon the 

environmental conditions, such as air temperature, air velocity and pressure 

gradient. The rate will also depends upon material properties, such as 

density, thickness, heat conduction resistance and knitting patterns. Due to 

the water reduction rate in the process is directly proportional to time, the 

process is therefore labeled as constant drying rate period. It can be simply 
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modeled by the linear heat transfer equations that have been well 

developed
167

. While the residual moisture contents in the fabric drops to the 

percentage of θk, the moisture left in the fabric cannot maintain a totally wet 

surface to form separated dry/wet regions. In the present of dry/wet regions 

in the fabric, an osmotic pressure gradient is then developed at boundaries 

of the dry/wet regions. While the moisture transports from wet to dry region 

under the osmotic pressure, a mass transport of the moisture is created. The 

phenomenon of a mass transport in the porous materials under unevenly 

distribution of the moisture content is called diffusion
168

. The process of 

diffusion is usually slow in comparison with the convective heat transfer 

process in the constant drying rate period, thus, a decrease of the moisture 

reduction rate is observed. The gradually reducing of moisture content from 

the fabric shows a non-linear behavior after the transition point θk, and 

labeled as falling drying rate period until the reaching of the final moisture 

content (θo). As the porous drying process consists of the linear and non-

linear parts, using partial differential mathematics in the assistance of 

computational fluid dynamics analysis tools could be an effective strategy to 

construct the modeling equations to present the entire drying process 

precisely. 

2.3.1.1 Linear Heat Transfer Modeling for CDR Period 

The case of a porous textile dried by an hot air stream can be modeled as a 

fluid flow under predefined boundary conditions. Moisture in the fabric 

gains lateral heat from the hot air stream at constant pressure, and changes 

to vapor until the amount of energy gain is sufficient for the liquid to gas 

phase change. Moisture diffusion from wet to dry regions starts when a 

certain amount of moisture left in the fabric is distributed unevenly. Heat 

exchange characteristics between the hot air stream and moisture can be 

modeled by linear heat transfer equations under the conventional 

thermodynamic principles. In this case, moisture in liquid phase completely 

covers the fabric surface and inner portions to remain in a homogenous 

condition. The hot air stream flows on the fabric surface to create a dynamic 
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contact environment. This air-to-water interphase creates an exchange of 

thermal energy across the fabric surface in presence of a thermal gradient 

formed between the boundary layer as illustrated in Figure 2.5. The amount of 

energy exchange from air to water can be simply calculated from linear heat 

transfer equations; these have been well addressed in thermodynamic 

textbooks
167

. Equations that describe the convective linear heat transfer 

process will be reported as follows. 

 

Figure 2.5 Principles of heat transfer under a boundary layer 

Fabric drying under constant pressure is an adiabatic process. The heat 

transfer (q) through the fabric surface (dA) is given as: 

                         (18) 

Being: 

Ch = heat capacity of the hot air, 

Cc = heat capacity of the moisture, 

Th = hot air temperature in the differential element between x0 and x0+dx,  

Tc = moisture temperature in the differential element between x0 and x0+dx. 

In order to apply Equation (18), the following assumptions have to be made: 
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 The overall heat transfer coefficient is constant and does not vary with 

location while the temperature difference continuously varies with 

location; 

 The flow condition is steady; 

 The specific heats and mass flow rate are constant; 

 There is no loss of heat to the surroundings; 

 There is no change of phase during the heat transfer; and 

 The changes in potential and kinetic energies are negligible. 

The amount of heat flow in Equation (18) can be written as: 

                                       (19) 

In a drying process, moisture will evaporate by changing the phase in the 

gaining of heat from hot air. While the evaporation process does not have 

the change of temperature, it is an isothermal process and the Equation (19) 

can be rewritten as: 

                (20) 

If the heat capacity C in Equation (20) keeps constant for the entire drying 

process, a linear heat transfer equation deduced from Equation (18) can be 

given as: 

                                     (21) 

where U is the overall heat transfer coefficient in term of fabric thickness dy 

as shown in Figure 2.7. 

The amount of heat (q’’) transferred from hot air to moisture in the process 

can be found by integrating Equation (21) to give:  

                (22) 

The overall heat transfer coefficient U in [W/m
2
K] is a measure of the 

overall ability of a series of conductive and convective barriers to transfer 
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heat. It takes into account the individual heat transfer coefficients of air 

stream and moisture, and the resistance of the fabric material. It can be 

calculated as the reciprocal of the sum of thermal resistances due to 

conduction and convection process, and written as: 

 
 

  
  

 

  
         (23) 

where h is heat transfer coefficient due to convective heat flow, and R is the 

resistance to the heat flow in fabric surface due to conduction process. The 

thermal resistance (R) in [K/W] due to the fabric surface properties is 

expressed as: 

   
 

   
       (24) 

where x is the fabric thickness and k is the fabric thermal conductivity in 

[W/mK]. In Equation (23), h is the heat transfer coefficient in [W/m
2
K] and 

has been further defined by Dittus-Boelter correlation
169

 for convective heat 

transfer process. It is given as: 

               (25) 

In Equation (25), the Nusselt number (Nu) can be written as: 

                         (26) 

Re and Pr in Equation (26) are the Reynolds and Prandt number, they have 

been well defined and the values depend upon properties of the air flow in 

terms of density (ρ), velocity (V), viscosity (μ), heat capacity (cp) and 

thermal conductivity (k). In addition, the index n in Equation (26) is 0.4 for 

heating (contact surface hotter than the bulk fluid) and 0.33 for cooling 

(contact surface cooler than the bulk fluid). As heat is absorbed by moisture 

in the fabric drying process due to the air stream temperature (Th) is high 

than fabric temperature (Tc), n equals to 0.33 is used in Equation (26). 

Equation (22) is a linear equation used frequently to present conduction and 

convection heat transfer process for fluids in turbulent flow. An assumption 

of no phase change of the working fluid is made for a constant of U in 
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Equations (22) and (23). It is not true for the studied drying process due to a 

mass transfer of the moisture contents (m’’) from fabric to air stream due to 

an evaporation process occurred. The mass transfer process starts at the 

transition point. While the residual moisture in the fabric is reduced, the 

thermal resistance (R) in Equations (23) and (24) is changed. On the other 

hand, thermal properties of air are also changed after the gaining of 

vaporized water to alter its moisture content. The heat transfer coefficient 

(h) in Equation (25) depends upon thermal conductivity, density, viscosity 

and heat capacity. All these parameters are sensitive to the change of air-to-

water ratio, i.e. moisture content percentage. Therefore, the presented heat 

transfers Equations (21) and (22) cannot precisely describe the 

characteristics of the fabric drying process involving the change of the 

moisture content. Thus, it is necessary to study non-linear models that 

consider the change of moisture contents in a heat transfer process. 

2.3.1.2 Non-linear Modelling for FRD Period 

In the carrying out numerical simulations of convective drying of porous 

materials, the modeling parameters for internal heat and mass transfer 

characteristics could only be obtained empirically. The parameters co-relate 

to material structures, such as the pore size and knitting methods, and form a 

key role in the governing of the entire drying process. These parameters will 

be determined from experiments in this research because they are not as 

common as the construction materials, e.g. green bricks
170

 that available 

from engineering data sources. A further investigation of porous material 

drying characteristics is the using of analytical models to approximate the 

real drying behavior from the commonly used textile materials. Reye et 

al.
171

 have used Wet surface model to study sludge drying, and Moropoulou 

et al.
172

 have applied First order kinetics model to study the drying of 

building materials. Although the analytical models could not provide as 

much information as from numerical simulation results, they can assist the 

control of a number of operations, such as cycle time predication, 

calculation of incident moisture contents, and estimation of real-time 
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conditions in a drying process. A group of analytical models has been 

developed but not all of them could be directly used to model a porous 

material drying process precisely. Research scopes in this study are to 

identify the most suitable models for the drying investigation work. 

2.3.2 Modeling Evaporation in Capillary tubes 

Drying modeling is classically done threw continuous volume averaged 

models.
173

 In some applications, continuous averaged hypothesis aren’t 

satisfied.
174

 Then, discrete approach, like porous network modeling, can be 

used. They are directly based on the phenomena at the pore scale.
175

 Thus, a 

good knowledge of the evaporation at that scale is fundamental for 

enhancing those kinds of models.
176

 The present hypothesis addresses the 

evaporation of a liquid from a capillary tube of a circular cross-section, with 

the perspective of better understanding drying mechanisms in clothes and of 

improving the drying efficiency. The main idea is to use as a model system 

of clothes fabrics a capillary tube, which can be regarded as the building 

block of the complex porous network within a single yarn. This work is 

based on three distinct concepts, each taking into account different physical 

phenomena.  

To realize these hypothesis a simple model for slow evaporation of a pure 

liquid from a capillary tube with a circular cross-section were presented, 

with the perspective of using the results in a porous network model
177

. This 

model, by assuming local equilibrium between liquid and vapor allows 

quasi-analytical resolution to predict film and vapor pressure profile. 

Although highly simplified, the model is useful for some practical cases 

such as evaporation of water from a capillary in ambient conditions. This 

model is composed by three distinct approaches, each one considering 

different physical phenomena.  

The first concept concerns the effect of the thin liquid film trapped on the 

walls: based on literature, we propose that most of drying takes place 

through such liquid film (rather than in the meniscus region). The second 
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approach is about thermal gradients inside the capillary tube. Mass and 

energy transport equation are solved in liquid, gas and solid phase to 

evaluate the importance of the cooling of the meniscus on the global 

evaporation rate. The third concept is that such temperature gradients could, 

in turn, elicit concentration gradients of surface-active agents (by 

Marangoni effects, see 2.4.2.2), thus reducing the contact angle between the 

liquid film and the capillary wall. This approach is based on lubrication 

equation with disjunction pressure modification.
178

 The overall effect of 

these processes could enhance the drying efficiency by surfactant-induced 

increase of the surface area of the thin liquid film region. In conclusion, this 

work supports the idea of exploiting surfactants to improve drying 

efficiency and provides a scientific foundation to investigate their effect on 

drying rate. The cited approaches gives the following equations:  

Evaporation of the film threw the limit layer 

      
     

  
      (28) 

where m is the evaporation rate, D is the diffusion coefficient, pd is the 

saturation pressure, pt is the saturation pressure including disjoining 

pressure effect and Lf  the length of the diffusion limit layer [m]. 

Film cooling due to evaporation 

     
  

     

     

 
     (29) 

where m is the evaporation rate, λl is the latent heat of evaporation, ΔHvap is 

the enthalpy of evaporation, Tw-Tt is the temperature change between the 

wall and the center of the capillary tube and δ is the thin film thickness. 

Mass balance in the film
178

 

     
 

   

 

  
   

   

  
      (30) 

where m is the evaporation rate, νl is the cinematic viscosity of the liquid 

phase, δ is the thin film thickness and pd is the saturation pressure. 
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Diffusion in the capillary bulk 

     
 

 

    

  
      (31) 

where m is the evaporation rate, R is the perfect gas constant, L is the axial 

length of the gaseous phase in the capillary, pd is the saturation pressure. 

Saturation pressure including disjoining pressure effect
179

 

     
      

   
    

    
 

  
      

    

  
  

     
   (32) 

where pt is the saturation pressure including disjoining pressure, Mv is the 

molar mass of the vapor, psat is the saturation pressure, R is the perfect gas 

constant, Tt is the temperature in the capillary tube, A is the dispersion 

constant, K and l0 are constant values. In Figure 2.6 a schematic diagram of 

the adsorbed thin-film region with thickness δ0 is shown. 

 

Figure 2.6 a) Lubrication film near the meniscus, inside a capillary tube; b) comparison 

between “apparent” contact angle and thin film near wall. 

The apparent contact angle, ΘE, is a function of the properties of the liquid, 

the dispersion constant, and the temperature difference, Tw – Tt, between 

solid and vapour temperature. Taking in account this liquid film, the second 

concept clarifies the thermal effect in the capillary during drying. In fact, a 

cooling occurs on all the liquid film and meniscus at the gas-liquid interface 
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due to evaporation process. Mass transfer in the gas phase is supposed to 

occur only by diffusion.  

2.3.2.1 Marangoni Effect 

The surface tension is not in general a spatially constant physical quantity 

on, say, a liquid-gas interface. Spatial variations in the surface tension may 

exist and result in additional shear stresses, that is, tractive forces on the 

adjoin bulk liquid. This gives rise to fluid motions in the bulk liquid. These 

motions induced by gradients in the surface tension are called Marangoni 

effects. The spatial variations of σ may arise from variations in different 

quantities such as the surface temperature, concentrations of surface active 

additives (surfactants), or in electric charge of surface potentials
180

. An 

important property of surfactants is that they may have strong effects on the 

pressure drop necessary to push a bubble through a fine capillary. The 

influence of electric fields on the surface tension is, e.g., used in pumping 

devices
181

. As mentioned the surface tension variation along an interface 

creates a tangential force per unit area, fs, a tangential stress or shear stress, 

               (33) 

where  s is the surface gradient. Note that the positive sign on  sσ indicates 

that the liquid on/in the interface will tend to move from areas with low 

surface tension to areas with high surface tension. On Figure 2.7 areas of high 

and low surface tension are depicted.  

 

Figure 2.7 Areas of low and high surface tension are illustrated by small and large arrows, 

respectively. They induce a net tangential stress, the Marangoni effect. 

