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INTERCONNECTIONS WITH AUTOIGNITING STRUCTURES. 

by Diego SCARPA 

 

Turbulent non-premixed combustion has a particular relevance since in 

common devices involved flows are inevitably turbulent and separated before 

their injection in combustion chambers.  

In particular, non-premixed combustion can be viewed as a three stage 

process of stirring, diffusion and ignition spanning the full spectrum of space-

time scales of the flow. 

In particular, an exact description of stirring phenomena is given by the 

location of the interface between the flows. 

The related scales of the passive scalar transport has also been the main 

topic of numerous publications, but there are still open questions related to 

mixing-relevant flows. 

The main purpose of this thesis is to show that enucleating the stirring 

process from the mixing process is one of the most convenient way to face with 

this problem and that the quantitative assessment of some related stirring 

characteristics is feasible on one side as well as sufficient to describe the mixing 

pattern on the other side. The selection of some “critical” quantities to be 
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evaluated on the interface for their exploitation in a mixing characterization 

should include also significant Lagrangian quantities. 

Moreover, the ignition processes involved on the interface results strictly 

interconnected with the advected-surfaces evolution.  

Therefore the evaluation of the stirring/mixing quantities lays the 

foundation for a sequentially-structured approach to characterize non-premixed 

combustion flows. 

In this context, a description of the autoigniting structures in term of 

gaseous diffusion flames seems to be useful. 

 

Keywords: Stirring, Mixing, Lagrangian surfaces, Autoignition.  
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Chapter 1 

Introduction 

Turbulent combustion has been long considered a paradigm for multi-scale 

problems and has long been identified as one of the important problems to 

solve, hence the increasing interest from the computational and applied 

mathematics communities. 

In particular, non-premixed combustion can be viewed as a three stage 

process of stirring, diffusion and ignition spanning the full spectrum of space-

time scales of the flow. 

In particular, an exact description of stirring phenomena is given by the 

location of the interface between the flows. Gaseous diffusion flames and their 

characteristic scales have been object of numberless studies which give a 

reference framework for an exhaustive evaluation of many well defined 

problems. The related scales of the passive scalar transport has also been the 

main topic of numerous publications, but there are still open questions related 

to mixing-relevant flows. This is quite evident for transitional flows for which 

“full” Eulerian characterizations of fluid dynamic patterns are available, but for 

which a fully Lagrangian characterization in partially traced flows is still 

missing. In particular the category of flows which are on the border of the 

technological feasibility of the “full” characterization are the dominion of  

forefront open questions. “Full” characterization is used in this thesis to refer to  

characterizations which are in the class of Direct Numerical Simulation (DNS) 

or High resolution Imaging in the case of experiment field. In both case the 

maximum level of resolution allow to reach a minimum scale for an Eulerian 

characterization which  generates also classes of mixing flows which need higher 

level of resolution. This is the case for incipient chaotic flows in which the 

distances of mixing layers, undergoing multiple folding, can be much smaller of 
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the minimum grid/pixel size used in the “full” characterization of extended  

not-uniformly distributed parts of the flow. Many experimental and numerical 

studies show such behavior when residence times are long. For instance in the 

2-D visualization this has been observed in the fusion of the material surfaces 

inside a single pixel. 

The coupling among small characteristic length scales, their not uniform 

distribution and their not steady distribution suggest the need both of using  

adaptive grids for the simulation of such mixing field and, above all, of finding  

a way to localize them. The main purpose of this thesis is to show that 

enucleating the stirring process from the mixing process is one of the most 

convenient way to face with this problem and that the quantitative assessment 

of some related stirring characteristics is feasible on one side as well as 

sufficient to describe the mixing pattern on the other side. More specifically, 

stirring characterization means characterization of interfaces, which in turn is 

the discontinuity locus between traced and not-traced flows. This means that it 

is a surface for a 3-D flow and it is a line for a 2-D flow. In this respect the 

interface is a way to infer a dimensionality reduction more than a simple 

feature extraction. Therefore, a very detailed  description of the interface, also 

with higher resolution than that used in the Eulerian characterization of the 

flow, can be achieved  with the same computational/data collection limitation. 

The construction of the interface for a given Eulerian assigned pattern has to 

be considered a sort of manifold learning process rather than a simple 

sequential decoupled numerical evaluation since it can be obtained starting 

from a sufficiently dense velocity data base obtained with whatever procedure 

(experimental or numerical) rather than a result data set obtained from a 

numerical model. Finally it is worth of anticipation as introductive remark that 

the selection of some critical quantities to be evaluated  on the interface for 

their exploitation in a mixing characterization should include also significant 

Lagrangian quantities since the mixing layer  increase along the time according 
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to well established laws. As matter of fact the conditional determination of 

these Lagrangian quantities on the Eulerian interface make this “measurement” 

an Eulerian-Lagrangian quantity. For example a residence time of a point on 

an interface is the residence time of the trajectory which intersect the interface 

in a fixed point, at fixed time. 

In Chapter 5 all of these characteristics are presented in sequence, with 

their definition and the difficulties related to their conditional statistical 

determination. Their relevance in the mixing characterization is discussed in 

sections downstream of their effective single-event and statistical 

determinations obtained on a 2-D transitional flow, which has been selected as 

test case to analyze complex statistical evaluations. This has been preliminary 

characterized by means of Eulerian experimental and numerical quantities, 

presented in Chapter 3 and 4 respectively, which yield equivalent statistical 

measurements. Then a dense spatial temporal data base, experimentally 

verified, of velocity components of one flow selected on the ground of the length 

scale broadness is exploited for the generation and characterization of the 

interface. Finally the most significant statistical functions are presented and 

commented in the perspective to be representative of the mixing process and, 

also when restrictive simplifications are assumed, to be the ground for the 

formulation of mixing models in low-pass filtering model as Large Eddy 

Simulation (LES). Definitions of the less conventional quantities (like interface 

and intermaterial surface) are given in the next Chapter 2 together with more 

common definitions (conserved variable, mixture fraction). 

Moreover, the ignition processes involved on the interface results strictly 

interconnected with the advected-surfaces evolution.  

Therefore the evaluation of the stirring/mixing quantities lays the 

foundation for a sequentially-structured approach to characterize non-premixed 

combustion flows. 
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In this context, a description of the reactive structures in term of gaseous 

diffusion flames seems to be useful. 

In particular, the analysis of the elementary reactive diffusion layers that 

can be obtained in the lamellar structures related to the interface will be done 

considering autoigniting systems. Specifically, in MILD Combustion conditions 

some behaviors different from those obtained in standard combustion 

conditions has been observed. In these low    processes, in fact, the reactive 

zone seems to be represented by a “layerlet” structure. 

These aspects will be clarified in Chapter 5 in relation to a specific 

autoigniting structure characterized by means of unsteady counter-flow 

diffusion flames. 

The main purpose of the project is to make a DNS of air flowing in a 2-D 

channel with particles injected at the first contact point between two jets and 

develop a Lagrangian method for investigating data generated by DNS and the 

particle tracks in MATLAB. The particle tracks should reveal transitional 

structures that can be analyzed. The goal is develop the tools needed to obtain 

the fully kinematic characterization and the statistical modelling of interfacial 

surfaces. 

As the main focus is to develop the method to investigate the data 

generated the choice of different models will not be dealt with at any deeper 

level. As such simulations will be performed using “best practice” guides and 

conventional and well tested simulation methods. The validity of DNS will also 

not be investigated in depth but generally taken to be able to represent reality 

correctly for the purposes at hand. This is not to say that motivations for the 

choice of DNS will be completely left out or that an analysis of the validity and 

appropriateness of DNS will not be conducted at all for instance, but it is not 

the main focus. Furthermore, the topic of simulation methods in terms of 

different code packages will not be dealt with at all. 
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Chapter 2 

Definitions 

2.1. Conserved and material variables 

A variable is conserved if it obeys a source-free balance equation; i.e. it is 

relative to a quantity which cannot be created or destroyed, but only convected 

and diffused. This statement is expressed in differential form according to the 

following equation, reported with classical notation as it can be found in many 

basic text books [1,2] 

 

 
  

  
         (     )        (2-1) 

 

in which   represents a conserved variable per unit mass. 

According to basic physical principles, the total energy and the total mass 

are conserved. In contrast, the energy associated with a single species or the 

mass fraction of species are not generally conserved, because they can be 

converted in other forms of energy and in other kinds of molecular species, 

respectively. Other examples of conserved variables are the mass of an atomic 

species, if atomic reaction can be neglected, or the quantities, which are not 

conserved in principle, but which do not undergo significant conversions in 

specific cases (for instance inert species in complex reactive systems). 

Conserved variables peculiar to the combustion field are obtained as a 

linear combination of some non-conserved variables. They are described as 

“coupling functions” or Schvab-Zel’dovich variables [1,2] and are generally used 

as a combination of mass fractions of the whole fuel and oxidizer, which can be 

thought as reacting in a single step and in a fixed stoichiometric ratio. 
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Generalization of this kind of coupled-conserved variable also can be obtained 

for multi-component media and for combination of molecular species and 

formation enthalpy. In the latter case a free-source conservation equation of the 

total enthalpy (including of sensible and formation enthalpies) is considered. 

A normalized form of a conserved variable can be defined, in terms of a 

mixture fraction, as 

 

  
      

      
        (2-2) 

 

where subscripts  ,  ,    stand for local, fuel and oxidizer, respectively. 

Therefore, corresponding conserved variables (  ,   ,    ) are defined at all 

points of mixing flows (subscript  ), in the unmixed fuel flow (subscript  ) and 

in the unmixed oxidizer flow (subscript   ), respectively. It is of interest to 

note that: 

 

 the definition is also used when the two streams are diluted with inert 

species; 

 the values of the mixture fractions, referred to different conserved 

variables, are equal when they diffuse with the same rate. 

 

Mixture fraction ( ) complies with the same conservation equation of any 

conserved variable ( ), since they differ for fixed quantities, (   (      )⁄ ), 

disappearing in the differentiation and for a factor,  (      )⁄ , which can be 

neglected because it is present in all the terms of the conservation equation. In 

other words, Equation (2-1) applies also to the mixture fraction when the 

symbol   is changed with symbol  . 



 24 

The sum of the first two terms in Equation (2-1), divided by the density, is 

designated in the literature as material or substantial derivative. It is cited in 

the following as    ⁄  and it defines a “material” variable,    when Equation 

(2-1) can be written as 

 

   

  
 
   

  
              (2-3) 

 

An example of material variable is the mass fraction of a tracer, which we 

discuss in the next section. 

2.2. Tracers 

A tracer is defined as an inert substance, uniformly dispersed in part of the 

flow, in such a weak concentration that the thermal and fluid-dynamic 

evolution of the flow is not altered [3]. 

In agreement with [4] the tracer should not only be non-diffusing, but 

should also be transported at mean field velocity. In this way the tracer’s mass 

fraction,   , will be constant in time, and therefore the material derivative of 

   will be zero. 

It is quite difficult to produce this kind of tracer under experimental 

conditions, in order to seed a gaseous flow, also because the tracer cannot be a 

gas, as gases, by definition, diffuse. Neither can the tracer be a solid particle of 

such large dimensions to be unable to immediately respond to accelerations in 

the average flow. In effect the only tracer, having features which are close to 

those described in the definition above, is a particle for which       [5] and 

for which         [6]. A particle, for instance, between     and      is 

sufficiently large in dimension to ensure that Brownian diffusion is low, but it 

is sufficiently small to immediately follow a flow. At times the term “tracer” 
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refers to a diffusive substance (generally featuring a molecular diffusion 

coefficient equal to the mean coefficient of the substances into which it must 

diffuse). In such cases it is always better to specify “diffusive tracer” in order to 

avoid any ambiguity between this and the initial definition. Finally, it is 

necessary to specify that, in theory, the injection of a tracer into a known flow 

field is a very simple concept because every particle of the tracer follows the 

trajectory of a massless point. In practice the integration of the material 

derivative (     ⁄ ) in time can present problems associated with the possible 

chaotic evolution of the trajectories [7]. This is true too when the flow field is 

well defined as in laminar fields. This behavior is designated Lagrangian 

turbulence [8]. 

2.3. Reference surfaces 

2.3.1.  Eulerian surfaces (interface, isosurface) 

When a non-diffusive tracer is introduced into part of the flow it determines an 

interface. This is the surface of the flow where the concentration of the tracer is 

discontinuous, that is where it passes from zero to a finite value on an infinitely 

thin surface. In other words, an interface is the place of the points in space 

where     is infinite. 

Examples of interfaces are shown in Figure 2.1 [9]. They are obtained by 

seeding the central part of a 2-D plane jet with      sub-micronic particles. 

The concentration of the particles is measured by means of elastic light 

scattering. White corresponds to an area in which the tracer concentration is 

zero. Black corresponds to an area in which the tracer concentration is equal to 

that fixed at injection. It is interesting to note that the tracer substance 

concentration in a material volume cannot, by definition, vary in time. 
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Figure 2.1.  Interfaces sequence of a transitional isothermal jet (after Cavaliere 1995). 

 

If the resolution, through which the spatial dispersion of the tracer is observed, 

is limited, the concentration itself seems to change point by point and even the 

interface appears as a continuous variation of the tracer concentration. It is 

also possible that, in practice, the tracer concentration is so weak that its 

presence is hardly detectable. This happens when the tracer is transported in 

filamented structures so thin that its continuous distribution does not occur. 

