
ON THE QUALITY OF FAULT INJECTION FOR OFF-THE-SHELF

COMPONENTS IN SAFETY-CRITICAL SYSTEMS

By

Anna Lanzaro

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

UNIVERSITA’ DEGLI STUDI DI NAPOLI FEDERICO II

VIA CLAUDIO 21, 80125, NAPLES, ITALY

MARCH 2014

c© Copyright by Anna Lanzaro, 2014

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Thesis contributions . 6

2 Off-The-Shelf Components in Safety-Critical Systems 12

2.1 Introduction . 12

2.2 Off-the-shelf components: definitions and classification 13

2.3 OTS components and safety standards . 14

2.4 Testing OTS-based systems . 17

2.4.1 Dependability: basic concepts . 18

2.4.2 Fault injection testing . 19

3 Achieving Accuracy in Binary Code Mutation 23

3.1 Introduction . 23

3.2 Background and Related Work . 25

3.2.1 G-SWFIT . 29

3.2.2 SAFE . 30

3.3 Experimental Evaluation of Binary Fault Injection 32

3.3.1 Fault Matching . 35

3.3.2 Fault Sampling . 37

iii

3.3.3 Case Study . 41

3.3.4 Results . 43

3.4 Systematic Testing of Binary Fault Injection 54

3.4.1 Test-suite Generation . 63

3.4.2 Test-suite Execution, Comparison and Detection of Inaccuracies 67

3.4.3 The csXceptionTM suite . 72

3.4.4 Test Planning . 73

3.4.5 Results . 75

3.5 Summary . 80

4 Achieving Representativeness in Interface Error Injection 84

4.1 Introduction . 84

4.2 Background and Related Work . 86

4.3 Propagation of Errors at Component Interfaces 92

4.3.1 Propagation analysis approach . 93

4.3.2 Component fault injection . 105

4.3.3 Results . 108

4.4 Summary . 114

5 Software-Implemented Fault Injection in the Multicore Era 118

5.1 Introduction . 118

5.2 Multicore in safety-critical systems . 120

5.3 Background and Related Work . 123

5.3.1 Software-implemented Error Injection for Multicore 127

5.3.2 Case Study . 129

5.3.3 Campaign #1 . 134

5.3.4 Campaign #2 . 136

5.4 Emulating Hardware Errors in Virtualized Systems 137

5.4.1 Case study . 139

5.4.2 Campaign 1 . 142

5.4.3 Campaign 2 . 143

iv

5.5 Summary . 144

6 Conclusions and Future Work 145

Bibliography 151

v

List of Tables

3.1 Fault Types (see also [36]). 26

3.2 Classification of Fault Injection Tools . 29

3.3 Description of OMFC Fault Type . 30

3.4 Comparison of Average Software Complexity Metrics of Functions in RTEMS

and CDMS Code . 48

3.5 Fault Types of G-SWFIT [36]. 55

3.6 Constraints of Fault Types in G-SWFIT [36] 57

3.7 Parameters of the Faultprog random program generator. 67

3.8 Test-suites generated by FaultProg . 74

4.1 Fault types adopted in this study [36]. 106

4.2 Outcomes of experiments. 109

4.3 Distributions of return values in fault injection experiments. 113

4.4 Correlation between corruption rate and number of accesses. 114

5.1 Status Register [15:0] . 132

5.2 MCEs injector input . 141

5.3 MCE example . 141

vi

List of Figures

2.1 Component and Interface . 13

2.2 General fault injection framework . 20

3.1 Software Fault Injection Techniques . 32

3.2 Overview of the Method for G-SWFIT Evaluation 35

3.3 Fault Matching Procedure . 37

3.4 Examples of Spurious and Omitted Faults Due to C Preprocessor Macro . . . 39

3.5 Architecture of the Case Study . 42

3.6 Distributions of Software Faults at both Binary and Source Code Level 43

3.7 Correctly Injected, Spurious, and Omitted Faults 45

3.8 Causes of Incorrect Fault Injection in the Case Study 46

3.9 Number of Faults (Correctly Injected, Spurious, and Omitted) in OS and

Application Code . 47

3.10 Causes of Incorrect Fault Injection in OS and Application code 48

3.11 Spurious MFC Fault in CDMS. 51

3.12 Omitted MFC Fault in CDMS . 52

3.13 Omitted MIA Fault in CDMS. 53

3.14 Number of Faults (Correctly Injected, Spurious, and Omitted) when Fixing

Implementation Issues of the G-SWFIT Tool 54

3.15 Accuracy of G-SWFIT in the Context of an Embedded Space Software [29]. . 58

3.16 General Structure of a Synthetic Program . 61

3.17 Proposed Approach . 61

3.18 Example of a Synthetic Program for Testing MFC Fault Type 68

3.19 csXceptionTM architecture . 73

vii

3.20 Distributions of Faults Injected at Binary and Source Code Level 75

3.21 Distributions of Correctly Injected, Spurious and Omitted Faults. 76

3.22 Spurious injections. 78

3.23 Example of synthetic program causing a spurious injection. 79

3.24 Omitted injections. 80

3.25 Example of synthetic program causing an omitted injection. 81

4.1 Relationship between component faults and interface errors. 90

4.2 Propagation through a library-allocated heap area. 91

4.3 Propagation through a user-allocated heap area. 92

4.4 Propagation through a library-allocated heap area, reached through a user-

allocated heap area. 93

4.5 Propagation through a user-allocated local variable. 94

4.6 Overview of error propagation analysis. 95

4.7 Example of reachability graph. 98

4.8 Trace pre-processing. 100

4.9 Example of comparison between faulty and fault-free traces. 102

4.10 Software Fault Injection approach [28,79]. 107

4.11 Cumulative distribution (per library) of the number of corrupted bytes of

interface data. 111

4.12 Cumulative distribution (per fault type) of the number of corrupted bytes of

interface data. 112

4.13 Byte corruption rate and number of accesses for Libxml2. 115

5.1 Proposed Error Injection Framework . 128

5.2 Intel Core i7 Architectural Block Diagram . 130

5.3 Machine Check Architecture . 131

5.4 MCE Description File and Severity Levels . 133

5.5 SER_P=0: Recovery Actions Not Supported by the Processor 135

5.6 SER_P=1: Recovery Actions Supported by the Processor 135

5.7 Severity and Recovery Actions Grouped by Error Categories 137

5.8 Severity and Recovery Actions for Campaign #2 138

viii

5.9 Injection Framework for Virtualized Systems 138

5.10 Architecture Framework for Xen . 140

5.11 MCE Generator . 142

5.12 Recovery Actions for Campaign #2 . 143

5.13 SER_P=1: Recovery Actions Implemented by Linux OS 144

ix

Chapter 1

Introduction

Fault Injection (FI) is a family of techniques that emulates hardware and/or software faults

by deliberately inserting them into a system component in order to analyze system behavior

under faulty conditions, i.e. whether the system can tolerate faults. It is well recognized

that Fault Injection is a powerful means for dependability assessment, especially when the

system is composed by third-party components, which are often distributed as executables

(commercial Off-The-Shelf), being their source-code not available.

The integration of hardware and software OTS components is quite common in the devel-

opment of modern systems. Their adoption is driven by development costs, market pressure,

and performance reasons. Similar reasons are behind the adoption of OTS components in

safety-critical systems where standards e.g., ISO-26262, IEC-61508, and DO-178B regulate

their integration by requiring evidences that OTS components fulfil safety functions. Un-

fortunately, the lack of documentation and information about the development life-cycle

1

Chapter 1. Introduction 2

and different operational environments often lead to an improper integration of OTS com-

ponents, rising the risk of failures. As a consequence, dependability assessment techniques

and proper verification strategies are mandatory in order to evaluate system behavior in

presence of hardware and software faults.