As the surface tension represents the tendency to reduce area there must be a 

net surface tangential stress from the low to the high surface tension regions. 
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Newton's third law requires that stress vectors are continuous across 

boundaries. Both normal and tangential components. Surface tension 

however gives rise to discontinuous jumps across an interface: The Young-

Laplace equation describes the jump in pressure (normal stress), and the 

Marangoni effects may give rise to jumps in the shear stress (tangential 

stress) and hence create forces in the bulk liquids.
182

 

An idea of the size of temperature-induced Marangoni forces can be given 

by noting, for example, that cooling a water/air interface from 25 °C to 20 

°C will increase the surface tension by 0.8 mJ/m
2
 from 72.1 mJ/m

2
 to 72.9 

mJ/m
2
. The shorter a distance over which this temperature gradient is 

maintained, the stronger the Marangoni force; a sufficiently large effect can 

be noticed only in micro-systems if compared with other forces. When a 

surface-active material (a surfactant) is introduced in the bulk liquid the 

flow in the thin film will cause a non-uniform distribution on the interface. 

This will in turn create gradients in the surface tension and hence surface 

shear stresses. The surfactant dramatically increases the shear stress in the 

film (it is not anymore zero on the interface).  It has been demonstrated that 

the introduction of surface active materials dramatically increases the 

pressure at the water/air interphase
183

. The pressures can be from two to four 

orders of magnitude larger than those in the absence of surfactant.
180

 

The Marangoni force can be used as a micro-scale propulsion system, as 

some bacteria actually do in nature, using a simple principle: as the interface 

tries to minimize the region of high surface tension in absence of surfactants 

while maximizing the region of low surface tension in presence surfactants, 

emitting surfactants that lowers the surface tension gives to the emitting 

body a propulsion. 

Now considering the possibility to change the contact angle between solid 

and liquid phase using a surfactant, the effect on the drying rate could be 

explained considering the two concept illustrated before: first of all, a 

decrease of the contact angle involves an increase of the liquid film region. 
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As it’s said before, the liquid on the film region evaporates faster than the 

liquid on the meniscus region; so, a larger film region means a faster 

evaporation. On the other hand, the cooling of gas-liquid interface at the 

meniscus creates a temperature gradient that concentrates the surfactants (by 

Marangoni effects) in the interfacial region, which is where it should belong 

to increase the evaporation.  

Experimental results can be fitted with this model by measuring all the 

parameters needed in the set of equation showed before. Most of these 

parameters, like the capillary radius R, are chosen in the experimental set-up 

or can be found in literature, like liquid properties. The drying rate can be 

measured by optical microscopy, monitoring the receding of the meniscus in 

time. The film thickness δ can be measured directly by some optical 

technique (e.g., interferometry). The temperature difference Tw – Tt can be 

monitored during evaporation by thermocouples or, indirectly, by thermal 

analysis with a TAM (Temperature Analysis Monitor) instrument. With the 

same thermo-analytical procedure also the vaporization latent heat ΔHvap 

and the thermal conductivity λl of the liquid can be measured. Other 

quantities to be determined include the apparent contact angle and the 

interfacial tension. 
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3 EXPERIMENTAL SECTION 
“One world, one experiment”  

Carl McDaniel and John Gowd 
184

 

After an exhaustive discussion on the aim of this work and on the literature 

produced so far on this topic, here is the main core of this thesis. In this 

chapter, materials, experimental apparatus and procedures used in data 

analysis are illustrated in details. The main experimental results will be 

presented in the next chapter. 

3.1 Materials 

3.1.1 Aqueous Solution 

3.1.1.1 Hard Water 

In the experiments, water solutions with different hardness have been tested. 

We started with demineralized (DEMI) water (which is commonly used in 

ironing to prevent the formation of calcium aggregates and in electrical 

batteries). All other solutions used in our experiments were prepared using 

the same sample of DEMI water. To prepare water solutions at different 

hardness salts of calcium and magnesium hydrates to be dissolved in DEMI 

water were weighted by a precision balance. Depending on the dissolved 

salts quantity, solutions having different hardness are obtained. In the table 

3.1 the solutions realized and their characteristics were summed up. 

 

Water Hardness Concentration Salts  [mg/dl] Salts [mg/250ml] 

Moderately Hard 2,5 mmol/l 

250 ppm 

27,57       ∗      

12,71     ∗      

689,16       ∗      

317,66      ∗      

City Water 2,6 mmol/l 

260 ppm 

28,67       ∗      

13,21     ∗      

716,82       ∗      

330,36      ∗      

Hard 4,2 mmol/l 

420 ppm 

46,31       ∗      

21,35     ∗      

1157,7      ∗      

533,66      ∗      

Very Hard 5,4 mmol/l 

540 ppm 

57,34       ∗      

26,43     ∗      

1433,4      ∗      

660,73      ∗      



Drying of Porous Media. The Case of Cotton Fabrics. 

3.Experimental Section 

43 
 

 

For some of these solutions accurate characterizations were also done to 

better understand the contribution of electrolytic parameters to the drying 

process (see table 3.2). 

Table 3.2: PH characterization of water solutions  

Water 

Hardness 

PH Temperature (°C) Conductivity 

(µS/m) 

Potential 

Difference 

(mV) 

Demineralized 

Water 

5.52 27 5366 94.2 

Moderately 

Hard Water 

5.86 27 5300 74.5 

Hard Water 5.81 27 6860 77 

 

3.1.1.2 Surfactants 

In aqueous solution surfactants self-assemble into a range of well-defined 

structures, due to their amphiphilic nature; the structure growth mainly 

depends on surfactant nature and concentration and on temperature.
185, 186

 In 

particular, an almost spherical multilamellar structure consisting of onion-

like stacked bilayers separated by solvent were shown, at rest, by surfactant 

vesicles. The rheological behavior of multilamellar vesicles (MLV) were 

studied in different flow conditions in order to characterize their properties 

for several applications, such as biomembrane models
187

 or carriers for drug 

delivery
188

. In particular the deformation of unilamellar vesicle and capsules 

under capillary flow were deeply investigated.
189, 190

 Due to the analogy 

between MLV and biomembranes structure, 
191-193

 the study of MLV 

dynamics in capillary flow is often cited as a model for blood flow in 

microcirculation.
134, 194-198

 In linear flow multilamellar vesicles mimic the 

complex deformation of white blood cells.
199, 200

 The similarity in confined 

flow is so close that cluster of red blood cells
193, 201

 present the same 

hydrodynamic interactions of vesicles clusters.
190, 202, 203
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Recently,
204, 205

 were showed that MLVs of linear alkylbenzenesulfonic acid 

(HLAS) deform at a constant volume under flow with different dynamic 

regimes tumbling, breathing and tank-treading
188, 206, 207

. Furthermore, a 

scaling analysis based on the definition of a capillary number were carried 

out in analogy with emulsion droplets
208

 and a possible mechanism of the 

deformation of MLVs were proposed based on the experimental data of 

vesicles deformation acquired by confocal microscopy at rest and in 

polarized light under flow.
205

 The dynamic behavior of an HLAS solution 

were considered also under capillary flow, performing as a power law 

viscosity fluid. Moreover the MLVs concentration gradient in the micro-

capillary section and its relation with flow velocity were pointed out; in fact 

the wide of the vesicle concentrated region scale with the product between 

the velocity and the micro-capillary diameter. If the influence of surfactant 

structures like MLV on interfacial phenomena are well known, very few 

reports exist in the literature about the influence that these structures have 

on evaporation rate. Rate of evaporation of water droplet depends on several 

key factors like relative humidity, temperature, additives such as surfactant, 

electrolytes, etc.
209

 The drying mechanisms of surfactant solutions were 

documented by gravimetrically monitoring the water loss in air and at 

controlled relative humidity. Alexandridis et al.
210

 monitored the water loss 

of an alkyl-propoxy-ethoxylate surfactant aqueous solution films exposed to 

air of constant relative humidity until the equilibrium was reached; results 

shows the rate of water loss depends on some parameters such as the air 

relative humidity, microstructure in the surfactant film, and the attractive 

interaction between the head group and water molecules at the interface. 

Doganci et al
211

 successfully prepared liquid marbles by encapsulating 

graphite micropowder on aqueous sodium dodecyl sulphate (SDS) droplets 

and determined their total evaporation rate and buckling periods in a closed 

chamber having constant relative humidity and temperature. The 

evaporation rates of graphite liquid marbles obtained from different 

concentration of SDS droplets and the results compared with the graphite 
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liquid marbles from pure water. Dandan et al.
211

 studied the effect of SDS 

anionic surfactant concentration on the diffusion-controlled evaporation rate 

of aqueous solution drops placed on TEFLON–FEP substrate with different 

concentrations. Rodríguez et al.
212

 successfully studied the evaporation 

behavior of solutions of an amphiphilic polymer, phosphonated 

polybutadiene in toluene and in water the vapor pressure and evaporation 

rate measurements. The polymer reduces the vapor pressure and evaporation 

rate of toluene, while the opposite effect was observed in aqueous solutions. 

Thus, it can be concluded that the evaporation rate is totally depends on the 

relative humidity, temperature, and the presence of additives such as 

surfactants and polymer molecules and so on. Normally, at the higher 

relative humidity (RH) as the water vapor percent in the environment is high 

so evaporation rate successively decreases; instead, because of the tight 

binding of surface water molecules through electrostatic force with head 

groups of monomer surfactant molecules, in the presence of surfactants the 

evaporation rate increases.  

The surfactant used in this work is the commercial anionic surfactant 

Sodium linear alkylbenzenesulfonate (Na-LAS). In Errore. L'origine 

riferimento non è stata trovata. the chemical structure of the Na-LAS 

molecule is shown. The benzene ring linking a sulphonic acid group 

(hydrophilic head) and a linear alkyl group (hydrophobic tail) are shown. 

 

Figure 3.1 Na-LAS chemical structure. 

 

Na-LAS have a Critical Micellar Concentration in pure water equal to 450 

ppm; the phase diagram of Na-LAS – water solution shows three different 
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regions depending on surfactant concentration and temperature as shown in 

Errore. L'origine riferimento non è stata trovata., where the grey area 

represents the range of interest in this work.  

 

Figure 3.2 Phase diagram of the Na-LAS/water system, adapted from Richards et al.
43

 A 

micellar solution is observed at low concentrations (L1). Next is a multi-phase region where 

two or more lamellar phases (Lα) co-exist with a micellar solution. In this region L′α is used 

to denote the appearance of two or more Lα phases. Lα∗  indicates a situation whereby 

multiple Lα phases coexist with L1. In the concentrated region, solid and multiple liquid 

crystalline phases co-exist.
44

 

Regarding temperature, all the observations were done at room temperature 

(≈25° C) and at ≈40°C, trying to simulate a common dryer inner 

environment. At these temperatures, the diagram shows that for diluted Na-

LAS concentration (< 5% wt.) only the isotropic micellar L1 phase is 

present, while the lamellar Lα phase is the only one present at the highest 

concentration (> 67% wt.). The solutions utilized in the experiments were 

prepared using deionized water (pH 5.52) and Na-LAS surfactant (Sigma-
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Aldrich product) and have different concentrations (see following table) 

lower than 5% wt; a characterization of these solutions was carried out 

using instruments for the measurement of pH and conductivity. 

Measurements after a calibration with a solution at pH 4 gave the results 

reported in table 3.3; as can be notices, conductivity increases with 

surfactant concentration, as expected. 

Table 3.3: Na-LAS concentration and PH characterization of diluted surfactant solutions 

 

Na-LAS/Water Conductivity pH 

[ppm] [%wt] [µS/m]  

0 0 19.39 5.52 

250 0.025 108 2.98 

500 0.05 162.6 2.74 

1000 0.1 325.5 2.61 

2000 0.2 483.1 2.26 

5000 0.5 1025 / 

10000 1 1274 / 

20000 2 4234 / 

50000 5 10430 / 
 

  

3.1.2 Cotton Fabrics 

Cotton is the most common textile material, frequently used in clothes 

making; it is light, soft, and has a high water absorption value. Its special 

properties make cotton widely used for clothes making, and mixed with 

other textile materials to form artificial fibers. Thus, a great majority of 

fabric materials used in the tests were made of cotton fibers.
45

 

The fabrics used in experiments are both 100% white cotton; one is a 

common cotton fabric with a simple thin structure, taken out from a cloth, 

and the other is a standard cotton provided by P&G. These two samples 

have different knitting and specific weight, but same porosity (0.7). Cotton 

main properties are resumed in table 3.4. 
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Table 3.4: Cotton fabrics main characteristics  

Description 
Width 

(cm) 

Area 

Weight 

(g/m
2
) 

Weave 

Yarn 

Count 

(dtex) 

Common 

Cotton 
100 70 plain 170/170 

Standard 

Cotton 
100 170 twill 295/295 

 

3.1.3 Capillary tubes 

During the drying processes in porous media different transport mechanisms 

are involved, as discussed in chapter 2. The vapor diffusion in the pores is 

regulated by Fick's law, where vapor diffusivity depends on the tortuosity of 

the pores. The transport of gas generated by pressure gradients follows the 

Darcy’s law. Another possible mechanism which has recently aroused 

interest is the flow of liquid along the edges of a pore with a rectangular 

section, whose geometry contributes to increase the drying rate compared to 

capillaries with circular cross section.
15, 16

 The increase in the speed of 

drying found in a cell filled with a high density of silica spheres with respect 

to the case of an empty cell of equal volume is also attributed to the same 

effect.
17, 216

 The diffusive flow of steam can increase
217

 due to the presence 

of mechanisms of condensation/evaporation through remote areas of liquid, 

which entails a lowering of the vapor pressure (dependent on the curvature 

in accordance with the Kelvin equation), although so far has not been given 

any direct experimental evidence. Many theoretical and experimental 

approach for the porous media modeling were evaluated. Because of the 

complexity of its pore network, a porous medium is a heterogeneous system. 