Despite these experimental difficulties, the interface is a characteristic of the 

dispersion of one gas into another which is easily measurable, because it 

possesses a clearly Eulerian nature. In fact, it is possible at any time to obtain 

a measurement without worrying about the intricate Lagrangian evolution of 

the particles. 

Usually the term stirring is applied to the process that leads to extension 

and dispersion of the interface, in as much as diffusion processes are not used 

because stirring is purely convective. 

Isosurfaces, or iso-level surfaces [10,11], are surfaces on which scalars are 

constant. For the sake of brevity in this thesis, isosurfaces will be referred to 

the scalar mixture fraction,  . 
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2.3.2.  Lagrangian surfaces (material, intermaterial) 

Surface is considered material when it is made up of points identified by a 

tracer. In other words a surface is material when it follows a material evolution 

[11]. Consider, for example, a 2-D surface at time    as it is sketched through 

its linear section in Figure 2.2a. 

 

 

Figure 2.2.  (a) Example of material surface evolution. (b) Schematic of intermaterial surface 

evolution. Two material surfaces are selected on the interfaces at time    and    (after 

Cavaliere 2001). 

Every point of the surface follows a definite trajectory. At time   all these 

points together will make up a new surface which besides being translated and 

rotated is also extended or contracted. In the aforementioned figure material 

surfaces are sketched starting from a surface arbitrarily fixed at the point   . In 

theory a material surface cannot became discontinuous even if in practice its 

detection can be subject to the limits already discussed in conjunction with the 

interface. Surface stretching is defined as the temporary evolution of the surface 

area [3]. The stretch ratio, or   , is the ratio between the material surface area 

at time   and the area at time   , for which 
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  ( )

  (  )
        (2-4) 

 

The stretch rate     is the relative change of the stretch ratio,    

 

    
 

  
           (2-5) 

 

The surface stretch rate is linked to the velocity pattern of the flow, in which it 

evolves, by the following kinematic relationship: 

 

                   (2-6) 

 

where   and   are the normal unit vector and the velocity vector of the surface 

  , respectively. This expression can be read in an heuristic way as the 

difference between a volumetric stretch,    , and a linear one,    , bearing in 

mind that the stretch rate is additive by virtue of its logarithmic nature. The 

definitions of volumetric     and linear     stretch rates and their kinematic 

expressions are given below for completeness 

 

    
 

  (  )
 
 

  
  ( )          (2-7) 

 

    
 

  (  )
 
 

  
  ( )            (2-8) 

 

It is also possible to demonstrate [3] that 

 

                    (2-9) 
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where    and    are the projection of the velocity vector   on the surface    

and the modulus of the projection    along the normal to the surface, 

respectively,    the divergence operator on the surface    and       its 

curvature. This last expression shows that the stretch rate consists both of a 

contribution related to the “planar divergence” of velocities on the surface and 

of a contribution related to the surface curvature. 

An intermaterial surface is a material surface defined at time    on the 

interface. In general intermaterial surfaces of practical interest are those 

partially limited by the first contact point (or line). By first contact point (or 

line) we mean the point (or line) of the interface through which the tracer 

passes with the shortest residence time. In a jet, for instance, the first contact 

line is the border of the jet's exit orifice. In fact all the possible interfaces, 

obtained by plotting the jet, pass through the side of the jet's orifice at 

residence time of practically zero. In the opposite jets configuration the first 

point of contact is the stagnation point. 

An example of an intermaterial line is shown in Figure 2.2b. The same 

lines, used as example of material surface sections on the left side, are shown 

again together with the interfaces at time    and   , sketched as red lines 

between the seeded (black) and unseeded (white) flows. 

2.3.3.  Eulerian – Lagrangian surfaces 

Interfaces and isosurfaces are here defined “progressive” when they refer to 

tracers which are injected at the inlet boundary after a fixed reference time,   . 

They are easy to be envisaged from a conceptual view point, but difficult to be 

evaluated by means of numerical models or experimental techniques. 
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In the DNS of a planar 2-D flow, given in Figure 2.3a, a species A, which is 

injected at an average velocity          ⁄  into an external flow, B, which 

proceeds with average velocity           ⁄ . 

 

 

Figure 2.3.  (a) Sequence of progressive isosurfaces (solid contour on the left of the vertical 

lines) and of progressive interfaces (dotted lines). (after Cavaliere 1995). (b) Linear 

extension of progressive interface (line 1) and isosurfaces (line: 2 at       , 3 at       , 

4 at      , 5 at        ) section versus residence time. 

 

Details, concerning the flow configuration can be found in the original article 

[9]. The point of interest is that at time    non-diffusive massless particles are 

injected at the boundary in the rim which separates the two flows and they are 

convected downstream. The interpolating curve, shown as a solid line, 

determines the progressive interface at times      . 

This surface is Eulerian because it is part of an Eulerian surface, i.e. an 

interface, and it is Lagrangian because it is bounded on one side by the tracer 

which is injected at time    and which proceeds towards the outlet. This border 

line (or point, as in the 2-D example) can be defined as “leading line” (or point) 
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at a generic residence time,  . The progressive interface always increases, with 

time, by definition, but the increasing rate depends on the stretch to which it is 

submitted. Its extension, in the example given here, is reported in Figure 2.3b 

as a function of time with the line tagged “1”. 

The progressive isosurfaces of the example reported in Figure 2.3a can be 

approximated by the part of isosurfaces, which are upstream of the leading 

point of the flows, i.e. on the left side of the thick line which crosses this point 

perpendicularly to the main flows direction. They refer to a fixed mixture 

fraction, approximately corresponding to the stoichiometric value of a large 

paraffin – air flame, i.e.       . This is a relevant value, because it refers to a 

mixture fraction in the peripheral part of the mixing layer. The extension of 

the progressive isosurface with time is reported in Figure 2.3b as line “2”. This 

overlaps the progressive interface up to time     showing that the extension of 

the two surfaces is identical. It then increases at a slower rate for reasons that 

will be clarified below. One of this consists in the fact that progressive 

isosurface may undergo an annihilation process when two parts of it merge into 

each other. 

Curve “3”, “4” and “5” (referred to progressive isosurface at mixture fraction 

      ,       and       ) show similar behavior with respect to that 

relative to        with different splitting time at which they separate from 

the progressive interface. The splitting time of the surface at        is also 

marked on the abscissa with     because of its relevance in mixing classification, 

which will be presented in Chapter 5. 

Progressive interface and isosurface are quantities, which only recently have 

been defined, and their experimental evaluation is not extensively documented. 

However, it is clear that the difficulty in their measurement lies in their 

Lagrangian nature. In fact, the detection feasibility of the progressive isosurface 

depends on the possibility of injecting non-diffusive and diffusive tracers 
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starting from the arbitrary time   . This is a difficult task if the transition, 

from absence to presence of tracer, has to be ensured at the same time on the 

whole inlet boundary. Furthermore, the tracer injection at the inflow boundary 

can interfere with fluid-dynamic inlet conditions and it cannot be anticipated 

upstream of the boundary without pre-stirring or pre-mixing the traced and 

non-traced flows. Techniques based on smoke wire devices or on photochromic 

tracers, that change their physical/optical properties when crossing a light 

sheet on the boundary, are possible candidates to generate identifiable 

progressive interfaces and isosurfaces. 

2.3.4.  Surface evolution 

It is possible to define various important quantities, that results very useful for 

the theoretical description of material surfaces [12]. Surface weighted value     

of whatever quantity is defined according to Equation 2-10 with respect to a 

generic surface   : 

 

         (2-10) 

 

         (2-11) 

 

where      is the local value of the quantity   with respect to the surface   . 

Moreover, ensemble average quantities  ̂ are defined in the Equation 2-12, 

as the expected value of     

 

         (2-12) 

 

Similarly to surface weighted value, is possible to define respectively volume 

weighted average (   ), local (    ) and ensemble quantities ( ̃). 
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         (2-13) 

 

         (2-14) 

 

         (2-15) 

 

The local surface-to-volume ratio   is defined as the ratio between the 

infinitesimal surface area    with respect to the infinitesimal volume   . 

 

         (2-16) 

 

The volume-average of     is defined in Equation (2-17). 

 

 

         (2-17) 

 

The expected value of    , at fixed Eulerian position, is here named as 

“interface density” ( ) and it is defined by Equation (2-18). 

 

(2-18) 

 

It is important to underline that interface density   is conceptually different 

from the flame surface density     firstly Z introduced for the coherent flame 

model [13] and then identified by other authors [14], with the stoichiometric 

iso-surface      . 

A physical interpretation of  , is that its inverse is a striation thickness 

[15]. The striation thickness is related to the amount of area between the fluids 
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[16]. This quantity can be interpreted as a structured continuum property; 

thus, if the surface is multiply folded so that locally it appears like parallel 

planes (i.e. the structure is lamellar and uniform), then the mean distance 

between the planes is    . This quantity is useful in describing mixing with 

diffusion and reaction [17]. 

Interfaces are determined by means of a non-diffusive tracer that is 

introduced into part of the flow. With respect to this fact, a local tracer volume 

fraction is defined is defined by Equation (2-19) as the local ratio of a non-

diffusive tracer volume      with respect to the infinitesimal volume considered 

  : 

 

(2-19) 

 

Analogously to interface density; also for the tracer volume fraction is possible 

to define respectively volume averaged (    ) and ensemble quantities ( ): 

 

 

(2-20) 

 

(2-21) 

 

It is worth noting that the volume fraction   is directly related to the 

concentration of the tracer in the considered volume. In particular, a unit value 

of   would correspond to a cell full of tracer, while a zero value would indicate 

that the cell contained no tracer. 

Finally, it is possible to define a characteristic length for the stirring process 

( ), as the inverse of the ratio between the quantities previously defined: 
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           (2-22) 

 

Analogously to interface density and volume fraction; also for   is possible to 

define respectively volume averaged (   ) and ensemble quantities ( ): 

 

(2-23) 

 

(2-24) 

 

  is named here as “interface extension” and represent a measure of the mean 

thickness of the interface. This quantity allows to unify, in a fascinating way, 

concepts on mixing and atomization. In fact, the interface extension is a sort of 

analogous of the Sauter mean diameter for the atomization process [18].  
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Chapter 3 

Methodological approaches 

3.1. Experimental approach 

The main features of a model experiment, which should keep the main 

characteristics of a turbulent mixing pattern, are the following: 

 

 Low dimensionality; i.e. the final target of a quasi-2-D, time dependent 

fluid-dynamic pattern. 

 Small range of length scales of fluid-dynamic structures; i.e. low    so 

that the fluid-dynamic pattern can be described both by full numerical 

simulation and 2-D imaging. 

 Perturbation of the pattern that should be able to generate high level 

of velocity gradient. 

 

This latter requirement conflicts with the second one. In fact high velocity 

gradients related to high level of vorticity imply large velocity scales, whereas 

low    requires low value of velocity. A possible way of satisfying both 

conditions is the superimposition of a strong perturbation with small-length 

scales on fluid-dynamic pattern. Also the perturbation has to be quasi-2-D and 

space-periodic in order to keep the advantage obtained by the dimensional 

reduction. An experimental apparatus, sketched in Figure 3.1, has been 

designed with the purpose to satisfy the aforementioned conditions. The test rig 

used in this work was built to reproduce the stirring/mixing characteristics of 

gaseous jets under the perspective of the theoretical analysis of the problem. 
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Figure 3.1.  Sketch of the experimental apparatus. 

 

The test section of the system is a glass windowed channel with            

cross-section, designed to operate at atmospheric pressure and environmental 

temperature conditions. 

In order to face the difficulty previously mentioned, the first requirement of 

the experimental flow to be investigated was fulfilled by choosing a flow 

configuration which is 3-D planar symmetric. The feeding system of the gaseous 

flows was designed in order to achieve both a high degree of turbulence level 

control and repeatability of inlet conditions. Design process has been strongly 

guided by feasibility criteria [12]. In addition, the design of the mixing test was 

such that both the building of the experimental apparatus and the numerical 

simulations were possible and meaningful. In this respect the most important 

features were considered to be the turbulent and 3-D character of the flow, as 

well as the choice of well defined, stable and easy to implement boundary 

conditions. A further characteristic, i.e. the spatial periodicity of the flow, is 

quite desirable in a numerical simulation of the fluid-dynamic pattern. A 

honeycomb (reported in Figure 3.2), formed by square channels with a cell size 
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of     , is used to obtain the desired fluid dynamics conditions in the test 

section. 

 

 

Figure 3.2. Details of the feeding configuration. 

 

This structure has    channels along the  -direction and    channels in the 

other one. Therefore, the cross section of the test duct has a very large aspect 

ratio (  ). The length of any duct (     ) is much larger than its width 

(   ) so that self-similar velocity profiles can develop. Furthermore the duct 

widths are small enough to ensure that, for the employed average velocities, 

relatively low    are obtained and laminar Poiseuille-type flows can be 

reasonably supposed to develop in every duct of the honeycomb structure. This 

means that natural boundary conditions are used. Moreover, the fact that the 
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cross section of the test duct has a very large aspect ratio (     as reported 

in Figure 3.3) permits to have transitional/turbulent flow conditions in the 

main test chamber. 

 

 

Figure 3.3. Frontal view of the chamber. 

 

Finally, in order to control the streak-lines roll-up process, the ducts in the 

central row of the honeycomb structure are independently fed with a seeding 
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flow and the airflow velocity can be varied independently from the velocity in 

the other ducts. 