Regarding the emulation of software faults, fault injection is able to operate at dif-

ferent system levels: at component-level by means of code mutation techniques; and at

interface-level through error injection techniques. Code mutation techniques emulate bugs

into a system by mutating the code of a program. Mutations represent software defects,

i.e. programming mistakes, to be introduced in the code in order to realistically emulate

a faulty software. In the case of OTS-based systems, the injection of programming errors

is performed at at binary-level and it presumes that programming constructs used in the

source code are identified by looking only at the binary code. Unfortunately, software fault

injection (SFI) at binary-level is a difficult and error-prone task due to the complexity of

programming languages and of modern compilers, which make difficult and in some cases

impossible to accurately recognize where to inject faults. The major concern when injecting

software faults at binary-level is to assure that binary-level changes are accurately

performed to emulate programming mistakes, i.e. SFI has to correctly emulate

software faults to an acceptable degree the degree of confidence that a fault in-

jected in the binary code correctly emulates a software defect in the source code.

Chapter 1. Introduction 3

Inaccuracies in the injection could negatively affect the results of fault injection campaigns

leading to erroneously considerations on dependability properties of the system.

Instead of injecting software faults, Interface Error Injection (IEI), which is often adopted

in the context of robustness testing, mimics the effects (i.e., errors) produced by faults

in a component, by injecting exceptional or invalid values at the component’s interface

[48, 72, 117]. Despite its popularity, the use of IEI for the representative emulation of com-

ponent faults (as required by dependability assessment strategies [61,77,114]) is questionable.

There are not evidences that the injection of faults that can realistically occur in

the system. Investigations on the representativeness of interface errors is required in order

to perform an effective and representative error injection into the component’s interface.

Regarding the emulation of hardware faults, a great variety of fault injection techniques

exists. One of the most popular hardware fault injection techniques is known as software-

implemented fault injection, i.e. SWIFI. Based on bit stuck-at and bit-flip models, SWIFI

allows the emulation of hardware faults through software by reproducing possible effects of

real hardware errors without directly interfering with the system. Although these techniques

were successfully employed for the evaluation of system behavior against hardware errors,

they could result to be not effective in the case of advanced processors, such as multicore

ones. Multicore integrates more cores on the same die that, running in parallel, share many

resources (e.g. memory, caches, registers). The complexity of the architecture increases the

Chapter 1. Introduction 4

probability of hardware errors because of the great number of transistors on the same chip.

To make processors more reliable, designers and developers have devised many hardware-

implemented mechanisms such as error detection that are able to detect and, in some case,

to correct hardware errors. Detected errors are then reported to the upper software layer,

i.e. operating system. So that, the complexity is shifted to the software that has to correctly

interpret signaled hardware errors and to implement adequate software recovery mechanisms

to cope with them. Although SWIFI techniques can be applied also when system integrates

multicore processors, fault injection campaign could be very expensive and unfea-

sible due to the huge number of resources, i.e. possible location where to inject errors.

In fact, the replication of cores means also replicated resources per-core. Moreover, two

aspects should be considered when adopting existing fault models. First, single or multi-

ple bit-flip could be automatically corrected by hardware mechanisms and masked to the

software affecting the effectiveness of SWIFI techniques. Second, new errors (that

were not a concern in single-core architectures) may occur, e.g. errors in the interconnection

links between cores makes existing SWIFI technique not representative enough for

modern systems. Effective fault injection techniques should evaluate the behavior of soft-

ware systems deployed on the top of multicore. This is very important also in safety-critical

systems where the increasing trend to integrate hardware Off-the-Shelf components is driven

by the need of deliver sophisticated and demanding functionalities by assuring innovative

Chapter 1. Introduction 5

solutions, high performance and reduced costs.

Software-based systems in the automotive domain are an example. Modern cars includes

many controllers, sensors and actuators connected by different bus for adaptive cruise control

with "stop and go" capabilities, stability control, brake assistance or park assistance, etc. To

meet the requirements of the modern functionalities, higher performance are demanded, but

building ad-hoc advanced hardware components could be very expensive. Exploiting existing

components and, above all, taking advantages from technological progress, the integration of

hardware Off-the-shelf components seems to be a good choice. Historically, critical embedded

systems have been developed using hardware components based on single-core processors,

but nowadays they cannot overlook the advances of the micro-controllers market from which

general purpose systems such as personal computers, smart-phones and tablet already have

beneficed: they have undergone a significant change by replacing single-core processors with

multi-core. The migration brings many benefits in terms of performance, power consumption

and energy efficiency although it is an awkward activity in critical domains that have to

accomplish strict standards. To exploit the full potential of multi-core, some changes in

software are required: tasks should be executed in parallel, i.e. thread level parallelism,

to benefit from multi-core. In addition, software running on the top of multi-core has to

take into account architectural changes and improvements: more cores on board connected

by links, shared resources, several levels of cache, advanced error handling mechanisms.

Chapter 1. Introduction 6

Unfortunately, we are still far away from the use of parallel programming in critical domains

because of problems related to the non-determinism of the execution, to the synchronization

and the cooperation between tasks running in parallel.

Nevertheless, multi-core, in conjunction with virtualization [44], can support achieving

safety requirements imposed by standards. Virtualization makes it possible running inde-

pendent applications on each core to ensure properties such as, space and temporal isolation.

Furthermore, the inherent presence of replicated cores allows implementing fault-tolerant so-

lutions. Overall these features exacerbate the need for strategies to evaluate dependability

characteristics of multi-core systems.

In conclusion, fault injection is widely adopted in the verification and validation of OTS-

based systems. Effective FI techniques should guarantee a certain level of quality, i.e

they must guarantees representativeness and accuracy properties: FI techniques should

inject faults in an accurate way, and that are representative of real faults. If these

features are not guaranteed, analyses based on fault injection experiments can results result

to be wrong and, in worst cases, they may contribute to dramatic accidents and economic

loss.

1.1 Thesis contributions

Considering code mutation, interface error injection and software-implemented fault injec-

tion, the main research questions are:

Chapter 1. Introduction 7

• SFI: Are mutation at binary level accurate enough? How is it possible to validate the

correctness of the modifications into the binary code, being sure that injections are

correctly performed?

• IEI: Are the existing error model representative? Is an error injected at component

interface representative for a real software bug in a component?

• SWIFI: How emulate hardware errors in multicore processors? Are the existing op-

erating systems and hypervisors able to correctly treat errors signalled by hardware

error detection and reporting mechanisms of modern processor such as multicore?

This dissertation contributes to the improvement of the quality , i.e. representativeness

and accuracy properties, of Fault Injection techniques employed in the evaluation of COTS-

based safety-critical systems by proposing:

1. A method for testing and improving the accuracy of BCM tools. Software

fault injection based on code mutation at binary level requires that programming

constructs used in the source code are identified by looking only at the binary code,

since the injection is performed at this level. The proposed method is based on the

automatic generation of synthetic programs that are given as inputs to a BCM tool in

order to evaluate its accuracy at performing binary mutations. First, several synthetic

programs are generated by encompassing different programming constructs in different

Chapter 1. Introduction 8

contexts (e.g., nested loops, control flow constructs and function calls). Then, the

BCM tool is applied on the binary code of the synthetic programs, and the mutations

produced by the BCM tool are compared against the source code of the synthetic

programs (the analysis of source code serves as a reference, as it does not suffer the

limitations of binary level mutation), in order to assess the ability of the BCM tool

to correctly recognize and mutate programming constructs at the binary

level, and to reveal its issues and limitations. In other words, the set of synthetic

programs acts as a test suite for evaluating and improving binary-level fault injection

and mutation testing tools.

2. A method for analysing error propagation at the interfaces of software

components. The method aims at automatically analyzing how software faults in

components’ code result in errors at components’ interfaces, in order to provide some

constructive evidence towards more representative IEI techniques. It identifies how

faults in software components manifest as interface errors. First, faults are injected in

the software component under analysis by using a fault injection technique. Then, it

instruments and executes the software component and identifies the effects of injected

faults on the program that uses the component, including the corruption of data

structures shared between the program and the component and erroneous return values

from function calls.