Furthermore, porous media are really different from each other, so it is 

difficult to think about an approach that can be valid for anyone. Following 

the experimental approach of Metzger et al. (2010)
48

, the complex structure 

of the cotton fabric was simplified with a mimicking structure composed by 
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a number of interconnected capillary tubes (lattice model), where the drying 

process is mainly influenced by the geometrical shape and connection of 

each pore, as showed in Figure 3.3. 

 

Figure 3.3 The complex structure of a cotton fabric, in the upper part, were compared with 

a lattice model, in the lower part. 

To understand the driving forces of a such complex structure, the porous 

network were simplified and a single pore system was identified as the 

constitutive element of the whole structure. The capillary tubes used in this 

work are made by fused silica which in its simplest form is silicon dioxide 

SiO2, formed by a chemical reaction between silicon and oxygen.  

A schematic of capillary tube is shown in Figure 3.4. 
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Figure 3.4 Typical schematics of a capillary tube. 

The capillaries used in experiments present the following technical details: 

Table 3.5: Characteristics of Capillary Tubes  

  

Capillary Tube 100 µm Capillary Tube 50 µm Capillary Tube 10  µm 

ID Err OD Err CT ID Err OD Err CT ID Err OD Err CT 

µm µm µm µm µm µm µm µm µm µm µm µm µm µm µm 

Nominal 100 4 363 10 20 50 3 150 6 12 10 2 150 6 12 

Beginning 99   360   18 49   150   11 11   150   12 

End 99   364   19 50   150   11 9   147   12 

 

: 
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3.2 Methods 

3.2.1 Gravimetric Analysis 

3.2.1.1 Analytic Balance 

Some experiments were performed to measure the rate of drying of aqueous 

solutions in a cotton fabric placed in a Petri dish (Ø = 35 mm). The results 

were compared with the drying rate of the same amount of water placed in a 

Petri dish having the same apparent surface area (Figure 3.5).  

 

Figure 3.5 Scheme of the two Petri dishes compared. 

The experiments were carried out in pairs using two analytical balance, in 

order to measure the drying rate of the two samples under the same 

conditions of temperature and relative humidity (RH). The balances (Ohaus 

Explorer Pro model EP214C) have a precision of four decimal places and a 

capacity of reading from 0.1 mg to 10 µg; they present an integrated draft 

shield enclosure. The enclosure is required due to the extreme sensitivity of 

the instrument. Two hygrometers were used to measure temperature 

humidity inside the balance enclosure. The first operation of the 

experimental procedure consists in measuring the empty Petri dish weight; 

then the dry weight of the cotton fabric samples was measured in order to 

calculate the Remaining Moisture Content (RMC), which is given by water 

weight divided by fabric weight. Finally, the same amount of solution was 

poured each Petri dish, paying attention that the surface of the plate without 

the cotton fabric was completely wet. The experimental apparatus is shown 

in Figure 3.6. 
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Figure 3.6 Schematics of the experimental apparatus for thermo-gravimetric analysis. 

A computer was connected to a webcam in order to monitor the progressive 

decrease in weight measured by the scales. A program, 

WebCamImageSave, allows to capture images in time with a defined 

interval. In our case, given the duration of the experiments, it was decided to 

take a picture every two minutes. The acquired image were manually 

converted into values so in Excel were reported the weight change over 

time, at the end of the evaporation process. The apparatus illustrated so far 

were built to bypass a simple problem: analytic balances work at 

equilibrium and allow to print values only under stable conditions, whereas 

drying is a non-equilibrium process.
49

  

From the data acquired, the drying curve in terms of water saturation and 

RMC and the time derivative of the weight loss over time were calculated. 

The saturation were expressed as the ratio between the instantaneous weight 

of the solution and the initial weight of the solution; it follows that this 

value changes in the range [0,1]. The RMC (Remaining Moisture Content) 

is expressed as the ratio between the weight of the solution and the dry 

weight of cotton fabrics, expressed in percentage. The derivatives are 

calculated point by point as the change in weight over a time interval, 

divided by that time.  
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3.2.1.2 Dynamic Vapour Sorption 

Dynamic vapor sorption (DVS) is a gravimetric technique that measures 

how quickly and how much of a solvent is absorbed by a sample: such as a 

dry powder absorbing water. It does this by varying the vapor concentration 

surrounding the sample and measuring the change in mass which this 

produces. Water vapor is most commonly used, but it is also possible to use 

a wide range of organic solvents. DVS was originally developed to replace 

the time and labor-intensive desiccators and saturated salt solutions to 

measure water vapor sorption isotherms.  

The main application of DVS is to measure water sorption isotherms. In 

general, a vapor sorption isotherm shows the equilibrium amount of vapor 

sorbed as a function of steady state relative vapor pressure at a constant 

temperature. For water sorption isotherms, water relative vapor pressure is 

more commonly expressed as relative humidity (RH). In a DVS experiment 

a sample is exposed to a series of step changes in relative humidity and the 

mass change as a function of time were monitored. The sample mass must 

reach gravimetric equilibrium at each step before progressing to the next 

humidity level. Then, the equilibrium mass values at each relative humidity 

step are used to generate the isotherm. Isotherms are typically divided into 

two components: sorption for increasing humidity steps and desorption for 

decreasing humidity steps. Sorption can be further divided into adsorption 

(sorbate located on the surface) and absorption (sorbate penetrates the bulk). 

3.2.2 Thermal Activity Monitor 

Thermal activity monitor III (TAM III) is a micro-isothermal calorimeter 

that can test thermal behavior under various storage temperatures; here was 

used to calculate the latent heat of evaporation of the porous media. All 

sample set-up and data acquisition steps are performed by a devoted 

software package, TAM III Assistant™, which can also perform most 

common types of data analyses. 
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In the isothermal mode, the high level of control enables both long and 

short-term experiments to be performed with excellent baseline stability.
220

 

The scanning mode operates a linear ramp of temperature with time. 

Because the instrument records data continuously, also during the 

temperature change, phase transitions or other temperature-dependent 

effects will be detected. Since measurement is continuous, there are no 

breaks in the data collected. All samples were prepared within a dry-bag that 

was filled with dry nitrogen, and a humidity detector was used to control 

relative humidity. 

3.2.3 Microscopy Techniques 

3.2.3.1 Confocal Microscopy 

A confocal laser scanning microscope (CLSM) is an imaging instrument in 

which a specimen is illuminated with a focused light spot. A light beam 

passes through a light source aperture and then is focused by an objective 

lens into a small focal volume within a specimen. A mixture of emitted as 

well as reflected light from the illuminated spot is then recollected by the 

objective lens. A beam splitter separates the light mixture and reflecting the 

light into the detection apparatus. After passing a pinhole, the light is 

detected by a photo-detection device, transforming the light signal into an 

electrical one that is recorded. The detector aperture obstructs the light that 

is not coming from the focal point, resulting in sharper images than those 

from conventional light microscopy techniques. Background information on 

the general field of CLSM is presented in detail in several sources.
51-54

 To 

summarize, a confocal arrangement isolates information from volume 

elements without the necessity of physical sectioning.  

An investigation of the internal structure of cotton fabrics was performed by 

the LSCM technique. A fluorescent marker (Rhodamine-B , 1 µg/ml) was 

used to make a 3D reconstruction of the tissue structure using a commercial 

software of image analysis software package (Image Pro Plus 7). Another 

dye at low concentration (Fluorescein isothiocyanate, 0.01%wt), in order to 
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not modify the constitutive properties of the liquid phase, was used to 

highlight the liquid film that lay on fabrics. The confocal microscope was a 

Zeiss LSM 5 PASCAL. It’s made by the transmitted light microscope 

Axiovert 200 M equipped with a high resolution digital camera AxioCam, a 

high magnification optics (40x, 63x) was used. The module of the laser 

comprises a first Ar laser emitting at three different wavelengths (458, 488, 

514 nm) and a second HeNe laser emitting at a wavelength of 543 nm. The 

scanning module comprises a confocal pinhole with a variable diameter and 

a channel equipped with high sensitivity PhotoMultiplier Tubes (PMT) for 

the detection of the signal. There is also an additional channel for detecting 

the transmitted light. 

3.2.3.2 Time-Lapse Microscopy 

The microscopy workstation used to run the experiments comprises an 

inverted optical microscope (Zeiss Axiovert 200), mounted on an anti-

vibration table, with a 5x objective (Carl Zeiss CP Achromat PH1). The 

microscope is provided with a table and a focusing system both equipped 

with stepper motors, which allow to remotely select a field of view within 

the sample under examination. Images were acquired using a monochrome 

CCD camera (Hamamatsu Orca AG) and sent to a personal computer via 

Firewire interface. The digital image is made up of a matrix of 1344x1024 

pixels. The value of each pixel, between 0 and 255, is equivalent to the 

brightness of the corresponding image point . The microscope is placed 

inside a "home-made" incubator with Lexan plates, with a radiator and a fan 

to improve heat exchange and maintain constant temperature. The 

temperature inside the incubator is monitored by a thermocouple and the 

adjustment is made by software using a PID controller (proportional -

integrative - derivative). The microscope table is equipped with a box in 

which the microclimate is controlled by means of an air stream fed to a 

bubbler (Figure 3.7).  
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Figure 3.7 Schematics of the Time Lapse microscopy apparatus. 

The entire workstation is controlled by a controller (ObjectiveImaging) via 

computer through a time-lapse software that runs on Labview. Such 

software allows you to scan periodically predetermined areas of one or more 

samples. The fields of view to be scanned are manually selected using an 

electronic joystick and the time interval between two consecutive scans is an 

input parameter. 

Once started, the program stores the coordinates of the selected fields of 

view and controls the motorized table so as to bring each selected region in 

the field of view of the microscope, capturing and storing the corresponding 

image. At the end of each scan, the program pauses until the next iteration. 

Scanned images are saved on the hard disk in separate directories for each 

selected region. At the end of the experiment for each field of view the 

recorded images can be merged in a video that allows to observe the 

qualitative evolution of the sample over time.  
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3.2.4 Image analysis 

The study of the parameters relating to the drying of liquid in a capillary 

tube has been carried out on the images acquired in real time from the 

camera and transferred to the computer in digital format using the 

commercial software Image Pro Plus 6. The analysis of the acquired images 

consists in the determination of certain geometrical quantities of the 

meniscus in time. The analysis process of the image sequences can be 

divided in the following way: 

1. Acquisition of single images. 

2. Evaluation of the meniscus shifting 

3. Evaluation of the contact angle 

During the analysis many difficulties have been encountered. A problem 

regards the issue of the calibration of the microscope. In fact, the program 

Image Pro Plus requires the calibration factor µm/pixels that converts the 

measurements made in pixels in quantities expressed in microns. The factor 

µm/pixel depends on the objective and the microscope used. Generally, 

proceeding to the analysis directly on the program by setting the calibration, 

the values come out in microns; the risk is that, in case of a mistake with the 

optics, there is no possibility to correct the values and a repeat of the 

measure is needed. In order to avoid this risk, the values were processed 

directly in pixels and, after that, multiplied by the conversion factor. 

Another source of error is the contact angle evaluation; the methods used 

require a manual analysis. Often manual analysis proved to be more 

accurate and therefore preferable, while other times has been less necessary. 

For this reason, several approach were applied to minimize observer’s 

influence on the contact angle evaluation process. Beyond the technical 

problems related to the proper use of the software, the real obstacles are the 

experimental ones. Some common problems are: 
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Uncertainty in defining meniscus contours: due to a poor focus of the 

images or the absence of immersion oil for microscopy. In these cases we 

resort to common sense and we considered a contour line intermediate. 

Light Distortion effect: this is a problem caused by the capillary tube 

curvature and translates in the presence of a dark band near the inner 

capillary wall. This effect can damage the analysis because it alters the 

perception that one has of the meniscus contour. 

3.2.4.1 Meniscus Displacement 

The images captured in time-lapse microscopy were processed and analyzed 

in order to calculate the rate of drying of the solution contained in a 

capillary. The analysis is performed using Image-Pro Plus, Excel and 

Sigma-Plot. For the evaluation of the drying rate, we used the images 

obtained by time-lapse and two softwares, an image analysis one (image pro 

plus) and Excel for data reduction. The time lapse gives a series of images, 

as reported in Figure 3.8. 

 

Figure 3.8 Water evaporates over time in a 100 µm capillary tube. 

The sequence of frames is imported into Image-Pro Plus, which through a 

special function shall connect together the various images to show the 

sequence of photos as a video. Then, the meniscus center were taken as a 

reference and its shifting along the x axis with time were followed (Figure 

3.9). 
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Figure 3.9 Analysis of meniscus shifting. 

 

The program output gives the x, y coordinates of the points Pi in pixels that, 

multiplied by the appropriate conversion factor (summarized in table 3.5), 

depends on the magnification used, transforming the values in microns 

scale. 

