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Summary 

 

 

 

Transdermic drug delivery is emerging more and more since it overcomes 

some disadvantages of classical route of administration. Indeed, kinetics of 

delivery can be controlled, avoiding bolus release, and environment in which drugs 

diffuse is safer way than gastro-intestinal tract. The systems currently used for 

transdermic delivery, like electroporation, iontophoresis and penetration 

enhancers, are very complex and relatively dangerous for patient. These systems 

destabilize the structure of stratum corneum to increase skin permeability, or 

using chemical substances that interact with lipids, or through the passage of 

electrical currents in the skin. 

By using patches with microneedles, it has been proved that it is possible to solve 

mechanically problems related to the permeability of the stratum corneum, also 

for molecules with large size; indeed, microneedles create micro holes in skin, 

without destabilizing chemically its structure. By various research groups both 

metallic and polymeric microneedles have been manufactured, using different 

techniques of production. Polymeric biodegradable microneedles allow obtaining a 

better control of kinetics release and to load an higher drug’s amount. 

The purpose of this work was to develop a new manufacturing technique which 

overcomes the constraints of the techniques already used, preserving the 

effectiveness of the final device obtained. The new method exploits the electric 

field, generated by a pyroelectric crystal, for the formation, through the drawing of 

a polymer solution, of micro conical tips able to cross the stratum corneum. The 

entire production process takes a few minutes at mild temperatures, without 

creating any contact between the polymeric solution and other things that may be 

contaminated. The shaping effect of the electric field can be run on both simple 

polymer solutions (PLGA in dimethyl carbonate) and on water in oil emulsions. In 

the latter case it was possible to load both hydrophobic compounds in the polymer 

matrix, and hydrophilic molecules in the aqueous phase emulsified in the polymer 

solution. To limit the presence of drug only in the cone and minimize wastage of 
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active compounds, it was used a double drop deposition. It means that a drop of 

simple solution of PLGA is used like base, and then a smaller drop loaded with drug 

is deposited on it. 

Another important objective of this project was the manipulation microneedles 

morphology. To produce several degrees of porosity in the polymeric matrix, it was 

changed the water content in the emulsion. By increasing water phase, it was 

possible to obtain higher release rates and degradation of PLGA matrix. However, 

the maximum amount of water is limited by mechanical properties: microneedles 

have to preserve enough resistance to indent the skin. 
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Introduction 

 

Hypodermal injection and oral assumption are still common routes for drug 

administration despite their numerous limits and contro-indications, like one-shot 

release, pain and drug’s degradation due to the digestion system that reduces 

pharmacological action. To overcome these limits and increase drug’s effect, new 

methods for delivery are being studied: one of these is the transdermic 

administration.  

Release of drugs throughout dermis allows avoiding the passage in gastro-

intestinal tract, that is a very aggressive environment, and offers a wide surface to 

choose the area where to apply the patch and reach as easily as possible the target 

site. The greatest problem is the stratum corneum, a natural barrier for body, that 

allows diffusion of small and hydrophobic molecules; for all others, release is too 

slow to have pharmacological effects.  

To increase skin permeability they are presently used methods not very pleasant 

for patient, like penetration enhancers, that risk to provoke high skin irritation, or 

electro-poration and iontophoresis that require passage of electrical current in the 

body. 

By using patches with microneedles, it has been proved that it is possible to solve 

efficiently and easily problems related to the permeability of the stratum corneum 

also for drugs with high molecular weight. This method, proposed some decades 

ago, has evolved quickly in the last years with the development of several 

techniques of fabrication leading to microneedles made of silicon, steel and many 

types of polymers. 

In this study it is discussed a system that uses a pyroelectric cartridge in lieu of the 

syringe piston as a potential solution. Upon stimulation, the cartridge electro-

draws, at room temperature, an array of drug-encapsulated, biodegradable 

polymer micro-pins, able to deliver both hydrophobic and hydrophilic bioactive 

agents, according to a predefined chrono-programme when inserted in 

hypodermal tissue. This mould-free and contact-free method permits the 

fabrication of biodegradable polymer microneedles into a ready-to-use 
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configuration. The aim is to realize a device efficacy and user-friendly for patient, 

with fabrication steps that save drug’s integrity. 
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Chapter 1 

State of art on transdermal drug delivery 

 

 

 

1.1  Controlled drug delivery 

 

Conventional pharmacotherapy involves the use of drugs whose absorption 

and therefore bioavailability depends on many factors, such as solubility, 

molecular weight, and chemical stability. All these parameters can hinder the 

achievement of a therapeutic response. Especially a low molecular weight confers 

them the capability to cross different body compartments and reach numerous cell 

types. However, this indiscriminate distribution leads to the occurrence of side 

effects and to the need for higher doses of the drug to elicit a satisfactory 

pharmacological response [1]. Drug delivery system (DDS) is a broad term for 

technologies that send drugs to the appropriate target site and release them with a 

time-controlled kinetics, for generating therapeutically desirable effects reducing 

drug dose required. DDS are usually high molecular weight carriers, such as nano- 

and micro-particles or capsules, micelles and dendrimers, in which the drug is 

embedded or covalently bound. Polymeric carriers aim is to transport drugs until 

target site protecting them from interaction with others molecules which could 

cause a change in the chemical structure of the active ingredient causing the loss of 

pharmaceutical action, especially in case of protein drugs or DNA [2]. By changing 

polymer and design of carriers, stability of drugs in specific body sections and 

release kinetics can be modulated [3]. Release control technology has many 

advantages compared to traditional systemic administration. With traditional 

systems drugs are administered at once, this means that the concentration of drug 

in the body may exceed the limit of toxicity. As the concentration of drugs decays 

over time, to maintain it for a clinically significant time in the therapeutic window 

the administration of drug should be repeated. Therapeutic window is defined as 

file:///C:/IIT/Team/Eliana_Esposito/Eliana%20Dottorato/Tesi/Versione%20finale%2030%2003%202014/Bibliografia.docx%23Vilar2012
file:///C:/IIT/Team/Eliana_Esposito/Eliana%20Dottorato/Tesi/Versione%20finale%2030%2003%202014/Bibliografia.docx%23Moeller2008
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drug level range in plasma between the minimum effective level, below which 

there is no therapeutic effect, and the maximum desired level, above which drug 

becomes toxic for the body. New controlled release devices can provide a release 

profile valid for a period as long as included in the therapeutic window, therefore 

reducing number of administrations (figure 1.1) [4]. 

 

 

 

Fig 1.1: Comparison between drug concentration in plasma with a conventional delivery system 
(a) and with a controlled release system (b). 
 

 

The choice of the polymer used to realize the device, has to be made carefully. An 

ideal material should be without impurities, biocompatible and easy to be 

processed. The type of material also depends on the kind of issues that one would 

accomplish and the type of drug incorporated.  

There are several mechanisms by which drugs are delivered from devices. Drugs 

can be loaded inside polymeric matrix and delivered through diffusion or by 

degradation of polymer; some systems are formed by capsules with polymeric 

coating, which permeability dictates release of drugs. These devices realize an 

extended (or prolonged) release, in which drug release is not necessary constant 

but extend duration of therapeutic action more than one-shot delivery as 

represented in figure 1.2. 

file:///C:/IIT/Team/Eliana_Esposito/Eliana%20Dottorato/Tesi/Versione%20finale%2030%2003%202014/Bibliografia.docx%23Uhrich


Chapter 1 – State of art on transdermal drug delivery 

 

 
5 

 

Fig 1.2: Plot of drug concentration versus time for different release system. 

 

 

Other types of devices provide a kinetic profile of zero-order, i.e. drug 

concentration in plasma remains constant in time for a long period of time, until 

depletion of drug cargo. In these cases drug outflow is controlled by osmotic 

potential gradients across semi-permeable polymer barriers. After immersion in 

water, the system hydrates causing an increase in pressure that pushes out, 

through orifice in membrane, drug solution [5] (figure 1.3). 

 

 

 

Fig 1.3: Operation scheme of an osmotic drug delivery system. 
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The development of functional delivery systems is strictly correlated to the 

administration route chosen. In the last years, transdermal delivery is emerging as 

a high performing and minimally invasive pharmacological treatment. 

 

 

 

1.2  Transdermal Drug Delivery 

 

Drug can be administered through the most common routes like the oral, 

parenteral, ophthalmic and transdermal route, each one with specific merit and 

disadvantages. The parenteral route is the most direct way of getting molecules 

into the body circulation. Injection of therapeutics through the skin into the blood 

stream or surrounding tissues produces high delivery efficiency within a very 

short administration time. This method of delivery is accomplished almost 

exclusively by needle-syringe system. However, the sharp hypodermic needle 

generates pain, leading to low patient compliance and needle phobia [6]. 

Moreover, it entails risk of infection due to the damage induced in the skin. It can 

be difficult to obtain a sustained drug concentration in plasma, requiring repeated 

administration carried out by specialized personnel. Especially in case of 

prolonged care, it becomes even more difficult to make sure that the patient 

assumes drugs in determined times to ensure continuity in therapeutic effect. Oral 

drug delivery systems, although very simple, have the great disadvantage of drug 

degradation in gastro-intestinal tract, which makes it not suitable for release of 

protein or DNA based compounds, and a variable absorption for each patient, 

depending on several factors like pH, food, mucus layer[7]. 

Transdermal drug delivery is an alternative to classical methods of administration. 

Its key advantages include easy accessibility of skin, which aids in high patient 

compliance, avoidance of gastrointestinal tract and ability to achieve sustained 

release. Since skin has a structure that allows passage of only small and 

hydrophobic molecules, several technique have been developed to temporary 

increase permeability of stratum corneum. To better understand difficulties 

involved it is necessary to consider the structure of skin. 

file:///C:/IIT/Team/Eliana_Esposito/Eliana%20Dottorato/Tesi/Versione%20finale%2030%2003%202014/Bibliografia.docx%23Deacon
file:///C:/IIT/Team/Eliana_Esposito/Eliana%20Dottorato/Tesi/Versione%20finale%2030%2003%202014/Bibliografia.docx%23Harvinder


Chapter 1 – State of art on transdermal drug delivery 

 

 
7 

1.2.1  Skin: the first barrier 

 

 Skin is the first barrier for the body against pathogen agent and anything 

that can be dangerous for the organism. It also provides resistance to shocks for 

the more sensitive tissues underneath. At the same time, however, skin needs to be 

supple and able to stretch to accommodate movements. 

As showed in figure 1.4, skin can be divided into three layers: (1) the epidermis, 

which contains the stratum corneum, (2) the middle layer, dermis, and (3) the 

inner most layer, hypodermis. 

 

 

 

Fig 1.4: Structure of skin. 

 

 

The dermis, an integrated fibro-elastic structure measuring 1-2 mm, gives 

mechanical strength to the skin. There is a rich capillary bed in the superficial 

dermis, just below the epidermis, which is the primary site of drug uptake into 

systemic circulation. Thus, successful transdermal drug delivery typically involves 
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drug transport across the epidermis to the superficial dermal capillary bed. The 

pain associated with parenteral drug delivery is due to possible damage to the 

nerves endings within the dermis [8]. The epidermis layer is 150-200 μm thick and 

is made up of viable cells with no vascular networks. There is a basement 

membrane at the base of epidermis and there are tight junctions in the viable 

epidermis [9], both of which may offer resistance to the transport of molecules 

across the epidermis. The outermost layer of the epidermis (10-20 μm) consists of 

dead cells, known as the stratum corneum (SC), which act as a rigorous barrier and 

protect body from water loss. It is composed of layers of corneocytes which 

overlap. The major constituent of stratum corneum cells is the keratin and is 

rather dense in composition. The SC is dynamic in nature and renews itself every 

14 days [10], it is constantly maintained by reproduction of inner living epidermal 

keratinocytes which undergo a process of terminal differentiation and then 

migrate to the surface as interlocking layers of dead stratum corneum cells.  

SC structure is akin to a wall built from bricks and mortar (figure 1.5), the 

keratinized layer also consists of hard building blocks (the individual corneocytes) 

stuck together with space-filling mortar (intercorneocyte lipids) [11]. Barrier 

function of epidermis depends on the good state of its bricks and mortar. There are 

two main pathways by which drugs can cross the skin and reach the systemic 

circulation. The more direct route is known as the transcellular pathway. By this 

route, drugs cross the skin by directly passing through both the phospholipids 

membranes and the cytoplasm of the dead keratinocytes. The drugs encounter 

significant resistance to permeation, because they must cross the lipophilic 

membrane of each cell, then the hydrophilic cell body containing keratin; these 

steps have to be repeated numerous times to traverse the full thickness of the 

stratum corneum. The other more common pathway through the skin is via the 

intercellular route. Drugs must pass through the small spaces between the cells of 

the skin, making the route more tortuous. Although the thickness of the SC is only 

about 20 µm, the actual diffusional path of most molecules crossing the skin is on 

the order of 400 µm [12]. In any case, for almost all drugs, these types of diffusion 

are too slow to allow enough diffusion and obtain a therapeutic effect. 

 

file:///C:/IIT/Team/Eliana_Esposito/Eliana%20Dottorato/Tesi/Versione%20finale%2030%2003%202014/Bibliografia.docx%23Baria
file:///C:/IIT/Team/Eliana_Esposito/Eliana%20Dottorato/Tesi/Versione%20finale%2030%2003%202014/Bibliografia.docx%23Kirschner
file:///C:/IIT/Team/Eliana_Esposito/Eliana%20Dottorato/Tesi/Versione%20finale%2030%2003%202014/Bibliografia.docx%23Hadgraft
file:///C:/IIT/Team/Eliana_Esposito/Eliana%20Dottorato/Tesi/Versione%20finale%2030%2003%202014/Bibliografia.docx%23Nemes
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Fig 1.5: Possible pathways for delivery of compounds across the stratum corneum. 