Special care is devoted to assure an even distribution through the remaining 

ducts. The test section of the experiment is a rectangular channel, made of 

optical grade glass in order to have optical accessibility on all the four sides 

(see Figure 3.1). 

In order to analyze the stirring characteristics, interfaces from two flows 

have been generated by means of some devices later described. In this case, the 

diagnostics problem is the same [19]. 

It consists of detecting the concentration of some tracers, which could be 

submicron particles produced by various types of methods. 

For this reason, the generation of the interface is obtained by seeding the 

central part of the flow with submicron particles. The seeding particles are 

illuminated by a laser light sheet perpendicularly crossing the test chamber 

allowing for interface identification as the discontinuity in the 2-D laser light 

scattering intensity due to the discontinuity of the tracer concentration. 

It is worthwhile to note, that the type of particles, for which      and 

     , is the only possible choice of tracer in a gaseous system [4]. A particle, 

for instance, between     and      is sufficiently large in dimension to ensure 

that Brownian diffusion is low, but it is sufficiently small to immediately follow 

a flow.  

Moreover, intensity of the scattered light, as a direct measure of particle 

size has always been plagued with difficulties, as detected intensity is 

dependent on so many other parameters of a flow system (e.g., trajectory of 

particle through a shaped beam/sheet, obscuration of incident and scattered 

light, extinction), despite some early attempts to remove the necessity of 

calibration [20]. There is also the basic difficulty that, in the Mie scattering 

range, the intensity is not monotonically dependent on particle size. 
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For the previous reasons, the central gaseous flow was seeded with      

particles with a mean diameter of     , that correspond to an optimum 

between the not-diffusing tracer condition and an acceptable scattered light 

intensity. 

In this work it has been chosen to disperse the particles in the airflow by 

means of an ad-hoc realized elutriator based on a fluidized bed device [21], This 

solution allowed for the homogeneous dispersion of particles in the airflow and 

for a satisfying concentration of seeders. 

A satisfying characterization of the interface requires the implementation of 

several on-line diagnostic systems. 

The optical characterization of the surfaces is performed by recording the 

pattern of the light elastically scattered when a laser sheet illuminates the 

tracer. The Nd:YLF pulsed laser was tuned on the second harmonic wavelength 

(          ) and its beam was shaped by a set of cylindrical lenses to a sheet 

of constant thickness. It was varied in height by the extension of the objective 

field. Patterns of elastic scattered light was detected by a CMOS camera with a 

variable-focus telescope. Since each pulse is in a different frame, there is no 

directional ambiguity for the velocity vectors. The time and space scales were 

limited by the laser thickness and the tracer production time and therefore are 

not sufficient for measuring any range of length scales. Nevertheless, they are 

smaller than interface separation distances and the residence time needed to 

characterize the prototypal flows presented here. A shadow-graphic scheme has 

been adopted to collect images of the jets, with a proper system of lens. The 

pulsed laser frequency is        , the digital camera acquire            

           frames at        , and a BNC delay generator has been used for 

time base generation and synchronization. For each test condition a set of      

frames has been collected. 

The diagnostic apparatus mainly consists of three units: 
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 Laser LDY Nd:YLF double head, (        ), maximal frequency of 

       and output Energy (at       and at        per laser head per 

pulse) of      . 

 Camera NanoSense MkIII. Maximal resolution                 . 

Maximal frame rate        . 

 A BNC 575 delay generator that manage the time base generation and 

synchronization between the devices. 

The use of a laser sheet source (Nd:YLF Laser), already available in the 

laboratory, allow collecting shadowgraph of the turbulent flow, and so a more 

detailed description of interface behavior should be achieved. 

A 2-D double-pulse PIV system with cross-correlation estimation, which 

was manufactured by Dantec Dynamics, is used for the instantaneous 

measurements of velocity field. The PIV system consists of the aforementioned 

laser (Litron Lasers LDY302), software Dynamics Studio 3.14, a high-speed 

camera with a        Nikon standard lens, a synchronizing timing hub, and a 

personal computer for data acquisition. 

As said previously, the central flow is seeded with neutrally buoyant      

particles of nominal mean diameter     . Based on a bulk average velocity of 

    ⁄  (model scale) the Stokes number for these particles is             , 

ensuring accurate flow tracing. Since each pulse is in a different frame, there is 

no directional ambiguity for the velocity vectors. 

Turbulence statistics are computed using      frames to assure the 

statistically stationary results. Reliabilities of PIV measurements are estimated 

to be      and    for mean and root-mean-squared (rms) fluctuating 

velocities, respectively, through the repeated experiments. The particle density 

in the working fluid is set to give an average of    particle images in each 
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            interrogation window. Images for PIV were acquired at a rate of 

      and the digitized images are cross-correlated using a recursive 

rectangular grid algorithm, which uses       and then       interrogation 

windows to find the mean pixel displacement. A Gaussian peak fit is used to 

determine the location of the cross-correlation peak to sub-pixel accuracy. Post-

processing comprises a standard deviation filter to remove spurious vectors, 

followed by an interpolation to fill any empty locations and a Gaussian 

smoothing. All measurements reported in this article were made on the mid-

plane of section. 

The flow field was investigated in the regions downstream of the test-

section inlet. The  -coordinate is aligned with the main flow direction. 

Spatial averaging across the light sheet thickness is intrinsic to PIV, and 

consequently the thickness of the light sheet is a limit on spatial resolution in 

measurement of 3-D flows. 

Flow visualizations and PIV measurements have been conducted under 

various conditions, which differ only for the seeding flow velocity. In these 

conditions, the flow is rapidly accelerated from laminar state to a transitional 

flow. 

3.2. Numerical approach 

As stated above the purpose is to simulate air flowing in a 2-D channel at 

  ̅̅̅̅      , the channel being       in length and         in width, the 

specifications of the channel previously investigated by Giancarlo Sorrentino 

[22]. The DNS simulation will resolve all the scales and individual transitional 

structures can therefore be identified. There are two different kinds of methods 

to identify coherent transitional structures (eddies): Eulerian and Lagrangian. 

However, there is no universally accepted method of identifying a coherent 

structure [23,24]. The drawback of the Eulerian methods is that they are not 
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independent of the reference frame, i.e. they are not objective, and as [24] also 

point out, they require the user to effectively chose the thresholds 

discretionally. To solve the problem of frame independence Lagrangian methods 

utilizes particle tracks of tracer particles in order to identify Lagrangian 

coherent structures (LCS). The MATLAB program should be able to identify 

LCS and or identify particles belonging to the same injection. Simulation will 

be performed with the ANSYS computational fluid dynamics (CFD) software 

FLUENT. Furthermore, the large amount of data generated by DNS will be 

analyzed and visualized with MATLAB and ANSYS FLUENT. 

3.2.1.  Basic Fluid Flow Modeling 

In [25] a valuable distinction between modeling and simulating equations is 

made. When modeling a system of equations, the equations are solved for some 

mean or average quantity, say the mean velocity 〈  〉 defined as time average 

[26] at some point   

 

〈  〉( )  
 

 
∫   (   )
  ⁄

   ⁄
        (3-1) 

 

where    is the instantaneous velocity,   is the spatial dimension,   is the time 

and   is the averaging time. In order for the time average to be valid the 

averaging time must be of appropriate length, i.e. much larger than the time 

scale of the fluctuating velocity field and much smaller than the characteristic 

time scale of the large scale flow. On the other hand, a simulation of a system 

of equations means that the instantaneous velocity field is solved directly. 

As the intended study is of phenomena occurring during very short time 

scales, i.e. interactions with single eddies, the solving of average properties will 

not suffice. Therefore we will have to look at simulation techniques. The choice 

thus breaks down to basically two options: Direct Numerical Simulation (DNS) 
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and Large Eddy Simulation (LES) [25,26,27]. The main difference between 

DNS and LES is that the former simulates all scales while the latter models the 

smaller scales and simulates the intermediate and large scales. Because 

conservation equations for mass and momentum perfectly describe laminar flow 

in an inertial (non-accelerating) reference frame and DNS computes these 

directly, all scales of   as well as the time scales are calculated and resolved 

[25,27]. This, together with the huge amount of high resolution data generated, 

but with large computational demand, makes DNS an attractive choice. The 

computational cost of DNS is proportional to     [25,27], however, 99% of the 

demand is devoted to the dissipation range [25]. The dissipation range length 

scale    is according to [27] sixty times the Kolmogorov length scale   

(   ⁄ )  ⁄ , where   is the kinematic viscosity and   is the turbulent kinetic 

energy dissipation rate. 

In the next two sections the mass conservation equation and the 

momentum conservation equations are presented. 

3.2.1.1.  The Mass Conservation Equation 

The equation for conservation of mass, or continuity equation, can be 

written as follows: 

 

  

  
   (  )          (3-2) 

 

Equation 3-2 is the general form of the mass conservation equation and is valid 

for incompressible as well as compressible flows. 

3.2.1.2.  Momentum Conservation Equations 

Conservation of momentum in an inertial (non-accelerating) reference frame 

is described by [28] 
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(  )    (   )        ( ̿)     (3-3) 

 

where   is the static pressure and  ̿  is the stress tensor (described below), 

respectively. The stress tensor  ̿ is given by 

 

 ̿   [(      )  
 

 
  (  )]     (3-4) 

 

where   is the molecular viscosity,   is the unit tensor, and the second term on 

the right hand side is the effect of volume dilation. 

3.2.2.  Modeling Discrete Phase 

After solving transport equations for the continuous phase with ANSYS 

FLUENT, the solution of the CFD computations will be exported as large files 

of data at discrete points in time and space containing velocities to be read into 

MATLAB, where a script created to calculate or integrate scalar values along 

the particle trajectory, allows to simulate a discrete second phase in a 

Lagrangian frame of reference. 

3.2.2.1.  Solution Strategies for the Discrete Phase 

The underlying physics of the Discrete Phase Model (DPM) is described by 

Ordinary Differential Equations (ODE) as opposed to the continuous flow 

which is expressed in the form of Partial Differential Equations (PDE). 

Therefore, the DPM uses its own numerical mechanisms and discretization 

schemes, which are completely different from other numerics used in ANSYS 

FLUENT. Particle tracking is related to an absolute reference frame, which 

coincides with that of the continuous phase. All particle coordinates and 

velocities are then computed in this frame, but being this second phase made 
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up of massless particles dispersed in the continuous phase, the DPM computes 

the trajectories of these discrete phase entities in the absence of coupling 

between the phases. The accuracy of the discrete phase calculation thus 

depends only on the time accuracy of the integration. 

The trajectories of the discrete phase injections are computed without 

impacting the continuous phase (termed an uncoupled calculation). For the 

uncoupled calculation, you will perform the following two steps: 

 

1. Solve the continuous phase flow field. 

2. Compute (and report) the particle trajectories for discrete phase 

injections of interest. 

In an uncoupled approach, this two-step procedure completes the modeling 

effort, as illustrated in Figure 3.4. 

 

 

Figure 3.4.  Uncoupled Discrete Phase Calculations. 

 

3.2.2.2.  Limitations 

The procedure described in the previous section is adequate when the discrete 

phase is present at a low mass and momentum loading, in which case the 

continuous phase is not impacted by the presence of the discrete phase. That 

is, the discrete phase formulation used by the DPM contains the assumption 
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that the second phase is sufficiently dilute that particle-particle interactions 

and the effects of the particle volume fraction on the gas phase are negligible. 

In practice, these issues imply that the discrete phase must be present at a 

fairly low volume fraction, usually less than 10-12%. 

The unsteady-particle discrete phase model is suited for flows in which 

particle streams are injected into a continuous phase flow with a well-defined 

entrance and exit condition. The Lagrangian model does not effectively model 

flows in which particles are suspended indefinitely in the continuum, as occurs 

in solid suspensions within closed systems such as stirred tanks, mixing vessels, 

or fluidized beds. 

Boundedness of planes is not considered during sampling of particle tracks, 

which means that all particle tracks crossing the unbounded plane are sampled. 

3.2.2.3.  Steps of the Discrete Phase Model 

The primary inputs that one must provide for the discrete phase calculations 

are the initial conditions that define the starting positions, velocities, and other 

parameters for each particle stream. One will define the initial conditions for a 

particle stream by creating an “injection”. The initial conditions provide the 

starting values for all of the dependent discrete phase variables that describe 

the instantaneous conditions of an individual massless particle, and, for a single 

injection, include the following: 

 

 position (               ) of the particle 

 

Set the   and   positions of the injected stream along the Cartesian 

axes of the problem geometry in the  - and  -         fields. 

 

 velocities (   ) of the particle 
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Set the   and   components of the stream’s initial velocity in the  - 

and  -         fields. 

 

 mass flow rate of the particle stream that will follow the trajectory of 

the individual particle  ̇  

 

 duration of injection 

 

Set the starting and ending time for the injection in the Start Time and 

Stop Time fields. 

 

For a massless particle, it will only need to define the position of the injection. 

The particle injection velocity is set by the solver equal to the velocity of the 

continuous phase at the injection point. A massless particle is a discrete 

element that follows the flow of the continuous phase. As it has no mass, it has 

no associated physical properties, and no force is exerted on it. Particles are 

injected at specific positions      ( ) inside the domain [        ]  [     ] 

with the same velocity as the fluid at the corresponding position,   ( )  

 (    ) . The integration time step size used to integrate the equations of 

motion for the particle is equal to      [ ], which coincides with the integration 

time step used by ANSYS FLUENT to compute the velocity of the continuous 

phase ( ) . This means that the flow properties will be regarded as being 

constant between time steps. These initial conditions, along with inputs 

defining the duration of the discrete phase, are used to initiate trajectory 

calculations. The algorithm for advecting particles will then be: 

 

1. Create a structured table for each of the position and velocity 

components of particles. 
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2. Load data from a delimited ASCII file for the start time. 