Chapter 1. Introduction 9

3. A prototype framework for injecting hardware errors in multicore-based

architecture The tool aims at injecting hardware errors by exploiting the error re-

porting architecture implemented in modern processors as multicore in order to asses

error handling mechanisms of of existing operating systems. Fault injection campaigns

have been conducted to test the functionalities of the framework under the Linux OS

running on the top of the Intel i7 processor. Based on the same approach, a prototype

tool was also proposed to inject errors in virtualized system in order to validate the

error handler mechanisms implemented in the hypervisors.

This thesis includes materials from the following research papers, already published in

peer-reviewed conferences and journals or submitted for review:

• Experimental Analysis of Binary-Level Software Fault Injection in Complex Software,

D. Cotroneo, A.Lanzaro, R. Natella,R. Barbosa, Proc. of 9th European Dependable

Computing Conference (EDCC), May 2012, Sibiu, Romania. (Best Presentation

Award)

• Multicore Systems: Challenges for creating a representative fault model for fault injec-

tion, N. Silva, R. Barbosa, A. Lanzaro, D. Cotroneo, J. Duraes, DASIA International

Space System Engineering Conference, May 2012, Dubrovnik, Croatia.

• Injecting Machine Check Errors to Explore Dependability Issues of Multicore Systems,

Chapter 1. Introduction 10

A. Lanzaro, A. Pecchia, M. Cinque, D. Cotroneo, N.Silva, R.Barbosa, Supplemental

Volume of the Proc. of 42nd International Conference on Dependable Systems and

Networks(DSN), June 2012, Boston, USA.

• A Preliminary Fault Injection Framework for Evaluating Multicore Systems, A. Lan-

zaro, A. Pecchia, M. Cinque, D. Cotroneo, R. Barbosa, and N. Silva, Supplemental

volume of Proc. of 32nd International Conference on Computer Safety, Reliability and

Security (SAFECOMP), September 2012, Magdeburg, Germany.

• Tools for Injecting Software Faults at the Binary and Source-Code Level A.Lanzaro,

R.Natella, R.Barbosa, Innovative Technologies for Dependable OTS-Based Critical

Systems - Challenges and Achievements of the CRITICAL STEP Project (2013), pp.

85-100

• Leveraging Fault Injection Techniques in Critical Industrial Applications A.Pecchia,

A.Lanzaro, As’ad Salkham, M.Cinque, N.Silva, Innovative Technologies for Depend-

able OTS-Based Critical Systems - Challenges and Achievements of the CRITICAL

STEP Project (2013), pp. 131-141

• An Empirical Study of Injected versus Actual Interface Errors, A.Lanzaro, R.Natella,

S.Winter, D.Cotroneo, N.Suri. Procs of International Symposium on Software Testing

and Analysis (ISSTA), 2014

Chapter 1. Introduction 11

Part of the activities were conducted in collaboration with Critical Software (Coimbra,

PT) in the context of the European Project Critical-step "Marie-Curie" Industry-Academia

Partnerships and Pathways (IAPP) FP7-PEOPLE-2008-IAPP [2].

Chapter 2

Off-The-Shelf Components in
Safety-Critical Systems

2.1 Introduction

Economical reasons along with technological advances influences the development of systems:

the main challenge for developers is to build complex and performing systems by having

reduced resources. Traditionally, software-based systems were developed from the scratch,

but nowadays it is not thinkable because of the high number of functionalities demanded

to software. One of the strategy to reduce development costs/time and to exploit new

technologies is the integration of components developed by third-party, i.e Off-the-shelf

components. In literature, there are many studies that discuss issues related to the selection,

integration, maintenance and certification of OTS components in critical systems [68], but

they out of the scope of the thesis.

Instead, this dissertation is focused on dependability evaluation of OTS-based systems

through adequate and effective testing techniques once OTS components are selected and

12

Chapter 2. Off-The-Shelf Components in Safety-Critical Systems 13

integrated into safety-critical systems. In particular, this chapter describes the use of OTS

components in safety critical systems by highlighting the suggestions provided by the stan-

dards about OTS components and testing techniques.

2.2 Off-the-shelf components: definitions and classification

A component is an independent a reusable unit whose integration in a system contributes

to its functioning. It communicates with the other parts of the system by means of one or

more interfaces. Interface is an access point by which components provide services that can

be required from clients, i.e. other components. For example, in Figure 2.1 component C1

provides the service S. Component C2 is the client that can require the service S by means

of its interface.

Figure 2.1: Component and Interface

In hardware engineering, the concept of Off-the-shelf component is well understood (e.g.

RAM, CPU, etc.) and and its integration to build more complex systems is a common

practice, namely Intellectual property (IP) based development. Instead, for what concern

software, an OTS component is not well defined. In literature, there are many and confusing

Chapter 2. Off-The-Shelf Components in Safety-Critical Systems 14

definitions [106], [85], [112], [19], [16] and the terms Off-the-Shelf (OTS) and Commercial Off-

the-Shelf (COTS) are often improperly used. Moreover, depending on the domain, OTS com-

ponents are also called Government-Off-The-Shelf (GOTS), Military-Off-The-Shelf (MOTS)

and Non-Developmental Item (NDI) when components are not-commercially acquired; Open

Source Software (OSS) when the source code is available but not modifiable [75]; Software

of Unknown Pedigree (SOUP) [18] used in medical domain.

However, according with [106] and [85], we adopt following definitions:

• An OTS component is acquired by third-party and it is usually distributed as an

executable, so the source code is not available. The latter, when available, cannot be

modified.

• A COTS component is an OTS component that (i) is developed by a commercial

vendor; (ii) it is available to the general public; (iii) it can be bought (or leased, or

licensed) [85].

• An Open source software is an OTS component that uses open specifications for in-

terfaces, services, and supporting formats.

2.3 OTS components and safety standards

The advantages provided by the OTS integration in critical domains were recognized since

1994 when the US Department of Defence observed that the technology used military systems

Chapter 2. Off-The-Shelf Components in Safety-Critical Systems 15

was 10 years old while new technology emerges every 18-24 months [85]. Since that moment,

military systems started the migration to software developed using COTS components. The

Department of Defense stated that "to meet future needs, the Department of Defense must

increase access to commercial state-of-the-art technology" and "moving to greater use of

performance and commercial specifications and standards is one of the most important

actions that DoD must take to ensure we are able to meet our military, economic, and

policy objectives in the future" [88].

Many recent standards [38] provide guidance on using both hardware and software COTS

components as discussed in [70]:

• IEC 61508 [27] is the standard for Electrical/Electronic/Programmable Electronic.

It states that the integration of OTS components can bring many advantages, but

adequate verification and validation process should provide evidences that components

meet safety requirement. Negative effects due to different operational environment,

functionalities not required in the new context but implemented in the component,

and internal operations of the OTS component not being fully understood should be

taken into account during V&V process. It suggests methods such as interface testing,

error guessing and seeding (i.e. fault/error injection), and functional testing under

environmental conditions.

Chapter 2. Off-The-Shelf Components in Safety-Critical Systems 16

• MIL-STD-882D [32] is the safety standard adopted in US military and defense do-

mains. It provides suggestions for software development and it requires a safety pro-

gram to identify hazards and prevent mishaps. Moreover, it recommends additional

hazard analyses in case of OTS components by using unit, integration and qualification

testing.

• Def Stan 00-55 and 00-56 [100] [101] are safety standards adopted for the de-

velopment of UK military and defense systems. They suggest system or component

evaluation to determine whether they satisfy the requirements. FMEA is used to per-

form process failure analysis. In particular, Def Stan 00-56 states: "Where COTS or

other existing complex electronic elements are used, the Safety Case should detail the

processes used for evaluation, validation and implementation of the complex electronic

element, the processes used for any bespoke software or hardware (such as software

wrappers or hardware interlocks) and any information from the complex electronic

element supplier about the development process (where available). In general, the

more onerous the safety integrity requirements, the more rigorous and compelling the

process evidence that should be provided. For a COTS or pre-existing element, the

rigour may have to be provided at the evaluation stage."

• DO-178B [42] is the standard for aerospace domain. It concerns software employed

in airborne systems. Both hardware and software components are considered and

Chapter 2. Off-The-Shelf Components in Safety-Critical Systems 17

studied during safety assessment and verification activities. It suggests the analysis

of historical data (e.g. data about the reliability) when adopting existing software in

new aircraft and software whose data does not satisfy the guidelines of the standard

in order to provide evidences and justify the integration.