 

 

By destabilizing this structure it is possible to increase skin permeability also for 

those molecules that would never be able to cross the stratum corneum. 

 

 

 

1.2.2  Devices and technologies for transdermal delivery 

 

From a global perspective, advances in transdermal delivery systems can be 

categorized in three different generations. The first generation is mainly based on 

today’s patches produced by judicious selection of drugs that can cross the skin at 

therapeutic rates with little or no enhancement. In addition to patches, in this class 

are included liquid spray, gel and other topical formulation. The second generation 

is characterized by additional advances for the delivery of small-molecules by 

means of an increase of skin permeability and the use of driving forces for 

transdermal transport; an example is provided by chemical enhancers conjugated 

to drug. At the end, the third generation is meant to enable transdermal delivery of 

small-molecule drugs, macromolecules (including proteins and DNA) and virus-
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based and other vaccines through targeted permeabilization of the skin’s stratum 

corneum [13].  

The type of technology used by transdermal devices can be divided into passive or 

active methods based on whether or not an external source of energy is used for 

skin permeation enhancement. Passive methods include use of chemical 

enhancers, emulsions and lipid assemblies, that increase stratum corneum 

permeability through different mechanisms. They may act on the desmosomes, a 

type of proteic junctional complex localized spot-like on the lateral sides of plasma 

membranes, forming cohesion between keratinocytes, or modify the intercellular 

lipid domains to reduce the barrier resistance of the bilayer lipids [14](figure 1.6). 

but are often associated with higher skin irritation. 

 

 

 

Fig. 1.6: Action of penetration enhancers within the intercellular lipid domain. 

 

 

Chemical approaches have emphasized formulations that selectively disrupt lipid 

bilayer structures in the stratum corneum to avoid effects in the viable epidermis 

in order to prevent skin irritation. In this way, the increase of permeability is 

limited to SC but do not address the barrier of the full epidermis, reducing release 

efficiency [15]. 

file:///C:/IIT/Team/Eliana_Esposito/Eliana%20Dottorato/Tesi/Versione%20finale%2030%2003%202014/Bibliografia.docx%23Prausnitz_Langer
file:///C:/IIT/Team/Eliana_Esposito/Eliana%20Dottorato/Tesi/Versione%20finale%2030%2003%202014/Bibliografia.docx%23Fang
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Chapter 1 – State of art on transdermal drug delivery 

 

 
11 

Active methods, like electroporation and iontophoresis, increase transport across 

the skin by physically disrupting the barrier or using a driving force for drug 

transport, through an external energy source.  

In particular, electroporation creates a transitory structural perturbation of lipid 

bilayer membranes due to the application of high voltage impulses. The electrical 

stimulus causes a reorganization in cellular membrane, whereby phospholipids 

shift their position opening pores which act as conductive pathway through the 

bilayer as they are filled with water (figure 1.7). The creation of pores induce a 

high but reversible increase in transmembrane transport. 

 

 

 

Fig. 1.7: (Left) Schematic representation of electroporation system; (Right) Theoretical 
arrangement of lipids after electrical pulse showing an hydrophobic pre-pore (up) and a 
hydrophilic pore (down). 
 

 

Iontophoresis, instead, uses an electric field to move charged substances, usually a 

medication or a bioactive agent, through the skin by repulsive electromotive force. 

A small electric current is applied to an iontophoresis chamber placed on the skin, 

containing a charged active agent and its solvent; another electrode carries the 

return current (figure 1.8). The positively charged chamber, the cathode, will repel 

a positively charged chemical species into the skin, whereas negatively charged 
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substances have to be loaded on the anode. These devices are equipped with a 

power supply, which adds to the cost and the complexity of the treatment, and 

requires the passage of current in the body of the patients, resulting annoying or 

even painful for them [16]. Furthermore, both these methods need the presence of 

trained sanitary personnel. 

 

 

 

Fig 1.8: Scheme of iontophoresis system. 
 

 

Another active method is liquid jet injection, which use a high-speed jet to 

puncture the skin and deliver drugs with no use of a needle (figure 1.9). Jet 

injectors can be broadly classified into multi-use nozzle jet injectors (MUNJIs) and 

disposable cartridge jet injectors (DCJIs), depending on the number of injections 

carried out with a single device. 
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Fig 1.9: Schematic depiction of the jet injection process. A) Impact of a piston on a liquid reservoir 
in the nozzle increases the pressure, which shoots the jet out of the nozzle at high velocity (velocity 
>100 m s–1). B) Impact of the jet on the skin surface initiates formation of a hole in the skin 
through erosion, fracture or other skin failure modes. C) Continued impingement of the jet 
increases the depth of the hole in the skin. If the volumetric rate of hole formation is less than the 
volumetric rate of jet impinging the skin, then some of the liquid splashes back towards the injector. 
D)| As the hole in the skin becomes deeper, the liquid that has accumulated in the hole slows down 
the incoming jet, and the progression of the hole in the skin is stopped. 

 

 

Liquid jet injections for immunization were first carried out using MUNJIs, which 

allowed repeated injections of vaccine from the same nozzle and reservoir at a rate 

of up to 1,000 immunizations per hour. They were successfully adopted for rapid 

mass immunization using vaccines against a large number of diseases, including 

measles, smallpox, cholera, HBV, influenza and polio [17]. But after problems of 

cross-contamination, due to splash back of interstitial liquid from the skin onto the 

nozzle, it has gone to use DCJIs that have its own sterile orifice and nozzle and is 

discarded between patients.  

All these systems increase skin permeability by disrupting or altering temporary 

structure of stratum corneum. Unfortunately, after drug delivery has been 

completed, it takes on the order of several hours or days to recover its integrity 

and this cause discomfort to the patient and can increase risk of infections 

specially if treated area is extended[18]. 

Therefore, it remains a need for an ideal transdermal drug delivery system that a) 

is safe by maintaining skin permeability only during the desired period of drug 

delivery, b) can create sustained or bolus delivery profiles, c) can deliver 

therapeutic volumes/doses of drug quickly with minimal discomfort, d) has 

file:///C:/IIT/Team/Eliana_Esposito/Eliana%20Dottorato/Tesi/Versione%20finale%2030%2003%202014/Bibliografia.docx%23Mitragotri_2006
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rapidly responsive pharmacokinetics and pharmacodynamics, e) causes minimal 

pain and irritation, and f) is simple, inexpensive, and self-administrable [19]. 

All requirements listed above seem to be satisfied by using microneedles. These 

devices are needles with micron dimension, able to puncture stratum corneum, as 

to create microchannel that allow also the passage of hydrophilic macromolecules, 

without stimulation of nerves ending in dermis.  

 

 

 

1.3  Microneedles 

 

The research on microneedles and their applications began at the end of last 

century, the aim was to find a safe, viable and pain-free alternative to the over 16 

billions of injections per year. By incorporating techniques adapted from 

microelectronics industry they have been fabricated the first microneedles made 

of silicon or glass, for drug delivery through cellular membrane or inside tissue 

[20]. Little by little thanks to advances of the technology, devices have been 

improved in shape and fabricated in a variety of materials for different 

applications. 

Microneedles have a tipical length above 200 μm, in order to perforate epidermis, 

and below 1 mm, to not stress too much nerves ending in the dermis. If the target 

of release is systemic circulation, microneedles that penetrate more deeply in 

epidermis have a greater success in drug delivery, since drugs reach easier 

capillary in dermis. Thanks to their small dimensions, microneedles leave only 

micro damages in stratum corneum therefore limiting permeation of 

microorganism of several magnitude order respect to the injection with 

hypodermic needle, reducing risk of infection [21]. 

Before designing a microneedles array it is important to consider all geometric 

parameters that allow a good degree of penetration. Width, length and distance 

between microneedles can be optimized to obtain desired permeability and 

penetration capability[22], for example if microneedles are too near each other 

there is a “fakir’s bed” effect which prevents indentation. Moreover, even if 
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microneedles are spaced, the elastic nature of skin can inhibit microneedles from 

penetration by folding around the needles during the application, especially in case 

of blunt and short microneedles. Due to the robustness of the skin, microneedle 

insertion forces may exceed the ultimate tensile force and thereby determine a 

breakage of the microneedles, particularly for longer ones, or for those with a large 

tip’s radius, and for microneedles made of relatively weak materials [23,24]. So it 

is needed to consider both material and geometric parameters in the designing 

phase, to obtain microneedles with mechanical strength enough to pierce skin.  

Another factor conditioning skin penetration  is the insertion rate. Indeed, when 

microneedles are pushed into the skin slowly by hand, it is obtained a partial 

penetration; instead, applying microneedles with higher velocity, a deeper level is 

reached. This is explicable by skin’s increased mechanical compressive resistance 

at higher strain rates. Greater resistance to deflection provides for greater 

penetration of microneedles [25]. 

 

 

 

1.3.1  Metallic and silicon microneedles 

 

Initially microneedles were made from silicon wafers, using techniques of 

photolithography and ion etching. Although silicon is attractive for its mechanical 

properties and for the well-established knowledge, coming from the 

microelectronic field, it is relatively expensive and requires clean room processing. 

In contrast, metal and glass microneedles have been found to be equally effective 

in skin penetration and can be produced at relatively much lower cost than silicon 

ones. Various metals, such stainless-steel, titanium, palladium, palladium-cobalt 

alloys, and nickel have been used as structural materials for MN fabrication[26]. 

They have been developed with multiple geometries and can be divided into two 

major groups: in-plane, formed in parallel with machined surface, and out-of-plane 

microneedles, perpendicular to the surface [27] as illustrated in figure 1.10. 
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Fig. 1.10: Exsamples of fabrication in-plane and out-of-plane: (Up) Array of five stainless 
microneedles in-plane; (Down-A) Silicon microneedle (150 μm tall) from a 400-needle array etched 
out of a silicon substrate (B). 
 

 

Microneedles can be designed to approach delivery following different criteria 

(figure 1.11). At first, microneedles were designed to make pre-treatment on cute. 

This approach, called “poke and patch” consists in applying microneedles on skin, 

so as to increase permeability by creation of micro holes in stratum corneum, and 

then, after removing array, resting a patch with drug reservoir on the treated area. 

In this way it is possible to increase penetration capability of macromolecules by 

up to more than four orders of magnitude [28]; this type of approach is already 

realized with Dermaroller® [29]. This is a very easy method to realize, but the 

release from patch lasts until closure of holes, that is not more than 72h after 

treatment with microneedles preventing any longer release.  
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Fig. 1.11: Schematic representation of different methods of MN application across the skin. (a) 
Solid MNs applied and removed to create micropores followed by the application of a traditional 
transdermal patch. (b) Solid MNs coated with drug molecules applied for instant delivery.(c) 
Hollow MNs for continuous drug delivery or body fluid sampling. 

 

 

Solid microneedles are also used for “coat and poke” approach. In this procedure 

microneedles are dipped in solution with drug and then dried, leading to the 

conversion of the liquid layer into a solid coating. Microneedles have been coated 

with a broad range of drugs, such as hydrophilic and hydrophobic low-molecular-

weight drugs, DNA, RNA, proteins, peptides, and inactivated pathogens. The 

compactness of covering layer depends on physico-chemical characteristics of 

drug solution and on superficial properties of microneedles [30]. However, a 

drawback of this approach is that solid microneedles can only be coated with small 

amount of drug to avoid an excessive reduction in aspect ratio, as showed in figure 

1.12, so it is just applicable for very powerful drugs, such as vaccines [31,32,33].  
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Fig. 1.12: Bright-field micrographs of a microneedle coated with red-fluorescent inactivated 
influenza virus before (left) and 10 min after (right) insertion into human cadaver skin 

 

 

Gill and Prausnitz have extended this approach fabricating microneedles with 

“pokets” in metallic structure. In this manner it is possible to localize drug and 

release it at target depth, or to load different drug, with a multi-step process and 

obtain a sequential delivery (figure 1.13) [34]. 

 

 

 

Fig. 1.13: Pocketed microneedles. (A) Representative microneedle with a large central pocket. 
Microneedles with pockets of different sizes and shapes filled with (B) sulforhodamine, (C) 
fluorescein and (D) plasmid DNA as model drugs. (E) Microneedle with a composite coating that 
sequestered sulforhodamine within the microneedle pocket and coated fluorescein on the 
microneedle surface by a multi-step process. 
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In the case of hollow microneedles (figure 1.14), the release approach is called 

“poke and flow”. Often this microneedles array is combined with a syringe or 

another external system able to regulate pressure and to drive flow inside dermis. 

Pumping system can be electrically powered, in this case the presence of trained 

personnel is required. Other systems, operated by compressed air or osmotic 

pressure, can be integrated inside the administration device, but in this way 

structure device is very complex. Furthermore, the dose of the desired drug in 

solution can be more easily controlled according to the need of the patient. 

However, to avoid pain is necessary apply flow rate very low (about 100 µl/min) 

especially when it’s necessary dispense large volume (> 1 ml) [35].  

 

 

 

Fig. 1.14: Some examples of hollow microneedles with different geometries. 

 

 

 

1.3.2  Polymeric microneedles 

 

One of the main problems with metallic and silicon microneedles would be 

if some of them break inside skin, the organism would not be able to remove them. 

For this reason it is preferred to use biodegradable or dissolvable materials. 

Certain types of polymers have optimal properties, as biocompatibility, 

biodegradability and mechanical strength, to be used for realization of 

microneedles. Some of these, like poly(lactic-co-glycolic) acid (PLGA), poly-lactic 
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acid (PLA) [36], carboxymethyl cellulose (CMC) [37], polyvinylpyrrolidone (PVP) 

[38] are already widely used for these applications. By changing polymer matrix, 

or using a double inclusion, i.e. drug in nano/microparticles incorporated in 

microneedles, it is possible to manage drug release kinetics and drive the drug to 

the target site. 