 

3. Because the particles location will typically lie in between mesh grid 

point, calculate velocity components at particle locations by mean of a 

deterministic method for multivariate interpolation with a known 

scattered set of points (Shepard’s method). 

 

4. Calculate the new particle locations by adding the product of the 

length of the time step by the particle velocities at the old location 

(Euler method). Particle positions will be updated, at the end of each 

time step, as the solution advances in time. 

 

5. Terminate trajectory calculations at the point where particles impact 

the "escape" boundary. 

 

6. Perform a linear interpolation injecting a new particle within the range 

of two successive particles when their distance is greater than a specific 

measure. 

 

7. The predicted trajectories and the associated intermaterial surfaces can 

be examined graphically and/or alphanumerically. 

 

8. Load the data file of the next time step and repeat until the final time 

is reached. 

Only the steps related specifically to discrete phase modeling are shown here. 

The procedure above allows us to obtain different flow maps that will be 

discussed in the next chapter. 
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3.2.2.4.  Transient Treatment of Particles 

The Discrete Phase Model utilizes a Lagrangian approach to derive the 

equations for the underlying physics which are solved transiently. Since solving 

unsteady equations for the continuous phase, particles are injected with a Fluid 

Flow Time Step and will always be tracked in such a way that they coincide 

with the flow time of the continuous flow solver. This means that the Discrete 

Phase Model cannot be used in combination with changes in the time step for 

the continuous equations, as it is done when using adaptive flow time stepping. 

Additional inputs are required for each injection. Since Particle Tracking is 

Unsteady, the injection Start Time and Stop Time must be specified. Changing 

injection settings during a transient simulation will not affect particles 

currently released in the domain. At any point during a simulation, you can 

clear particles that are currently in the domain. At the end of the time step, 

particles are advanced to their new positions based on the continuous-phase 

solution. In unsteady-state discrete phase modeling, particles do not interact 

with each other and are tracked one at a time in the domain. 

3.2.2.5.  Method to approximate the particle velocity 

The interpolation method used to approximate the particle velocity is the 

Shepard’s method [29]. The current method is obtained through the CFD and 

inert-particle-tracing simulation. After getting the velocity field, a finite 

number of tracers (     ) (         ) are released at the mixer plane under 

analysis. In steady flow, their trajectories coincide with the streamlines. 

Shepard’s method is a simple form of Inverse Distance Weighting (IDW) 

interpolation. As seen in Figure 3.5,   is the unknown point. The solid circle 

denotes a preset neighborhood that is centered at   and with a radius   . 
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Figure 3.5.  Local interpolation using Shepard’s method. 

 

The value at   is determined by all the supporting points inside the 

neighborhood. 

 

  (     )  ∑     (     )
 
        (3-5) 

 

where   (     ) is the approximation function,   is the number of supporting 

points,  (     ) (       )  are values of the supporting points,    is the 

interpolation weight, 

 

   
  
  

∑   
   

   

        (3-6) 

 

and    is the distance from the     supporting point to the unknown point, 

 

   √(     )
 
 (     )

 
     (3-7) 
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As commonly defined, the weighting exponent   is set as  . The weight 

decreases with the increase of   : normally, the interpolated value is more 

influenced by the nodes closer to the interpolation point, then, with the 

increase of the distance, the influence becomes weaker. Moreover, it has the 

following two additional properties: (1) it is positive; (2) the summation of the 

weights for all the supporting points is equal to 1. 

The physical equations used for the discrete phase calculations are 

described in the next sections. 

3.2.2.6.  Particle Motion Theory 

This section describes the theory behind the Lagrangian discrete phase 

capabilities available in the DPM. Advances in computational fluid mechanics 

have provided the basis for further insight into the dynamics of multiphase 

flows. Currently there are two approaches for the numerical calculation of 

multiphase flows: the Euler-Lagrange approach (discussed in the following 

section) and the Euler-Euler approach. 

The Lagrangian discrete phase model described in this chapter follows the 

Euler-Lagrange approach. The fluid phase is treated as a continuum by solving 

the Navier-Stokes equations, while the dispersed phase is solved by tracking a 

large number of particles through the calculated flow field. The dispersed phase 

cannot exchange momentum, mass, and energy with the fluid phase. 

This approach is made considerably simpler when particle-particle 

interactions can be neglected, and this requires that the dispersed second phase 

occupies a low volume fraction, even though high mass loading ( ̇          

 ̇     ) is acceptable. The particle trajectories are computed individually at 

specified intervals during the fluid phase calculation. 

Solution of the discrete phase implies integration over discrete time steps of 

the equation of motion to yield the particle trajectory. Upon neglecting gravity 
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and Brownian effects, the equation of motion (for the   direction in Cartesian 

coordinates) is 

 

   

  
           (3-8) 

 

which is written in a Lagrangian reference frame. Here,    and      (    ) 

are the position and velocity of the particle, respectively, which, for a massless 

particle, is equal to the velocity of the carrier flow at the position of the 

particle. This equation can be solved by analytical integration. The new 

location   
    can be computed from a similar linear algebraic equation [30] 

 

  
      

       
        (3-9) 

 

where   
  represent particle velocities at the old location. Here, we have 

represented the differential with 

 

   

  
 
  
      

 

  
       (3-10) 

 

Thus, we see that the evaluation of the location at the next time      only 

requires the known location at the instant of time    and its derivatives at   . 

Equation 3-9 is applied when using the Euler method. It is very efficient 

because allows sequential solution one at a time, but it can become inaccurate 

for large steps and in situations where the particles are not in hydrodynamic 

equilibrium with the continuous flow. Note that Equation 3-9 is basically the 

Taylor series of   
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  (   )     (3-11) 

 

where the order symbol   simply means that "left-out" terms have a size 

magnitude of order     (the smaller   , the better). Comparing the above 

Taylor series and Equation 3-9 the analytic discretization scheme has a local 

truncation error of  (   ) , with the local truncation error being the error 

incurred by the approximation over a single step. As time increases, the overall 

error increases. Since the number of calculations is inversely proportional to the 

step size, the actual accuracy of the Euler method is  (  ). 

3.2.2.7.  Boundary Conditions for the Discrete Phase 

When a particle reaches a physical boundary (e.g., a wall or outlet boundary) 

of the geometry, the DPM applies a discrete phase boundary condition to 

determine the fate of the trajectory at that boundary. The available boundary 

condition types are 

 reflect 

The particle rebounds the off the boundary in question with a change in 

its momentum as defined by the coefficient of restitution (see Figure 

3.6). 

 

 

Figure 3.6. “Reflect” Boundary Condition for the Discrete Phase. 
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The normal coefficient of restitution defines the amount of momentum 

in the direction normal to the wall that is retained by the particle after 

the collision with the boundary [31]: 

 

   
    

    
       (3-12) 

 

where    is the particle velocity normal to the wall and the subscripts   

and   refer to before and after collision, respectively. Similarly, the 

tangential coefficient of restitution,   , defines the amount of 

momentum in the direction tangential to the wall that is retained by 

the particle. 

A normal or tangential coefficient of restitution equal to 1.0 implies 

that the particle retains all of its normal or tangential momentum after 

the rebound (an elastic collision). A normal or tangential coefficient of 

restitution equal to 0.0 implies that the particle retains none of its 

normal or tangential momentum after the rebound. 

Nonconstant coefficients of restitution can be specified for wall 

zones with the reflect type boundary condition. The coefficients are set 

as a function of the impact angle,   , in Figure 3.6.  

 escape 

The particle may escape through the boundary. Trajectory calculations 

are terminated and the particle is lost at the point where it impacts the 

boundary (see Figure 3.7). 
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Figure 3.7. “Escape” Boundary Condition for the Discrete Phase. 

 

The DPM makes the following assumptions regarding boundary conditions: 

 

 The reflect type is assumed at wall with both coefficients of restitution 

equal to 1.0 (all normal and tangential momentum retained). 

 

 The escape type is assumed at all flow boundaries (velocity inlets and 

outlet).  
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Chapter 4 

Cross-checking of numerical-experimental procedures 

4.1. Main results and cross-checking 

Some results relative to a reference condition, corresponding to a   ̅̅̅̅       

are reported in the following. The   ̅̅̅̅  is based on the mean velocity pattern in 

the chamber. 

For this case, profiles of interface density have been obtained and they will 

be shown in the following with results of main velocity fields and strain rate 

conditioned on the interface location. The flow visualizations have been 

performed for seeding-flow velocity of       ⁄  while the velocity in the outer 

channels has been fixed to       ⁄ . These values have been chosen to 

reproduce transitional flow conditions into the test section. The pattern on the 

left of Figure 4.1 shows instantaneous representative image of the flow inside 

the test-section, taken in the mid-plane for the reference case. 

 

 

Figure 4.1.  Image of flow inside the chamber with the respective binary and contour images. 
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The image reported in the figure is only an example and is useful to give an 

impression of the great variety of structures, which can be established in 3-D 

flows. 

The visualizations have been obtained by means of a 2-D laser sheet 

technique for detecting the interface. The sequence of consecutive visualizations 

is taken at a       frequency. 

It is here useful to underline that behind this representation there is an 

important hypothesis, namely that for low    the flow field remains almost 2-D 

[32] and then it can be characterized by means of a 2-D diagnostic system. 

In this sense, the cross-check that will be show below is very useful in 

assessing the validity of 2-D assumption. 

An image processing procedure has been carried out in order to obtain the 

interface contour, showed in the right of Figure 4.1, which is located where the 

concentration of the tracer is discontinuous, that is where it passes from zero to 

a finite value on an infinitely thin surface, and to compute some numerical 

indicator of the ongoing of the stirring process. The instantaneous interface 

position is determined from the sharp gradient in the seeding concentration. 

In order to obtain an assessment of the experimental results, a comparison 

with some numerical results is here reported. 

A DNS has been performed in FLUENT 6.3 on a simple flat configuration 

with an adaptive mesh. The geometry consists of a main channel with a ratio 

    of height to length, in which    square channels of      in width compose 

the inflow boundary. In order to create a relatively unstable flow near the exit 

of the channels, the seeding-flow is fed in the central one with a velocity 

approximately   times higher than the others (       ⁄ ). The    in this 

channel is, however, such as to ensure a laminar initial motion (        ). 

Starting from a fixed time, which is conventionally assumed to be equal to the 

value zero, the flow is seeded with massless particles at the tip of the rim which 

separates the central duct with the lateral ducts in correspondence of the first 
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contact point. The trajectory of the particles is simulated using an Eulerian-

Lagrangian approach. In practice the trajectory calculations are performed 

using the local continuous phase conditions as the particle moves through the 

flow. The interpolating curve determines the intermaterial line at different 

times. From this point of view, the interface is defined as a set of particles that 

have same border of the jet confinements. The isosurfaces are instead related to 

the solution of the transport equation on a fixed volume control. In this case, a 

unitary mass fraction is distributed along the points of the input section of the 

small central channel. 

For the flow configuration abovementioned an ensemble of patterns 

obtained from flow visualizations and numerical computations are reported in 

Figure 4.2. 

 

 

Figure 4.2.  Experimental/Numerical comparison of interfaces for a 2-D transitional flow. 
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Blue particles indicate the right interface contour and red indicates the left one. 

The upper row is relative to numerical predictions while the lower one is 

relative to pattern of laser light scattered by a sub-micron seeding. The field of 

view is           . Both numerical and experimental results are reported in 

Figure 4.2 for five selected times. 

It is of great interest to underline that the comparison is quite satisfactory. 

Among the numerical predictions, the agreements are not so good in the high-

convolution zones. Interfaces are quite convoluted, as it is possible to observe in 

Figure 4.2. They undergo a relatively intense stretch rate. The stretch rate is 

sufficient for high level of convolution. Moreover, the interface contour at the 

downstream region in the numerical results is not well identified due to the 

high stretch rate. In general the agreement are quite satisfactory and they 

depict an important assessment of the experimental results. 

A quantitative experimental/numerical comparison for the patterns 

reported in Figure 4.2 has been obtained by comparing the mean velocity 

magnitude profiles conditioned on the interface along the dimensionless axial 

direction (  ⁄ ) for three selected streamwise positions ( ). They are reported 

in Figure 4.3. The mean velocity magnitude has been obtained by means of 

ensemble average of the instantaneous velocity fields. The experimental results 

in Figure 4.3 have been obtained by means of PIV measurements. The 

computed mean velocities along the interface are also shown in Figure 4.3. The 

agreement between experimental and numerical results is quite good. For each 

streamwise position, there are two local maximum in the mean velocity relative 

to the interface position and an increase in velocity through the interface zone 

due to the local stretch. 

Another quantitative cross-check has been obtained by comparing the 

ensemble average strain rate profiles conditioned on the interface along the 

dimensionless axial direction (  ⁄ ) for three selected streamwise positions ( ). 