Table 3.6: Conversion factor for the optical magnification used  

Conversion factor pxl\µm 

 

 

 

 

The coordinates of the points Pi x against time in seconds relative to the 

frame analyzed are reported in an excel file. The sequence of the times it 

comes from a time lapse that in addition to the images were recorded in a 

text file and provides the time sequence expressed in seconds. A sequence 

of points more or less linear is obtained; the best curve passing through the 

experimental points were obtained using the regression technique. A method 

to derive the curve that best approximates the data trend is to apply the 

method of least squares. This technique is based on the principle that the 

best-model curve which interpolates the experimental data, is the one for 

which the relationship applies: 

10x CP - ACHROMAT 

 

0.613(2) 

20x LD A - Plan Ph1 

 

0.304(6) 

5x EC Plan - NEOFLUAR Ph1 

 

1.210(8) 
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    ∗        
          

      (34) 

where    are said weights of the experimental data (take account of the 

greater or lesser uncertainty with which the experimental data themselves 

are known), and (yi - yl) is the difference between the experimental values yi 

and those calculated yl. In our case, by applying the technique of simple 

linear regression a straight line of equation is obtained. 

 y=ax + b     (35) 

where a and b are coefficients that represent, respectively, the intercept and 

the slope of the line. The slope of the line corresponding to the angular 

coefficient provides the value of the drying rate expressed in µm\s. In Figure 

3.10 the speed of drying of demineralized water at a temperature of 38 °C 

and for a capillary of 100 µm equal to 0,1472 µm/s is shown. 

 

Figure 3.10 Example of a drying curve of DEMI water solution in a 100 µm capillary tube. 

It was also used another function of Image Pro Plus that allows the 

reconstruction of the whole capillary by connecting consecutive images to 

measure the void degree (L), defined as the distance between the open side 

of the tube and the meniscus position at a defined time.  
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In this way, the images were placed side by side and shifted until they match 

together, as shown in Figure 3.11. In order to properly rebuilt the capillary, 

the imperfections on the image were taken as a reference.  

 

Figure 3.11 Two capillary tubes (100 µm) containing DEMI water. 

This operation is repeated for all the images that show the receding of the 

meniscus in order to make a reconstruction of the evaporation in the whole 

capillary. 

3.2.4.2 Contact Angle Evaluation 

The evaluation of the contact angle through experimental procedures turns 

out to be quite complex, in fact we have not come immediately to a method 

that will provide us with values comparable with those reported in the 

literature. The first two methods used initially were subjected to a large 

error in measurement of the contact angle, giving values very different from 

those reported in the literature. The third method is the one that we used and 

that is what gives us the best results, it is also reproducible and presents 

measurement errors is limited. 

First method  

The upper and lower contact angle measurement is performed by the 

software "Image Pro Plus". This measurement is carried out using the tools 

available in the software library but it is a measure that is affected by a high 

degree of error because the operator has to manually evaluate the angle. In 

Figure 3.12 the measure found is 45°.  
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Upper and lower contact angle have the same measure, but the resulting 

value is far from the one of 33° reported in literature.
225

 In addiction, this 

kind of measurement is strongly operator-dependent. 

 

Figure 3.12 Picture of meniscus in a capillary tube taken in time lapse and analyzed in 

image pro plus. 

Second method 

This method requires a combined use of two softwares, Image Pro Plus and 

Excel. With Image Pro Plus the meniscus contour were evaluated (Figure 

3.13). 

 

Figure 3.13 Meniscus discretization. 

The coordinates of these points in a text file and we import into excel by 

constructing the profile of the contour as shown in Figure 3.14. 
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Figure 3.14 Discretized meniscus imported in Excel. 

Once the discretized profile values were acquired in Excel, the two oblique 

lines A and B will be considered separately and both points series were 

fitting with a trend line; the slope of this line gives the contact angle value. 

For the lower contact angle the value obtained is 45° 6', see Figure 3.15, while 

the upper contact angle has a value of 40° 6'. The huge difference between 

the two values requires the development of a more accurate evaluation 

method. 

 

Figure 3.15 Trend line representation for lower and upper contact angle. 
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Third method 

A picture of the receding meniscus is taken and analyzed using an image 

analysis software; the meniscus profile is discretized in points by gray levels 

evaluation. The value of these points is exported in a datasheet: the 

parabolic equation of the curve that fits all the point is carried out. In 

addition, other two points were tacked near the capillary inner wall to 

evaluate the effective capillary tube diameter. The derivative of the 

parabolic equation calculated in these two points returns the effective 

contact angle of the water solution inside the tube. The analysis starts with a 

live image of the receding meniscus (Figure 3.16) inside a capillary tube 

having of diameter of 100 micrometers; using a sophisticate software of 

image elaboration, the picture contrast were altered to discretize the 

meniscus profile; as the images shown, the contact angle region as a very 

low definition, and is impossible trough them to measure the contact angle 

accurately.  

 

Figure 3.16 More accurate discretization of the meniscus. 

As a result the software gives the coordinates of a high number of points 

along the meniscus profile; these data were plotted in a graph and another 
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software (SigmaPlot 11) is used to calculate the best-fit equation between 

the points. It returns the quadratic equation of an elliptic curve: 

                     (34) 

                    (35) 

Calculating now the point in which the first derivative of this equation is 

zero, the center of the curve was found. Summing and subtracting the 

capillary radius at y coordinates of the center, the contact points on the 

capillary walls are calculated. The first derivative of the elliptical equation 

in these two points gives the angular coefficient of the straight line tangent 

to the curve and passing through that points; then, the arctangent of each 

point gives the value in radians of the contact angle, that can be easily 

translated in degrees. Both angles shows the same value that corresponds to 

the value of 33° reported in literature. 
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4 RESULTS“Technology is destructive only in the hands of people who do not 

realize 

 that they are one and the same process as the universe.” 

Alan W. Watts  

4.1 Drying in Cotton FabricsGravimetric results 

4.1.1.1 Water Hardness 

These experiments have been done to understand the difference between bound 

water (i.e., the amount of water absorbed by the cotton fibers) and unbound water 

(corresponding to the amount of water laying on the surface). In these experiments 

the same amount of water soaked by a cotton swatch sample was put into a Petri 

dish. Water covers all the Petri dish bottom surface and has the same apparent 

surface area of the cotton swatch (which is actually cut to fit into the dish). Results 

in Figure 4.1 show that the drying rate of the cotton fabric is faster than the water 

evaporation speed in a dish.  

 

Figure 4.1 Comparison of drying rate in a cotton swatch and a dish filled with water. 

Comparing the results obtained it can be seen that with the same apparent surface, 

the drying rate is greater for the porous sample than for a pool of solution of the 

same quantity. This highlights the importance of the surface water-air interface and 

demonstrates that the porous medium has an effective area more extensive than a 

flat water layer. 
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A large number of experiments were also performed on DEMI water in order to 

find an average trend for the drying curve both as regards the cotton fabric both as 

regards only the solution in the Petri dish (Figure 4.2). 

 

Figure 4.2 Comparison between different water drying curves in absence of cotton fabric. 

The same tests were also performed by replacing the DEMI water solution with 

water solutions at different hardness to experimentally show whether, with 

increasing of water hardness, the drying rate in the cotton fabric would be 

increased.  Results are shown in Figure 4.3.  

 

Figure 4.3 Comparison between different drying curves in a cotton fabric soaked in water 

having different hardness. 

Drying curves show a counterintuitive results: an increase of the drying rate of the 

cotton fabric with the increase of the water hardness  from 0 to 420 ppm of salt 
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concentration and a decrease of the drying rate value with the Very Hard water 

solution. It should be pointed out that 540 ppm is a really high concentration value, 

near to the solubility limit. After a complete characterization of the water solutions 

at different hardness degree in the cotton fabric, this condition were compared with 

the experiment in absence of cotton fabric as showed in Figure 4.4. 

 

Figure 4.4 Comparison between the drying rate in a cotton fabric and in absence of fabric 

for water solutions at different hardness, the two samples having the same apparent surface 

area. 

Again these experiments confirm that the wet cotton fabric sample evaporates 

faster than the same amount of water in a Petri dish.  

Finally, having shown the effect of salts on porous media and the differences in 

drying rates with and without fabrics, other tests were carried out to compare the 

drying rate in absence of porous media for DEMI water and Hard Water solutions, 

in order to evaluate the hardness effect in the same conditions of temperature and 
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relative humidity. Figure 4.5 demonstrates that water hardness affects drying rate 

only in porous media. 

 

Figure 4.5 Comparison between the drying rate of DEMI water and Hard water solution in 

absence of fabric. 

From these tests it is possible to see the presence of salts does not produce an 

increase in the rate of drying for a pool of water in the range investigated, while in 

cotton fabrics, the drying speed of the salt solutions is always greater than that of 

distilled water. As the graphs show, in experiments in which there is a porous 

medium, we have a drying rate greater than in experiments in which we only have 

a water pool. The reason for this increase must be sought in a different area of air-

water interface that characterizes the two samples. In particular, the porous 

medium sample has a larger effective surface, which justifies an increase of the rate 

of drying. 

4.1.1.2 Surfactants 

Two sets of experiments were performed in this task: in the first set, a cotton 

swatch or wire was soaked in water and the amount of moisture was determined by 

measuring the net weight (i.e., the weight during the drying process minus the dry 

swatch or wire weight) as a function of time by a precision balance; in a second set 

of experiments, a dish with the same surface area of the cotton swatch was filled 

with water and again the net weight was measured as a function of time.  

Determination of the drying rate in cotton fabric 
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Commercial softener products were tested. The water-surfactant solutions 

concentrations in water were chosen according to the product information. The 

drying speed value of DEMI water was chosen as the reference value so that the 

drying speed increase due to the surfactants can be evaluated. The drying curves 

for a cotton fabric are shown in Figure 4.6. 

 

Figure 4.6 Water content versus time in a cotton fabric (area 5 mm
2
; dry weight 0,35 g) by 

DVS. 

The central part of the data sets was used as before to calculate the drying speed of 

the cotton fabric sample. The percentage increases are resumed in table 4.1 and 

graphically showed in Figure 4.7. 

Table 4.1: DEMI water and surfactants solutions compositions and rate values.  
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Figure 4.7 Increase percentage in drying rate due to surfactants. 

Determination of the drying rate in a dish filled with water 

This test shows that the actual interfacial area between air and water is larger than 

the apparent surface area in the cotton swatch. The same procedure was used to test 

the 2000 ppm Na-LAS solution (Solution1) drying rate. As usual the dish filled 

with water with and without Solution 1 was chosen as the reference sample. 

Another sample was a cotton swatch soaked in the same amount of Solution 1 into 

the Petri dish. The graph in Figure 4.8 shows the results of the experiments, 

reporting the slope of the three samples data. It can be noticed that, as a control, 

there is no significant difference in drying rate of water in the Petri dish with or 

without Solution 1. 

 

Figure 4.8 Comparison of drying rates in a cotton swatch and in a Petri dish filled with 

Solution 1. 
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In conclusion, as shown in Figure 4.8, the drying speed of the cotton swatch sample 

is 34% higher than the drying speed of the water in the Petri dish. A similar 

increase of 19% is found in Figure 4.6 for Solution 1 (the difference is due to a 

change in room temperature). This increase can be attributed to the higher actual 

surface area of the cotton swatch. More support to this conclusion is provided by 

the experiments described in the following sections.  

4.1.1.3 Surfactant and Hard Water 

Other experiments were carried out at the Dynamic Vapor Sorption to validate the 

well known effect of surfactant passivation due to water hardness.
226

 In the 

following table 4.2 the solution tested and their effect on water evaporation were 

resumed. 

Table 4.2: Surfactant and hard water solution effect on the drying rate in a cotton fabric.  

  Sample Composition 
Drying 

Rate 
Deviation  

#   
Salts 

[ppm] 

Na-LAS 

[ppm]  
%/min % 

1 DEMI Water / /  6,1  0 

2 DEMI Water+Na-LAS  / 2000  7,2  19  

3  Medium Hard Water 250 / 6,8  11  

4  City Water 260 /  7,0  16  

5  City Water+Na-LAS  260 2000  6,2  3  

6  Hard Water 420 / 7,2  19  

7  Very Hard Water 530 / 6,9  12  

8  Very Hard Water+Na-LAS  530 2000  6,4  5  

 

Two main results can be highlighted from these values. First of all, the drying rate 

trend due to water hardness was confirmed DVS, as shown by the graph in Figure 

4.9. 
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Figure 4.9 Increase percentage in drying rate due to water hardness. 

The following graph (Figure 4.10) the strong effect that the water hardness has on 

surfactants is shown: a decrease of  more than 10% in drying rate can be 

appreciated comparing the drying rate of surfactant in DEMI water (W+NaLAS) 

and the rate of drying in surfactant solutions made by City Water (CW+Na-LAS) 

or Very Hard Water (VHW+Na-LAS). 

 

Figure 4.10 Drying rate changes due to surfactant and water hardness. 

The second result is that the drying rate value of Hard water solution and NaLAS 

solution is the same. This could open the way to other new approaches and to new 

active agents that could take advantage of water hardness effect only. 