 

 

 

1.3.2.1  Replica molding 

 

The classical method to produce polymeric microneedles is a multistep 

process. There are three phases: 1) manufacturing of a master; 2) mold 

production; 3) replica molding of the final polymeric device. 

Masters have to possess the same shape of final device and they are typically 

manufactured in photosensitive resins, as SU-8, or in silicon by combining UV 

lithography and a proper chemical etch. 

A common UV lithography process, using SU-8, is illustrated in figure 1.15. The 

substrate is coated with few hundred microns of photoresist by using a spin coater and 

then it is soft baked in order to remove the solvent and improve resist-substrate 

adhesion. UV lithography consists in radiating a photoresist through a chrome 

mask. In particular, by using a mask with an array of circular or square dots it is 

possible to obtain microstructures having the shape of needles. After irradiation, a 

post-exposure bake is performed to increase the cross-linking degree of the 

irradiated areas and stabilize them against the action of solvents during the 

development step. Development is performed by immersing the substrate in 

propylene glycol methyl ether acetate at room temperature, followed by a rinsing 

step in water or isopropanol [39]. 
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Fig. 1.15: Photolitography standard protocol to create SU-8 master molds. 

 

 

Through elaboration of the lithographic technique J.-H. Park et al. were able to 

obtain microneedles with different shaped tips. In one case, spaces between 

cylinders are filled by a sacrificial polymer, then the tip of cylinders are 

asymmetrically covered with a thin copper layer in order to selectively remove part of 

the tip by using a reactive ion etching obtaining cylindrical microneedles with beleved 

tip. In another case, in order to obtain microneedles with pyramidal tips, SU-8 is spun 

on a wafer on which inverted pyramid-shaped holes have been previously patterned. A 

second mask with square dots is then aligned on the first structure before irradiating the 

photoresist. Another special case is based on the exploitation of microlenses for 

focusing the UV light. Microlenses are fabricated by etching glass substrate masked 

with metal, on which SU-8 is spun [36] (fig. 1.16). 
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Fig. 1.16: Schematic of process to fabricate beveled-tip (1), pyramidal tip (2) and conical (3) 
microneedles. Scanning electron microscope image of beveled-tip (A), chisel-tip (B) and tapered 
cone (C) microneedlesi 

A B 

C 
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The second step consists in the fabrication of a mold from which polymeric 

microneedles will be replicated. Polydimethylsiloxane (PDMS) is the most used 

silicon-based polymer for the fabrication of stamps; it is considered to be inert and 

non-toxic. Thanks to its low interfacial free energy, polymers molded in such a 

stamp do not adhere irreversibly, and its flexibility helps in the detachment phase 

of the array of microneedles from the stamp. Preparation process, showed in figure 

1.17, is very simple and fast. PDMS precursor is mixed with the treating agent, in 

ratio 10:1, and kept under vacuum to remove air bubbles. To make molds, master 

structure arrays of needles is coated with liquid PDMS and allowed to cure in oven. 

After polymerization and cross-linking, solid PDMS presents a hydrophobic surface and 

this facilitates the separation from hydrophilic materials. 

 

 

 

Fig. 1.17: Schematic procedure for fabrication of PDMS stamp. 

 

 

The last phase of production is the replica molding of the final polymeric device. 

Depending on the polymer chosen, microneedles are created by melting a polymer 

on the stamp, by drying an aqueous polymer solution or by UV-curing a polymer 

precursor. 
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Usually, if a thermo-plastic polymer, like PLGA, is chosen, first PDMS stamp is 

loaded with a solution containing drug or encapsulated drug. Evaporation of the 

solvent leaves solid drug particles partially filling the mold; residual particles 

remaining on the surface of the mold can be removed using adhesive tape, and 

then, after drying, polymer is melted on the stamp, that is filled with the help of 

vacuum. Next the mold is recovered with powder of biocompatible polymer and placed 

in a vacuum oven. Vacuum is necessary to remove entrapped bubble and help pull the 

polymer melt into the grooves of the mold (figure 1.18). 

 

 

 

Fig. 1.18: Method to fabricate polymer microneedles that encapsulate drug for controlled release. 

 

 

As showed in figure 1.19, this procedure gives an inhomogeneous distribution of 

drug inside needle. Indeed the most of it is accumulated towards the tip, and this, 

even if entail release of entire amount of drug, implies a fast release. 
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Fig. 1.19: Polymer microneedles bevel-tip (left) and tapered-cone (right) made of PLGA and 
encapsulating calcein within their tips. 

 

 

Although this fabrication method is very simple and cheap to realize, it is not 

suitable for all drugs. Indeed, generally, thermoplastic polymers with mechanical 

strength enough for this application, require an high melting temperature, that is 

incompatible with a wide drug’s variety. 

Otherwise photocurable polymers, like PEG and PVP, liquid before reticulation, or 

hydrogels modeled starting from aqueous solutions can also be used. In this case it 

is easier to mix the drug directly in the polymer matrix, obtaining an homogeneous 

distribution. By loading model drug into dissolving microneedles in different ways, 

one is able to design systems that can achieve rapid or extended release from a 

microneedle patch. Drug can be selectively incorporated into the microneedles 

themselves and not into the backing layer. A small volume of solution with drug is 

cast into the holes of the micromold to form microneedles. After wiping off excess 

solution from the micromold surface, polymer without drug is added onto the 

micromold and solidified. To administer larger drug doses as an extended release 

over at least hours, drug can be incorporated into both the microneedles and 

backing layer or, alternatively, just the backing layer [37] (figure 1.20). 
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(a)                                                   (b)                                                    (c) 

Fig. 1.20: Schematic representation of drug loaded in entire device’s volume (a), into 
microneedles (b) and in back layer but not in microneedles (c). 
 

 

Also these fabrication have some limits related to the substances utilized and to 

the process conditions. Indeed, photoinitiators, needed to start UV reticulation, 

often are toxic for the body, and UV irradiation can degrade drug loaded in matrix. 

In case of production with aqueous solutions, it is required a long time to dry 

microneedles before pulling them away from the mold. 

All fabrication techniques above illustrated require use of a PDMS mold to form 

microneedles. The re-use of the same mold to shape several microneedles-array, 

can create problem of cross-contamination between devices.  

 

The advantage of this approach is to obtain in a very simple way an array with 

hundreds of microneedles, all with the same shape. This process is also easily 

scalable to an industrial level further lowering the cost, so several research groups 

have focused their attention on these methods, trying to improve efficiency. Chu, 

Choi and Prausnitz have developed a system to insert an air bubble in the base of 

microneedles to concentrate drug towards needle’s tip, as to minimize drug 

wastage. Moreover they have incorporated a pedestal at the base of microneedles 

in order to insert tips more fully in the skin. More complete insertion of the 

microneedles allowed a higher fraction of the encapsulated drug to be delivered 

[40]. In some cases, because of long degradation time of PLGA, microneedles array 

are designed in order to leave tips inside skin, so drug release can continue after 

removal of the supporting patch, to reduce patient nuisance. This is possible 

coupling PLGA needles with a polymeric base quickly dissolvable [41], pushing 

arrowhead needles inside skin with metal shaft [42], or creating complex structure 

that rest stuck in tissue [43]. In other cases they are used hydrogel microparticles 

file:///C:/IIT/Team/Eliana_Esposito/Eliana%20Dottorato/Tesi/Versione%20finale%2030%2003%202014/Bibliografia.docx%23Chu_Choi
file:///C:/IIT/Team/Eliana_Esposito/Eliana%20Dottorato/Tesi/Versione%20finale%2030%2003%202014/Bibliografia.docx%23DeMuth
file:///C:/IIT/Team/Eliana_Esposito/Eliana%20Dottorato/Tesi/Versione%20finale%2030%2003%202014/Bibliografia.docx%23Chu
file:///C:/IIT/Team/Eliana_Esposito/Eliana%20Dottorato/Tesi/Versione%20finale%2030%2003%202014/Bibliografia.docx%23Park_Prausnitz


Chapter 1 – State of art on transdermal drug delivery 

 

 
27 

that by means of a swelling mechanism, cause microneedles breackage and 

acceleration of drug release [44]. 

Rimarcherei i limiti di temperature in un caso e i tempi lunghi di evaporazione 

nell’altro caso. 

 

 

 

1.3.2.2  Free mold fabrication 

 

In recent years K. Lee et al. have developed a different approach that does 

not use molds for fabrication of microneedles. This method consists in drawing 

melt maltose through an array of metal micro-pillars. Maltose is chosen since it is 

very easy to control its state (liquid, glassy, solid), and thus viscosity, manipulating 

temperature during drawing phases. 

The exact needle’s shape, as showed in figure 1.21, is obtained by stepwise 

controlled drawing, changing temperature, in a two steps process [45]. 
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Fig. 1.21: The continuous single and stepwise controlled drawing lithography for fabrication of dissolving 
microneedle. (a) The viscosity change of maltose with temperature. (b) Bat shapes and (c) Cylinder shapes 
were fabricated by continuous single drawing at point b and c. (d) Sharpe-conical cone shapes were 
farbricated by stepwise controlled drawing, primary drawing at drawing point b and main drawing of drawing 
point c. 

 

 

This fabrication technique is also applied for the realization of hybrid electro 

microneedles system. Since needles are drawn through metal pillar, this support is 

used as electrode to apply an electric field and thus accelerate penetration of gene 

in skin (figure 1.22) [46]. 
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Fig. 1.22: Fabrication of a HEM by drawing lithography with antidromic isolation. (A) Liquid 
maltose, melted at a temperature greater than its Tm, was contacted with electrodes of the HEMs as 
a drawing pillar. (B) The glassy maltose between Tm and Tg was elongated by drawing of 
electrodes. (C) After lowering the temperature to sub-Tg, the elongated 3D structures were cured to 
a solid state. (D) The coating surface was melted at a temperature greater than Tm to isolate 
elongated 3D structures from 2D coating surface. (E) A bell-shaped dissolving microneedle of the 
HEM had an ultra-sharp tip diameter of 5 mm and a length of 400 mm. (F) A 5 X 5 array of 
fabricated HEMs. 

 

 

Although this fabrication process eliminates the mold and allows a fast delivery, 

due to the fast dissolution of maltose in water, it requires yet high temperature to 

melt polymer, making system unusable for thermo-sensitive drugs. Moreover, if 

prolonged releases are required it is not suitable at all. 

 

 

Another mold-free fabrication method was contrived by J.S. Kochhar et al., who 

have developed a simple photo-polymerization method to fabricate microneedles 

with poly (ethylene glycol) diacrylate (PEGDA) owing to its known 

biocompatibility and FDA approval for human use. The process consists in two 

steps: first a thin backing layer and then microneedles are formed. Set-up for 

fabrication is very simple: the thickness of PEGDA’s layer is determined by spacers 

on which a coverslip is placed. Back layer is produced by irradiating the first 

polymeric layer through glass, while, to form microneedles is used a photomask, 

with transparent circle, placed between glass and UV source (figure 1.23) [47]. 
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Fig. 1.23: (A) Schematic representation of the fabrication process. PEGDA is attached to TMSPMA 
coated coverslip via free radical polymerisation using UV irradiation, forming the backing for 
microneedles. (B) Using glass slides as support, the PEGDA backing is mounted onto the set-up with 
PEDGA filled in the enclosed cavity. Subsequently, the set-up is irradiated with UV light. UV light is 
only able to pass through the clear regions on the photomask, forming microneedles.  

 

 

Compared with the other cross-linkable monomers, already mentioned above, the 

macromer PEGDA can be cross-linked in short time under UV (few seconds). This 

allows to protect most of the drugs from photo-degradation, but remains the 

problem of toxicity of photoinitiator. 
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1.4  Applications 

 

The ability of microneedles to release efficiently both small and large 

molecules has encouraged study of various applications.  

Several studies, regarding vaccination through microneedles for influenza [31, 42] 

and Hepatitis B [49], have demonstrated that with this new method is obtained a 

clinical response higher than hypodermal injection [50] using a lower drug dosage 

[51]. Also for other bioactive macromolecules, like insulin, heparine and growth 

hormone, that cannot be delivered orally because of proteolitic degradation, 

microneedles represented a valuable alternative. Zosano Pharmahas developed a 

parathyroid hormone coated microneedle patch system that is now under phase-3 

clinical trial. These patches show an ideal plasma profile, indicative of efficient 

parathyroid hormone therapy in osteoporosis using microneedles [52].  

Another, less common, application is drug delivery into eyes through sclera, 

fibrous membrane containing eyeball, for glaucoma treatment. This administration 

route has been proved to be more effective than topical administration or systemic 

delivery [53].  

Also in cosmetic and cosmeceutical fields the majority of products can 

lendthemselves to microneedles technology. So it is possible to apply release 

through microneedles for treatment against ageing (wrinkles, lax skin), scarring 

(acne, surgical), photodamage and hyperpigmentation (age/brown spots)[54]. 

Microneedles can be used, not only to administer drugs, but also to withdraw body 

fluids for diagnostic purposes. An example is blood withdrawal for glucose 

estimation: in this way it is possible to reduce blood sample required while making 

the procedure painless [55]. 
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Chapter 2 

Experimental method 

 

 

 

2.1 New manufacturing technique 

 

In this work a new fabrication method that uses an electric field to shape 

microneedles is discussed. This technique exploits the principle of Taylor’s cone 

formation, for which when an electrically conductive liquid is exposed to an 

electric field, the shape of the liquid starts to deform. By increasing the voltage, the 

effect of the electric field becomes greater and a greater and acts on the surface 

tension of the liquid at the exit of a capillay forming a cone. When it overcomes a 

certain threshold voltage the tip emits a jet of liquid or breaks in drops (figure 2.1).  

 

 

Fig. 2.1: Schematic representation of Taylor Cone formation. 