They are reported in Figure 4.4. 
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Figure 4.3. Cross-Checking of Experimental/Numerical velocity fields conditioned on 

interface location. 
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Figure 4.4.  Cross-Checking of Experimental/Numerical strain rate conditioned on interface 

location. 
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The comparison between experimental and numerical results is quite good only 

for the central plot at         . In this case, the results are qualitatively the 

same. Moreover, for        and        the numerical profiles show a not 

good quantitative agreement with experiments. 
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Chapter 5 

Results 

5.1. 2-D Isothermal characterization of a 

transitional jet in a co-flow configuration 

5.1.1.  Intermaterial Surface Visualization and Topology 

Structure Characterization 

As reported in the introduction, one of the aim of this work is the 

characterization/description and the statistical modeling of diffusive structures 

evolution (and their mutual interaction) in simple and complex flows. In this 

section results concerning 2-D isothermal structures evolution related to a 

transitional jet in a co-flow configuration are presented and discussed. 

Figure 5.1 shows the intermaterial surface evolution related to a 

transitional jet at different simulation times step. Left jet interface is 

highlighted in red, the right one in blue. First of all, it is worthwhile to note 

that with the particle tracking procedure developed in this thesis a full detailed 

characterization of a diffusive structure evolution is achieved. At the first 

simulation time steps (Figure 5.1a), simple diffusive structures can be detected, 

together with the onset of  a vortex structure  formation. At this time, a well-

defined vortex structures and a mutual interaction of   diffusive structures 

(there is no a mutual interaction of interfaces) is absent. At higher time steps 

(Figures 5.1b and 5.1c), as the jet moves forward, well/defined vortex 

structures can be highlighted. Such a structures grow in number increasing the 

simulation time, with the interaction between the two inter-faces that becomes 

stronger. The complexity of a single vortex structure increases with the 

simulation time, in fact. In fact, a comparison between Figures 5.1b and 5.1c 
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highlights that the number of convolution of a single vortex structure increases 

by increasing simulation time. 

 

 

         a           b 

 

                 c)                      d 

Figure 5.1.  Intermaterial surface evolution at different times related to a 2-D transitional jet 

(from top, clockwise direction). 

 

The alternate shedding of vortices on the left and on the right side is also 

observable. Here, the main characteristic is that central jet, delimited by 

interfaces, are embedded inside a vortex structure of the external  flow. 

Finally, Figure 5.1d shows jet interfaces at the highest simulation time step 

of that chosen. As it is possible to note, the number of vortex structures 

increases further. Moreover, structures (and hence, of the jet itself) results 

bigger (in dimension) with respect to that identified at other time steps 
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analyzed. Summarizing, the kinematic evolution of an interface has been 

descripted and it can be schematically portrayed as a sequence of the frames, 

illustrated in Figure 5.1a-d. In the first frame the roll-up of the protuberance 

that evolves from the flow is shown accompanied by a curvature of the 

diffusive layer too. Later on, the single vortex structure starts to convolute. 

The degree of complexity of the vortex structure, the number of convolution 

and the intensity of mutual interaction between the two interfaces will be a 

function of the initial conditions. 

It is important to note from Figure 5.1 that a generic isosurfaces and the 

iso-surface corresponding to the stoichiometric mixture fraction follow the 

interface contour line between black and white regions) in a parallel way. This 

behavior makes reasonable to describe this diffusive layer through the 1-D, 

unsteady, stretched layer [3]. In reality, with respect to this simplified model, 

different factors come into play such as: interaction between contiguous 

diffusive mixing layers; distribution of the stretching along the stoichiometric 

isosurfaces; expansion of gases due to heat release and consequent induced 

stretch distribution; curvature of isosurfaces. All these factors are effective in 

different ways according to the initial conditions of the evolution of the vortex 

or, in other words, according to the thickness of the diffusive layer at the 

moment when folding begins and they have been taken in account in this work. 

In order to reveal more details about the structures detected, the full 

temporal history of the intermaterial surface, starting from the first simulation 

time steps to the end of the simulation, is reported in Figure 5.2 for several 

frames. In this way, a comprehensive overview of all the single structures and 

their mutual interaction can be obtained. In Figure 5.2 the time step increases 

with the lines from left to right. The onset of a single structure formation, its 

temporal evolution with the increasing of its complexity (number of 

convolution), its interaction with other simple structure to form a new 

structure (i.e. 2-D vortex couple structure) can be easily highlighted and 

discussed. 



 68 

 

 

 

 

 

 

 

 

 

 

 



 69 

 

 

 

 

 

 

Figure 5.2.  Intermaterial surface evolution for several time steps. 
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Figure 5.3 shows a zoom of intermaterial surfaces evolution reported in Figure 

5.2. 

 

 

a 

 

b 
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g 

 

h 

Figure 5.3.  Details of Lagrangian coherent structures identified during interface evolution at 

a single time step. 

 

Figure. 5.3a  is related to the first time steps. At this time,  the onset of two 

different single structure (a first related to the right interface, a second to the 

left one) is visible. In Figure. 5.3b such a structures are evolving in two 
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different convoluted vortex structures, even if they are characterized by a very 

small number of convolution. Also the onset of a third vortex structure 

formation (related to the left interface) can be detected. Increasing the 

residence time (Figure 5.3c), the two single vortex structure can be clearly 

distinguished. Such a structures are characterized by a number of convolution  

It is important to note that at this time, the number of convolution of a single 

structure is increased respect to the structure highlighted in Figure 5.3b, thus, 

the convolution number is a function of the time. Moreover, for such a frame, 

the two single vortex structure appear not interacting. Later on (Figure 5.3d), 

the evolution of the two interfaces reveals that such a structures start to 

interact, with the formation of a 2-D counter-rotating vortex couples that 

moves forward toward the outlet section. In more detail, such a new structure 

is due to a coalescence of different single vortex, reflecting the mutual 

interaction of single vortex during interface evolution. 

The formation of other four single vortex structures are clearly visible at 

the jet base. The alternate shedding of vortices on the left and on the right side 

is observable. A comparison between such a structures with that molded 

previously shows that the complexity of a single vortex structure is strongly 

related to the residence time. For a fixed time step, structures that formed first 

are characterized by an higher complexity in terms of number of convolution, 

stretching factor and dimension (generally, a vortex formed first is bigger that 

one just formed) compared to those formed after. Furthermore, analysis of 

Figure 5.3d shows that the first two single vortex structure (interacting) are 

characterized by braids respect to that detected in Figure5.3c. From a 

statistical point of view, a braid is an intrinsic topological feature of a vortex 

structure always formed. However, as highlighted in Figure 5.3d, such a braids 

are well distinguished only after a mutual interaction of co-rotating vortex 

structures associated to the same interface. Figures 5.3e and 5.3f show that, 

increasing the residence time further, the mutual interaction of the two big 

vortex stop (located at the top of the domain) is no longer visible with the two 



 75 

single vortex that move away one from each other. At the contrary, the four 

small vortex at jet base (now more convoluted), start to interact to form a 

macro-vortex structure. Finally, Figures 5.3g and 5.3h describe the evolution of 

the macro-vortex structure. In particular, Figure 5.3h reveals that the mutual 

interaction of the four single vortex structures highlighted previously (Figure 

5.3d) involves the formation of a new structure. In particular, it is possible to 

observe the presence of 2-D counter-rotating vortex couples (located in the 

middle of the domain) within the macro-vortex structure. Moreover, for such a 

frames, a large number of vortex structures are present (for the last frame eight 

different vortex can be detected). 

Analysis of the intermaterial surface evolution describing a transitional jet 

behavior in a 2-D configuration revealed a key feature of the vortex structures 

previously analyzed. For a such a case (2-D), in fact, the nature of the vortex 

structure generated can only formed other vortex structure. 

Summarizing, all the identified structures (2-D) can be categorize as: 

 

 no vortex structure; 

 structure associated with the onset of a vortex structure formation; 

 simple vortex structure with small number of convolution; 

 simple vortex structure highly convoluted; 

 simple vortex structure highly convoluted and with braids; 

 2-D counter-rotating vortex couples structure; 

 macro-vortex; 

 2-D counter-rotating vortex couples structure within a macro-vortex 

structure. 

 

In order to reveal several aspects of Lagrangian coherent structures highlighted 

previously, Figure 5.2 reports  several details of one interface (right) at the 

highest time step analyzed. In particular, different complex vortex structures 
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characterized by different convolution number can be detected, together with 2-

D counter-rotating vortex couples structure varying nozzle distance. The 

presence of such a peculiar structure is due to a coalescence of different single 

vortex, reflecting the mutual interaction of single vortex during interface 

evolution. 

As reported in the introduction, the main purpose of the Ph. D. activities is 

the re-construction of the mixture fraction   starting from descriptive 

parameters associated with the stirring process. Such a parameters are 

interface-conditioned and can be directly obtained from the interface 

spatial/temporal evolution. The approach adopted in this thesis follow a logical 

procedure starting with a quantification of  basic quantities, such as particles 

residence time, to more complex one, ending with the characterization of  . In 

this way, this approach is “systematic” in a hierarchical sense (with a pyramid 

structure), obtaining an evaluation of key descriptive parameters starting from 

an Eulerian fluid phase simulation and then, implementing a Lagrangian 

approach for studying the intermaterial surface evolution from which the 

parameters can be derived; “exhaustive” since the stirring process is descripted 

in full detail. 

 

5.1.2.  Particles Trajectories, Arc length and Velocity Pattern 

Visualization 

Figure 5.4 shows the particles paths for three different particles (randomly 

chosen) along the calculation domain. Particle denominated with “A” in the 

picture is injected before particles “B” and “C”, as well as “B” refers to a 

previous time step with respect to particle “C”. For a comparison, all the 

trajectories are reported in a single picture on the right side of Figure 5.4. 
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First of all, all the trajectories show a similar trend, with particles that 

move forward toward outlet domain, along a “straight” line. A comparison 

between different particles paths reveals that only a variation of particle x-

position along the path is visible.  

It appears evident that a vortex structure, characterizing an intermaterial  

surface evolution, is represented by a set of several particles that at a fixed 

time step are located at different positions in the domain. In other words, 

Figure 5.4 shows that a particle path does not follow the vortex curvature, 

revealing a key feature of the particle trajectories. 

 

 

Figure 5.4.  Particle Trajectories. 

 

Figure 5.5 shows the temporal evolution of arc length for three different 

particles (randomly chosen). Also in this case, all the calculated arc length are 

reported in a single picture on the right side of Figure 5.5. 
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From a comparison of the reported arc length, it is worthwhile to note that 

not depending on the particle ID, all the arc length show a similar temporal 

evolution. In particular, the arc length increases by increasing the residence 

time. Moreover, since the particles are characterized by different velocity values 

and position (it is appears clear from particles trajectories analysis), for a fixed 

particle residence time value, they will be characterized by different values of 

arc length (path length are different). 

Figure 5.6 reports the velocity as function of the polygonal path for three 

different particles (randomly chosen). Top refers to mean particle velocity, 

bottom to the instantaneous one.  

It is worthwhile to emphasize that not depending on the particle ID, 

velocity shows a similar trend respect to the polygonal path. In particular, for 

the first part of the polygonal path the velocity increases for then remain 

approximately constant by further increasing the arc length value. Moreover, 

velocity fluctuations are more evident (higher oscillation magnitude), at the 

first part of the polygonal path. 

 

 

Figure 5.5.  Temporal evolution of arc length. 
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Figure 5.6.  Velocity as function of the polygonal path (top) mean velocity; (bottom) 

instantaneous velocity. 
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5.1.3.  Particles Residence Time 

Figure 5.7 shows the map of mean Particles Residence Time (PRT) on the 

calculation domain. Such a parameter has been evaluated determining the arc 

lenght of the polygonal path of a single particle using the Pitagorean theorem 

and dividing it at each time step by the mean velocity of the fluid phase flow. 

As it possible to highlight from the map, generally, the PRT increases 

(approximately linearly) by increasing the nozzle distance, reaching a 

maximum value at the end of the domain. However, long mean residence time 

have been detected also at the middle of the configuration (right side of jet). 

Such a zone is characterized by a strong vorticity, so that a particle that is 

found in this zone remains more time before leaving it. In this regard, the mean 

PRT could be a first evaluator for vortex structure 

identification/characterization. 

Figure 5.8 reports the pdf of mean Particles Residence Time at different 

monitoring point. In particular, the graphs shown are representative of the 

twenty-five cells located at the middle of the map reported in Figure 5.4. The 

abscissa is the overall residence time scale. 

PDF reveals other aspects of PRT. More specifically, several types of pdf 

can be detected depending on region investigated: uni-modal and bi-modal and 

multi-modal. Uni-modal case is representative of that zones where the 

interfaces interaction is not strong and the vortex structure are characterized 

by a small number of convolution. At the contrary, bi-modal and multi-modal 

pdf of PRT reveals a region characterized by a strong mutual interaction 

between interfaces and higher level of vorticity.  The presence of multi-modal 

pdf can be directly related to an high number of convolution Furthermore, such 

a pdf is connected with longer particle residence time respect to the other pdf 

analyzed. 
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Figure 5.7.  Map of the mean PRT. 

 

 

Figure 5.8.  PDF of mean PRT at different monitoring point. 

 

Figure 5.9 reports the temporal evolution of the arc length ( ), stretch ratio 

(  ) and stretch rate (   ) calculated for three successive particles. Such a 

parameters are descripted in Chapter 2. 
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Figure 5.9.  Arch length, stretch ratio and stretch rate as function of residence time for three 

particles. 

 

The arc length ( ) shows a similar trend for all the three particles considered, 

excepted for some residence time values for which the arc lenght results 

different. More specifically, analysis of arc lenght evolution indicates that these 

points are characterized by an extension/contraction of the intermaterial 

surface. Stretch ratio (  ) increases approximately linearly with the residence 

time. Maximum/minimum of the curve are representative of the interface 

extension/contraction events, respectively. 