4.2 Drying in a Capillary Tube 

4.2.1 Meniscus Displacement 
The drying process of a liquid solution inside a silica capillary tube with an inner 

diameter of 100 µm, closed by one side, was evaluated using the procedures 

described in section 3.1.3. The void degree (L), defined as the distance between the 

meniscus and the open capillary side at a certain instant of time, was identified as a 

measure of water evaporation, being the evaporation rate inversely proportional to 
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L. By using the automated microscope stage to hold the sample, the relative 

position between the open side of the capillary tube and a fixed point on the 

meniscus was measured. This procedure allows the observation of the drying 

process in real time in multiple capillaries. In Figure 4.11 the drying of DEMI water 

in a capillary tube (Ø 100 µm) under room temperature is shown. According to the 

theory illustrated in section 2.3.2, the data can be fit with a power low curve with 

an exponent equal to 0.5. 

 

Figure 4.11 DEMI water evaporation in a capillary tube of 100 µm. 

To highlight the drying rate changes in time, drying rate were plotted versus time, 

as reported in Figure 4.12.  
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Figure 4.12 Water drying in a 100 µm capillary tube as in Figure 4.11. Drying curves on 

the left, drying rate vs. time on the right.  

In this plot, two drying rate regimes are clearly distinguishable. When L has a 

value comprised between 0 and 2.5 millimeters, the drying rate is really fast and 

water molecules are free to evaporate, driven by a high concentration gradient 

between meniscus surface and the region near to it; for L greater that 2.5 

millimeters a strong decrease of the drying rate occurs. 

4.2.2 Contact Angles 
The evaporation of diluted surfactant solutions in capillaries were influenced by the 

angle that the solution forms in contact with the walls of the capillary itself. The 

contact angle depends on the concentration of surfactant (t decreases with 

increasing surfactant concentration), as shown in Figure 4.13. 

. 
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Figure 4.13 Contact angle changes due to surfactants concentration. 

4.3 Topography of Cotton Textile 
The Solid and liquid surfaces can be characterized by theirs chemical composition, 

geometry and roughness. The way liquids interact with textile fabrics may involve 

one or several physical phenomena such as fiber wettability, depending on the 

intermolecular interaction between liquid and fiber surface, their surface geometry, 

the capillary geometry of the fibrous assembly,
56

 the amount and chemical nature 

of the liquid as well as on external forces. A rough textile surface possesses pores, 

crevices, capillaries or other typical structures with their own characteristic wetting 

and penetration properties. As a consequence, the apparent contact angle on these 

surfaces will be affected by thermodynamics and kinetics associated with such 

intrinsic structures. 

Texture of fabric changes the porosity value and strongly influences the textile 

characteristics such as mass, thickness, draping ability, or air permeability.
57-59

 

However, there are very few systematic investigations of quantitative relations 

between construction parameters, topography of fabrics and their wettability.  
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4.3.1 Imaging by CLSM 
Confocal microscopy is defined as a method of optical microscopy by which 

structures in the focal plane are visible and those outside the focal plane are 

suppressed. The scanning of the focal plane through the object being imaged 

enables the collection of three-dimensional microscopic image data sets (also 

known as z-stacks). This technique was applied to evaluate the fabric 

microstructure of the cotton sample. To highlight the fibers a tracer dye 

(Rhodamine B) was used. In Figure 4.15 the helix shape of a single cotton fiber is 

shown; this 3D reconstruction was made from a z-stack consisting in 15 slices 

distant from each other 1 μm along the z axis. The fiber section seems to be flat 

because the sample is compressed between two slides.. 

 

Figure 4.14 3D reconstruction of a single cotton fiber from a z-stack acquired in confocal 

microscopy. In a) arrangement in space underline the  fiber section, in b) the helix structure 

were shown. 

In Figure 4.15 some pictures shows the investigation carried out in confocal 

microscopy on single cotton fibers at high magnification (40x). Fibers thickness 

was evaluated and the typical helix shape of cotton fibers was taken into account 

(Figure 4.15 a-c); thickness ranges from 16 to 22 μm, in line with literature results. 

Other measurement were done to evaluate space between fibers in fabrics, showing 

an inter-fiber characteristic space of 7-25 μm.   
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Figure 4.15 Cotton fibers visualized in confocal microscopy at high magnification (40x); in 

a-c) fibers thickness evaluation; in d) space between fibers measurement. 
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In addition, similar experiments were carried out on a single cotton yarn (Figure 

4.16) to evaluate fibers location and porosity. The twisted shape of the yarn 

geometry can be appreciated, due to the twist the fibers were subjected to during 

yarn fabrication.  

 

Figure 4.16 Single yarn 3D reconstruction by confocal microscopy. 

The average porosity of the single yarn was found to be equal to 0.7, so that the 

70% of the intra-yarn space can be occupied by a liquid during wetting. Finally, the 

whole cotton fabric structure was investigated. In Figure 4.17 a 3D reconstruction of 

a z-stack consisting in 65 slices distant from each other 5 μm along the z axis is 

shown as viewed in the x-y plane. These results confirm the previous experiments 

about the effective cotton fabric surface and give a qualitative measure of the 

cotton surface roughness. 
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Figure 4.17 Cotton fabric microstructure at high magnification (10x) by confocal 

microscopy 

The same 3D reconstruction is presented in the next images (Figure 4.18) with a 

different angle to show the roughness of the cotton surface. 
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Figure 4.18 3D reconstruction of the z-stack showed in Figure 4.17. 

Porosity evaluation give back the same value of 0.7 obtained for the single yarn. To 

evaluate the effective surface area of a cotton fabric, more accurate investigations 

of the fabric surface were made. Taking advantage of the affinity of the dyes 

(Rhodamine-B and Fitch) used in the experiments with the immersion liquids 

(water and silicone oil), another imaging tecnique was developed to highlight the 

liquid surronding the fibers (so that the latter are seen in negative by confocal 

microscopy). Cotton fabric was immersed in a silicon oil at low viscosity; the dye 

(Rhodamine-β) goes preferentially in the oil and shows the cotton surface as a 

mold (see Figure 4.19). 
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Figure 4.19 3D Mold reconstruction from a negative z-stack of cotton fabric in silicon oil. 

In this conditions, the surface evaluation is easiest and more accurate. The increase 

in surface area between a flat surface and the cotton fabric is about 60%. These 

results confirm the previous thermo-gravimetric results and give a qualitative 

measure of the cotton surface roughness. 

4.3.1.1 Visualization of fabric microtomic slices 
Some cotton fabric samples were included in an epoxy resin, which polymerizes in 

48 hours at 70°C, and then cut in a sequence of 20 μm deep slices, as shown in 

Figure 4.20.  

 

Figure 4.20 a) schematic of cotton fabric slice, warp and weft yarns are highlighted; b) 

image of a cotton fabric slice in bright field. 
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After this process, the slices were placed on a slide and dyed with Rhodamine-B. 

As can be noticed in Figure 4.21, these pictures allow one to appreciate the intra-

yarn and inter-yarn porosity. In this fabric, warp and weft view present the same 

yarn arrangement. Each fiber composing the warp and weft yarns can be 

distinguished.  

 

Figure 4.21 Expanded particular from Figure 4.20. 

Other analysis were done to highlight the crystalline structure of the cotton fibers. 

In polarized light, as known from literature
231, 232

, cotton fibers presents a 

birefringence, that can be clearly seen in Figure 4.22. 

 

Figure 4.22 a) image of a cotton fabric slice in confocal microscopy, b) same view in 

polarized light.   

4.3.1.2 Water Layer Visualization on Cotton Surface 
While the microscopy of dry cotton has been extensively described, real time 

microscopy characterization of a water film on a cotton surface is an open 
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challenge. A non-invasive procedure was developed to observe the water layer on a 

cotton fabric by CLSM. This methodology allows to examine and reconstruct the 

three-dimensional structure of liquid and solid surfaces with a depth of several 

hundred microns. The systems examined were constituted by a cotton fabrics 

substrate wetted by a volume of water equal to 8 times the volume of the cotton 

fabrics (a scheme of the system is shown in Figure 4.23).  

 

Figure 4.23 Scheme of the water (gray) on the textile substrate (white). 

This considerable amount of water is necessary to observe the increasing 

corrugation of the air/water surface that, initially flatten, becomes more and more 

rough during the evaporation process. First attempts to investigate the water film 

laying on cotton fabric are shown in Figure 4.24. 

 

Figure 4.24 Water film laying on cotton fabric visualized by confocal microscopy. 
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In Figure 4.25 and Figure 4.26 the well-defined structure of the porous substrate 

underlying the liquid film can be appreciated.  

 

Figure 4.25 Section of the 3D reconstruction of the water surface (in white) on cotton 

fabrics (below, in black) showed in figure 4.16. 

 

Figure 4.26 3D reconstruction of a z-stack acquisition in confocal microscopy. Water 

surface on cotton fabrics. 

This visualization of the gas/liquid surface has been carried out to investigate the 

drying of the water layer during time (Figure 4.27).  
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Figure 4.27 Water surface drying on cotton fabrics.3D reconstruction of a z-stack 

acquisition in confocal microscopy.  

The surface receding was not only visualized but also 3D reconstructed from the z-

stack, giving the possibility of area calculation and curvature evaluation. The 

method illustrated in this work is relevant for the study of the fluid interphase; 

visualization of the gas/liquid surface and the liquid/solid surface below can help 

understanding the way these two interfaces interact with each other. A quantitative 

analysis of the water layer surface area vs time is shown in Figure 4.28.  
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Figure 4.28 Surface area increase in time, as can be seen in Figure 4.27. 

The surface increase is shown in the upper part of Figure 4.28 in terms of surface 

area [mm
2
] (left axis), and percent increase [%] with respect to the initial area 

(right axis). It should be pointed out that the initial surface, as it can be seen in the 

images of Figure 4.28,  is not completely flat but slightly corrugated and curved. 

This corrugation, if compared with an ideal flat surface, shows an increase of about 

20%, equal to 0,4 mm
2
. The images in the sequence of Figure 4.28 correspond  with 

the value on the time axis.  It should be notice that initially the surface area 

increase (0-25 min) because of the fluctuation of the receding surface, and then 

(25-70 min) remains constant around 30%. In the final period (70-90  min) the 

surface increases steeply to reach the 60% final value, equal to the dry surface 

value, as found out from Figure 4.19. The question that arises from these data is: If 

the constant drying rate is connected with an increase in surface area, why does the 

surface area show such a complex time dependence? A possible answer to this 

question lies in the equilibrium between two “forces”, evaporation and capillarity; 

both have an important role in the drying process and both tend to increase with the 

increase of surface area. Another possible explanation is in the dimentions of the 

observed region. The surface we are looking at measures 1,7 mm
2
 and represents a 
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very small region compared whit the apparent surface of 962,1 mm
2
, equal to the 

surface of a Petri dish (Ø 35 mm) investigated in section 4.1.1. The general trend of 

data is a surface increase from 0% to 60% in a defined amount of time, and 

probably is the only result to look at because of the surface fluctuation in a 

dynamic process like drying. Last thing to specify is about the time scale; the 

process appears faster because of sample dimensions.  

4.3.2 Reflected Light Macro Imaging 
Visualization experiments based on light reflection were done to obtain a 

tridimensional image of the water layer on the cotton fabric surface. The procedure 

to run these experiments consists in lighting the sample with a lamp at a certain 

angle of incidence. Sample surface reflects the light that bounces back with a 

different angle of reflection. To catch the reflected light a camera is oriented  along 

the angle of reflection, aimed at the sample, and is connected to a PC. To show the 

difference between the water layer surface in a Petri dish and the wet cotton 

surface, both samples are analyzed. The image in Figure 4.29 shows the water layer 

surface in a Petri dish.  

 

Figure 4.29 Water surface in a Petri dish. 

Near the wall the surface curves under the capillary effect and is flat elsewhere. 

The short sequence in Figure 4.30 shows a cotton swatch before (a) and after (b-d) 

pouring water on top of it. The cotton fabric (which is a low magnification view of 

the microstructure shown in Figure 4.18) is visible as a surface roughness in Figure 

4.30.a. Right after pouring water (Figure 4.30.b), the water layer is almost flat and 

surface microstructure is still visible below. As time goes on, waves and valleys 

appear in the water layer (Figure 4.30.c), which becomes more undulated in Figure 
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4.30.d. Eventually, the same appearance as in Figure 4.29.a is found at the end of the 

evaporation process. These images provide evidence of a corrugated air-water 

surface, which will then expose a higher interfacial area for mass transfer as 

compared to the almost flat surface of water in a Petri dish (Figure 4.29). In 

conclusion, higher drying rate in cotton fabrics is mostly due to a larger interfacial 

area. Interfacial agents capable to increase the water surface area in the fabric 

should be then selected in order to speed up the drying process.  

Some experiments, as described in section 3.2.1.1, were conducted visualizing the 

samples surface by optical imaging in reflected light during the thermo-gravimetric 

analysis. In Figure 4.31.a the characteristic drying curve were reported in graph and 

the points that corresponds to the images from b to e were indicates; in the 

sequence reported in Figure 4.31.b-e, the increase of surface area can be 

appreciated, as previously shown in Figure 4.30. These pictures offers another 

confirmation of the cause-effect correlation between the surface increase and the 

drying rate improvement.  
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Figure 4.30 Image sequence showing a cotton swatch before (a) and after pouring water on 

top (b-d). 

(a) 

(b) 

(c) 

(d) 
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Figure 4.31 Thermo-gravimetric experiment coupled whit reflected light optical imaging. 
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5 DISCUSSION“The real point of honor is not to be always right.  