 

 

This electro-hydro-dynamic (EHD) system for liquid dispensing has been already 

applied in many fields, like blood plasma separation, drop-on-demand printing of 

conductive ink and for fabrication of drug delivery systems [56]. Recently the 

classical configuration, in which the high voltage between the dispensing nozzle 

and the receiving substrate has applied through an electric generator, has been 
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changed. As source of the electric field a polar dielectric crystal, which exhibits the 

pyroelectric effect has been exploited [57]. Pyroelectricity is the ability of certain 

materials to generate a voltage when they are heated or cooled. The change in 

temperature modifies the position of the atoms slightly within the crystal 

structure, such that the polarization of the material changes. This polarization 

change gives rise to a voltage across the crystal. Polarization in crystal is 

proportional to temperature variation, according to ΔPi = pi ΔT, where ΔPi is the 

coefficient of the polarization vector and pi is the pyroelectric coefficient (figure 

2.2) [58]. If the temperature stays constant at its new value, the pyroelectric 

voltage gradually disappears.  

 

 

 

Fig. 2.2: Schematic view of the periodically poled pyroelectric crystal sample cross section with 
the charge distribution exhibited (A) at the equilibrium state; (B) in case of heating (top) and 
(bottom) cooling process. 
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In our case electro-drawing is not used to dispense material, in the form of drops 

or fibers. The process is stopped at the end of Taylor’s cone formation, before tip 

begins to jet liquid. At this point it is essential to be able to lock the structure in the 

form obtained, in order to preserve a needle shape after removal electric field 

(figure 2.3). 

 

 

 

Fig. 2.3: Schematic representation of microneedle formation, by using electric field, starting from 

a polymeric drop deposited on a substrate. 
 

 

To consolidate the microneedle shape at the end of the electro-drawing step, 

polymeric material has to become solid enough as much quickly as to prevent its 

collapse. This is possible by evaporating the solvent if a polymer solution is used, 

or crosslinking the polymer if using an UV photocurable material. 

With this approach main limitations of the classical fabrication methods were 

avoided. Polymeric solution was deposited directly from the dispensing system to 

the substrate that will be part of the final device. There is no contact with other 

elements that can increase risk of cross contamination, like the mold used in the 

most of fabrication procedures. It is a very fast production that allows obtaining a 

complete system in few minutes. Moreover the overall procedure is performed at 
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ambient or bland temperature, thus preserving the integrity of the drug preloaded 

in the polymeric matrix. 

 

 

 

2.2 Materials 

 

Poly(lactic-co-glycolic acid) 50 : 50 (PLGA RESOMER® RG 504H), 38000 - 

54000 Dalton, was obtained by Boeringer Ingelheim and used as received. 

Dimethyl Carbonate (DMC, D152927), as solvent of the PLGA, as well as all the 

chromophores used as model drug like Nile Red (NR, N3013), Rhodamine 6G 

(Rh6G, R4127) and BSA-TRITC (Albumin, Tetramethylrhodamine isothiocyanate 

bovine, A2289) and finally 4% Agarose gel (A6689) and Paraffin wax (327204) 

were obtained by Sigma Aldrich. Poly(dimethyl-siloxane) (PDMS), used as flexible 

support, was provided by Sylgard® (184 Silicone Elastomer Kit, Dow Corning). 

Gelatin B, functionalyzed with diacrylates group (substitution degree 64%) was 

provided by prof. Peter Dubreil from Ghent University. Lithium tantalate crystal 

was supplied by Roditi International Corporation Ltd (Optical grade LiTaO3 wafer, 

z- cut, 0.5 mm thickness, both side polished). Pig cadaver skin was kindly provided 

by dott.ssa Antonelli Carmela of ASL Napoli 2 Nord, taken from the butchery 

implant ICS (Industria Carni Sud) of Caivano, Naples (IT). Agarose gel (0.4%) was 

used as model material for the indentation test. The gel was prepared on the day of 

use by dissolving agarose (Sigma Aldrich Corp, St. Louis, MO) in deionized water. 
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2.2.1 PLGA 

 

The structure of polymeric matrix influences drug release kinetics, so 

polymer choice depends also on the type of drug that one wants to administer and 

its optimum release kinetics. In this work the attention was focused on poly(lactic-

co-glycolic) acid (PLGA), a polymer widely used for microneedles fabrication [36, 

40, 43, 44]. Indeed PLGA is a copolymer used in a host of Food and Drug 

Administration (FDA) approved therapeutic devices, thanks to its biodegradability 

and biocompatibility. It is synthesized by means of random ring-opening co-

polymerization of two different monomers, the cyclic dimers (1,4-dioxane-2,5-

diones) of glycolic acid and lactic acid. Depending on the ratio of lactide to 

glycolide used for the polymerization, different forms of PLGA can be obtained, 

each one with different mechanical properties and degradation times. PLGA 

degrades by hydrolysis of its ester linkages in the presence of water (figure 2.4).  

 

 

 

Fig. 2.4: Chemical structures of glycolide (1) and lactide (2); the corresponding polymers 
polyglycolide (PGA) (3) and polylactide (PLA) (4); and glycolic acid (5) and lactic acid (6). 
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Figure 2.5 illustrates the steps involved in the biodegradation processes. In the 

first step water wets the surface and diffuses into the polymer. The rate of the 

diffusion depends on porosity, pore size and surface tension. In the second step, 

ester linkage hydrolysis cleaves the chain into smaller chain lengths (polymer 

degradation). As the degradation proceeds, smaller chain segments (<100 g/mole) 

start to dissolve and polymer erosion takes place (step 3). The solubilized 

monomers/oligomers are then excreted via the kidney or metabolized into carbon 

dioxide and water (step 4). PLGA has been successful as a biodegradable polymer 

because it undergoes hydrolysis in the body to produce the original monomers, 

lactic acid and glycolic acid. These two monomers under normal physiological 

conditions, are by-products of various metabolic pathways in the body. Since the 

body effectively deals with the two monomers, there is minimal systemic toxicity 

associated with the use of PLGA for drug delivery or biomaterial applications. 

 

 

 

Fig. 2.5: PLGA degradation phases: (1) Wetting and water diffusion, (2) Decrease of the molecular 
weight = Polymer degradation (3) Mass loss = Polymer erosion and (4) Renal excretion or 
metabolism to carbon dioxide and water.  
 

 

 

 

 



Chapter 2 – Experimental method 
 

 
38 

The complete disappearance of biodegradable polymers after the duration of their 

lifecycle is a highly desired feature. It has been shown that the time required to 

degrade PLGA is related to the monomers ratio used in production: the higher the 

content of glycolide units, the lower the time required for degradation. An 

exception to this rule is the copolymer with 50:50 monomers ratio which exhibits 

the faster degradation (complete in about two months). In addition, polymers that 

are end-capped with esters (as opposed to the free carboxylic acid) demonstrate 

longer degradation half-lives. The possibility to tailor the polymer degradation 

time by altering the ratio of the monomers used during synthesis has made PLGA a 

common choice in the production of a variety of biomedical devices, such as, grafts, 

sutures, implants, prosthetic devices, surgical sealant films, micro and 

nanoparticles. Works by the groups of Siepmann, and others show that (i) 

degradation is often heterogeneous and occurs faster in the central part of the 

delivery systems, (ii) acidic pH environments are also present in microparticles 

and (iii) therapeutic agents and/or buffering substances can modify the 

microclimate and, therefore, the kinetics of polymer degradation and drug release 

[59, 60].  
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2.3 Fabrication steps 

 

2.3.1 PDMS support 

 

A flexible support for microneedles array was fabricated in PDMS. Its 

superficial hydrophobicity allows drop deposited to assume an emispherical shape 

that promote electro-drawing. Both flat layer and layers with protruding 

micropillars were used as base for microneedles. The negative of micropillars 

array was tooled from a PMMA substrate by using the micro-milling technique 

[Mini-Mill/GX, Minitech Machinery Corporation], to form cylindrical cavity with a 

diameter between 500 and 900 µm and 200 µm depth, even though different other 

sizes are possible. Then, a flexible layer with micropillars was obtained by pouring 

PDMS, mixed in ratio 10:1 with curing agent, on the above described master and 

under vacuum until complete disappearance of the air bubbles (figure 2.6). 

Instead, simple flat layers were obtained by pouring liquid PDMS precursor on a 

flat glass support for few minutes. Finally PDMS was cured in both cases at 80 °C 

for 30 min and peeled off from PMMA master or glass. 

 

 

Fig. 2.6: Scheme of an array of micropillars made of PDMS as the substrate underneath. 
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2.3.2 Electro-drawing of dissolvable microneedles 

 

Drops of polymer solution at a concentration of 25% w/v were deposited 

on PDMS or PDMS pillars using a syringe pump (Harvard apparatus – Plus 11), 

with imposed rate 0.1 µl/min, connected to a capillary of inner diameter 150 µm, 

and then were positioned on platform of translation stage under a lithium tantalate 

crystal which was locally heated until 80 °C in correspondence to the drops in 

order to draw them and create the cone like shape (figure 2.7).  

 

 

 

Fig. 2.7: Scheme of electro-drawing process: drops are deposited on PDMS strip, LiTaO3 plate is 
heated with metal tip in correspondence of drops, which are deformed under action of electric field. 
So are obtained microneedles on flexible substrate. 
 

 

A 5x microscope objective and a high-speed digital CMOS camera (pixel size 12x12 

mm2, frame rate of 500 frames/s with 1280(H) x 1024(V) spatial resolution) were 

used to capture side view pictures and videos during microneedle formation.  

Viscosity of PLGA solutions was measured with Ubbelohde viscosimeter to identify 

concentration range employable to fabrication. It is a fundamental parameter, as a 

too high viscosity does not allow drops to deform under action of electric field, 

while a too low viscosity causes loss of needle shape before structure is 

consolidated.  

As DMC has a partial polarity, it was possible to produce microneedles preloaded 

with hydrophobic, as NR, and hydrophilic, as Rh6G, model drugs, at 0.1%, 0.2% 

and 0.4% w/w respect to PLGA, to study their distribution inside needle. 

 

LiTaO
3 
plate 

PDMS strip  
with PLGA drops 

 Biodegradable microneedles  
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 Electro-Drawing  
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To obtain porous microneedles a water solution was prepared with lecithin, 

a phopholipid used as surfactant, and TRITC-albumin, used as a model drug. This 

aqueous phase was emulsified in the PLGA solution by using an immersion 

sonicator (Ultrasonic Processor VCX500 Sonic and Materials) for 20 s at 30% of 

power, keeping the sample in ice bath. Moreover, to avoid wasting of drug, it was 

developed a method which allowed to confine it only in the cone which is the part 

of needle that enters in skin. This was made possible through a double drop 

deposition: in this way, at first it is deposited a drop of simple solution of PLGA, 

and then, it is dispensed a second drop of emulsion with drug, with a volume 

approximately one-tenth of the first one. Successive steps are unchanged (figure 

2.8).  

 

 

 

Fig. 2.8: Schematic representation of double drop deposition process. 

 

 

After the electro-drawing process, microneedles can be kept in temperature at 

about 40 °C for 10 min, to accelerate solvent evaporation and fix needle shape.  
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2.3.3 Microneedles by stamp 

 

As reference, some PLGA microneeedles were produced in a conventional 

way by replica onto a master. The master utilized was in Cyclic Olefin Polymer 

(COP) and presented an array of protruding microneedles each one 100 x 100 µm 

wide and high 250 µm high, with pyramidal tip (figure 2.9). 

 

 

 

Fig. 2.9: Master of microneedles with square base and pyramidal tip. 

 

 

 

 

The final mold was replicated by pouring PDMS, mixed in ratio 10:1 with curing 

agent, on the master and by curing at 80 °C for 30 min.  

Different PLGA solutions were prepared, varying content of water and 

concentration of lecithin: specifically, water solutions with lecithin concentration 

of 20, 40 and 60 mg/ml have been used, while the amount of water was about 30 

wt%, 60 wt% and 80 wt%, respect to the PLGA mass. These solutions were casted 

on a PDMS mold, and after few seconds under vacuum to facilitate filling of 
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cavities, they were rest at 40 °C for 1h and then dried for a day at ambient 

conditions.  

 

 

 

2.4 Morphological analysis 

 

Several analyses were performed to study morphological aspects of 

microneedles, and correlated properties, especially kinetics of drug release and 

mechanical resistance. 

 

 

 

2.4.1 Chromophore distribution 

 

To understand how hydrophilic and hydrophobic chromophores were 

distributed inside the microneedle, in consequence to their interaction with the 

electric field, electro-drawn microneedles were incorporated in PDMS, cured for 

48 h at room temperature, and then frozen at -130 °C in Leica CryoUltra Microtome 

EM-FC7-UC7. Samples were sectioned at a thickness of 5 µm for confocal analysis 

in axial direction. Slices of samples were analyzed with a confocal Leica TCS at 543 

nm using a 25X water immersion microscope objective. While cutting, slices tend 

to bend so they are not perfectly outstretched on cover glasses. For this reason, as 

surface is not included entirely in the same focal plane, to acquire entire slice, stack 

acquisitions were made on thick layers using 2 µm Z-step. Acquired images were 

added all together and analyzed using ImageJ (Java-based image processing 

program developed at the National Institutes of Health) studying fluorescence 

profile in axial direction and transverse at certain distances from tip, as showed in 

figure 2.10. 
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Fig. 2.10: Schematic illustration of section plane direction (left) and line direction for acquisition 
of chromophore intensity. 
 