Moreover, it is possible to note that    does not increase monotonically, as 

it could expected; instead, a comparison between    and     trend revealed 

that the element of intermaterial surface is subjected also to a contraction. 

5.1.4.  Stretch Ratio and Stretch Rate 

This section reports analysis of stretch ratio (  ) and stretch rate (   ). As 

reported in Chapter 2 such a quantities are of interest since they help in 

characterize the evolution of an intermaterial surface. 
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Consider, for example, a 2-D surface at time t0 as it is sketched through its 

linear section. Every point of the surface follows a definite trajectory. At time   

all these points together will make up a new surface which besides being 

translated and rotated is also extended or contracted. In the aforementioned 

figure material surfaces are sketched starting from a surface arbitrarily fixed at 

the point t0. In theory a material surface cannot became discontinuous even if 

in practice its detection can be subject to the limits already discussed in 

conjunction with the interface. Surface stretching is defined as the temporary 

evolution of the surface area. The stretch ratio, or   , is the ratio between the 

material surface area at time t and the area at time t0, for which    

  ( )   (  )⁄ .  

The stretch rate     is the relative change of the stretch ratio,   , for 

which      (    )   ⁄ . 

Figure 5.10 reports the temporal evolution of stretch ratio (  ) for three 

particles (randomly chosen). 

 

 

Figure 5.10.  Stretch ratio as function of residence time for three particles. 
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It is worthwhile to note that    increases almost linearly with time, so that its 

trend could be described by adopting a straight line fit. The maximum value 

detected for    is about   . For completeness, the map of mean    and its 

PDF are reported (Figures 5.11 and 5.12). A good agreement with experimental 

data obtained by [9] is found. Also, similar PDF have been obtained. 

 

 

Figure 5.11.  Map of the mean   . 

 

 

Figure 5.12.  PDF of    at different monitoring point. 
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Figures 5.13 reports the temporal evolution of stretch rate  for three particles 

(randomly chosen). 

It is worthwhile to note that    remains almost constant with time. Such a 

trend suggests that the deformation of the intermaterial surface for the system 

under investigation is not a function of the time (deformation is not dependent 

of time). 

 

 

Figure 5.13.  Stretch rate as function of residence time for three particles. 

 

For completeness, the map of mean     and its PDF are also reported (Figures 

5.14 and 5.15).  
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Figure 5.14.  Map of the mean    . 

 

 

Figure 5.15.  PDF of mean     at different monitoring point. 

 

Figures 5.16 and 5.17 report the map of the mean stretching (or squeezing) 

factor   √   ̅̅ ̅̅ ̅   ⁄  on the calculation domain. As it possible to highlight from 

the map, the region characterized by an higher vorticity, the value of the 
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stretching factor is maximum and close to  ; in other words such a region is 

associated with a approximately constant stretch rate, with a balance between 

extensions and contraction of the intermaterial surface. 

 

 

Figure 5.16.  Map of the mean stretching (or squeezing) factor. 

 

 

Figure 5.17.  PDF of the mean stretching (or squeezing) factor.  
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Following the logical procedure descripted previously, it is important to remind 

that a 1-D unsteady diffusive layer is described by the equation: 

 

  

  
              (5-1) 

 

This is the conservation equation of the mixture fraction   in non-reactive 

conditions and for constant density. If the initial condition (at       ) is a step 

function the evolution of   can be obtained from the conventional integration 

of  . The integration exploits the so-called Boltzmann variable    √   ⁄  a 

combination of   and  . Adopting the right boundary equation, a solution for   

can be obtained [3]. An approximate expression of the thickness of the 

incompressible diffusive isothermal layer   
   is given by the value of   

corresponding to          or         . This is given by       √    which is 

exactly the quantity by which the   variable is scaled to give the Boltzmann 

variable. Therefore,    √   ⁄     
  ⁄  is equal to   at the center of the 

diffusive layer and is equal to   in the marginal areas where   assumes the 

values of         or         .   
   is defined as the thickness of the diffusive 

layer. It grows in as √    or it moves at speed   √     √  √  ⁄⁄⁄ . 

For a stretched case, the thickness of the diffusive layer is formally the 

same obtained in the unsteady non-stretched case but, in this latter case, the 

diffusive layer thickness    differs from the un-stretched one,   
  , for a 

stretching (or squeezing) factor  . In principle    and the stretching factor can 

be either greater or smaller than   but in general    is greater than   and the 

stretching factor is lower than  . This is the condition that controls the 

possibility of a true mixing of the flows. In fact, the thickness of the diffusive 

layer increases because of the diffusive effects, as it occurs in the un-stretched 



 89 

case whereas the iso-surface stretching around the intermaterial line reduces 

the mixing layer thickness. The same occurs to any structure that evolves in 

the mixing layer. For instance, a diffusion  flame with a finite thickness, in 

which an oxidation reaction takes place, will be stretched in the same way of 

the intermaterial surface. 

Figures 5.18 and 5.19 report the map of the mean    (stretched case) on 

the calculation domain and the PDF of   , respectively. Analysis of the map 

reveals that the highest value of    are present at the right interface, instead 

the smallest values at the left one, suggesting that a more intense vortex 

structure is present in the right region. Moreover,  pdf analysis highlighted that 

such a parameter is strongly affected by interface evolution. The PDF 

associated with the left part of the monitoring region are characterized by a 

Dirac-like behavior, suggesting that at such a zone is associated a well/defined 

value of the diffusive layer thickness ( revealing an absence of a strong vortex 

structure in this zone). 

 

 

Figure 5.18.  Map of the diffusive layer thickness. 
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Figure 5.19.  PDF of the diffusive layer thickness. 

 

Instead, bi-modal PDF of    have been detected for the right part of the 

monitoring region, reinforcing the fact that such a zone is vortex-dominated. In 

fact, since    increases linearly with the residence time, it is plausible that an 

high-vorticity region is characterized by a non-uniform distribution of the 

mixing layer dimension. 

5.2. Unsteady autoigniting layerlet 

In the previous sub-sections, they were shown two important aspects related to 

some limitations of the flamelet approach for turbulent non-premixed flows: 

 

 it is not capable of modeling unsteady effects of ignition; 

 

 flame thickness should be sufficiently small compared to the turbulent 

length scales. 
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Hence if chemistry is slow, i.e. the reaction layer is not thin (for example in 

MILD combustion processes), or unsteady effects are relevant, the flamelet 

assumption is not valid. 

To overcome these limitations, a different approach, named “layerlet”, is 

here adopted [12]. 

A layerlet is an unsteady diffusive layer characterized by a finite value of 

its thickness    (that tends to zero if a layer degenerates into an infinitely thin 

layer). 

Unsteady combustion regimes are of interest for many combustion processes 

because they describe part of the stabilization process. A system with internal 

recirculation is one of the possible examples of unsteady combustion process. In 

fact, heated fuel injected in an exhausted flue gas stream with residual oxygen 

present yields Hot Fuel Diluted Oxidant (HFDO) conditions. Eventually, air 

mixed with an inert high-temperature flow (such as from a recirculated flow) 

yields Hot Oxidant Diluted Oxidant (HODO), which can be mixed with fuel at 

room temperature. Of course, among these exemplificative asymptotic 

conditions, all intermediate and mixed conditions can be created with partial 

preheating and dilution of both streams. 

Some of these configurations, specifically HODF and HFDF, have been 

addressed in this section in unsteady conditions [12], because they can be 

compared directly with the steady results previously presented. 

The analysis has been performed following the same approach. It consists of 

detailed simulations of the thermo-chemical patterns in a dense grid of input 

parameters synthesized in regime diagrams, and it differs from the other 

approaches only in the inlet conditions. Therefore, the results are highly 

comparable with each other, and the discussion on their implication extends 

the previously outlined conceptual framework. 

The study of an unsteady one-dimensional diffusive layer was performed by 

means of the opposed jets configuration. The attention has been focused on the 
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system in which an undiluted air stream is always fed in counter-flow toward a 

nitrogen-diluted methane jet with a different fuel molar fraction   . Three 

types of preheating conditions were established: 

 

 Preheating of the air (room temperature for the fuel), referred to as a 

hot oxidant diluted fuel (HODF) condition. 

 

 Preheating of fuel (room temperature for the air), referred to as a hot 

fuel diluted fuel (HFDF) condition. 

 

 Preheating of both streams with the same temperature, referred to as a 

isothermal (ISO-T) condition. 

 

A structured 2-D mesh, generated with Gambit, was used. It consists of 

       quadrilateral cells with a uniform spacing of       . Velocity inlet 

boundary conditions have been used to define the flow velocity at the fuel and 

oxidant inlets, while outflow boundary conditions were used to model flow 

exits. Numerical analysis has been performed with FLUENT by using, as 

ChemKin-import mechanism, the GRI 3.0 mechanism implemented without the 

    reactions [33]. The flow regime is laminar, so there is no need to introduce 

a turbulence model. 

Simulations have been performed at atmospheric pressure for a      ⁄  jet 

with a fuel molar fraction of                and     ,           , and     

which ranges from      to       . The initial distribution of the mixture 

fraction, velocity, temperature and species mass fractions has been set equal to 

a step function from the inlet values. 

The structure of the reactive zone has been analyzed by an evaluation of 

temperature ( ) profiles as a function of the mixture fraction ( ) along the 
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axial coordinate of the system evaluated on the nitrogen mass fraction, which is 

conserved in the kinetic scheme used in this case. 

The ensemble of the temperature/mixture fraction profiles for each 

preheating and dilution condition allow three relevant characteristic times, 

partially used previously by other authors [34], reported in Figure 5.20: 

 

 the minimum ignition time (    ); 

 

 the temperature-maximization time (    ); 

 

 the stabilization time (     ). 

 

 

 

Figure 5.20.  Characteristic times for         and           . 

 

The minimum ignition time (    ) reported in this thesis is the time at which 

the system reaches a threshold of       above the temperature of the frozen 
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state for the first time, due to heat release. This minimum occurs at a mixture 

fraction defined as the most reactive one (   ). 

The temperature-maximization time (    ) is defined as the time at which 

the peak temperature in the  –  plot is localized at the stoichiometric mixture 

fraction value. Its computation is straightforwardly obtained by the temporal 

evolution of temperature at a fixed mixture fraction. 

Lastly, the stabilization time (     ) is defined as the time at which the 

system reaches its steady-state temporal profiles. It is evaluated by searching 

the maxima of the temperature differences between the current values and the 

corresponding steady-state solutions at fixed times. 

The overall behavior of the unsteady MILD combustion process is shown in 

Figure 5.21. The figure consists of nine plots, which refer to nine selected 

feeding conditions: three for each type of preheating condition at different fuel 

dilution levels. More specifically, the first three plots in the first left column 

refer to the HODF condition with an air temperature of           ; the 

three central ones refer to isothermal (ISO-T) conditions in which the fuel jet 

and the oxidant jet are fed at the same initial temperature (      ); and the 

three plots on the right column refer to the HFDF with an inlet temperature of 

the diluted fuel of       . The choice of such a high temperature is related to 

the use of the results for exemplificative purposes. In fact, at lower 

temperatures, the HFDF condition does not always present ignition for 

different dilution levels. The plots aligned on a single row have the same 

dilution level. The first one is the undiluted case at     , the second row is 

an intermediate dilution case with       , and the third row reports very 

diluted cases (classified as MILD conditions) at        . 
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Figure 5.22.  Temperature profiles with respect to time, which refers to nine selected feeding 

conditions at different fuel dilution levels (                   ). 

 

Temperature versus mixture fraction profiles are reported; in each individual 

plot, the profiles are parameterized for eight values of the time delay (with 

respect to the initial condition) uniformly distributed between      and       

and are color-coded, as shown in the inset. The steady-state profile is also 

reported with pale black line. 

The first plot in the left top corner shows the ensemble of the temperature 

profiles divided into two main sub-sets of profiles. The first ensemble of profiles 

before the ignition is fused into a nearly rectilinear line, which approximates 
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the frozen mixing line. The first (and only) colored profile that clearly detaches 

from the asymptotic lines pertains to the temperature profile evaluated at      

after the initial time. This profile can be considered representative of the 

autoignition process, even though the temperature increase is much higher than 

that used in the definition (      ), which cannot be appreciated in this 

representation because of the choice of temperature scale. The profile reported 

in the figure for        cannot be distinguished from the others and from the 

steady-condition profiles when   is less than    . It is fused with the other 

profiles of the mixture fractions less than    , i.e., the temperature profiles 

show a “jump” when passing from autoignition conditions to the stabilized 

combustion conditions in a temporal range between   and       . 

As matter of fact, a slow shift from the temperature profile at        to the 

temperature profile at       can be appreciated in the mixture fraction range 

greater than    . In particular, at      , the maximum increase of       is 

shown in the figure, and three profiles are distinguishable from each other. 

In the second row of HODF cases, the methane is diluted with nitrogen at a 

molar fraction of       . The general behavior of the temperature profile is 

quite similar to those reported for     , as previously described. The main 

difference is the shift in the maximum at       , which is consistent with the 

shifts observed for stoichiometric mixture fractions, which also shift from      

in the undiluted case to      for the diluted one. Furthermore, the bottom line, 

which represents the frozen mixing condition, is significantly different. It is 

positively curved at      and is nearly straight at       . 