2.4 Testing OTS-based systems

Safety standards require evidences that systems are dependable even in presence of OTS/-

COTS components, i.e they should tolerate faults. In particular, they suggest the implemen-

tation of fault tolerant mechanisms in order to avoid system failures. To accomplish this,

these mechanisms have to detect faults and errors that occur during system functioning and

perform recovery actions to restore system state. Approach used are based of replication

and diversity: examples are Recovery blocks, N-versioning programming.

However, to asses the effectiveness of fault tolerant mechanisms, to evaluate error han-

dlers and error propagations among components, adequate and effective testing techniques

are required.

As discussed in 2.2, an OTS components is usually distributed as an executable, i.e.

the source code is not available. Due to the nature of OTS components, fault injection

techniques seems to be suitable for the aim.

Chapter 2. Off-The-Shelf Components in Safety-Critical Systems 18

2.4.1 Dependability: basic concepts

The fault-error-failure chain expresses the concept that the activation of a fault leads to an

error. An invalid state generated by the error may lead to another error or to a failure [14].

In particular:

• Fault is a defect in a system. It can affect software components, e.g. software bugs,

and hardware components, e.g. physical faults. If activated, it causes an error.

• Error is the deviation of the system states from a correct state that may lead to a

subsequent (service) failure. Errors are dormant if they do not cause service failure, it

they manifest at system or component interface, a failure occurs. Errors can propagate

from one component to another of the system through their interfaces.

• Failures or service failure is the deviation of the system from the correct implemen-

tation of the system function. A failure may occur because the system violates the

specification or because the specification is not adequate to describe the behavior of

the system. The failure of one or more services implementing system functions make

the system operate in a degraded mode.

A system that can avoid service failures that are more frequent and more severe than is

acceptable is called dependable system. Dependability encompass a set of attributes:

• Availability: readiness for correct service.

Chapter 2. Off-The-Shelf Components in Safety-Critical Systems 19

• Reliability: continuity of correct service.

• Safety: absence of catastrophic consequences on the user(s) and the environment.

• Integrity: absence of improper system alterations.

• Maintainability: ability to undergo modifications and repairs.

2.4.2 Fault injection testing

Fault Injection is a technique that emulates hardware and software faults by deliberately in-

serting defects into a system component in order to determine how the system behaves when

a component fails, i.e. whether the system can tolerate faults. Due to its ability of emulating

a malfunctioning in component of target system, FI is widely is considered a valuable de-

pendability assessment approach. It was successfully used for validating fault-tolerance

mechanisms by evaluating how a target behaves in presence of faulty components through

error detection and handling mechanisms (such as assertions and exception handlers) against

component faults [11,66,84]. In [53,77,113], FI techniques were adopted for aiding FME-

CAs (Failure Mode, Effects, and Criticality Analysis): Developers can quantify the

impact of a faulty component on the overall system (e.g., in terms of catastrophic sys-

tem failures), and mitigate risks by comprehensively testing the most critical components

and revising the system design. Moreover, FI can helps in the context of Dependability

benchmarking by providing support for developers to choose among alternative systems

Chapter 2. Off-The-Shelf Components in Safety-Critical Systems 20

or components the one that provides the best dependability and/or performance in the

presence of other, faulty, components [61].

Figure 2.2: General fault injection framework

Figure 2.2 depicts a general framework for fault injection. In the following list, key

elements are discussed highlighting the characteristics they should have in order to meet the

requirements for an effective, efficient and good quality fault injection.

• The target is the system under test that executes a workload, an operating system,

an application or a program. A workload should be representative for a real system

utilization.

• Faultload is the set of faults that will be injected in the target system during the

campaign; faults to be injected are defined by a fault model describes faults in terms of

their type (what to inject), location (where to inject) and trigger (when to inject). It

Chapter 2. Off-The-Shelf Components in Safety-Critical Systems 21

has to be representative, i.e. a fault has to represent a real defect. Representativeness

of faultloads is achieved by defining a realistic fault model, instead the accuracy is

achieved by reproducing this fault model when faults are injected.

• Injector is the component responsible of introducing fault into the target. The injector

should not distort the actual behaviour of the system under test. The isolation between

the injector and the target should be achieved to satisfy the not-intrusiveness property.

• Monitor is responsible for collecting data concerning the fault-injection outcomes.

Monitor should cope with data loss caused by experiments leading to critical system

failures, such as reboot or panic. Again, monitoring and data collection features should

not impact the behaviour of the target system. This contributes to controllability and

observability properties.

• Controller is the entity responsible for iterating fault injection experiments and coor-

dinating the described components. For each experiment it activates/deactivates the

injector module, and stores monitoring data. Moreover, controller should ensure that

the workload is actually running at the time injection is performed. It has to fulfil

controllability and repeatability properties.

This dissertation is focused on the quality of fault injection techniques represented by

representativeness and accuracy essential properties for meeting quality requirements. The

Chapter 2. Off-The-Shelf Components in Safety-Critical Systems 22

aim is to evaluate and to improve the quality of existing fault techniques for the assessment

of OTS-based systems in safety-critical contexts.

In origin, fault injection techniques were able to emulate hardware faults by physically

interfering with the target system through special and expensive devices. To overcome

limitations of such techniques, software-implemented fault injection techniques were pro-

posed. They injects hardware faults by emulating the effects of faults (e.g., CPU or memory

faults), i.e. corrupting the state of the software using bit-flipping or stuck-at techniques.

these techniques are also known as error injection. More recently, software injection tech-

niques emerged. At component level, injection is performed by mutating the source code or

the binary code of a component of the target system. Instead, at interface level, software

faults are inserted into the component interface of the target.

Chapter 3

Achieving Accuracy in Binary Code
Mutation

3.1 Introduction

Software Fault Injection aims at the realistic emulation of software faults (i.e., bugs1) in

a software component to assess the impact of these faults on the system behavior. SFI

is assuming an increasing relevance since software faults have been recognized as one of

the major causes of system failures [49, 86]. It is used for the experimental validation and

improvement of fault tolerance mechanisms and algorithms [10, 84]; it makes possible to

analyze worst-case scenarios and the effects of faulty components [77, 113]; it is used in

conjunction with dependability forecasting techniques, in order to populate dependability

models with measures obtained from experiments [54,63,89]; and to benchmark alternative

systems or design choices [61]. The realistic emulation of software faults is a key objective

to achieve accurate dependability measures and to investigate faulty scenarios that the

1In this work, we follow the notion that a software fault is a development fault originated during the
coding phase [13,36].

23

Chapter 3. Achieving Accuracy in Binary Code Mutation 24

system could face during operation. One of the most popular SFI technique is G-SWFIT

(Generic Software Fault Injection Technique), proposed by Durães and Madeira [36]. G-

SWFIT injects software faults by mutating the binary executable code of a program. This

technique is attractive for practitioners, since it allows to perform Software Fault Injection

when the source code is not available, which is often the case when third-party software is

adopted. G-SWFIT defines which types of software defects have to be introduced in order to

realistically emulate a faulty software, based on recent field data studies that characterized

residual software faults in complex systems [25,36,104].

An important issue concerning the injection of software faults at binary level is the

accuracy of the injection campaign, that is, the degree of confidence that a fault injected in

the binary code correctly emulates a software defect in the source code. For instance, if we

aim to emulate the absence of a variable assignment in the source code, we could remove

a "move" instruction at binary level. But, if we consider the emulation of a bug in a C

preprocessor macro (i.e., a piece of source code that is replicated several times in the binary

code), the problem cannot be resolved by simply looking at the binary code. Therefore, it

is important to assess the accuracy of binary-level SFI in order to be effectively adopted in

real-world scenarios. Unfortunately, only a few studies evaluated the accuracy of binary-

level SFI, which were limited to small programs or to a small number of faults [34, 36, 59],

and no previous work analyzed this problem comprehensively.