 

 

2.4.2 Porosity 

 

Microneedles porosity is of fundamental importance since it affects 

mechanical proprieties and drug release kinetics. Microneedles were sectioned as 

described above at a thickness of 10 µm. A morphological analysis was performed 

using scanning electron microscope (SEM) (field emission Ultra plus Zeiss), on 

both porous and non-porous microneedle slices, to study how emulsion 

parameters influences porosity in microneedles matrix. Samples were sputter 

coated with a 15 nm thick gold layer and to avoid damage inside them, it was 

imposed a voltage (EHT) of 5 kV. Morphological analysis of porosity was carried 

out both on electro-drawn microneedles and on microneedles produced by mold, 

to check if, by using a PLGA solution with same composition, it was possible to 

obtain in the same morphology even though with different  fabrication methods.  
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2.5 Mechanical characterization 

 

The fundamental requirement for microneedles is mechanical resistance 

adequate, that allows to puncture stratum corneum. For this reason is very 

important to evaluate mechanical properties of material used to fabricate 

microneedles and their capability to indent skin. 

 

 

 

2.5.1 Analysis of mechanical properties 

 

To guarantee a good efficiency in skin indentation the safety factor, defined 

as the ratio of failure force to insertion force, has to be always above unity. This 

means that polymer used to fabricate microneedles have to be a Young’s modulus 

greater than 1GPa [36]. PLGA elastic modulus was analyzed through nano-

indentation tests, using Nano Indenter G-200, from Agilent Technologies equipped 

with berkovich tip, a three-sides pyramidal diamond tip, with a semi-angle of 

65.03°.  

To verify through nanoindentation that matrix, porous and non-porous, of 

microneedles have enough mechanical resistance, they were prepared small 

polymeric blocks with same composition used to fabricate microneedles. Several 

drops were deposited on a microscopy glass and consolidated by keeping glass at 

40 °C for 1h and then in vacuum overnight. Last step, to ensure complete solvent 

evaporation, was lyophilisation.  

The test was carried out at 25 °C, by keeping temperature at constant value using a 

circulating bath (PolyScience). The indentation was performed in dynamic mode, 

with tip’s frequency fixed at 40 Hz and oscillation amplitude of 2 nm. When a value 

of Harmonic Contact Stiffness higher than 100 N/m was detected during surface 

approaching phase, the surface of the sample was recognized and the test starts.  
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2.5.2 Indentations in skin 

 

At first, indentation tests were performed in agarose and paraffine wax. 

Thin layers were prepared using these materials on a microscope slide, which was 

connected to a computer-controlled x, y axes translation stage, with movement 

velocity of 0.7mm/s facing down the polymer strip with the microneedle. The 

indentation experiment was visualized in situ in real time by an optical set-up. A 

conventional blue collimated led light (wavelength of 470 nm and beam power 

around 400 mW) illuminated the cross section of the microneedle while a digital 

CMOS video camera (pixel size 12X12 µm2; frame rate of 500 frames/s with 

1280(H)X1024(V) spatial resolution) was used for recording the process. A 5X 

microscope objective was adopted to image the process on the CMOS sensor. By 

controlling the distance in real time the agarose block was put in contact with the 

needle tip until reaching the needle base. 

Then, a series of three microneedles was inserted in a full thickness cadaver pig 

skin without subcutaneous fat layer. It was shaved with depilatory cream and 

washed in a phosphate buffered saline (PBS) solution; finally it was placed on 

absorbing paper few minutes to eliminate water in excess. The indentation test 

was carried out with a system emulating the application of the microneedles patch 

through a bracelet.  

 

Pig skin was positioned onto a cylindrical tube, with diameter of about 5 cm, and 

gently stretched by hand. Microneedles, previously attached on the plastic plate of 

the bracelet, were pressed on skin and kept close by means of elastic bands and 

Velcro for 10 min (figure 2.11). 
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Fig. 2.11: System, tube and bracelet, to simulate application of microneedles-patch in a possible 
final device. 
 

 

The pressure exerted by tightening the cuff was measured by introducing a 

pressure sensor (CZN-CP1, TME electronic components) between the cuff and the 

flexible layer supporting microneedles. 

After indentation, microneedles were removed and the skin was fixed in a solution 

of 10% neutral buffered formaline for 24 h, dehydrated in an incremental series of 

alcohol (75 %, 85 %, 95 % and 100 %, and 100 % again, each step 20 min at room 

temperature) treated with xylene and then embedded in paraffin. Successively, 

samples were sectioned at thickness of 6 µm, and stained with hematoxylin and 

eosin, and finally the sections were mounted with Histomount Mounting Solution 

(INVITROGEN) on coverslips and the morphological features of constructs were 

observed with a light microscope (BX53; Olympus). 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 – Experimental method 
 

 
48 

2.6 Drug release kinetics 

 

The kinetics of drug release was studied in vitro by confocal laser scanning 

microscopy (CLSM), to follow the release of albumin-TRITC from single 

microneedles in a gelatin matrix. In this study a new analysis approach was 

considered, differently from the conventional ones that do not reproduce real 

release conditions. For example, diffusion tests with Franz Static Diffusion Cell 

account only for skin permeabilization due to the treatment with microneedles, 

without considering drug’s diffusion time throughout polymeric matrix of needles 

[36]. From the other side, “in vitro” characterization, using PBS solutions, gives a 

lower degradation rate than “in vivo”. The faster degradation under “in vivo” 

conditions is due to the autocatalytic effect of the acidic degradation products 

which are released from the polymer matrix but accumulated in the medium 

surrounding the device [62]. On the contrary, characterization in vitro using a 

“solid” matrix of gelatin, allowed approximating more precisely the delivery 

conditions in skin. Moreover, this is a non-destructive method that allows 

acquiring, at scheduled times, images on the same sample. The aim was to 

understand how porosity influences kinetic release. 

CLSM analysis was carried out with a Leica TCS SP5 confocal microscope using a 

25x/0.95 water immersion microscope objective. Settings, in terms of laser power, 

pinhole aperture and detector gain, were optimized at zero time on microneedles. 

To analyze fluorescence on the entire volume of the microneedle, acquisitions 

were carried out in z-stack. Fluorescence signal was collected on several slices, 

spaced by 5 µm, until they covered the whole volume. 

Preliminary experiments showed that bleaching, investigated at the highest laser 

intensity used for the acquisition, was extremely low even after 5 min of 

continuous irradiation. Therefore, since stack acquisition on microneedle lasts 

maximum 30 seconds, chromophore degradation due to the laser radiation was 

considered to be negligible in the following experiments. This means that it is 

possible to consider fluorescence reduction of microneedles with time, as an effect 

due only to diffusion of model drug in gelatin. In order to obtain a good signal 

while diffusion continues, causing concentration reduction of model drug in 
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microneedles, for the whole period under examination, AOTF (Acousto Optical 

Tunable Filter) value was changed. Indeed, by increasing laser intensity, it 

increases the number of chromophore’s molecules excited, so it is possible to 

collect a signal with greater intensity. 

In figure 2.12 it is showed the ratio between AOTF value and fluorescence 

collected from a standard reference. Since to an higher laser intensity corresponds 

an higher signal collected, at the end of delivery experiment, it was necessary to 

bring back all fluorescence signals, to the same laser intensity, in order to compare 

them. This was possible by making a proportion between intensity (showed in 

table below) corresponding to two laser intensities of interest, and scaling 

microneedle’s fluorescence to the first laser intensity.  

 

 

      

 

Fig. 2.12: Fluorescence signal from standard obtained changing laser intensity (% AOTF). 
Approximation of experimental points with trend curve (right). 
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This procedure is justified because a linear relationship exists between laser 

intensity and fluorescence signal collected; this is true until chromophore 

saturation is reached. The saturation phenomenon occurs when all chomophore’s 

molecules are excited, so increasing laser intensity, does not provide any  increase 

in the signal collected. Since in these tests low laser intensities were used, 

saturation has not been reached, thus preserving linearity. 

 

 

2.6.1 Sample preparation 

 

For simplicity, preliminary studies of release kinetics were performed on 

microneedles obtained by mold. PLGA solutions were prepared with different 

water content (30 %, 60 % and 80 % respect PLGA mass), in which the 

concentration of TRITC-albumin was conformed for all of them at 0.625 mg/ml 

(w/v) respect to final volume of microneedles.  

Before starting delivery tests, preliminary experiments were performed, to ensure 

the preservation of hydratation of gelatine matrix during the release period, to 

exclude any alteration of diffusion. Gelatin B (DS 64 %), dissolved in a water 

solution with 5 % DMSO, was prepared at 10 % w/w, and after addition of dare-

cure (0.75 % w/w respect to gelatin), about 250 µl was poured in Petri dish’s well, 

closed with cover-glass and cured by UV exposition at 365 nm for 20 min. 

The bottom part of the Petri dish and the cover glass above gelatine were sealed. 

To find the best system to limit water loss they were tested three different 

sealings: Norland optical adhesive, that was UV cured; picodent twinsil, a bifasic 

silicon, and hot glue (figure 2.13). 
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Fig. 2.13: Three samples sealed with different methods: Norland optical adhesive (left), Picodent 
twinsil (centre), hot glue (right). 

 

 

After three days in incubator at 37 °C, it was evaluated  water loss by weighing the 

samples. 

In the preparation of the samples some requirements have to be respected; they 

depend on the method chosen to analyze drug delivery. In particular, it is 

necessary to position microneedles at same distance from bottom glass and 

preserve their position during release period. For this reason it was not possible to 

use conventional gelatine since at 37 °C, it becomes liquid, causing motion of 

microneedles. On the contrary, a fixed position for all microneedles included in 

gelatine is a very important requirement, since intensity of fluorescence signal 

depends on the distance between needle and bottom of Petri dish. By immobilizing 

microneedles, a variation in signal can be rightly attributed just to a variation in 

chromophore’s concentration.  Therefore, to optimize acquisition and comparison 

between fluorescence signals all microneedles were positioned at the same level 

by assembling gelatine matrix through three layers (figure 2.14). 

 

 

 

Fig. 2.14: Schematic representation of sample prepared for drug release kinetics. 
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First, 40 µl of gelatine were poured in the central well of a microscopy dish, that 

has a diameter of 12 mm, and partially photocured for 10 min. On a second layer, 

that was completely cured, ten microneedles were positioned and finally this layer 

was turned upside down and kept on the first layer. Liquid gelatine was then 

added to completely fill the well, closed with a cover glass and again UV cured at 

365 nm but this time for 20 min. 

 

 

2.6.2 Determination of acquisition parameters 

 

For quantification analysis it is important to reduce as much as possible the 

noise and distinguish the signal of interest from everything else. Moreover, 

especially when there is a low concentration of chromophore, autofluorescence of 

polymeric matrix can overlap and hide the signal.  

Considering excitation band of albumin-TRITC (figure 2.15), used as model drug, to 

obtain a good signal from chromophore, samples were excited using a laser at 543 

nm. 

 

 

 

Fig. 2.15: Excitation (left) and emission (right) spectra of albumin-TRITC. 
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Then, in order to maximize signal/noise ratio, auto-fluorescence of PLGA was 

analyzed between 450 and 700 nm which is the emission frequency band 

corresponding to BSA-TRITC emission, thus determining the best frequency band 

to acquire fluorescence. This test was carried out with a Leica TCS MP-SP5 confocal 

microscope in two-photon mode, at 950 nm. In this mode each photon carries 

approximately half the energy necessary to excite the molecule, which emits a 

fluorescence photon if reached by two photons simultaneously. Using laser in 

infrared range, far from frequency band investigated for autofluorescence, it is 

possible to acquire it completely. While, using a laser, whose wavelength is 

included in band analyzed, we should avoid frequencies nearly close to the laser, 

where the signal would be covered by light emission. Autofluorescence emission 

spectrum was collected using an acquisition band 10 nm wide. The peak resulted 

at 660 nm; it means that this wavelength has to be avoided during analysis of 

release kinetics to minimize noise (figure 2.16). So the detected fluorescence 

emission bands were set between 560 and 610 nm during measurements. 

 

 

 

Fig. 2.16: Autofluorescence spectrum of PLGA. 
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2.6.3 Drug loaded quantification 

 

To measure the effective amount of drug loaded in microneedles it was 

used Enspire 2300 Multimode Reader Fluorometer.  

A calibration line was calculated by analyzing fluorescence of BSA-TRICT water 

solution at known concentrations (figure 2.17). Different concentrations were 

chosen, from 0 to 2.5 µg/ml of model drug. Then, 150 µl of solution were loaded in 

a 96-well plate, each sample in triplicate to mediate results of analysis. The 

chromophore was excited at 550 nm and emission signal was collected at 570 nm.  

 

 

 

Fig. 2.17: Calibration line for BSA-TRITC obtained from spectrofluorometric analysis. 

 

 

Once obtained the relation between fluorescence signal and BSA-TRITC 

concentration, it was possible to calculate the amount of drug present in a 

microneedles array. As microneedles are too small to contain enough cromophore 

to be detected by the instrument, an entire array, composed by microneedles and 

back-layer was used to calculate BSA concentration.  

Emulsion remains stable during preparation and drying, so it was assumed that 

water phase compartments have an homogeneous distribution between 

microneedles and support layer. Consequently also BSA-TRITC was considered 
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uniformly distributed in entire sample. To quantify model drug loaded, PLGA 

samples were completely dissolved in 500 µl of dichloromethane (DCM), and then 

it was added 1ml of water. As BSA-TRITC is water soluble, it diffused from DCM 

towards water. Finally solutions were centrifuged for 5 min at 5000 rpm; 600 µl of 

water were collected from each sample and analyzed with spectrofluorometer. At 

the end, the concentration of BSA-TRITC, detected in solutions, was normalized 

respect to the mass of entire sample dissolved. To calculate the only mass of the 

microneedles, 60 of them were cut by hand from a piece of array, weighing sample 

before and after the cut. In this way it was possible to evaluate the mass of a single 

microneedle and BSA included in it.  
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Chapter 3 

Results and discussion 

 

 

 

3.1 Electro-drawn microneedles 

 

The electro drawing system is relatively easy to assemble and consists 

basically of a polar dielectric crystal (lithium tantalate - LT) facing the polymer 

reservoir deposited onto PDMS strip. The deposition of a multiple base drop allows 

the formation of microneedles under an array-like configuration. The reservoir 

drops dispensed, using a syringe pump, directly onto the substrate, are subjected 

to the electro-drawing process under the action of the pyro-electrohydrodynamic 

(EHD) force. The local heating induced onto the drop reservoir by the termal 

stimulus applied to the crystal was measured during the experiment by color 

change using a termo camera (Flir i7) and it is < 40 °C. During the drawing process, 

the liquid cone becomes solid thanks to the evaporation of the solvent, that blocks 

the electro-drawn cone, thus giving to microneedles the desired shape. A post 

thermal treatment (40 °C for 10 min), performed by holding microneedles with tip 

downwards, can be applied to the microneedles to accelerate and complete solvent 

removal. With a fast evaporation, polymeric solution has no time for relaxation 

which would lead to a loss of aspect ratio and a bigger basement. In this way, 

instead, it is obtained a shrinkage of the base of cone with an improvement of 

microneedle’s aspect-ratio.  
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Fig. 3.1: Shrinkage obtained with fast evaporation solvent . 