This behavior is due to the influence of the specific heat capacity, which, 

for methane, is more than double that of air. The frozen mixing line is 

straighter for more diluted fuels. In fact, the dilution with nitrogen makes the 
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specific heat capacities similar, and the mixing rule is no longer valid for such 

mixtures. 

Lastly, the ignition time for this partially diluted case is     . Additionally, 

in this case, the isolated curve reported with a green color is distinguishable 

from the other curves whose frozen and steady-state curves are fused. 

The similar behavior described for these two plots is not confirmed under 

the highly diluted condition at        , which is representative of a MILD 

combustion process, reported in the third row of the HODF column. In this 

case, the temperature profiles show a gradual increase in the maximum 

temperature with increasing time, starting from the first profile at      , 

which can be considered representative of the autoignition process. The times 

for the temperature profiles reported in the figure were purposely chosen to 

make the curves distinguishable from each other and uniformly spaced. This 

stresses the slowness of autoignition process, particularly when the profile 

distribution is compared with those in other plots. This comparison is possible 

by virtue of the use of the same times for which the temperature curves have 

been reported for all the plots, i.e., the fusion of the temperature profiles on 

one of the two limit conditions (frozen and steady-state) is itself informative 

when the two times between which the “jump” occurs are identified. This fusion 

of the profiles is the case for the three plots reported in the central column 

(ISO-T), which refers to the three cases in which the fuel jet and the oxidant 

jet are fed at the same initial temperature (      ) so that the frozen mixing 

line is horizontal and straight. The first two plots, at       and       , are 

similar to the corresponding plots on their left in HODF. The temperature 

profiles show a “jump” within the same time range. In contrast, for ISO-T 

conditions, the profile distribution is significantly different under the diluted 

condition at        . The “jump” is observed only under the ISO-T 

conditions, reported in the central lowest plot, whereas the aforementioned 
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“slow graduality” is observed under HODF conditions. A different behavior is 

shown for the hot fuel diluted fuel (HFDF) conditions, as reported in the third 

column on the right in the figure. The most diluted conditions in the lowest 

row show that the early reactivity is due to the pyrolysis process. 

In fact after     , all the temperature profiles show values lower than those 

shown in the frozen profile on the right of      . Then, a positive 

temperature increase is shown in the temperature profile at        for the 

mixture fraction range centered around      . For the less-diluted conditions 

at        and      (in the center and in the top of the column, 

respectively), the pyrolysis region (identified by the zone with temperature less 

than the frozen one) develops over a wider range, and the first oxidation 

activity is shifted toward the stoichiometric values. The plots of the 

combustion regimes, in terms of the maximum allowable temperature increase 

(     ) and inlet temperature of the preheated reactant (   ), are reported in 

Figures 5.22 and 5.23 such that they are outlined for both the HODF and 

HFDF regimes under the steady-state conditions reported previously in this 

section. The pink, red and blue regions represent the feedback regime, the high- 

temperature combustion processes and the MILD combustion processes, 

respectively. It is worthwhile to note that in MILD combustion the process 

cannot be sustained without preheating the reactants. The black dashed areas 

are the transitional regions where the existence of multiple steady states has 

been identified with       values greater or less than          ⁄  , as also 

reported in Figures 5.22 and 5.23. Isolines at the fixed autoignition time, the 

maximization time and the stabilization time have been drawn on these plots 

with solid, dashed and dashed/dotted lines, respectively. 
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Figure 5.22.  Map of the behaviors under HODF conditions for         and    

       . Iso-lines at the fixed autoignition time, the maximization time and the stabilization 

time have been drawn with solid, dashed and dashed/dotted lines, respectively. 

 

         

Figure 5.23.  Map of the behaviors under HFDF conditions for         and    

       . Iso-lines at the fixed autoignition time, the maximization time and the stabilization 

time have been drawn with solid, dashed and dashed/dotted lines, respectively. 
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The autoignition-time iso-lines for the HODF case, shown in Figure 5.22, 

exhibit nearly hyperbolic behavior with an easily identifiable vertical 

asymptote. These iso-lines also exhibit a tendency to become more horizontal 

for inlet-temperature values. 

This tendency, in turn, indicates that      depends only on     in the high-

temperature combustion (red-colored) region, whereas it tends to depend on 

      and     in the MILD combustion (blue-colored) region. The value of      

is less than one millisecond for     values greater than       ; it then increases 

exponentially and attains            for           , passing through 

          for           . 

It is interesting to note that for inlet temperature lower than those on the 

left of the autoignition iso-lines at      , no ignition occurs. This region is 

shown in Figure 5.22 with a dashed blue color, which extends the black-dashed 

transitional area into the high-temperature combustion and MILD regions. 

The maximization times     , i.e., the time required to develop the reactive 

mixing layer in correspondence of the stoichiometric mixture fraction, exhibit 

similar trends and range within the same order of magnitude as the 

autoignition times. 

In contrast, for the stabilization time      , even though their iso-lines have 

similar trends as those of the other two time values, their values are 

significantly higher and always range within the same interval between    and 

     . 

The behavior of the characteristic times for HFDF is different with respect 

to those of HODF. In fact, for HFDF, all of the times are approximately 

perpendicular to the abscissa in the MILD combustion region, which shows 

that all of them can be considered to depend only on the inlet temperature    . 

In contrast, two of the characteristic times, specifically the maximization and 
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stabilization times, bend in the high-temperature combustion region (red-

colored region) in such a way that they are dependent on both     and      . 

Different from the HODF case, the autoignition time is nearly the same 

over the whole studied region, with a slight dependence only on the inlet 

temperature, as indicated by the vertical iso-lines. Similar to the HODF case, 

the overlapping of the steady (feedback and no-combustion zone) and unsteady 

regimes is not perfect in the case of HFDF. The two domains differ from the 

blue dashed area, which partly covers the transitional black-dashed area also 

shown in Figure 5.23. 

The results reported above show that he domains of MILD combustion of 

the unsteady reactive mixing layer are smaller in comparison to the 

corresponding domains under steady HODF/HFDF conditions. The maximum 

ignition delays reported in Figures 5.22 and 5.23 were       and       , 

respectively. None of the regions on the left sides of these autoignition delays 

yielded any transient reactive mixing layers. Therefore, steady MILD 

combustion processes can be stabilized in these regions only if additional heat is 

provided through recirculation or through a piloted source [35]. 

The extensions of the regions that cannot be reached by any autoigniting 

combustion process consist of the black and blue dashed areas in Figures 5.22 

and 5.23. 

Notably, the boundaries of the areas, including the high-temperature 

combustion regions, where a combustion process could be stabilized only under 

steady conditions, are much wider for the HFDF than for the HODF, and they 

closely follow the trends of the characteristic times of the processes. 

The most reactive mixture fraction,    , is always positioned on the high-

temperature side with respect to the stoichiometric mixture fraction for both 

HODF and HFDF. 

The process evolution rate of unsteady MILD combustion is not universal. 

In fact, at least in the two of the analyzed cases, the process evolution rates are 
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just the opposite. In HODF conditions, the overall rates slow down passing into 

the MILD combustion domain as shown by the characteristic times reported in 

Figure 5.21. The characteristic autoignition, maximization and stabilization 

times are all longer than those in high-temperature combustion processes. This 

situation is the opposite for HFDF conditions. The unsteady diffusive 

autoignition is always shorter than those in the corresponding HODF 

conditions. Furthermore, the subsequent part of the process accelerates the 

passage into the MILD combustion domain. 

The autoignition delay times in MILD combustion regimes also vary 

according to external parameters (preheating temperature and dilution level), 

in agreement with the trends presented by previous authors [36,37]. 

In conclusion, it is possible to emphasize that the results reported here 

support the inclusion of an additional property for the characterization of 

MILD combustion, i.e., a property that accounts for the fact that this process 

can be auto-sustained with autoignition. 

Nevertheless, the whole process must be analyzed not only in terms of the 

autoignition time but also in terms of the evolution of the oxidation. The 

presumed slowness of the autoignition process is not universal because it 

depends on which part of the reactants is under the high-temperature 

conditions. 
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Chapter 6 

Discussions and Conclusions 

The first part of discussion is devoted to give relevance to the following three 

points: 

 

a) frame-working different parts of the thesis, in particular those 

presented in sections of methods  and results; 

b) the general common approach of dimension reduction for the 

different sub-process; 

c) the relevance of the DNS-evaluated transitional flow in this kind of 

framework. 

 

a) Concerning the first point (a) it is noteworthy to mention the general 

approach in order to  give prediction of the reacting mixing flows. This is has 

been named MultiSECtioning and it can be described in this way. 

Such strategy could be named “MultiSECtioning” Process Evaluation 

Strategy and it refers also to the intrinsic multi-characteristics of combustion 

processes. The acronym evokes that the procedure consists in sectioning the 

whole process in parts, by means of both geometrical sectioning of the control 

volumes and/or selection of a subset of physical effects, which can be modeled 

and validated when added ones at the time to the process. The sequential 

structure of this approach is shown in Figure 6.1. This strategy has an 

important feature, i.e. it is realistic and quantifiable in its realism. This is not a 

trivial requirement since the validation of high level model is rarely done 

without suitable adjustment of parameters or even adjustment of some of its 

components. In this strategy, the validation has been performed in a 

knowledgeable way by selecting representative samples of cases to be used for a 
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thorough evaluation of carefully selected sub-models sets on the basis of their 

features and of their potential interaction with the model core.  

 

 

Figure 6.1.  Main sequential blocks of the “MultiSECtioning” strategy. 

 

 

The role of interlinking among different sub-processes has to be carefully 

evaluated since it can prevent the isolation of functional dependences on 

controlling parameters that has to be studied by introducing unpredictable 
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feedback mechanisms acting in different ways in physical and numerical models 

respectively.  

The procedure consists in sectioning the whole process in parts, by means of 

geometrical sectioning of the control volumes or selection of a subset of one or 

more physical effects, which can be separately modeled and are, hence, 

separately validated.  

In line of principle only for these sequential processes it is possible to check 

the accuracy of the numerical predictions through the comparison with the 

experimental data “side by side” for the two stages in which the whole 

combustion process has been sectioned. In other words, the validation, made 

separately for the two parts, is sufficient to ensure a reasonable prediction also 

for the whole process. Furthermore also the sensitivity analysis in respect to 

the initial and intermediate parameters is easy to be performed and the 

experimental and numerical results can support each other in the complete 

description of the system. 

Of course, this is true only for sequential processes and in the case each 

single sub-process can be successfully described. 

On the ground of these considerations, a MultiSECtioning methodology has 

been conceived because it allows for the analysis of the influence of single sub-

processes. 

The passage from one part to the other is sketched in Figure 6.1 as block 

diagram and it allows a sequential combination of the separated effects” and 

the appropriate characterization of the field obtained by the introduction of 

new “separated effect”. 

The first part of the procedure is a fluid-dynamic characterization of the 

patterns of interest when not reacting flows are introduced in fixed control 

volume, for fixed boundary-initial conditions, for fixed external parameters. 

The fluid dynamic database, generated in this first step, has to be suitable 

for the characterization of the effects generated by considering the injection of 
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non-diffusing tracers in the control volume. This is reported in Figure 6.1 in the 

block quoted as “stirring”. 

A large part of this thesis work has aimed to the characterization of this 

sub-process,  which in turn yield interface between the two reactants. In 

particular, the identification of these surfaces can be seen as the “sinew” of this 

approach. 

This expression summarizes a twofold concept: 

 

 the characterization of advected-surfaces is the “skeleton” of this 

strategy and it is connected to the other step; 

 the interface identification is the mainstay of this kind of approach. 

The strength of MultiSECtioning is derived from this stage. In this 

sense, the subsequent steps are a consequence of the first one. 

 

In fact, without a good prediction of the stirring phenomena, the whole 

combustion process cannot be analyzed in a correct way. 

In synthesis it is straight in this context to understand that the evaluation 

of the stirring characteristics correspond to the first part of the  sequential 

steps  briefly listed.  In some respect the recognition  of such MultiSECtioning 

strategies is the motivation  to investigate the details of the stirring, but it is 

part of the  conclusion which can be drawn from the results. In  fact  the 

focusing of well-defined quantities is itself an achievement. Similarly the 

implicit  measurability feasibility, at least  in  a DNS context is also an indirect 

achievement. It is relevant also the  measurability and  the “moldability” of 

statistical properties which   is dealt at point c). These achievements  apply to 

evaluations of both  stirring quantities and to  autoignition characteristics. In 

fact they are critical  parts of the whole MultiSECtioning strategies  and the  

recognition, that evaluations are possible  for both processes, give  new 

perspective to the  strategy. Beyond comments and conclusions, totally inside 
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each part of the thesis,  it is mandatory to stress that the two chosen  sub-

process representative of two parts of the “strategies” have been resulted 

appropriated. In fact the flow does not undergo  large scale recirculation  flow 

which can  give  stabilization  of  the   combustion process which in turn 

involves not only the two reactants but also  the  combustion product.  At the 

same  time the boundary conditions of the two reactants  and  the auto-

igniting time evaluated  for the different  feeding conditions are all compatible 

with the   stirring process. As matter of fact the residence time, autoignition 

times and  oxidation times are comparable in part of the range which make the 

two boundary/initial conditions choices reciprocally supporting 

 

b)  The second point which  is  interesting  to comment and which is shared to 

both sub-process (stirring and  autoignition) is that the  two processes has been 

described with  minimum level  dimensionality which  allow both to preserve 

and to   evaluate the main  characterizing properties of the process.  The 

transitional two dimensional flows presented  varieties  of  vortex structures 

which  allow  a wide characteristics of statistics. The auto-igniting layerlets 

evolved along 1-D space coordinate with wide characteristics too. This is 

relevant because, apart the sectioning of the process envisaged by the 

MultiSECtioning strategy, this allows to reduce the computation cost if they 

are  very representative of class of flows and of igniting process which evolve  

on 3-D space. This is not fully proven in this thesis also referring to specific   

configuration but the a low dimension manifold is exemplified and this enriches   

the class of both stirring and autoignition conditions. In other words the two 

processes constitute a conceptual model for describing more complex isothermal 

and reacting flows. 