Chapter 3. Achieving Accuracy in Binary Code Mutation 25

This chapter provides the state of the art on Software Fault Injection providing more

details about fault injection techniques based on code mutation. Then, a method for the

experimental evaluation of the accuracy of binary code mutation tool is presented. Then,

based on the obtained results, it is described a method developed for the automatic detection

of the inaccuracy at binary level.

3.2 Background and Related Work

In order to emulate software faults in fault injection experiments, a model of software faults

that can realistically occur in the system under test is required. This property, which is

referred to as representativeness, is desirable when dependability measures have to be quan-

titatively assessed, such as coverage factors of fault-tolerant systems [54, 63], which depend

on the probability distribution of faults and workloads [89]. Fault representativeness is also

important to stimulate the complex failure modes that can be exhibited by a software sys-

tem or component, which are potentially more subtle than simple process hangs or crashes

and are not necessarily known a priori [84,113]. Field data studies analyzed software faults

in complex software systems, and can be used to define software fault models. Sullivan and

Chillarege [104] analyzed a large set of software-related failure reports collected from the

MVS OS, and proposed a classification scheme for software faults, which are described in a

level of detail close to the programming level. That work was later extended in [24] where

the Orthogonal Defect Classification (ODC) and the notion of defect type are introduced.

Chapter 3. Achieving Accuracy in Binary Code Mutation 26

This notion points to a high-level classification of faults including Function, Checking, As-

signment, Algorithm and Interface faults. ODC was aimed at providing feedback during

development; the work presented in [36] extends this level of description and proposes a

classification scheme that was precise enough for automated fault emulation (e.g., for the

"assignment" class of faults, it specifies if the assignment is an initialization, and if an ex-

pression or constant is involved). It also presents a field data study where it is pointed out

that most of the software faults found in the field belong to the set of fault types shown in

Table 3.1, and that they tend to follow a generic fault distribution.

Table 3.1: Fault Types (see also [36]).

Fault Type Description

MFC Missing function call
MVIV Missing variable initialization using a value
MVAV Missing variable assignment using a value
MVAE Missing variable assignment with an expression
MIA Missing IF construct around statements
MIFS Missing IF construct + statements
MIEB Missing IF construct + statements + ELSE construct
MLAC Missing AND in expression used as branch condition
MLOC Missing OR in expression used as branch condition
MLPA Missing small and localized part of the algorithm
WVAV Wrong value assigned to variable
WPFV Wrong variable used in parameter of function call
WAEP Wrong arithmetic expression in function call parameter

Another aspect affecting the effectiveness of Software Fault Injection is represented by

the method adopted to introduce software faults into a system. In fact, SFI requires more

Chapter 3. Achieving Accuracy in Binary Code Mutation 27

complex modifications of the program code/state than simply a bit-flip/stuck-at: the com-

parison between real software faults and faults injected by SWIFI tools [57, 71] revealed

that hardware fault models cannot accurately emulate software faults. The emulation of

software faults requires that what it is injected reproduces the intended fault model, i.e.the

accuracy), in order to correctly evaluate the effects of software faults on the system. Several

methods have been devised for emulating software faults, most of them based on rather

indirect approaches (i.e., emulating the possible effects of software faults instead of injecting

actual faults in the software code).

Past work on software fault injection can be divided in three categories, according to

what is actually injected: data errors, interface errors, and code changes (summarized in

Table 3.2).

Data errors. This approach consists of injecting errors in the data of the target program

(i.e., a deviation from the correct system state [13]). This is an indirect form of fault

injection, as what is being injected is not the fault itself but only a possible effect of the

fault. The representativeness of this type of injection is difficult to assert, as the relationship

between data corruption and its possible root-cause (i.e., faults) is difficult to establish.

However, data errors are an useful and practical means for inducing software failures and

debugging of fault-tolerance mechanisms [113].

Interface errors. This approach is in fact another form of error injection where the

Chapter 3. Achieving Accuracy in Binary Code Mutation 28

error is specifically injected at the interface between modules (e.g., system components,

or functional units within a program). This usually translates to parameter corruption in

functions and API, and it is considered a form of robustness testing. The errors injected

can take many forms: from simple data corruption to syntactically valid but semantically

incorrect information. As with data errors, the representativeness of the errors injected

at the interfaces is not clear and there is some empirical evidence that supports the idea

that injecting interface errors and changing the target code produces different effects in the

target [76]. This approach is complementary to the injection of actual software faults, and

it has proven to be useful to find interface weaknesses [66].

Code changes. Changing the code of the target component to introduce a fault is

naturally the closest thing to having the fault there in the first place. However, this is not

easily achieved as it requires to know exactly where in the target code one might apply such

change, and what instructions should be placed in the target code. Several works followed

this notion, although with some limitations: Ng and Chen [84] and the FINE [63] and DE-

FINE [62] tools use code changes (e.g., changing the destination address of an assignment),

although their fault model is very simple and its representativeness is not assured. Madeira

et al. [71] showed that SWIFI can be used to inject simple code changes in running processes

but cannot emulate more complex software faults. The G-SWFIT technique [36] was devel-

oped to address software fault representativeness, by injecting software faults according to

Chapter 3. Achieving Accuracy in Binary Code Mutation 29

the set of most common fault types (Table 3.1) observed in field data.

Table 3.2: Classification of Fault Injection Tools

Category Tools

Data errors FIAT [15], FERRARI [60], PSN [113], csXception [21], NFTAPE [102], GOOFI
[8]

Interface errors BALLISTA [66], RIDDLE [47], MAFALDA [11], Jaca [73], csXception [61]

Code changes Ng and Chen [84], FINE [63], DEFINE [62], G-SWFIT [36]

3.2.1 G-SWFIT

G-SWFIT injects code changes at the executable (binary) level (Figure 3.1a). It consists of

a set of fault operators that define code patterns (i.e., a sequence of opcodes) in which faults

can be injected (e.g., an MIA fault can be injected wherever an IF construct is found), and

code changes to be introduced (e.g., the removal of instructions related to an IF construct)

to emulate software faults2. The proposed fault operators inject valid faults in terms of

programming language (i.e., mutated code is syntactically correct) and provide a set of

constraints to exclude fault locations that are not realistic (e.g., to inject an MIA fault, the

IF construct must not be associated to an ELSE construct, and it must not include more

than five statements or loops). The description of a fault operator is provided in Table 3.3.

As discussed in the rest of this paper, it is not trivial to assure the accuracy of software

2Each fault operator is related to a specific fault type and is denoted with the "O" prefix (e.g., the OMIA
fault operator is related to the MIA fault type).

Chapter 3. Achieving Accuracy in Binary Code Mutation 30

fault injection at the binary level, due to the gap between software faults at source code

level (e.g., defects in a program) and their conversion to binary level (i.e., translation of the

faulty code in machine code). The implementation of G-SWFIT and the definition of fault

operators are dependent on the hardware architecture, the compiler of the target application,

and compiler optimizations, since the binary translation of a programming construct (e.g.,

an IF construct) varies with the compiler and the hardware platform in which the software

can be executed. G-SWFIT was originally implemented and applied on the i386 hardware

architecture and the Microsoft Windows environment [35]. The technique has then been

ported to inject faults in the bytecode of Java programs [95]. Analysing G-SWFIT, it was

considered C language with respect to the PowerPC hardware architecture and the GCC

compiler, which has been implemented in a R&D tool by Critical Software.