 

 

The process described above shows for the first time, to the best of our 

knowledge, the usage of EHT force for drawing a drop of polymer solution directly 

into a microneedle shape. A preliminary investigation was performed on the 

formation of a single microneedle from PLGA solution in order to characterize the 

main conditions that regulate the microneedle formation. Typically, the base drop 

was deposited onto a PDMS strip and had a volume ≤ 0.1 µl. The distance between 

the reservoir and the crystal was crucial and depended on both the volume and the 

contact angle of the base drop. The driving plate was heated locally in 

correspondence of the base drop, while approaching the base reservoir. Since the 

EHD force depends on the viscosity of the fluid, the control of this parameter was 

crucial for the successful formation of microneedles with the necessary shape. A 

proper range of polymer concentrations was chosen, from 20 to 30% w/v, to 

guarantee suitable viscosities. From experimental tests, it was concluded that the 

best operation condition is defined by 25% w/v of polymer solution. Viscosity was 

measured by Ubbelohde viscometer (figure 3.2), which uses a capillary based 

method. The solution was introduced into the reservoir (3) until filling between 

levels B and C, and then was sucked through the capillary (2). By looking at the 

liquid travelling back through the measuring bulb it was then taken the time to 

move from level B and A which allowed to measure the viscosity. In general, the 

pressure head in this kind of instrument only depends on a fixed height and no 

100 m 
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longer on the total volume of liquid, thanks to a third arm extending from the end 

of the capillary and open to the atmosphere. 

 

 

 

Fig. 3.2: Scheme of Ubbelhode viscometer, showing capillary of injection (1), reservoir (3), 
capillary to suck solution until complete filling of measure bulb (4) 

 

 

Viscosity range, calculated from measuring the different  times, and suitable for 

this fabrication method was around 80 to 240 mm2/s. In particular, the solution at 

25% w/w of PLGA, used to fabricate microneedles for this work, showed a 

viscosity of 125.75 mm2/s (figure 3.3).  
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PLGA (%) Time (s) Viscosity (mm2/s) 

10 1.53 13.53591 

20 8.7 76.9689 

30 27.14 240.10758 

40 112.69 996.96843 

Fig. 3.3: Plot of viscosities for solutions at different concentration (up) and relation between 
times, measured with Ubbelhode, and viscosity (down). 

 

 

Electro-drawing method provides remarkable degrees of freedom in moulding the 

shape of the microneedles. The polymer microneedle was formed in a single step 

by controlling the distance d between the base (contact angle θ) and the DP. In 

particular starting from the volume V of the drop reservoir we defined a critical 

distance Dc so that the process takes place for values of distance shorter than the 

critical one: 

 

In this condition controlling the volume of the drop reservoir and the critical 

distance it is possible to control the height of the needle produced.  
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3.2 Microneedles on pillars 

 

As regulation of volume is a fundamental factor for the determination of the 

final microneedle’s height, PDMS micropillars were used as base to deposit drops 

with hogh control on the volume uniformity. Micropillars were shaped from wells 

worked in PMMA by using the micro-milling technique (figure 3.4). Wells were 

drilled with the diameter in the range from 500 to 900 µm, to verify correlation 

between deposited volume and resulting microneedle.  

 

 

  

Fig. 3.4: Micro-wells drilled in PMMA, with increasing diameter, from 600 to 900 µm (up), and an 
array with 700 µm diameter (down, left). PDMS pillars replaced from wells-stamp (down, right). 
 

 

Micro-drops were deposited by contacting the drop ejecting by the capillary 

connected to syringe pump, with the surface of pillars (figure 3.5). In this way by 

varying pillar’s diameter it was possible to control the amount of solution that can 

be deposited forming reservoir for needle fabrication. 
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Fig. 3.5: Schematic representation of deposition on pillar by contact 

 

 

Referring to the needle height, h, it was measured considering only the cone 

without the pedestal. For base drops of 0.05µl < V < 0.1 µl, the typical height of a 

microneedles was 300 µm < h < 500 µm, which falls within the range used for 

indentation applications. The method also allows controlling needle’s height and 

aspect ratio as a function of droplets. As shown in figure 3.6, needle height 

increases with the volume of the drop and aspect ratio h/b can be modulated 

accordingly.  
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Fig. 3.6: Measures performed on images obtained by digital CMOS camera (1280(H) x 1024(V) 
spatial resolution) showing correlation between final microneedle’s height (up) and aspect/ratio 
(down )and initial drop’s volume. 
 

 

For instance, aspect ratios of 1.3 were obtained starting from a 0.1 µl drop 

reservoir. The increase of the aspect ratio with the droplet volume is most 

probably due to the fast consolidation of the walls with respect to the inner core 

that feeds the increase of the height under the persistent electric field. 

In figure 3.7 it is showed as increasing pillar’s diameter, it is possible to deposit a 

larger drop that entails formation of taller microneedles. 

 

 

Drop volume [ L] 

Aspect ratio (h/b) 

Drop volume [ L] 

Height [ m] 
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Fig. 3.7: Microneedles obtained by drops with increasing diameter, from 800 µm (left) to 1.1 mm 
(right). 
 

 

Thanks to the use of PDMS pillars, the density of microneedles per area can be 

dictated by the distance between pillars therefore it can be easily controlled.  
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3.3  Hydrophobic and hydrophilic drugs loading 

 

Initially a direct dissolution in the polymeric solution was proved both 

using Nile Red, hydrophobic chromophore, and Rhodamine 6G, hydrophilic one, at 

several concentrations. As summarized in table 3.1, it was possible to dissolve only 

a very little amount of Rhodamine in DMC, while Nile Red was completely 

solubilised also at higher concentrations. 

 

 

Conc. w/w to PLGA Nile Red Rhodamine 6G 

0.1% Solubilized Solubilized 

0.2% Solubilized 
Few small residues present in 

solution 

0.4% Solubilized Residues present in solution 

Table 3.1: Solutions proved for electro-drawing process. 

 

 

Solutions with two chromophores had a different behaviour during drawing. 

Rhodamine seemed to hinder cone formation, indeed we were able to form 

microneedles only at lower concentrations. Instead, microneedles loaded with Nile 

Red were obtained at all the tested concentrations. This difference is probably due 

to a different interaction between electric field and two chromophores, polar and 

apolar.  

In fact, by confocal analysis on microneedle’s slices it was evident that the two 

chromophores were distributed in different areas of microneedle. In the case of 

Nile Red the longitudinal measurement clearly showed that a significant increase 

in the fluorescence signal (around 12%) is revealed within a depth of about 150 

μm from the tip of the microneedle. Additional measurements were performed 

along three transversal scan directions at different depths from the tip (100 μm; 

200 μm; 300 μm), that showed a constant profile (figure 3.8). 
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(a)   

 
(b)               (c) 

 
(d)             (e) 
 

Fig. 3.8: Cross‐sectional view of the scan directions used for confocal measure (a); emission 
measured on a thin sheet of the cut microneedle, in longitudinal (b) and transversal direction, at 
100 (c), 200 (d) and 300μm of distance from the tip (e). 
 

On the contrary, confocal image on slices of microneedles loaded with Rhodamine 

showed a feeble fluorescent signal toward tip and a higher intensity at needle’s 

base (figure 3.9). 
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Fig. 3.9: Cross‐sectional view of the scan directions used for confocal measure on a microneedle 
loaded with Rhodamine 6G (up); emission measured in longitudinal direction (down). 
 

 

This distribution is not efficient for delivery, since most of the model drug was 

amassed outside cone.  
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3.3.1 Porous microneedles 

 

Since most of the therapeutics of interest are hydrophilic, it was attempted 

to load a considerable amount of hydrophilic model drugs by dispersing water 

phase in microneedle’s matrix.  

In particular, TRITC-albumin was used as active compound. To make its dispersion 

possible it was prepared an emulsion of water in oil where the water phase was 

loaded with TRITC-albumin and the oil phase was the usual PLGA solution (figure 

3.10). The opacity of solution resulting from emulsion depends on the formation of 

thousand micro-droplets of water which refract light rays. This means that ice 

jacket around sample was able to avoid evaporation of water, despite high 

intensity of energy dispensed to solution. Indeed, without a system to control the 

temperature, the water would have evaporated completely, leaving a clear 

solution. 

 

 

                                 

Fig. 3.10: PLGA dissolved in DMC at 25% and water solution loaded with Rhodamine before 
emulsification (left); solution resulting after sonication (right). 

 

 

Even starting from an emulsion based droplet, it was possible to effectively form 

PLGA microneedle. The electro-drawing was not affected by the presence of the 

water, as reported in figure 3.11a, whereas a microneedle onto a 700 μm diameter 

pillar was seen by optical microscope. The uniform distribution of the hydrophilic 
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micro-compartments is clear by the SEM micrograph taken onto a slice of the same 

microneedle, figure 3.11b. 

 

 

  

a)                                                               b) 

Fig. 3.11: Optical image of a microneedle electro‐drawn by water‐in‐oil emulsion (a); SEM 
micrograph on a slice of the microneedle on the left (b). 

 

 

This is a very new and interesting result since it proves the capability to load 

hydrophilic compounds in PLGA microneedles. Moreover, the presence of these 

micro-cavities accelerate hydratation of microneedle and consequently the release 

of drug loaded inside. Moreover, as pores are closer and closer, thanks to the effect 

of degradation of PLGA matrix, it becomes even faster the formation of 

microchannels between pores, allowing even faster diffusion of model drug 

throughout microneedle.  

However, the microneedle described so far present not optimal distribution of 

bioactive agent. Indeed, drug is uniformly distribuited throughout the cone and the 

pedestal region with obvious lost the drug encapsulated in the pedestal region.  
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3.3.2 Double drop deposition 

 

To improve drug distribution within the needles regions, we also tried to 

load only the cone of the microneedle by using a two-stage dispensing procedure. 

A small drug-containing water-in-oil emulsion drop, corresponding to the volume 

of microneedle’s cone, was dispensed on the top of a drop of drug-free PLGA 

solution. Thanks to the viscosity of the two solutions, even if two drops are 

perfectly unified, micro-drops of water instead of spread out in all drop’s volume, 

tend to stay in apical region. The resulting composite drop was successfully 

electro-drawn to obtain microneedles with drug –encapsulated porous cone and a 

compact drug free pedestal. Microneedles structure and dye distribution are 

clearly shown by the optical stereo microscope analysis (figure 3.12). 

 

 

 

Fig. 3.12: Schematic representation of microneedle’s structure resulting from double deposition 
(left); side and top view of an electro-drawn microneedle, whose cone is loaded with BSA-TRITC. 

 

 

The separation of the two regions, cone and pedestal, is even more evident by the 

confocal optical analysis reported in figure 3.13. 

 

 



Chapter 3 - Results 
 

 
70 

 

Fig. 3.13: Confocal images on microneedle sliced. 

 

 

 

 

3.3.3  Porous microneedles by stamp 

 

To study the relationship existing between microneedle’s porosity and 

release kinetics a great number of microneedles was needed. So it was considered 

more convenient to fabricate microneedles by replica molding instead of electro-

drawing, using same composition of starting emulsion, from which depends final 

porosity. Microneedles were shaped using master, whose structures have a square 

base of 100 x 100 µm, 250 µm height and spaced 400 µm (figure 3.14).  
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Fig. 3.14: Stereoscopical image of master structure in COP (up); microneedles replicated from 
PDMS stamp. 

 

 

Few seconds under vacuum was enough to fill the PDMS stamp. By simply drying 

PLGA solution, perfectly shaped microneedles were obtained: there was no need to 

centrifuge sample to compact polymer inside holes.  

As preliminary check, a comparison was made between the porosity obtained from 

the two fabrication techniques. Images of figure 3.15 show the porosity obtained 

using a solution of PLGA emulsified with 30% water phase, containing 20 mg/ml 

lecithin, respect to polymer mass. In both electro-drawn microneedle and 

microneedle fabricated by mold there was a similar number of pores of 3-4 µm in 

diameter. 
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Fig. 3.15: SEM images on slices of microneedles included in PDMS and fabricated by electro-
drawing (left) and by mold (right). 
 

 

From the last evidence, it was supposed that release kinetics resulting from 

pyramidal microneedles was comparable to the one obtained by using electro-

drawn structures. 

Then, porosity degree was correlated to the amount of water emulsified inside 

PLGA solution. From morphological studies on slices of microneedles it was 

noticed a change in porosity by increasing water phase from 30% to 80% w/w 



Chapter 3 - Results 
 

 
73 

respect to PLGA. As showed in figure 3.16 microneedles containing 60% of water 

have a greater level of porosity, even if pore size is unchanged respect to 

microneedles resulting from an emulsion with lower water content. This is 

explainable since during the preparation of the samples,  the concentration of 

lecithin in water was kept constant, so increasing water content also lecithin 

included in emulsion was increased. A greater amount of surfactant was therefore 

able to stabilize larger surface, preserving pore size. Instead, at higher percentages 

of water, as it is possible to see, some pores much wider than others were 

obtained. This is probably due to aggregation of water drops at a later stage of the 

emulsion formation. 
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Fig. 3.16: SEM images of microneedles fabricated by mold containing 60% (previous page) and 
80% (up) of water w/w respect to PLGA.  