It is to dare to propose new ideas, and then to check them.” 

P. G. de Gennes
1
 

Jackson and James
233

 in 1985 define cotton fabric a fibrous porous material; all 

fabrics are in fact a porous media with a fractal structure
123

 with different 

complexity degrees. For cotton, things are complicated by nature: each cotton fiber 

is a natural cell with a complex structure, as shown in Figure 5.1. The fiber is most 

often spun into yarn or thread and used to make a soft, breathable textile. 

 

 

Figure 5.1 A computer-generated montage of a fiber segment constructed from individual 

transmission, adapted from Cotton fiber chemistry and technology
234

. 

In Figure 5.1, fiber surface, primary wall, and secondary layers were shown at 

different magnifications to better visualize fibrillar structures and the various fiber 

layers from surface to lumen. The surface marked cuticle is an SEM view of a 

scoured and bleached fiber surface and was used as the skeleton of the montage. 

All other segments are taken from transmission micrographs and are shown at 

higher magnifications. No fibrils are visible in the SEM of the cuticle because of its 

relatively low magnification as well as the presence of non-cellulosic materials. 

The fiber surface at the cut end of the fiber shows fibrils that have been separated 

by swelling
234

. Structures and porosity of cotton fibers will be examined in the next 

                                                           
1
Extract from a speech delivered Honor and Patience at the Institute of France Tuesday, 

October 22, 2002 on the occasion of the return of the five academies. 
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section with the clear intent of understand where the water is located inside the 

fibers, a concept deeply discussed in section 1.3. 

5.1 Cotton Fiber Structure and Porosity 
The fundamental unit of cotton fabrics’ structure is the fiber, each fiber being 

substantially composed by the cell wall remnant of a single cotton cell. Cotton 

fibers used for fabrics are approximately 2.8 cm in length
235

 and approximately 20 

microns in diameter (30 μm when wet
236

) thus having an aspect ratio
234

 of 10
3
. The 

primary wall is estimated to be composed by 100 to 200 molecules in thickness 

(0.1 to 0.2 μm), and is made up of cellulose (30%), other neutral acid 

polysaccharides, waxes, pectic compounds, and proteins
237

. The secondary wall 

thickness is 8 to 10 μm. At maturity, cotton fiber is 89% cellulose
238

. 

The cross section of a cotton fiber is a complex structure, as shown in Figure 5.2.  

When wet, it appears like a capillary tube with a 15 μm water-filled space called 

the lumen surrounded by a 7.5 μm thick cell wall that is more than 98% cellulose.  

The lumen is where the cytoplasm of the original cotton cell was located when the 

plant was still growing.  When cotton fibers are removed from the plant, there is 

also a less than one micron of hydrophobic cell wall coating that is scoured away 

during the process of making cotton fabric. 

5.1.1 Fibers and Lumens 
The cross sectional area of a wet fiber is 700 μm

2
; of this, 525 μm

2
 is cellulosic and 

175 μm
2
 is the lumen(Figure 5.2.b).  Assuming an average fiber is 3 cm long, a 

typical wet fiber contains a volume of 1.6*10
7
 μm

3
 of cellulose and has a lumen 

with a volume of 5.3*10
6
 μm

3
.  In dry cotton the volume of the lumen approaches 

zero as the fiber collapses into a kidney shape and nearly all of the volume of the 

dry fiber is cellulose.  Cotton cellulose has a density of 1.55 gm/cm
3
.  Thus each 

dry fiber weighs 25 micrograms
239

.  Thus there are 4x10
7
average fibers in a 

kilogram of dry cotton.  If only the lumen of cotton could be filled with water, 1 

kilogram of dry basis weight cotton would contain 210 grams of water.     
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Figure 5.2 Essential schematics of cotton structure from mesoscopic to molecular 

dimension: (a) SEM image of Cotton Fabrics. (b) section of a single cotton fiber. 

Macrofibrils compose each fiber. (c) Each macrofibril is composed of bundles of 

microfibrils. One microfibril (d), in turn, is composed by bundles of cellulose chains (c). 
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5.1.2 Macrofibrils and Macropores 
The cross section of the cellulosic portion of each cotton fiber is composed of 3200 

circular macrofibrils(Figure 5.2.c) each with a cross sectional area of 0.16 micron
2
 

(160,000 nanometer
2
) and a diameter of 0.45 microns (450 nm).  These are 

arranged in a hexagonal close pack pattern with “macropores” at the intersections 

of each set of three macrofibrils.  There are 2750 of these macropores in the 

cellulosic interior of each fiber.  Assuming these macropores are circular, each 

would have a cross sectional area of 4450 nm
2
 and a diameter of 75 nm.  These 

macropores are easily accessible by liquid water which has a cross sectional area of 

0.025 nm
2
 (This was calculated from the fact that 18 cm

3
 is the volume of one mole 

of water and the assumption that water molecules are very nearly spheres.  If only 

these macropores in a kilogram of dry cotton were filled with water, 1 kilogram of 

dry basis weight cotton would contain 15 grams of water. 

5.1.3 Microfibrils and Micropores 
The cross section of each macrofibril is composed of 250 circular 

microfibrils(Figure 5.2.d) each with a cross sectional area of 600 nm
2
 and a 

diameter of circa 30 nm (100-400 Å)
240

.  These are arranged in a hexagonal close 

pack pattern with “micropores” at the intersections of each set of three microfibrils.  

There are 200 of these micropores in the interior of each macrofibril.   Assuming 

these micropores are circular, each would have a cross sectional area of 20 nm
2
 and 

a diameter of 5 nm.  These are easily accessible by liquid water which has a cross 

sectional area of 0.28 nm
2
 and a diameter of 0.3 nm

241, 242
.  If only these micropores 

in a kg of dry cotton were filled with water, 1 kilogram of dry basis weight cotton 

would contain 1.5 grams of water. 

5.1.4 Elemental Fibrils and Elemental Pores 
The cross section of each microfibril is composed of 20 nearly circular elemental 

fibrils(Figure 5.2.e) each with a cross sectional area of 30 nm
2
 (3000 Å

2
) and a 

diameter of 6.2 nm (62 Å)
243

.  These are arranged in a hexagonal close pack pattern 

with elemental pores at the intersections of each set of three elemental fibrils.  

There are almost 20 of these elemental pores in the interior of each microfibril.  

Assuming these elemental pores are circular, each would have a cross sectional 

area of 80 Å
2
 and a diameter of 10 Å.  These are hypothetically accessible by liquid 

water which has a cross sectional area of 3.8 Å
2
 and a diameter of 3 Å.  If only 
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these elemental pores in a kg of dry cotton were filled with water, 1 kilogram of 

dry basis cotton would contain 1.5 grams of water.    

5.1.5 Crystal Fibrils and Crystal Pores 
The cross section of each elemental fibril is composed of 20 cellulose crystals each 

with a cross sectional area of 146 Å
2
 and a diameter of 14 Å.  These are arranged in 

a hexagonal close pack pattern with crystal pores at the intersections of each set of 

three cellulose crystals
244

.  There are 14 of these crystal pores in the interior of each 

elemental fibril.  Assuming these crystal pores are circular, each would have a 

cross sectional area of 4.1 Å
2
 and a diameter of 2.3 Å.  These pores are not 

accessible by liquid water.  

5.1.6 Cellulose Polymers and Polymers “Pores” 
Cellulose crystals are composed of 5 cellulose polymer chains with a square, face 

centered orientation
245

.  Each cellulose polymer has a cross sectional area of 32 Å
2
 

and a diameter of 3.2 Å. The degree of polymerization of cotton is 9,000-15,000
246

. 

The spaces between these polymer chains are less than 2 Å in diameter and are thus 

too small and too tortuous to be accessed by liquid water. 

5.2 Distribution of Water in Cotton Fabrics 
It is estimated that around 80% of water (on a dry clothes basis, the so called 

residual moisture content or RMC) is still retained in fabrics after spinning in the 

washer (at 800 rpm
247

, and most of it (apart from the equilibrium moisture content 

which is around 7-5% at ambient conditions
248

) needs to be removed by drying. 

Since the packing density (i.e., the fraction of fibers) of yarns in textile is 40%, an 

RMC of 60% could be accommodated in the smaller intra-yarn pores which are 

made by the interstices  between the fibers or inside the fibers themselves. Further 

support to this hypothesis is given by the capillary forces which act to keep water 

trapped in the smaller fabric pores even after centrifugation
16

 (RMC is still 43% 

even after spinning at 1800 rpm
247

). So, it is essential to study the physics of drying 

at the pore network scale, because that is where most RMC is located from the 

beginning of the drying process. 

Thus cotton can apparently hold about 80% of its own weight of water tightly 

enough to survive the washing machine.  In addition it can hold water up to 5 times 

this amount between fibers, threads and yarns which is removed during the spin of 
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the wash cycle. Of the 80% carried over into the dryer, 56% does not have to 

diffuse through cotton to evaporate and thus dries fairly easily (free water).  The 

remaining 24% which is held in the lumen and in small pores is harder to remove 

(bound water)
249

. The 5% of the bound water that is held in non-lumen pores and 

within a couple of nanometers of the cotton surface can be removed if sufficient 

heat is applied in the dryer but it returns when the cotton is exposed to normal 

temperature and humidity.  

Caurie identify three types of bound water
250

. These are the type 1, most tightly 

bound primary water up to m0 grams of molecules which have non-freezing and 

non-solvent properties (m0 = 4.98%). The type 2 bound water starts from m0 grams 

up to nm0 grams (being n = 4.52 for cotton). These molecules equal to (nm0 – m0) 

grams are bound weakly with non-freezing but have solvent properties. The type 3 

bound water are the (m0
2
 – nm0) grams of loosely bound water molecules with 

solvent and modified or limited freezing properties. These type 3 bound water 

molecules have full solvent and normal freezing properties
251

; an intensive 

literature search were done for identifying the location of Types 1-3  water, of the 

water that is hard to remove in the dryer, and of the  water that is not removed by 

the spin cycle but is relatively easy  to remove in the dryer. In Figure 5.3.a a 

schematic of cotton fabric section is proposed to highlight arrangement of yarn in 

space. 
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Figure 5.3 In a) a schematic of a section of cotton fabric is proposed to highlight yarns 

arrangement in space. In b) a microtome slice of a single cotton yarn in confocal 

microscopy show the fibers constituting it. In the inset single cotton fiber section as shown 

in fig. 5.2.b. In c) and d) a scheme represent how water evaporates from fibers. 

In Figure 5.3.b a single cotton yarn structure were shown to highlight the high 

porosity of this material. 

5.2.1 Source of Type 1 Water 
Cotton normally contains about 5% of Type 1 water and another 17% of Type 2 

water and 2% of Type 3 water
249, 252

.  We can surmise from the previous section 
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that the 1.5% water in the crystal pores of radius 5 Å are part of the Type 1 water.  

The Laplace equation suggests that such a narrow capillary would pull a column of 

water 40 kilometers long.  There is no known combination of treatments that could 

reduce this to below 3 cm which would be necessary to have an effect on the water 

held in these pores. The next larger pore is the micro-pore with a radius of 2.4 nm.  

All of the 1.4% water in these pores is also Type 1.  The Laplace equation confirms 

that pores of this diameter would pull a column of water nearly 9 kilometers long 

which again is expected to be untouchable. 

The Macro-pore has a radius of 0.5 μm.  All of the 1.5% water in these pores is 

also likely to be Type 1.  The Laplace equation suggests that pores of this diameter 

could pull a column of water about 56 meters long.  In the typical wash one could 

expect to lower the surface tension by a factor of 2 or 3 and to have a spin cycle of 

100 to 300 g’s.  The g’s in the spin cycle must be reduced by a factor of 2 to 

account for the random orientation of the pores with respect to the g vector.  Even 

the most aggressive combination of surface tension lowering and spin speed would 

not reduce the column of water sufficiently to affect even the longest fibers.  Thus 

water in these macro-pores is untouchable. 

If the above assumptions for the location of Type 1 water are correct, we have 

accounted for 4.5% of the reported 5%.  A likely source of the remaining 0.5% is 

the water in intimate contact with the cellulose surface of the fibers.  If one 

assumes that water within 2 nm of the surface is fairly tightly bound to the surface, 

it amounts to 0.5%.  This accounts for all of the reported 5%.   

5.2.2 Source of Type 2 and 3 Water 
The next larger pore is the lumen with a radius of 7.5 μm. The Laplace equation 

suggests that such pores could pull a column of water about 2.5 meters long. Given 

typical combinations of surface tension lowering and spin speeds (reduced by half 

for orientation), almost 90% the water contained in the lumen would survive into 

the drying phase.  Thus 19% of the 21% moisture that resides in the lumen would 

survive to the dryer.  Thus the lumen is the likely location of the Types 2 and 3 

water.   
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5.2.3 Source of “Hard to Remove” Water 
Thus all 24 to 25% of the Type 1, 2 and 3 water, which is virtually all contained 

within cotton fibers, were accounted. In Figure 5.3.c and d a scheme represent how 

water can be trapped in fibers during evaporation, after that all “free” water 

evaporates. Fibers are the likely sources of the 20 to 24% “hard to remove” water 

that is distinguished by a falling rate of evaporation in the dryer. This water is hard 

to remove not only because it is more tightly bound to the cellulose surface than 

bulk water but also because most of it has to diffuse through the cellulose fiber 

wall to be removed.  