Table 3.3: Description of OMFC Fault Type

Example function(...);

Example with faults function(...);

Code pattern CALL target-address

Code change CALL instruction removed

Contraints Return value of the function must not be used (C01)
Call must not be the only statement in the block (C02)

3.2.2 SAFE

An alternative approach to change the code of a program consists in mutating its source code,

and then to compile the faulty source code to obtain a faulty version (Figure 3.1b). This

Chapter 3. Achieving Accuracy in Binary Code Mutation 31

approach has been implemented in a fault injection tool developed by MOBILAB research

group [4], namely SAFE (SoftwAre Fault Emulation) tool. The tool adopts the same fault

types of G-SWFIT (Table 3.1), including code patterns and constraints, although faults are

introduced in the source code instead of the binary code. This tool has different objectives

than G-SWFIT, since it cannot perform fault injection when the source code is not available;

it is considered as a support to evaluate the accuracy of G-SWFIT. In order to use the SAFE

tool, a C preprocessor translates C macros in a source code file (e.g., inclusion of header

files) to produce a self-contained compilation unit. A C/C++ front-end then processes the

compilation unit, in order to produce an internal representation of the program (Abstract

Syntax Tree, AST). The tool searches for suitable fault locations in the AST and applies a

fault operator if all constraints are met, e.g., to inject a MIFS fault, an IF construct should

not contain more than 5 statements. The tool produces a set of faulty source code files, each

containing a different software fault. The faulty version is obtained by replacing a source

code file with a faulty file and recompiling the program.

Compared to the binary level approach followed by the original G-SWFIT, the source

code level approach assures the accurate emulation of fault types, since full information

about programming constructs and variables is available (this information is missing and

has to be reconstructed when injecting faults at the binary level). Moreover, injection in the

source code is portable among all platforms in which the target program can be compiled,

Chapter 3. Achieving Accuracy in Binary Code Mutation 32

01001101!
11101010!
01110000!
01011101!

Target application
(executable code)

Code	
pa(erns	
analysis	

0100XXXX!
11101010!
01110000!
01011101!

01001101!
XXXX1010!
01110000!
01011101!

01001101!
1110XXXX!
01110000!
01011101!

...

Binary level
mutated versions

Code	
changes	

Binary level
fault operator library

(a) G-SWFIT.

if(a && b)!
{!
 c=1;!
}!

Target application
(source code)

Source	 code	
analysis	

...

Source code level
mutated versions

Program	
rewri3ng	

if(a && b)!
{!
 c=1;!
}!

if(a && b)!
{!
 c=1;!
}!

if(a && b)!
{!
 c=2;!
}!

Source code level
fault operator library

(b) SAFE.

Figure 3.1: Software Fault Injection Techniques

without any additional efforts to adapt the fault injection tool to different hardware or

compilers. The drawbacks of this approach are that it increases experiment time, since the

program needs to be compiled after the injection of a fault, and that the approach cannot

be adopted when the source code is missing.

3.3 Experimental Evaluation of Binary Fault Injection

The experimental evaluation is motivated by the fact that the accuracy of binary-level fault

injection is limited by the impossibility to correctly recognize some programming constructs

in a binary program. The evaluation of binary-level fault injection in a real-world system

contributes to understand the limitations and the accuracy of the results that can be obtained

Chapter 3. Achieving Accuracy in Binary Code Mutation 33

by a fault injection campaign.

An example of a wrongly injected fault is represented by a C program containing a

SWITCH construct with two branches; in some architectures and compilers (this is the

case of GNU GCC compiler for PowerPC architectures), the SWITCH may be translated

in binary code using the same opcode sequence of an IF-ELSE construct, since they both

consist of a logical condition (which is translated using an opcode that compares two values)

and two branches (which are translated using branch opcodes). Therefore, a MIEB (see

Table 3.1) fault could erroneously be injected in a code location in which there is not an

IF-ELSE construct. It may also happen that a code location suitable for fault injection

cannot be recognized in the binary code. For instance, a compiler may translate a function

call as inline code (i.e., the function call is replaced with the body of the called function);

in this case, a fault injection tool would not be able to recognize the function call, thus

omitting to inject an MFC fault in that location. The experimental validation aims to

assess the relative occurrence of this kind of problems in real-world complex software, in

order to evaluate whether G-SWFIT can achieve an acceptable degree of accuracy even in

the presence of these problems. Although some of these problems are already known, their

extent in large and complex software has not been investigated in previous studies.

The method also aims at pointing out issues that may arise when implementing G-

SWFIT, by highlighting cases in which faults are not correctly injected. Binary-level fault

Chapter 3. Achieving Accuracy in Binary Code Mutation 34

injection tools are difficult to implement, since they have to encompass all potential ways in

which programming constructs are translated. This problem is further exacerbated if it is

considered the complexity of modern CPUs, programming languages and compilers (whose

inner working is usually unknown). Thus it is likely that developers may neglect some code

patterns, thus leading to design errors in the fault injection tool.

The proposed method evaluates the accuracy of G-SWFIT by comparing the faults it

generates with the ones injected in the source code. Indeed, since a software fault is a

defect in the code of a program, it is clear that fault injection at source code level is more

accurate. Based on this consideration, faults injected by the two techniques are compared

and classified faults in the following three categories:

1. Correctly Injected faults: correct faults generated by both techniques. The larger is

the set of common faults, the higher is the accuracy of G-SWFIT.

2. Omitted faults: faults injected only at source-code level. They correspond to program-

ming constructs in which a fault could exist, but which have not been identified in the

binary code.

3. Spurious faults: faults injected only by G-SWFIT at binary level that do not match

any fault at source-code level. Therefore, they are not considered as representative

software faults.

Chapter 3. Achieving Accuracy in Binary Code Mutation 35

It is important to note that source-level faults can be used as a term of comparison

for binary-level faults because (i) the same fault types are adopted for both binary- and

source-level fault injection (shown in Table 3.1), and (ii) binary- and source-level faults are

injected in every potential location (i.e., fault injection campaigns are exhaustive). The

method (depicted in Figure 3.2) consists of two phases, namely (i) automatic matching of

binary-level and source-level faults (Section 3.3.1), in order to identify Correctly Injected

faults, and (ii) fault sampling and manual analysis (Section 3.3.2), in order to identify which

issues affect the accuracy of G-SWFIT. As a real-world case study, it is considered CDMS

(Command and Data Management System), a real-time embedded system developed by

Critical Software for the space domain (Section 3.3.3).

Fault	
Injec,on	 Binary-

level faults

Source-
level faults

1)
1) Repeat until all source-level faults are fixed
2) Increase sample until significance level is

reached

Fault	
Matching	

Fault	
Sampling	

2)

Figure 3.2: Overview of the Method for G-SWFIT Evaluation

3.3.1 Fault Matching

Fault Matching is based on the assumption that if both techniques inject the same fault type

in the same location (e.g., an assignment or function call is removed both in the source code

Chapter 3. Achieving Accuracy in Binary Code Mutation 36

and in the corresponding location in the machine code), then they are injecting the same

fault. It is reasonable to make this assumption since if a fault location is identified both

at the binary and source levels, then that fault location is valid and correctly handled. In

order to be sure that this assumption holds (and therefore the results are valid), a sample

of Correctly Injected faults using the Fault Sampling procedure (explained in the next sub-

section) manually analyzed. Following this observation, binary-level and source-level faults

are compared with respect to their fault types and their locations in the source code (i.e.,

the source file, the function and the line of code in which a fault is injected). A binary-level

fault matches a source-level fault if they have the same fault type and they are injected in

the same code location (compared using debug symbols in binary code).

The procedure shown in Figure 3.3 has been adopted to identify Correctly Injected

faults. If a binary-level fault matches a source-level fault, and only one binary-level fault

and only source-level fault exist for the code location under analysis, then the binary-level

fault is considered as Correctly Injected. In some cases (e.g., when there are more than

one statement in the same line of code), more than one binary-level fault (N), or more

than one source-level fault (M) may occur in the same code location. If there are more

binary-level faults than source-level faults in the same location (N > M), then there are M

Correctly Injected faults, and N − M Spurious faults. Similarly, if source-level faults are

more than binary level faults (M > N), then there are M − N Omitted faults. It follows

Chapter 3. Achieving Accuracy in Binary Code Mutation 37

that if a binary-level fault does not match any source-level fault, then it is considered a

Spurious fault, and that if a source-level fault does not match any binary-level fault, then

it is considered an Omitted fault. In the examples of Figure 3.3, the proposed procedure

identifies one Correctly Injected fault (location A-10), one Spurious fault (location A-20),

and one Omitted fault (location B-5).