It is worthwhile to emphasize that the space dimensionality reduction 

pertain not only the choice of the 2-D conditions for the simulation of the  

transitional flow but also the  choice of representing the whole mixing pattern 
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starting from the interface. The interface is  a surface for a 3-D flow and it is a 

line for a 2-D flow. In this respect the interface is a way to infer a 

dimensionality reduction more than a simple feature extraction, therefore a 

very detailed  description of the interface also with higher resolution than that 

used in the Eulerian characterization of the flow can be achieved  with the 

same computational/data collection limitation. The construction of the 

interface for a given  Eulerian assigned pattern has to be  considered a sort of 

manifold learning process rather than a simple  sequential decoupled numerical 

evaluation. 

 

c) Concerning the  third point (c) about the relevance of the DNS in evaluation 

of the mixing it has only to be add that this choice has been suitable because  

it also mimics the relevant parts  of the  LES information in characterization of 

interface in the sense that both classes of simulations belong to the more wider 

class of “Eddy Resolving Simulations”. In other words the constraints which 

apply to DNS-interface are the same than those could be obtained by LES. 

This is confirmed in the framework of DNS, but it can be extended in a 

methodological sense also to LES since the following basic properties of the 

interface have to be always be valid and are well described in the super grid 

part of the LES as well as in the DNS 

 

 interface is continuous 

 interfaces are not intersecting 

 interface is oriented 

 

Therefore the  detection both of single  folding events and of their  statistical 

descriptors (in particular the stretch ratio) can suggest the same simplified 

mappings for taking into account the number of folding times in both kinds of 

simulations. 
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These constraints are also relevant in determining which kind of properties  

are more convenient to be evaluated and which kind of sub-models are more 

suitable for determining these properties. In other words, even though the  

analysis is here based on DNS simulation with lower    it can be transposed 

“mutatis mutandis” also on data base generated by LES. In particular 

identification  of mixing regimes can be  based on the same criteria  obtained 

with this hybridization procedure based on the use of Eulerian/Lagrangian 

quantities  like  residence time and stretch ratios. Other field  of common  (for 

Eddy Resolution Models) exploitation of the procedure  are the  criteria for  

space zoning and equation sectioning . 

The second part of discussion is devoted to give relevance to the stirring 

process analysis of a transitional jet in a 2-D co-flow configuration. 

2-D  flow systems are suitable to study complex mixing fields in isothermal 

and reactive conditions. In fact random characteristics either of spatial 

distribution of scalar quantities, as temperature and concentration, or of  fluid-

dynamic structures, affecting these quantities in turbulent diffusion flames may 

be obtained in 2-D time-dependent flows. This is due to the basic principle that 

chaotic flows can be created also in laminar deterministic periodic conditions. 

The only additional requirement is that stagnation points have to be 

distributed in such a way, respect to a reference frame moving with the average 

velocity, that the stretch ratio of material lines undergo exponential evolution. 

The high level of stretching is the main feature of dissipative highly diffusive 

turbulent flow, i.e. the most important factor for increasing mixing rate, 

consequently combustion rates, and extinguish-related effects. 

The other requirements, which 2-D time-dependent  flows have to fulfill in 

order to be representative of 3-D turbulent flow, is the high level of convolution 

of interfaces, and their distribution on different length scales. The only concern 

is related to the capability of 2-D flows of being exhaustive in containing all 

possible  fluid-dynamic structures, which are present in 3-D turbulent flows. 
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In such a view, analysis of the intermaterial surface temporal evolution 

reported in in Chapter 5 describing the transitional jet behavior in a 2-D co-

flow configuration, revealed a key feature of the fluid-dynamic structures 

related to such a flow. 

For a such a case (2-D), in fact, the nature of the vortex structure 

generated can only formed other vortex structure. In order to give an 

assessment of the great variety of structures which can be established in 2-D  

flows, in Chapter 5 all the identified structures (2-D) have been categorized as 

follow: 

 

 no vortex structure; 

 structure associated with the onset of a vortex structure formation; 

 simple vortex structure with small number of convolution; 

 simple vortex structure highly convoluted; 

 simple vortex structure highly convoluted and with braids; 

 2-D counter-rotating vortex couples structure; 

 macro-vortex; 

 2-D counter-rotating vortex couples structure within a macro-vortex 

structure. 

 

It is of great interest to underline that the comparison with structures detected 

experimentally is quite satisfactory and that, in turn, this shows the 2-D of the  

flows.  

Among the structures highlighted by intermaterial surface description, 

there are some of them, in which the interfaces (discontinuity between black 

and white regions in the experiment, particles trajectories in the simulation) 

are quite convoluted. They undergo a relatively intense stretch rate of the 

order of        , as it has been reported in Chapter 5. In the context of a 
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diffusion flame, this stretch rate is not high enough to cause  flame extinction, 

but it is sufficient for high level of convolution. 

The case analyzed, here described, suggests that ensemble of structures, i.e. 

a simple multi-scale system, can be used in order to explore all possible 

evolution of the system itself. 

However, although analysis revealed a large number of structures, which 

are also features of a 3-D flow, the question about if a 2-D flows is capable in 

being exhaustive in containing all possible  fluid-dynamic structures, which are 

present in 3-D turbulent flows remains still open and further simulations (i.e. 

different jet   ) need to be addressed in order to extend our “topological 

structures” database.   

Analysis of residence time and    reported in Chapter 5 showed that such 

a quantities grow almost linearly with nozzle distance and time, respectively. 

Furthermore trend analysis highlighted that  they are not subjected to a strong 

fluctuations. This is due to the fact that particles residence time and    are 

cumulative time-averaged quantities,  therefore, they are already itself not 

associated to strong fluctuations. It has been pointed out in Chapter 5 that    

fluctuations can be attributed to a sequential events of extension/compression 

of intermaterial surface. It is important to remind that configuration analyzed 

(jet in a co-flow configuration) is realized in order to induce mixing, thus,    is 

always higher then  . In order to support such a  thesis, Figure 6.2 reports the 

evolution of an intermaterial surface element. It is worthwhile to note that such 

a element is not subjected to a stretch as long as is not located within a vortex. 

Furthermore, it shows its maximum extension in the intra-vortex region (in 

between two different vortex structure) and is undergoes a contraction either 

when it leaves a vortex or just before entering in it. 
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Figure 6.2.  Evolution of an intermaterial surface element. 

 

Another feature of the system reported in Chapter 5 is that the stretch rate, 

   , remains almost constant with time. Such a trend suggested that the 

deformation of an intermaterial surface (for the system under investigation) is 

not a function of the time (deformation is not dependent of time). Analysis of 

the mean stretching (or squeezing) factor in the region characterized by an 

higher vorticity (cells more statistically relevant) supports this thesis. In fact, 

in such a region the value of stretching factor is close to  ; in other words such 

a region is associated to an approximately constant stretch rate, with a balance 

between extensions and contraction of the intermaterial surface. 
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Finally, analysis of layer thickness highlighted that is of the order of 

      . Such analysis can be helpful also for obtaining information about a 

reactive system. They can be derived following [3]. Here, it has been reported 

that        , i.e. the reactive layer is equal to the thickness of the diffusive 

layer multiplied by five times the thickness of the flame in the mixture fraction 

domain ( ). The   value for fuels as methane or hydrogen has been evaluated 

to be less than     ; thus    is less than     ⁄ . A numerical example can give 

some idea of the possible extension of   . Let us consider the case in which the 

diffusive layer evolves over a time of one second and that the diffusion 

coefficient is              ,    will extend for       , whilst the reactive 

layer (for a paraffin) would be in the order of       . 

The case reported and described in this thesis suggests that ensemble of 

structures, i.e. a simple multi-scale system, can be used in order to explore all 

possible evolution of the system itself. together with the following one, shows 

how this tool can be exploited to identify mixing isothermal regimes and to 

give statistical averages of the most relevant parameter affecting a reactive 

system (i.e. diffusion flames) and a isothermal transitional flow.  

The third part of discussion is devoted to give relevance to analysis of a 1-

D reactive system evolving under MILD Combustion condition. 

The results reported in Chapter 5 show that the domains of MILD 

combustion of the unsteady reactive mixing layer are smaller in comparison to 

the corresponding domains under steady HODF/HFDF conditions. The 

maximum ignition delays reported in Chapter 5 highlighted that none of the 

regions on the left sides of these autoignition delays yielded any transient 

reactive mixing layers. Therefore, steady MILD combustion processes can be 

stabilized in these regions only if additional heat is provided through 

recirculation or through a piloted source [35]. 
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The extensions of the regions that cannot be reached by any auto-igniting 

combustion process consist of the black and blue dashed areas. Notably, the 

boundaries of the areas, including the high-temperature combustion regions, 

where a combustion process could be stabilized only under steady conditions, 

are much wider for the HFDF than for the HODF, and they closely follow the 

trends of the characteristic times of the processes. 

The most reactive mixture fraction is always positioned on the high-

temperature side with respect to the stoichiometric mixture fraction for both 

HODF and HFDF. 

The process evolution rate of unsteady MILD combustion is not universal. 

In fact, at least in the two of the analyzed cases, the process evolution rates are 

just the opposite. In HODF conditions, the overall rates slow down passing into 

the MILD combustion domain as shown by the characteristic times reported in 

Figure 5.21. The characteristic autoignition, maximization and stabilization 

times are all longer than those in high-temperature combustion processes. This 

situation is the opposite for HFDF conditions. The unsteady diffusive 

autoignition is always shorter than those in the corresponding HODF 

conditions. Furthermore, the subsequent part of the process accelerates the 

passage into the MILD combustion domain. 

The autoignition delay times in MILD combustion regimes also vary 

according to external parameters (preheating temperature and dilution level), 

in agreement with the trends presented by previous authors [36,37]. 

In conclusion, it is possible to emphasize that the results reported here 

support the inclusion of an additional property for the characterization of 

MILD combustion, i.e., a property that accounts for the fact that this process 

can be auto-sustained with autoignition. 

Nevertheless, the whole process must be analyzed not only in terms of the 

autoignition time but also in terms of the evolution of the oxidation. The 

presumed slowness of the autoignition process is not universal because it 
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depends on which part of the reactants is under the high-temperature 

conditions. 

The fourth part of this section is eventually presented in order to synthesize 

the first three parts of this discussion as well as to give preliminary ensemble of  

conclusions related to 2-D transitional flows studied in the thesis. The 

generalization to all classes of 2-D transitional flows or to the whole class of  2-

D flows are explicitly mentioned  when this is possible. 

 

1. The methodological part for the analysis of the stirring characteristics 

outlined in this thesis is of some practical interest since  great part of 

the quantities involved  in this analysis can be evaluated inside a frame 

of eddy resolving models along the exemplificative patterns outlined in 

this 2-D analysis apart some case mentioned in the following. 

 

2. Interface topology in a 2-D transitional flow  is mainly characterized by 

interface peninsulas which in great part of the events are arranged in 

single or multiple vortices. This is  the case of the conditions analyzed 

in this  thesis, but the  generalization is possible on the ground of the 

surface constraint (continuity and not intersection) which has been 

taken into account. On the opposite  there is at the moment no possible 

generalization of the  interface distances  (or of equivalent quantity like 

the surface density). 

 

3. The average residence times of points sampled on the interfaces are 

uniformly distributed  along the radial direction of the jet and  their 

probability density functions can be approximated by continuous 

distribution with only secondary modal peaks which emerge on a 

continuous pedestal. This characteristic seems to be sharable by all the  

eddy structures for whatever 2-D condition because the trajectory of 
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the points which are involved in the eddy structures develop along 

linear paths which are more or less extended according to which parts 

of the vortex are reached. 

 

4. The average stretch rates of points sampled on interfaces have 

outstanding low values  even though single event can reach  relatively 

high values. This can be considered a general characteristic for 2-D 

flows because the compressive and extensive gradient for incompressible 

flows have to be equal in whatever 2-D flows. Therefore the alignment 

of a positive stretching flows  with  the  interface could occur because 

of the particular choice of the boundary  conditions. This characteristic  

is difficult to be generalized to 3-D flows. 

 

5. This last characteristic is relevant in the analysis of the stabilization of 

diffusion flames. In fact it is well known that high stretch rates are 

capable of quenching the combustion process. This is not the case  

when one of the reactant has very high temperature. This critical 

aspect has been analyzed in a special  deepening of  diffusive reactive  

structure with high temperature reactant. The main result is that also 

high value of stretch rates do no quench the reactive structures 

therefore the stirring analysis presented in this thesis has a high 

interest in this type of flows because the reaction structure exist and 

the  integral values of the quantities presented here are the process 

controller. In particular the stretch ratio which is the temporal integral 

of the stretch rates is the controlling parameter of the  mixing rate and  

its correspondent reactive regimes for a large spectrum of boundaries 

conditions. 
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