5.2.4 Water Carried Over from Washer to Dryer 
The next problem is to understand the source of the 80% water that survives the 

wash and needs to be dried.  The above analysis seems to assure us that Types 1, 2 

and 3 water survive into the dryer and is likely the moisture that is removed during 

the falling rate of evaporation.  Thus we can account for 24% of the 80%.  From 

photomicrographs we can ascertain that the space between cotton fibers is 20-30 

μm.  These “pores” would also trap water via the Laplace mechanism but this water 

would be expected to be easier to remove in the dryer since it does not have to 

diffuse through cellulose to do so.  There are about the same number of these pores 

as lumens and because of their larger radius they contain almost twice the water.  

Assuming 80% of this water survives the wash gives us about 34% extra fibrillar 

water that when added to the Types 1-3 water gives a total of 58% which is 

reasonably close to the stated 60%. 

In conclusion cotton can apparently hold about 80-60% of its own weight of water 

tightly enough to survive the washing machine. In addition it can hold water up to 

5 times this amount between fibers, threads and yarns which is removed during the 

spin of the wash cycle.  Of the 80% carried over into the dryer – 56% does not 

have to diffuse through cotton to evaporate and thus dries fairly easily.  The 

remaining 24% that is held in the lumen and in small pores is harder to remove and 

correspond to the total bound water value suggested by Caurie for cotton
250

.  The 

5% of water that is held in non-lumen pores and within a couple of nm of the 

cotton surface can be removed if sufficient heat is applied in the dryer – but it 

returns when the cotton is exposed to normal temperature and humidity. 
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5.3 Surfactant retention in fabrics after rinsing 
The present section focuses on the dilution of detergent during clothes washing. 

Here is exposed a calculation about the concentration of detergent during washing 

cycle, considering two cases: the best situation, in which clothes fibers do not 

retain any detergent, and the worst situation, in which clothes retain all the 

detergent that pass through the fibers. 

The following calculation can be applied to all different kind of laundry washer. 

This paper takes in account the mean water per load value of front load and top 

load models, to give a generic evaluation; this value for standard cotton program at 

40°C consists in 50 liters, 25 liters for the first wash and the other 25 for the second 

wash. The average washing machine uses less than 10 liters of water for every 

kilogram of cottons it washes. A 7kg capacity machine loaded at 80% is considered 

(load weight 5,6 kg). To calculate the amount of water inside the fibers, density of 

cotton and the void volume fraction inside clothes have been investigated (see table 

5.1).  

                         ∗             (36) 

                                                 (37) 

Table 5.1: Mass and volume values in laundry.  

Load Mass  80% of 7kg 5600 g 

Load Density  1 g/cm
3
 

Load Volume Density*Mass 5600 cm
3
 

Void Volume 70% of Load 3920 cm
3
 

Fabric Volume 30% of Load 1680 cm
3
 

 

The last information needed is about the detergent concentration. Again a mean 

value can be carried out from the manufacturer’s suggested soap amount (50 ml). 

So the detergent concentration is about 0.2% in the first washing. In this condition 

we examine two cases: 

The best situation, in which clothes fibers do not retain any detergent.  
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The concentration at the end of the first wash is again 0.2%. Hence, in 4 liters of 

moisture retained in the clothes after the first wash there are 8 ml of detergent. The 

latter is diluted in the second wash to a concentration of 0,03% (8ml in 29l), so in 4 

liters of moisture there are 1,2 ml of detergent. After rinsing we can consider that 

80% of moisture remain in clothes, so there are 3,2 liters containing 1 ml of 

detergent. 

The worst situation, in which clothes retain all the detergent through the fibers. 

According to Kim and Hsieh
253

 and Schott
254

, cotton fibers retain 0.3% of 

detergent; it means that in the 4 liters of moisture absorbed by the loads, since 

detergent concentration is 0.2% (i.e., less than 0.3%)  all the detergent stays in the 

fibers, even after the second wash. Rinsing leaves 80% of moisture from clothes, so 

we have 3,2 liters of moisture with 6 ml of detergent. During drying only water 

evaporates from clothes, so the concentration grows while water content decreases. 

We can suppose that, at a value of 10% of the moisture content inside the clothes, 

the detergent concentration grows to 2%. 

5.3.1 Corrective parameters for Temperature and RH 
Drying experiments in cotton fabrics, as presented in section , have a duration of 

several hours and were carried out in different boundary condition, due to the 

season and the weather of the day in which were run out. Figure 5.4 show how RH 

and temperature changes over a day; similar changes occurs over an year with the 

change of seasons. So long, all the experiments shows a different drying rate value, 

due to the boundary condition of RH and temperature. 
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Figure 5.4 Relative humidity and temperature changes during the day. §Courtesy of the 

American Meteorological Society 

In this section a corrective parameter to overrun this problem were proposed. 

When two experiments (1 and 2) having different boundary conditions need to be 

compared, one of them (1) was taken as a reference while the other one (2) was 

multiplied point by point by the corrective parameters.  

Corrective parameters: 

 KT = λ
1
ev/ λ

2
ev = T1/T2 [K/K]  

 KRH=RH1/ RH2  

 K=KT * KRH 

where λ
N

ev is the latent heat of evaporation, TN is the mean temperature expressed 

in Kelvin, and RHN is the mean relative humidity for the experiment N in the time 

interval considered. This linear relation was verified for small changes in 

temperature (20-27 °C) and relative humidity (34-51%). In Figure 5.5 the drying 

curves for DEMI water in cotton before and after the scaling were reported. 
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Figure 5.5 Drying curves of water in cotton fabrics. Raw data on the left (T and RH range 

for all the experiments) were compared with data scaled by using corrective parameters, on 

the right (T and RH of the experiment used as reference). 

After scaling, experimental curves were used to calculate a mean curve; standard 

deviation was found and represented in graph by error bars as shown in Figure 5.6. 

 

Figure 5.6 Mean drying curves of water in cotton fabrics (red) and in a Petri dish (black), 

on the left; same mean drying curves for NaLAS 5% in water (T and RH range for all the 

experiments), on the right. 

As can be noticed observing Figure 5.6, the data scaling for the NaLAS 5% 

solution was not necessary, so the room condition ranges was reported. There, due 

to the consistent amount of surfactant used in the solution, the RMC formula (10) 

were slightly changed, considering the bone-dry weight wi as a sum of the dry 

cotton weight with the NaLAS weight. Again the present data confirms the 

previous results that solutions in a cotton fabric dry faster than in a Petri dish. 

5.4 Determination of the Critical Moisture Content 
The drying process in cotton fabrics, as discussed in section 2.3.1, shows two main 

regimes identified by the change in drying rate of the drying curve, as can be seen 

in Figure 5.7.  
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Figure 5.7 Drying curve, on the left, compared with the Relative Humidity changes in time, 

on the right. 

The two periods of a fabric drying cycle has been identified, characterized by 

drying rate changes. After the preheating, there is a constant rate period followed 

by the falling drying period. The Critical Moisture Content θk at the beginning of 

the falling drying period will be the separating point between the two periods. A 

big issue in this work was to develop a method to identify the critical point that 

separates the Constant Drying Rate period by the Falling Drying Rate period. The 

first approach regards the observation of the RH variation near the sample in time; 

as can be seen in Figure 5.7, when the drying rate falls because of the sensible 

reduction of the water content, the RH value goes down. This evaluation method 

provides with θk equal to 10% wt and is not dependent by the boundary conditions 

of temperature and RH. It can be noticed that the RH decreasing is not 

instantaneous and so this evaluation can’t give a precise value of the regime 

change. Thus the values of θk were identified by plotting the instantaneous drying 

rate versus RMC or versus time, as shown in Figure 5.8. 
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Figure 5.8 On the left: typical drying curve. On the right: plotting of punctual drying rate 

versus time and RMC double axis for cotton fabric. 

The θk can be identified from the curve as shown in Figure 5.8 at the point of 

dramatic decrease of the drying rate. The determined value of θk for fabric samples 

is comprised between 24 and 40 % depending on the boundary conditions. In the 

mean drying curves of water and NaLAS 5% in cotton fabric are showed.  

 

Figure 5.9 On the left: mean drying curves in cotton fabrics as reported in Figure 5.6. On 

the right: punctual drying rate versus time for the curves on the left. 

The θk values were calculated for the mean curves and for the raw data curves at 

different environmental conditions. Plotting all experimental curves for water in a 

RMC range from the θk value to the end of drying, as reported in Figure 5.10, show 

that all data collapse on the same curve in the falling rate period. In the same 

figure, the falling rate phase of some surfactant solutions at different concentration 

is shown, highlighting that there is a collapse also for surfactant concentrations 

below the 1%, while the 5% concentrated solutions has a different curvature. 
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Figure 5.10 On the left: water drying curves in a cotton fabric at different boundary 

conditions in a RMC range from θk to 0. On the right: same drying curves for different 

surfactant solutions. 

For better understand this change in curvature that happen in the cotton fabric 

sample, the drying curve of the lone 5% concentrated solution were compared with 

water, as shown in Figure 5.11. 

 

Figure 5.11 On the left: mean drying curves in Petri dishes as reported in Figure 5.6. On 

the right: punctual drying rate versus time for the curves on the left. 

While drying proceeds,  surfactant concentration increases. Effect of concentration 

on surfactant structures formations can be seen in Figure 3.2. A correlation 

between the drying rate and the surfactant concentration can be observed in Figure 

5.12. 
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Figure 5.12 Na LAS concentration increases in time during drying. 

Starting from a concentration of 5%, a first change in curvature can be seen near 

the 20% value, at which the first lamellar phase Lα appears; the next change can be 

noticed near the 40%, where probably multiple lamellar Lα* and micellar L1 phases 

organizes one with the others; near the 65% value only lamellar phases are present; 

finally, as expected, the drying ends near the 80% value, before the concentrated 

region, were the 20% of water present is trapped between the surfactant structures. 

5.5 Correlation between capillary drying and cotton 

fabrics drying 
The estimation of the drying rate of a liquid evaporating inside a capillary 

tube is made observing a time lapse of images and measuring the meniscus 

shifting over time; it gives back a drying rate value as a fraction between a 

length and a time. On the other hand, the drying rate of a liquid evaporating 

inside a cotton fabrics, placed in a Petri dish, was estimated by monitoring 

the weight loss of the sample over time. In order to connect these two 

values, a conversion parameter is needed. The capillary tube sample is taken 

in account, being the simplest of the two systems. The boundary conditions 

considered are a temperature value of 25°C and a relative humidity value of 

40%. A capillary tube is basically a cylinder with defined radius r. 

Considering now a unitary length h along which the meniscus moves with a 

certain drying rate in a defined time, the cylinder volume can be determined 
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avoiding to mention the complex meniscus shape. The equation to calculate 

the cylinder volume is shown in Figure 5.13. 

 

Figure 5.13 On the left: water density changes with temperature; on the right: cylinder 

geometrical parameters and volume formula. 

So, in a capillary tube having the diameter of 100 μm (0.1 mm) the 

meniscus moves 1 mm. The volume of liquid evaporated is 0.00785 mm
3
. If 

the evaporating liquid is water, which at room temperature (25°C) has a 

density of 997.05 kg/m
3
 (9.97x10

-4
 g/mm3), the water weight that 

corresponds to the volume of liquid evaporated is equal to 7.83x10
-6

 g; a 

change of ±5°C in temperature gives a change of ±0.01x10
-6

 g; the value at 

37°C is equal to 7.80x10
-6

 g, with a density value of 993.37 kg/m
3
, as shown 

in Figure 5.13.
255

 Taking into account the previous explanation, in a 0,1 mm 

diameter capillary filled by water, 7,88x10
-6

 g (1.006 mm) of water 

evaporates in 82,87 minutes, giving a drying rate of 9,51x10
-8

 g/min. The 

drying rate in a cotton fabrics sample having the apparent area of a 35 mm 

diameter disc (109,96 mm
2
) is 2,65x10

-3
 g/min. The ratio CDr between the 

drying rate of the cotton fabrics sample and the drying rate of the capillary 

tube is CDr = 27918. 

In order to confirm this value, the cotton fabrics in the Petri dish is imagined 

as it will be composed by a defined number of 0.1 mm diameter capillary 

tubes; the capillary tubes have a length of 3 millimeters, equal to the depth 

of the cotton fabrics, like if the tubes were placed vertically one near the 

other, as schematized in Figure 5.14.  
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Figure 5.14 In A) a Petri dish filled with water is imagined as it will be composed by a 

defined number of micro-capillary tubes, each one having a meniscus with a contact angle 

equal to 90° to reproduce the flat surface; in the same way, in B) a wet cotton fabric is 

imagined to be composed by a number of micro-capillary tubes with a contact angle of 33°. 

So the ratio between the cotton fabrics water content (0,66 g) and the water 

contained in a single capillary tube (2,35x10
-5

 g) would give back a value 

CW, equal to the number of capillary tubes that compose the cotton fabrics: 

CW = 28169. Finally, we can come out with a scaling parameter between the 

cotton fabrics and the capillary tube, equal to C = CDr = CW = 28000. 