Source	
code	

Binary	
code	

File	 Line	 no.	 #	 faults	

A	 10	 1	

A	 20	 0	

B	 5	 1	

...	 	
fault
operators

File	 Line	 no.	 #	 faults	

A	 10	 1	

A	 20	 1	

B	 5	 0	

...	 	

Source-level
fault injection

Binary-level
fault injection

Correctly Injected
Spurious
Omitted

for each fault operator!
 for each fault location!
 M = Source-level Faults!
 N = Binary-level Faults!
 if M<N then!
 Correctly Injected Faults += M!
 Spurious Faults += N-M!
 if M>N then!
 Correctly Injected Faults += N!
 Omitted Faults += M-N!
 if M==N then!
 Correctly Injected Faults += M!

Figure 3.3: Fault Matching Procedure

3.3.2 Fault Sampling

After the Fault Matching procedure, it is performed a detailed analysis of faults in order to

investigate the causes of Spurious and Omitted faults, and to verify that Correctly Injected

faults are actually correct. Moreover, the aim is to understand whether Omitted and Spu-

rious faults are due to inherent limitations of G-SWFIT or not. Indeed, these faults may

occur due to design issues in G-SWFIT as previously discussed; the identification of these

Chapter 3. Achieving Accuracy in Binary Code Mutation 38

issues is useful to provide guidelines for improving G-SWFIT, and to obtain a more precise

figure of merit of the G-SWFIT technique. For these reasons, a random sample of Omitted

and Spurious faults is analyzed and classified into the following categories:

1. C preprocessor macros. When the G-SWFIT technique was proposed, preprocessor

macros have been recognized as a frequent cause of Omitted and Spurious faults [36].

A preprocessor macro consists of a piece of code that is replicated for each time the

macro is referred within the program. Therefore, when a preprocessor macro has a

software fault, the faulty code is replicated several times in the binary code. Since

the binary code lacks information about macros, G-SWFIT cannot recognize that

macro code is replicated elsewhere within the program: therefore, a Spurious fault is

injected for each replica of the macro, and source-level faults that could be injected

into macro represent Omitted faults since G-SWFIT cannot correctly injected them

(see also Figure 3.4).

2. Inline functions. In a similar way to preprocessor macros, inline functions are repli-

cated each time the function is called within the program. Since G-SWFIT does not

recognize inline functions within binary code, they lead to Spurious and Omitted faults

as well.

3. Various causes. This category includes all the other causes of Spurious and Omitted

Chapter 3. Achieving Accuracy in Binary Code Mutation 39

faults that are not related to macros or inline functions.

4. Issues in the SAFE tool. Even if source-level fault injection can be considered accurate,

it is not excluded the possibility that the adopted source-level fault injection tool

could inject faults incorrectly. Therefore, during the manual analysis, it is also looked

for issues in the SAFE tool that caused faults to erroneously appear as Spurious or

Omitted faults. Since it is required to assure that source-level faults are correctly

injected, fixes were made in the SAFE tool when an issue is found and repeat the

whole analysis (including both Fault Matching and Fault Sampling) until this category

becomes empty.

#define MACRO(x) ((x)+=1)!
!
...!
MACRO(a);!
...!
MACRO(b);!
...!

#define MACRO(x) ((x)+=1)!
!
...!
MACRO(a);!
...!
MACRO(b);!
...!

Spurious Fault #1

Spurious Fault #2

Omitted
Fault

Source-level Fault Injection Binary-level Fault Injection

Figure 3.4: Examples of Spurious and Omitted Faults Due to C Preprocessor Macro

Because of the high number of the generated faults, the manual analysis is conducted on

a sample of faults and then conclusions are drawn about the whole set of faults. In order to

generalize the results from the sample, it was addressed the problem of choosing a sample of

appropriate size, such that it could be considered representative of a population with more

Chapter 3. Achieving Accuracy in Binary Code Mutation 40

than two categories (i.e., a multinomial distribution, where it is defined πi as the proportion

of the ith category). The sample should be large enough to assure that all of the estimated

proportions πi are within a given confidence interval with significance level 1− α.

Assuming that the population and the sample are large enough to use the normal ap-

proximation, the probability αi that the proportion πi lies outside an interval of width 2di

is given by (see [109] for more details about sampling)

αi = Pr
{
|Zi| ≥ di

√
n/

√
πi(1− πi)

}
(3.1)

where 1 ≤ i ≤ k and Zi is a standard normal random variable. By Bonferroni’s inequality

[109], the probability that one or more of the k estimates will fall outside its interval will be

less than or equal to
∑k

i αi. Equation (3.1) allows to assess if the sample size is large enough

to achieve accurate results. If
∑k

i αi > α, then a larger sample size is required, otherwise

the estimated proportions are considered accurate.

This method was applied to the populations of Omitted and Spurious faults by consid-

ering k = 4 categories (C preprocessor macros, inline functions, various causes, issues in the

SAFE tool), assuming a confidence interval of half-width di = 0.05 and a significance level

1 − α = 0.9. This method was also applied to the population of Correctly Injected faults,

in order to analyze whether they are truly correct or not (k = 2 categories are considered).

For each population, a sample of 5% of faults it is extract and manually analyzed in order

Chapter 3. Achieving Accuracy in Binary Code Mutation 41

to obtain an initial estimate of the proportions; the sample size is gradually increased and

analyzed until the required significance level is reached.

3.3.3 Case Study

The case study is a satellite data handling system named Command and Data Management

System (CDMS). A satellite data handling system is responsible for managing all data

transactions (both scientific and satellite control) between ground system and a spacecraft

(Figure 3.5), based on the ECSS-E-70-41A standard [39] adopted by the European Space

Agency. In this system, a space telescope is being controlled and the data collected is sent

to a ground system. As shown in the Figure, the CDMS, which executes on the spacecraft

(on-board system), is composed by several subsystems: the TC Manager receives a series of

commands from the ground control requesting telemetry information; the TM Manager sends

back telemetry information for each command sent; the other modules (PC, PL, OBS, RM,

DHS) perform tasks for the data management and the telescope handling. The importance

of the accuracy of SFI in mission-critical systems like CDMS has been demonstrated in [77],

in which two OSs (RTLinux and RTEMS) were compared with respect to the risk of failures

of the CDMS due to OS faults, in order to select the most reliable OS for this scenario.

The CDMS application was developed in C and runs on top of an open-source, real-time

operating system, namely RTEMS3. The CDMS makes use of the RTEMS API for task

3http://www.rtems.org

Chapter 3. Achieving Accuracy in Binary Code Mutation 42

Co
m
m
an
ds
	

Te
le
m
et
ry
	

	 	 Ground	 System	

	 	 On	 Board	 System	
	 	 CDMS	

PC	 PL	 DHS	 RM	 OBS	

TC	 TM	

RTEMS	 RTOS	

Figure 3.5: Architecture of the Case Study

management, communication and synchronization, and for time management. This software

system is compiled to run on a PowerPC hardware board by using the GCC compiler and

disabling compiler optimization settings, which is the setup currently supported by the G-

SWFIT tool.

The analysis is focus on faults injected in both the OS (i.e., RTEMS) and application

(i.e., CDMS) code. We only consider the code which is actually compiled and linked in

the executable running on the on-board system. A small part of the code (1.90%), which

is written in assembly language to provide board-specific support, is not targeted by our

source-level fault injection tool, but its influence on the results can be considered negligible.

Chapter 3. Achieving Accuracy in Binary Code Mutation 43

3.3.4 Results

In this section, software faults injected at the binary and source-level in a complex case

study are analyzed using the method proposed in Section 3.3. Faults at the binary level

were generated with the G-SWFIT technique, by using a R&D prototype tool provided by

Critical Software company. Faults at the source code level were generated using the SAFE

fault injection tool (described in Section 3.2.1). In total, 18,183 source-level faults and

12,380 binary-level faults were generated, respectively. Their distribution across fault types

is shown in Figure 3.6. The two distributions exhibit noticeable differences: more source-

level faults are injected with respect to some fault operators (such as OMLPA, OWVAV,

OWPFV, and OWAEP), whereas in other cases more binary-level faults are injected (such as

OMIEB and OMVA, where the latter groups together the OMVAV, OMVIV, and OMVAE

operators).