 

 

 

 

3.4  Quantification of model drug loaded 

 

Usually a complete device includes about 100-200 microneedles, as to not 

exceed about 2-3 cm in size; indeed a patch too wide would be annoying for patient 

and come off more easily. Calculation of drugs effectively loaded in microneedles 

gives the possibility to understand the maximum dose administrable to a patient 

with one device. 

For each sample, fabricated starting from different emulsion formulations, two 

pieces (2-3 mg weight each) were cut, dissolved in DCM and then dispersed in 

water. Resulting solutions were analyzed by spectrofluorometer in triplicate, 

acquiring fluorescence 3 times, with one minute between lectures, and finally 
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averaging the values. Comparing the fluorescence signal with the calibration line 

represented in chapter 2 (figure 2.17), it was possible to calculate for each sample, 

based on an array of PLGA microneedles, the BSA-TRITC concentration in the 

solutions where microneedles were dissolved. Knowing water volume added, it 

was possible to calculate the amount of BSA-TRITC included in the cut array. This 

value, obviously, depends on the dimension of the dissolved sample, so it was 

normalized respect to the mass of PLGA (figure 3.17). 

 

 

 

Fig. 3.17: Spectrofluorometric analysis for quantification of model drug.  

 

 

For samples fabricated starting from solutions emulsified with different amount of 

water phase, the amount of BSA-TRITC was in the range of 0.33-0.45 µg per 

milligram of PLGA. From the difference in weight of the PLGA substrate, before and 

after deprivation of all microneedles, it was calculated that the weight of each of 

them was about 2.5 µg. This means that in an array of one hundred microneedles, 

it would be possible to have about 0.1 µg of model drug, loaded only in 

microneedles volume. 

In some cases for release in vivo it is necessary to deliver some micrograms of 

active drugs to have a pharmacological effect. However, increasing size of 

microneedles and concentration of drug loaded in water phase, it could be 

attempted to load a useful drug’s amount.  

0.200 

0.250 

0.300 

0.350 

0.400 

0.450 

0.500 

0.550 

0% 20% 40% 60% 80% 100% 

B
SA

-T
R

IT
C

 r
e

sp
e

ct
 t

o
 P

LG
A

 (
µ

g/
m

g)
 

Water content of originary emulsion 



Chapter 3 - Results 
 

 
76 

3.5  Drug release kinetics 

 

Release kinetics was quantified by including microneedles in a gelatine 

matrix. Microneedles were cut by hand and separated from the back layer, to 

consider only the contribution of elements that should penetrate inside skin. The 

analysis by confocal microscope allows analyzing samples in a non-destructive or 

invasive way. During test it was analyzed the average of fluorescence on the entire 

volume of microneedles and the decrease of signal was attributed to diffusion in 

gelatine over time.  

For the preparation of samples, it was chosen Norland optical adhesive as sealant. 

Indeed, in preliminary tests where different sealants had been used, to verify the 

maintaining of hydration of gelatine, it was identified as the best sealing, with a 

weight loss of the sample of just 8 mg after 3 days at 37 °C respect to about 200 mg. 

After including the microneedles in the gelatine matrix and closing them in the 

Petri’s well with coverglass and sealant, one millilitre of water was added before 

locking the cover with parafilm (figure 3.18). Water was necessary to create an 

environment saturated with water vapour to inhibit water-loss from gelatine.  

 

 

 

Fig. 3.18: Sample prepared to study drug’s delivery kinetics. 
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This optimized system preserved hydration of gelatine even after three weeks 

from the beginning of the test. No any air bubble was formed inside the sample 

during monitoring period, differently from what occurred with other sealing 

systems and without water. 

Since transdermal delivery with microneedles has a special attractiveness for 

those drugs, with protein nature, too much wide to cross intact skin and too easily 

degradable for gastro-intestinal ambient, it was used BSA-TRITC as model drug, a 

molecule with 66 kDa molecular weight. This model drug is commonly used to 

mimic diffusive behaviour of large size drugs. In figure 3.19 it is showed the release 

profile from microneedles containing 30% and 80% of water respect to PLGA in 

the first three days which are really important in most of the applications.  

 

 

 

Fig. 3.19: Fluorescent signal over time collected during release period in gelatine at 37 °C. Are 
plotted fluorescence trend of microneedles fabricated from emulsion containing 30% (blue) and 
80% (green) of water respect to PLGA. Each point is the average calculated on ten microneedles.  

 

 

Typically, due to the very low degradation degree of the PLGA this time scale is not 

enough to have significant drug release especially in the case of embedded and 

large molecules. We saw that in both cases, even if slow, it was observed some 

release of the BSA-TRITC. In particular, the release of the sample with higher 

porosity was significantly higher than the other one even though corresponding to 
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few tens of % respect to the total amount of embedded drug. Working on the 

degree of porosity we expect to further improve the release of the PLGA 

microneedles. Moreover, inspecting lower molecular weight molecules it is 

possible to expect much higher release kinetics.  

The increase in fluorescence visible after 24h in the first kind of samples is 

probably an optical effect that depends on needles hydration. This evidence was 

not found in the other sample, where maybe this increase is balanced by faster 

diffusion. 

Following the release until 14 days it was observed about 70% of model drug 

released from microneedles with lower porosity degree, and about 85% of release 

was reached from the ones with higher degree of porosity. This is a useful 

information especially in the case of microneedles which are released after 

insertion and that can continue the release of their cargo over time without being 

annoying for the patient. In this case the release would be almost complete after 

around two weeks. 

After 14 days in gelatine matrix, it was visible a leakage of material from some 

microneedles at 80% water content (figure 3.20). This was due to strong 

degradation of PLGA: from the breakage of ester linkage smaller chain lengths are 

formed and they can diffuse through microneedle matrix.  

 

 

Fig. 3.20: Microscopy image in transmission mode showing small PLGA chain diffusing outside 
microneedle. 
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At 21st days from the beginning of release test the polymeric matrix appeared even 

more degraded, with some regions completely dissolved by hydrolysis (figure 

3.21). Degradation stage was more advanced in microneedles with higher porosity, 

this is most probably due to a fast hydration that accelerate degradation. 

 

 

 

 

 

Fig. 3.21: Microneedle after 21 days in gelatine, with 30% (up) and 80% (down) of water 

content. 
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3.6  Indentations 

3.6.1  Preliminar tests 

 

To serve as substitute for a hypodermic needle, a microneedle should 

penetrate the 10 ÷ 20 µm thick stratum corneum without breakage. Preliminary 

indentation experiments were performed into model materials, such as wax and 

agarose gel, that allows an easy visualization in real time, in order to test the 

hardness of the microneedles. Figures 3.22 shows the microneedles while 

penetrating the agarose and just after ejection. No any breakage or bending was 

observed either in this case or for other lengths and aspect ratios of the 

microneedles during the insertion tests.  

 

 

 

Fig. 3.22: PLGA microneedles loaded with NR inserted in agarose (left) and after ejection (right). 

 

 

Instead, a porous microneedle, containing a 30% of water, fabricated on a PDMS 

pillar of 700 µm in diameter, was tested in paraffin. In figure 3.23 successivephases 

of indentation are showed. Microneedle was forced in paraffin wax until the pillar 

that respond elastically to compression, appeared deformed. Despite the applied 

force, microneedle was ejected without bending or tip deformations. 

 

 

Agarose 
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Fig. 3.23: Photograms showing indentation in a paraffin layer carried out with a porous 
microneedle containing 30% water phase. 
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3.6.2  Indentation in skin 

 

Finally, indentation experiments were performed into real skin by inserting 

the Nile Red loaded microneedles obtained with post-thermal treatment. This 

analysis was carried out with the system showed in figure 3.24, that mimics the 

application of a patch through a bracelet. Pig cadaver skin was kept on absorbing 

paper, around tube that simulate the arm, to avoid shifts. A pressure sensor was 

fixed to the plastic plate of bracelet, exactly with sensitive area under microneedles 

in order to measure the force exerted on them. By tightening elastic cuff, 

microneedles were inserted into pig cadaver skin and removed after 15 min. 

 

 

 

Fig. 3.24: Set up for indentation in pig skin, showing plastic plate fixed to the elastic cuff, the 
pressure sensor used to measure pressure and pig skin kept on absorbing paper. 

 

 

During indentation it was measured a force about 1N, that acting on all 

microneedles in series, would correspond to 0.33N/microneedle. Specifically, the 

necessary force to produce the indentation was of around 0.01 N per microneedle 
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which is much lower than forces (> 1 order of magnitude) typically known to 

produce PLGA microneedle breakage. The effectiveness of the indentation is 

confirmed by the cross sectional image of the stained skin at the site of 

microneedle penetration (figure 3.25). 

 

 

 

Fig. 3.25: Cross-sectional image of the skin after microneedle removal and skin fixing in 
formaline at 10%, magnification  of one indentation (left) and complete image (right). 

 

 

The dermis was clearly reached by the microneedle, thus confirming the potential 

use for drug delivery. The insertion depth was in agreement with the dimensions 

of the microneedles used for test having respectively around 400, 500, 450 µm 

length (figure 3.26). 
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Fig. 3.26: Optical image of microneedles used for indentation with heights of (left) 400 μm, 
(middle) 500 μm, (right) 450 μm. 

 

 

In particular, they were able to penetrate all the layers of the epithelium and part 

of the papillary dermis. These results confirmed the effectiveness of these 

microneedles which combined with the technological simplicity of the technique 

could provide a significant breakthrough in the clinical development of the 

biodegradable microneedles. 

 

 

 

3.6.3  Nanoindentation 

 

The mechanical resistance of the polymeric matrix used to fabricate 

microneedles, is an essential factor to be considered in order to ensure the success 

of indentation. A microneedle must withstand the force required to pierce stratum 

corneum without reaching breaking load. The elastic modulus of polymeric matrix 

was evaluated by indenting samples with a standard berkovich tip (figure 3.27). 
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Fig. 3.27: Substrate tested with berkovich tip of nanoindenter. 

 

 

Mechanical tests were accomplished on samples worked by different methods. As 

it is showed in plot (figure 3.28), PLGA dried after dissolution in DMC has an elastic 

modulus lower that the one obtained in case of sample fabricated by direct 

melting. This is probably explainable with a different compression state of 

polymeric chains, dissolution of polymer in a solvent, even after lyophilisation, 

might have caused formation of a network with larger mesh. Despite this 

significant loss of resistance electro-drawn microneedles, fabricated by a PLGA 

solution, were able to indent. 
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Fig. 3.28: Comparison between elastic modulus, calculated through nanoindentation, of PLGA 
worked by melting and dissolving, and different formulation of emulsion. 

 

 

In addition,  mechanical tests, performed by nanoindentation of samples obtained 

by solution emulsified with different amounts of water, proved that there was no 

significant difference between the different samples. Probably, this is due to the 

kind of distribution of the pores which are small and not interconnected, therefore, 

they do not affect the elastic modulus of the polymeric matrix. It is, therefore, 

reasonable to suppose that also porous microneedles should be able to drill skin.  
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3.7  Conclusion 

 

Biodegradable microneedles are considered as a great alternative to 

hypodermic injection and current system for drug delivery. Indeed, it is 

established that with this new approach it is possible to obtain an efficient release 

of vaccines and other drugs. Microneedles solve in a simple way the problems 

related to permeability of stratum corneum, also for molecules with large sizes, 

therefore are suitable for many applications. An attractive point for a future use in 

human patients is the sharpness loss of microneedles after the first use. Both in the 

case of good indentation with following hydration and drug release, and failed 

indentation, in which microneedle’s tip is damaged, the disposable is not able to 

pierce again. This limits the risk of disease transmission from one person to others. 

 

This thesis project was focused on the development of a new fabrication method 

that allows overcoming some limitations of common procedures. Some of these 

limits originate from the fact that the drug is included in the polymer matrix, so if 

process conditions are such to degrade it, then it is required a very large amount of 

drug to obtain a pharmacological effect. This drug’s overload can make production 

uneconomical. 

In this work it is showed for the first time a fabrication method based on electro-

drawing. Electrical field is generated from a heated pyroelectric crystal. This is the 

only element brought to high temperature, while the temperature of the polymeric 

solution, in which is included the drug, never overcomes 40 °C. So this process 

results very interesting especially for thermolabile drugs, such as proteins. To 

shape microneedles it is not used any stamp: in the whole process the polymeric 

solution comes into contact only with the flexible substrate, that is the support of 

the microneedles array. So it is avoided any cross-contamination between devices 

produced in series. 

It has also been demonstrated the ability to form porous microneedles, by the 

drawing of a drop of emulsion. This gives the possibility to load, also 

contemporary, an hydrophilic and lipophilic drug in the same microneedle. In 

addition, with double drop deposition, the active compound has been localized into 
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the cone, or in other words in the only region that will be completely inserted in 

skin. This is important since  drug localization maximizes the efficiency of release.  
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Appendix Instruments 

 

 

 

A.I.1  Confocal Microscope 

 

Illuminating and observing a sample, two physical processes significantly 

limit the sharpness of the observed image: 

1) by illuminating the entire sample, the light spreads in it disturbing the image 

of the focus plane: to solve this problem it is needed to illuminate only small 

areas of the sample. 

2) while it is possible to observe a focus plane of the sample, also the light 

reflected from the plans not in focus comes to the eyes, making a confusing 

picture: the revolutionary idea compared to conventional microscopy is to 

block as much as possible the information derived from the above and below 

planes to the desired through a small opening. 