5.6 The role of surface in drying process 

5.6.1 Meniscus Surface Evaluation in a Capillary Tube 
The meniscus of a liquid within a capillary tube may be approximated with a 

geometric surface called elliptic paraboloid. Once calculated the surface of that 

paraboloid, the main goal is to evaluate how this surface changes with the 

modification of the contact angle between the liquid and the capillary wall. The 

equation
256

 to calculates the surface is as follows: 
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In this formula, the area of the base (the upper disc closing the surface) is not 

included. Is important to notice that the surface area S is equal to the base area B 

for h = 0 or, in other words, when the contact angle is 90°. The variables in this 

equation are the radius r and height of the meniscus h; these value can be 

calculated from the equation of the parabola with which the contour of the 

meniscus were approximated. The radius calculation is particularly simple since 

it’s constant along the capillary; the height instead can be measured directly being 

the distance between the center of the paraboloid and the contact points of the 

meniscus with the capillary wall. These values can be easily calculated with the 

help of a computational software. Once the contact angles were calculated, the next 

step is calculate the meniscus surface for each angle, as shown in Figure 5.15.  

 

Figure 5.15 3D meniscus shape and surface changes with contact angle variations. 

The paraboloid obtained with a contact angle of 30° have an area 42% larger than 

the base area corresponding to a contact angle of 90°. A decrease of the angle 

increases the surface of the paraboloid. Oscillations around 30° angle of 1° means a 

surface increase of 260 µm
2
 (2-3%). The higher the contact angle, the lower the 

increase in terms of surfaces, as can be appreciated from the curve on the right in 

Figure 5.15. 

5.6.2 Surfactant effect on Meniscus Surface 
The present section illustrates the results of a set of experiments in order to 

evaluate the changes in drying rates of a solution inside a capillary tube modifying 

the solutions composition. In particular, three NaLAS solutions at different 

concentrations were tested. Using a time lapse microscope, the drying of the liquid 

meniscus inside a silica capillary tube (100 µm diameter) at a constant temperature 
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of 38 °C were observed; the drying rates were evaluated following the meniscus 

receding in time and the results are resumed in Figure 5.16. 

 

Figure 5.16 Drying rate changes in 100 µm capillary tubes depending on NaLAS surfactant 

concentration. 

As a fact is necessary to consider that the Critic Micellar Concentration of the 

NaLAS is ~480 ppm. Taking the pure water test as a reference, it can be observed 

that a really low surfactant concentration gives a decreasing of the drying rate of 

the 30%. This decreasing effect fall off but persists at a higher concentration below 

the CMC value. In the solution having a concentration 4 times higher the CMC, the 

increase of the drying rate is about the 22%; So the micellar structures appears to 

be the cause of the drying rate increase. A typical experiment is shown in Figure 

5.17. 
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Figure 5.17 Time lapse microscopy observation: Drying rate changes in 100 µm capillary 

tubes depending on NaLAS surfactant concentrations. Red bars underline the final 

difference in drying rates. 

For what has been told in the previous sections, a correlation between contact 

angle, meniscus surface and drying rate has been observed (Figure 5.18). 

 

Figure 5.18 NaLAS concentration, contact angle, meniscus surface and drying rate 

correlation. 

So, for small value of void degree, the increase of surfactant concentration 

generates a decrease in contact angle that means a larger meniscus surface; that 

provide a larger interfacial area that make the liquid drying faster. Evaporation rate 

decreases with the increase of the void degree. Evaporative regime turns in a pure 
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diffusive regime with the increase of the void degree because of the increase of 

vapor concentration near the meniscus; that explain also why surfactants has no 

effect on evaporation process, as can be seen in Figure 5.19.  

 

Figure 5.19 Drying rates for different NaLAS concentrations in the same conditions of 

Figure 5.18. 

It proves that the drying rate for low void degree is related to the interfacial area. 

Results show that NaLAS affect the interface by lowering the contact angle; the 

gain in surface area that results, increase the evaporation rate. It should be specify 

that the considered system is in semi-equilibrium conditions, being the contact 

angle at a static value, not a dynamic value. 

5.7 Marangoni Effect 
Marangoni effect, as mentioned in section 2.3.2.1, has a role in the drying process, 

due to the concentration gradient that generates in presence of surfactants. 

Rhodamine-B in water acts like a tensioactive molecule; like any surfactant, has a 

Critical Micellar Concentration, equal to 3 ppm in water. The huge difference in 

CMC between Rhodamine-B and NaLAS is due to the molecule length: being 

Rhodamine-B a smaller molecule, it has less steric obstacles in organizing in 

structures.  

 



Drying of Porous Media. The Case of Cotton Fabrics. 

5.Discussion 

117 
 

Figure 5.20 Rhodamine-B chemical structure. 

Micro-fluidic visualization techniques were used to investigate the concentration 

gradient near an evaporating meniscus. Similar procedures can be find in 

literature.
257-259

 A Rhodamine-B/water solution (0.1% wt.) were observed by 

Confocal microscopy in a 100 µm diameter capillary tube. Figure 5.21 shows a 

higher concentration of the tensioactive molecules in the meniscus region, due to 

the temperature gradient generated by the drying process, being the concentration 

directly proportional to the intensity of the fluorophore emission. 

 

Figure 5.21 Concentration gradient visualization in a capillary tube. 



Drying of Porous Media. The Case of Cotton Fabrics. 

6.Conclusions 

118 
 

6 CONCLUSIONS 
“The greatest ideas are the simplest.” 

W. Golding 

6.1 Summary 
In conclusion this project is addressed to improve the current understanding of the 

cloth drying process with a potential impact on energy saving in home laundering. 

The results of this project could be also relevant for the commercial laundry 

industry and to clothing and fabric manufacturing. The project approach was to 

identify limiting steps in the drying process of cotton fabric. The rate limiting 

transformations of water removal were experimentally investigated by measuring 

the amount of residual moisture in a cotton swatch preliminarily soaked in water 

and by optical observations through confocal microscopy and reflected light 

imaging. Our results show that drying is faster in a cotton fabric as compared to a 

dish filled with water with the same area of the fabric during the constant rate 

phase (CRP). This somehow unexpected finding can be explained by the increased 

water-air interfacial area in the swatch due to the presence of the cotton fiber 

microstructure. Therefore, the area for mass transport is larger in the swatch than in 

a flat water surface, thus increasing the drying rate. CRP drying rate in fabrics is 

enhanced by surfactants in a concentration-dependent way. Both these effects can 

be explained by a decrease of the contact angle and an increase of the interfacial 

area induced by the surfactant as shown by a single capillary model. In the falling 

rate phase (FRP) all the drying curves overlap showing negligible effects of 

surfactants on drying rate. Both CRP and FRP can be qualitatively explained in 

terms of a porous medium description of fabric microstructure by considering the 

yarn as the base element. Moreover, evaporation in a porous media can be 

modeled, considering a single pore, with a capillary tube, void degree being a 

controlling parameter in the evaporation process. In evaporative regime, interface 

area is a controlling parameter of evaporation process and surfactants in diluted 

conditions can increase evaporation rate. In the near future the key role of 

temperature and RH will be investigated. This work provides an explanation of the 

limited increase of drying rate obtained by addition of surfactants; the main 

conclusion is that interfacial agents capable to increase the water surface area in the 
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fabric should be selected in order to speed up the drying process (rather than using 

surfactants in order to modify water-fibers interactions). 

 

6.2 Future Work 
Experiments with some instruments, like the TAM, were just at the beginning and 

much more can be done testing other textile. Time-lapse confocal microscopy can 

be used to map the water surface in a yarn in order to come up with a more 

quantitative description of the drying process. Other additives (salts, hydrogen 

bond breakers) can be tested to improve drying in the falling rate region. The 

fundamental understanding developed  in this work can be applied to other relevant 

problems where a material exhibiting a porous microstructure interacts with a 

liquid phase. Examples of these applications include packaging and powder 

stability, interactions between detergents and (stained) fabrics, interactions between 

body parts (hair, skin) and commercial products. 
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8 APPENDIX 
“Be content with what you have, rejoice in the way things are.  

When you realize there is nothing lacking, the whole world belongs to you.” 

Lao Tsu 

8.1 Conferences 

- D. Donnarumma, G. Tomaiuolo, S. Caserta, S. Guido, “Essiccamento in mezzi 

porosi”, Convegno GRICU 2012, September 16-19, 2012, Montesilvano 
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media” COST MP1106 WORKSHOP 21-22 March 2013, Prague (Czech 

Republic).  

- D. Donnarumma, G. Tomaiuolo, S. Caserta, S. Guido, “Gas-liquid multiphase 

flow through porous media” 14th international conference on petroleum phase 

behavior and fouling 10-13 June 2013, Rueil Malmaison (France).  

- D. Donnarumma, G. Tomaiuolo, S. Caserta, S. Guido, “Multiphase flow 

through porous media” DICMAPI WORKSHOP 9 July 2013, Naples (Italy). 

- D. Donnarumma, G. Tomaiuolo, S. Caserta, A. Perazzo, S. Guido, “Flow 

through porous media at the gas-liquid interface” 27
th
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- D. Donnarumma, G. Tomaiuolo, S. Caserta, S. Guido, “Liquid flow in porous 

media” COST MP1106 WORKSHOP 13-14 November 2013, Cargese 

(France).  

8.2 Experience in other laboratories 

- “TA Instruments TAM Perfusion Training”, at the Thermal Laboratory, 

Pomezia Plant, Procter & Gamble Italia S.p.a. – P&G supervisor: Vincenzo 
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Gamble Italia – P&G supervisor: Vincenzo Guida. 4-7, 11-14, 24-28 october, 

20-25 november, 5-7 december 2011 
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- “A way to smart Europe” COST MP1106 TRAINING SCHOOL 23-25 April 

2013, University of Twente, Enschede (the Netherlands). 

- “Multifuncional textiles based on hybrid coatings and nanoparticles” COST 

MP1105 WORKSHOP 17 September 2013, Naples (Italy).  


	1 INTRODUCTION
	1.1 Sustainability and innovation in laundry
	1.1.1 Carbon Friendly Dryers
	1.1.2 Low-Carbon Detergents
	1.1.3 Energy Efficient Laundry Process

	1.2 Research objectives
	1.3 Textile as Porous Media

	2 Theoretical background
	2.1 Flow in Porous Media
	2.1.1 Porous Media Structure
	2.1.2 Wettability and Contact Angle
	2.1.3 Capillarity Effect Inside Pores
	2.1.3.1 Capillary Rise
	2.1.3.2 Surface Tension vs. Contact Angle


	2.2 Drying Process in Porous Media
	2.2.1 Transport Phenomena
	2.2.1.1 Heat Transfer


	2.3 Modelling Drying Process in Fabrics
	2.3.1 Air/water transport phenomena in porous media
	2.3.1.1 Linear Heat Transfer Modeling for CDR Period
	2.3.1.2 Non-linear Modelling for FRD Period

	2.3.2 Modeling Evaporation in Capillary tubes
	2.3.2.1 Marangoni Effect



	3 Experimental section
	3.1 Materials
	3.1.1 Aqueous Solution
	3.1.1.1 Hard Water
	3.1.1.2 Surfactants

	3.1.2 Cotton Fabrics
	3.1.3 Capillary tubes

	3.2 Methods
	3.2.1 Gravimetric Analysis
	3.2.1.1 Analytic Balance
	3.2.1.2 Dynamic Vapour Sorption

	3.2.2 Thermal Activity Monitor
	3.2.3 Microscopy Techniques
	3.2.3.1 Confocal Microscopy
	3.2.3.2 Time-Lapse Microscopy

	3.2.4 Image analysis
	3.2.4.1 Meniscus Displacement
	3.2.4.2 Contact Angle Evaluation



	4 Results
	4.1 Drying in Cotton Fabrics
	4.1.1 Gravimetric results
	4.1.1.1 Water Hardness
	4.1.1.2 Surfactants
	4.1.1.3 Surfactant and Hard Water


	4.2 Drying in a Capillary Tube
	4.2.1 Meniscus Displacement
	4.2.2 Contact Angles

	4.3 Topography of Cotton Textile
	4.3.1 Imaging by CLSM
	4.3.1.1 Visualization of fabric microtomic slices
	4.3.1.2 Water Layer Visualization on Cotton Surface

	4.3.2 Reflected Light Macro Imaging


	5 Discussion
	5.1 Cotton Fiber Structure and Porosity
	5.1.1 Fibers and Lumens
	5.1.2 Macrofibrils and Macropores
	5.1.3 Microfibrils and Micropores
	5.1.4 Elemental Fibrils and Elemental Pores
	5.1.5 Crystal Fibrils and Crystal Pores
	5.1.6 Cellulose Polymers and Polymers “Pores”

	5.2 Distribution of Water in Cotton Fabrics
	5.2.1 Source of Type 1 Water
	5.2.2 Source of Type 2 and 3 Water
	5.2.3 Source of “Hard to Remove” Water
	5.2.4 Water Carried Over from Washer to Dryer

	5.3 Surfactant retention in fabrics after rinsing
	5.3.1 Corrective parameters for Temperature and RH

	5.4 Determination of the Critical Moisture Content
	5.5 Correlation between capillary drying and cotton fabrics drying
	5.6 The role of surface in drying process
	5.6.1 Meniscus Surface Evaluation in a Capillary Tube
	5.6.2 Surfactant effect on Meniscus Surface

	5.7 Marangoni Effect

	6 Conclusions
	6.1 Summary
	6.2 Future Work

	7 Bibliography
	8 Appendix
	8.1 Conferences
	8.2 Experience in other laboratories
	8.3 Workshops and Training Schools