Confocal microscopy allows overcoming the limits of conventional optical 

microscopy. Indeed, it is an optical imaging technique used to increase optical 

resolution and contrast of a micrograph by using point illumination and a spatial 

pinhole, in input and in output, to eliminate out-of-focus light in specimens that are 

thicker than the focal plane. The image therefore is not disturbed by unwanted 

reflections or fluorescences by the plans not in focus and the points of focus plane 

that are not observed. It enables the reconstruction of three-dimensional 

structures from the obtained images. 

As it is possible to see from the figure A.I.1, the beam excitation passes through the 

illuminating pinhole, irradiating only a small region of the sample. 
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Figure A.I.1: Simplified optics of a Laser Scanning Confocal Microscope (LSCM). 

 

 

Before detection a second confocal aperture, a detector pinhole, reduces the 

contributions of the above and below planes to the focus. By scanning techniques, 

it is possible to study the entire sample surface. The fundamental principle of any 

scanning microscope is to illuminate a point of the sample at a time; the signal 

resulting from the interaction between the incident radiation and the sample is 

recorded and processed to form a reproduction of the sample to visualize. 

Compared to a conventional microscope that immediately provides the full image, 

with the confocal microscope the sample is probed point by point.  

In confocal microscopy, as excitation source it is often used a laser beam. This 

provides a high intensity and monocromatic light source. It is first filtered and 

attenuated so to use a correct intensity and proper excitation spectrum to produce 

fluorescence that is the emission of a secondary photon upon absorption of a 

photon of higher wavelength (figure A.I.2). Most molecules at normal temperatures 

are at the lowest energy state, the so-called 'ground state'. Occasionally, a molecule 

may absorb a photon and increase its energy to the excited state. From here it can 

very quickly transfer some of that energy to other molecules through collisions 

(red) and spontaneously emits the remaining energy by emitting a photon (green) 

with a lower wavelength to return to the ground state.  
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Figure A.I.2: Scheme of the fluorescence mechanism. 

 

 

In fluorescence microscopy, fluorescent molecules, in order to increase the signal, 

are designed to be attached to specific parts of a sample, thus identifying them 

when imaged. Multiple fluorophores can be used to simultaneously identify 

different parts of a sample. There are two options when using multiple 

fluorophores: 

 fluorophores can be chosen that respond to different wavelengths of a multi-

line laser; 

 fluorophores can be chosen that respond to the same excitation wavelength 

but emit at different wavelengths. 

While the intensity of incident radiation can be increased, fluorophores may 

become saturated if the intensity is too high. Moreover, they can present 

photobleaching that is an irreversible fade when they are exposed to excitation 

light for a long time being able to emit only a limited number of photons. This may 

be due to reaction of the molecules’ excited state with oxygen or oxygen radicals. 

Photobleaching can be limited by reducing the oxygen available or by using free-

radical scavengers. Some fluorophores are more robust than others, so choice of 

fluorophore is very important.  
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A.I.2  Multiphoton fluorescence microscopy 

 

The multiphoton fluorescence microscope (MPM) uses pulsed long-

wavelength light to excite fluorophores within the specimen being observed. The 

fluorophore absorbs the energy from two long-wavelength photons which must 

arrive simultaneously in order to excite an electron into a higher energy state, 

from which it can decay, emitting a fluorescence signal (figure A.I.3). It differs from 

traditional fluorescence microscopy in which the excitation wavelength is shorter 

than the emission wavelength, as the summed energies of two long-wavelength 

exciting photons will produce an emission wavelength shorter than the excitation 

wavelength.  

 

 

 

Fig. A.I.3: Diagram indicating the absorption of two NIR photons to excite the fluorescent 
molecule to an excited state and the visible fluorescence emitted during relaxation. 

 

 

Multiphoton fluorescence microscopy has similarities to confocal laser scanning 

microscopy. Both use focused laser beams that scan the sample to generate images, 

and both have an optical sectioning effect. Unlike confocal microscopes, 

multiphoton microscopes do not contain pinhole apertures, which give confocal 
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microscopes their optical sectioning quality. The optical sectioning produced by 

multiphoton microscopes is a result of the point spread function of all elements 

included in optical path, namely depends on how the system blurs the image of a 

bright spot formed where the pulsed laser beams coincide.  

Compared to similar optical imaging techniques, MPM holds inherent advantages 

for imaging living tissues by improving depth penetration and reducing 

photodamage. This is a direct result of employing near infrared (NIR) femtosecond 

lasers to generate observable nonlinear signals in the visible range. The NIR 

excitation enhances the ability to image deeper into a sample through a reduction 

light scattering proportional to the fourth power of the excitation wavelength. 

 

 

 

A.I.3  Immersion sonicator 

 

One of the equipments used in the preparation of the water-PLGA emulsion 

for porous microneedles fabrication, is the immersion sonicator. In figure A.I.4 it is 

reported the one used in the thesis which was the Ultrasonic Processor VCX500 

Sonic and Materials.  

 

 

 

Fig. A.I.4: Picture of the Ultrasonic Processor VCX500 Sonic and Materials. 
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The ultrasonic power supply converts 50/60 Hz line voltage to high frequency 

electrical energy transmitted to the piezoelectric transducer within the converter, 

where it is changed to mechanical vibrations. The vibrations from the converter 

are intensified by the probe, creating pressure waves in the liquid. This rapid 

changes in pressure causes the formation of cavities during phase of low pressure, 

and their implosion during high pressure, that generate intense shock waves. The 

sum of energy released by each individual implosion is minimal, but the 

cumulative effect causes extremely high levels of energy to be released into the 

liquid. Temperature is monitored therefore if a pre-fixed threshold is overcome, 

sonication will stop. To avoid this condition it is possible to alternate pulse off 

and/or more effectively create an ice jacket to improve heat dissipation and keep 

temperature below the threshold. The Ultrasonic Processor is designed to deliver 

constant amplitude. As the resistance to the movement of the probe increases, 

additional power will be delivered by the power supply to ensure that the 

excursion at the probe tip remains constant. Furthermore, the amplitude control 

allows the ultrasonic vibrations at the probe tip to be set to any desired level.  

Probes consist of two sections each having different cross-sectional areas. Brought 

to resonant frequency, the probe expands and contracts longitudinally about its 

center. Amplification factor increases with the mass ratio between the upper 

section and the lower section. Probes with smaller tip (figure A.I.5.A) diameters 

produce greater intensity of cavitation, but the energy released is restricted to a 

narrower, more concentrated field. Conversely, probes with larger tip (figure 

A.I.5.B) diameters produce less intensity, but the energy is released over a greater 

area.  
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Fig. A.I.5: Small (A) and large (B) types of probes. 

 

 

High gain probes produce higher intensity than standard probes of the same 

diameter, and are usually recommended for processing larger volumes. Probes are 

fabricated from high grade titanium alloy Ti-6Al-4V because of its high tensile 

strength, good acoustical properties at ultrasonic frequencies, high resistance to 

corrosion, low toxicity, and excellent resistance to cavitation erosion. They are 

autoclavable and available with threaded ends to accept replaceable tips, microtips 

and extenders. 

 

 

 

A.I.3  Fluorescence Spectroscopy 

 

In this work, fluorescence spectroscopy was used to quantify the amount of 

BSA-TRITC loaded in microneedles, through the intensity of fluorescence signal. In 

following figure A.I. 6 is reported the EnSpire Multimode Plate Reader 2300-0000, 

Perkin Elmer used in this work.  
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Figure A.I.6: Picture of the spectrofluorimeter EnSpire Multimode Plate Reader 2300-0000, 
Perkin Elmer. 

 

 

Fluorescence occurs when a substance that has absorbed light or other 

electromagnetic radiation, emits light with different wavelength. When a substance 

absorbs energy, the electronic state of the molecules changes from the ground 

electronic state (low energy state) to a one of the vibrational states of the excited 

electronic state. Excited molecule can collide with other molecules causing as a 

result lose of energy until the molecule reaches the lowest vibrational state of the 

excited electronic state, and finally, as consequence of collisions, the molecule 

drops again into one of the various vibrational levels of the ground electronic state, 

emitting a photon in the process. Because the molecules can drop in any of the 

different vibrational levels of the ground state, the emitted photons will have 

different energies and in consequence, different frequencies.  
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A.I.4  Nano Indenter 

 

To characterize PLGA matrix employed to fabricate microneedles, a Nano 

Indenter G200 Agilent Technologies was used (figure A.I. 7). This instrument is 

able to apply loads and to sense displacements in the micro and down to nano 

scale. 

 

 

 

Fig. A.I. 7: Picture of Nano Indenter G200, Agilent Technologies. 

 

 

Indentation testing is a method that consists essentially of touching the material of 

interest, whose mechanical properties such as elastic modulus are unknown, with 

another material whose properties are known. The difference from others 

conventional indentation hardness tests is the indirect measurement of contact 

area. In nanoindentation tests, the size of the residual impression is of the order of 

microns and too small to be conveniently measured directly. Thus, it is customary 

to determine the area of contact by measuring the depth of penetration of the 

indenter into the specimen surface. This, together with the known geometry of the 

indenter’s tip, provides an indirect measurement of contact area. For this reason, 

nanoindentation testing is referred to as depth-sensing indentation (DSI) [61]. 

Depending on the test that one wants to perform and on the type of sample, 

different tip indenters can be used, some of which are showed in figure A.I. 8. 
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Fig. A.I. 8: Rapresentation of geometries most used for indentation: Berkovich, Vickers, Cube-
Corner, Cone and Sphere (from left).  
 

 

A schematic representation of indenter’s elements is showed in figure A.I. 9. During 

an indentation, corresponding values of load and displacement of the diamond tip 

(indentation depth) are recorded, and from the resulting curve the hardness and 

the E-modulus are calculated. The load is applied by running a current through the 

load application coil. Magnetic field so generated interact with permanent magnet 

mounted onto indenter shaft, thus pushing diamond tip. The indenter 

displacement is measured by the capacitive displacement sensor. 

 

 

 

Fig. A.I. 9: Diagram of the nanoindenter system used. The force imposed on the indenter is 
generated through a coil that sits within a circular magnet. The displacement sensing system 
consists of a three-plate (circular disks) capacitor. 
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Load transducers must be capable of measuring forces in the micro-newton range 

and displacement sensors are very frequently capable of sub-nanometer 

resolution. Environmental isolation is crucial to the operation of the instrument. 

Vibrations transmitted to the device, fluctuations in atmospheric temperature and 

pressure, and thermal fluctuations of the components during the course of an 

experiment can cause significant errors. 

 

 

 

A.I.5  Cryo UltraMicrotome 

 

An ultramicrotome is a tool used to cut extremely thin slices of material; it can 

cut until few tens of nanometers thickness. Importantly in science, microtome is used in 

microscopy, allowing for the preparation of samples for observation under transmitted 

light or electron radiation. Microtomes use steel, glass, or diamond blades depending 

upon the specimen being sliced and the desired thickness of the sections being cut. In 

this work was used a Leica EM UC7 Ultramicrotome, with Cryo chamber EM FC7 for 

sectioning in environment cooled with liquid nitrogen, showed in figure A.I. 10. 

 

 

 

Fig. A.I. 10: Picture of Ultramicrotome Leica EM UC7 (left) and Cryo chamber EM FC7 (right). 

 

 

The reduced temperature allows for the hardness of the sample to be increased, such as 

by undergoing a glass transition, which allows for the preparation of thin samples. 
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The instrument used belongs to the class of rotary microtome. This device operates with 

a staged rotary action such that the actual cutting is part of the rotary motion. In a rotary 

microtome, the knife is typically fixed in a horizontal position. Through the motion of 

the sample holder, the sample is cut by the knife position 1 to position 2), at which point 

the fresh section remains on the knife. At the highest point of the rotary motion, the 

sample holder is advanced by the same thickness as the section that is to be made, 

allowing for the next section to be made (figure A.I. 11). 

 

 

 

Fig. A.I. 11: Principle of sample movement for making a cut on a rotary microtome. 

 

 

 

A.I.6 Scanning Electron Microscope 

 

For morphological analysis of microneedles sectioned a field emission SEM (Ultra plus 

Zeiss) was used. A scanning electron microscope (SEM) is a type of electron 

microscope that produces images of a sample by scanning it with a focused beam of 

electrons. The electrons interact with atoms in the sample, producing signals that can be 

detected and that contain information about the sample's surface topography and 

composition. In a typical SEM, an electron beam is thermoionically emitted from an 

electron gun fitted with a tungsten filament cathode. The electron beam, which typically 

has an energy ranging from 0.2 keV to 40 keV, is focused by one or two condenser 
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lenses to a spot about 0.4 nm to 5 nm in diameter. The beam passes through pairs of 

scanning coils or pairs of deflector plates in the electron column, typically in the final 

lens, which deflect the beam in the x and y axes so that it scans in a raster fashion over a 

rectangular area of the sample surface (figure A.I.12). 

 

 

 

Fig. A.I.12: Functioning scheme of a scanning electron microscope. 

 

 

When the primary electron beam interacts with the sample, the electrons lose energy by 

repeated random scattering and absorption within a region of sample’s volume, whose 

extension depends on the electron's landing energy, the atomic number of the specimen 

and the specimen's density. The interaction between electron beam and surface sample 

produce a great number of particles, like secondary electrons (SE), back-scattered 

electrons (BSE), characteristic X-rays and transmitted electrons. In the standard 

detection mode, secondary electron imaging or SEI, the SEM can produce very high-

resolution images of a sample surface. Instead, back-scattered electrons (BSE) are beam 

electrons that are reflected from the sample by elastic scattering. BSE are often used in 

analytical SEM along with the spectra made from the characteristic X-rays, because the 

intensity of the BSE signal is strongly related to the atomic number (Z) of the specimen. 
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