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

MFC	 MVA	 MIA	 MIFS	 MIEB	 MLAC	 MLOC	 MLPA	 WVAV	 WPFV	 WAEP	

N
um

be
r o

f f
au

lts

Fault types

Binary	 level	

Source	 level	

Figure 3.6: Distributions of Software Faults at both Binary and Source Code Level

The Fault Matching procedure (Section 3.3.1) identified the subset of Correctly Injected

Chapter 3. Achieving Accuracy in Binary Code Mutation 44

faults (i.e., common to both techniques) that are analyzed in order to assure the correct-

ness of the method. Correctly Injected faults have been sampled (see Section 3.3.2), and

then compared by looking at i) the faulty binary-code generated by G-SWFIT, and ii) the

one produced by faults injected in the corresponding source-code locations. This analysis

revealed that the binary-level faults match the source-level faults for each fault types and

for each sampled faults, except the OWPFV operator. It is found that 40.69% of OWPFV

faults at the binary level do not match OWPFV faults at the source-code level even if they

affect the same locations, since there are several functions parameters and possible replace-

ments for a given location. In order to take into account this aspect, results shown in Figure

3.7 have been updated by reducing the number of Correctly Injected faults for the OWPFV

operator and increasing the number of Omitted and Spurious faults by the same amount.

Correctly Injected faults turned out to be 5,927 (Figure 3.7). They represent 47.88% of

faults injected by G-SWFIT. The remaining faults injected by G-SWFIT (52.12%) in the

binary code do not match to a software fault in the source code, therefore most of G-SWFIT

faults are Spurious. Correctly injected faults represent 32.60% of faults injected in the source

code, so the remaining faults at the source level (67.40%) are not emulated by G-SWFIT

and they result as Omitted faults. The experimental campaign confirms that the accurate

injection at the binary level is a challenging task, at least when a complex software system

is considered.

Chapter 3. Achieving Accuracy in Binary Code Mutation 45

Figure 3.7: Correctly Injected, Spurious, and Omitted Faults

The distribution of the causes of inaccuracies (for both Omitted and Spurious faults) are

presented in Figure 3.8. These distributions have been obtained by applying the sampling

procedure described in Section 3.3.2. Most of spurious faults (Figure 3.8b) are caused by C

macros (56%) and inline functions (17%). In these cases, every time that a macro or inline

function has been replicated in the binary code, G-SWFIT generated an individual binary-

level fault; this led to a large number of Spurious faults (i.e., Spurious faults are repeated

for each replica of a macro or inline function). In a similar way, macros and inline functions

are a noticeable part of Omitted faults (27% and 1%, respectively); this percentage is low

when compared to Spurious faults, since one Omitted fault in a macro or inline function

leads to several Spurious faults, one for each replica of the code (see also Figure 3.4).

In order to gain more insights into the results, they are separately analyzed the faults

Chapter 3. Achieving Accuracy in Binary Code Mutation 46

(a) Omitted Faults (b) Spurious Faults

Figure 3.8: Causes of Incorrect Fault Injection in the Case Study

injected in the OS and application code, respectively. Figures 3.9 and 3.10 show from a

different perspective the data of Figures 3.7 and 3.8, by dividing the results between faults

in RTEMS (i.e., OS code) and in CDMS (i.e., application code). It can be noted that faults

follow a similar trend in OS and application code, since in both cases the number of spurious

faults is close to the number of correctly injected faults, and the number of omitted faults

is predominant. Nevertheless, omitted faults seem to be much more in the case of CDMS

(Figure 3.9b).

Figure 3.10 shows that omitted and spurious faults due to various causes (i.e., not related

to macro or inline functions) are more frequent in CDMS than in RTEMS. The constructs

not correctly recognized at the binary level (e.g., see the examples in Figures 3.12 and

3.13 discussed later in this section) likely occur more often in application code due to higher

complexity of that code, thus causing an higher number of omitted faults. Moreover, macros

Chapter 3. Achieving Accuracy in Binary Code Mutation 47

(a) RTEMS Code (b) CDMS Code

Figure 3.9: Number of Faults (Correctly Injected, Spurious, and Omitted) in OS and Ap-
plication Code

and inline functions are more frequent for RTEMS; this is due to the fact that several RTEMS

functions are exported as macros and inline functions in order to be used by external code

(i.e., user and library code that is compiled and linked with RTEMS code).

Software complexity metrics collected from the case study code (see Table 3.4) confirm

that functions in the application code tend to be more complex than those in the OS code

(in term of size, cyclomatic complexity and input/output dependencies). This is a common

trend in embedded systems, in which the OS is kept as simple as possible in order to reduce

the overhead and the number of potential defects [91]. Moreover, the number of preprocessor

statements per function confirms that RTEMS makes a more extensive use of macros that

CDMS. Therefore, it is even more important to fix the implementation issues mentioned

above if a fault injection tool is intended to be used with complex software.

The "various causes" behind spurious and omitted faults are numerous and specific to

Chapter 3. Achieving Accuracy in Binary Code Mutation 48

(a) Omitted Faults in RTEMS (b) Spurious Faults in RTEMS

(c) Omitted Faults in CDMS (d) Spurious Faults in CDMS.

Figure 3.10: Causes of Incorrect Fault Injection in OS and Application code

Table 3.4: Comparison of Average Software Complexity Metrics of Functions in RTEMS
and CDMS Code

Metric RTEMS CDMS

Lines of Code 17.30 30.71

Preprocessor Statements 0.64 0.15

Cyclomatic number 5.63 6.61

Number of inputs 5.50 7.38

Number of outputs 4.12 6.84

Chapter 3. Achieving Accuracy in Binary Code Mutation 49

each fault operator. It is not possible to provide a precise estimate of the relative percentage

of each cause, since it would require to manually analyze an extremely large sample of

injected faults. Instead, it was identified which part of incorrectly injected faults are due

to unavoidable limitations of G-SWFIT, and which of them can be avoided by improving

the G-SWFIT fault injection tool. To do so, it was excluded from the sample those faults

not related to macros or inline functions, and reason were diagnosed (with the support of

Critical Software developers) to understand why omitted faults were not injected, and why

spurious faults were erroneously injected. It was found that 26.02% of omitted and spurious

faults were due to causes that are impossible to avoid when injecting at the binary code

level, including:

• Low-level translation of C operators. Some C expressions (like sizeof and array and

struct accesses using -> and []) are translated by introducing arithmetic operations and

constants in the binary code; these operations are recognized as arithmetic expressions

by fault operators such as OMVA, OWVAV, and OWAEP.

• Switch and goto constructs. These constructs are translated in a similar way to IF

constructs using branches in the binary code; therefore, IF constructs are not always

correctly identified by operators such as OMIA, OMIEB, and OMIFS.

• Forced function inlining. Some functions (e.g., memcpy, memset) are compiled as

Chapter 3. Achieving Accuracy in Binary Code Mutation 50

inline functions, although they are not declared as inline.

Since the binary code lacks information about high-level constructs, the causes mentioned

above cannot be avoided. In practice, these inaccuracies have to be accepted as limitations

of fault injection at binary level, and should be taken into account when conclusions are

drawn from fault injection experiments.

Nevertheless, during the manual analysis it is observed that several Omitted and Spurious

faults not related to intrinsic limitations of fault injection at binary level, but were due to

limitations of the fault injection tool; they represent the 73.98% of the analyzed sample.

These inaccuracies occurred since some checks have not been implemented yet in the tool,

and some fault operators diverge in some cases from the fault types encompassed by G-

SWFIT due to choices that simplify the implementation. Therefore, part of the Omitted

and Spurious faults could be avoided by improving the implementation of binary-level fault

injection.

An example of Spurious fault is provided in Figure 3.11, which shows a fault location in

the source code (monospace font) along with its machine code translation (italic font). It is

a spurious MFC fault in CDMS that has been injected in a wrong location. In this example,

the function call should not be removed since it is the only statement within a block of

code, and a fault in that location would not be realistic. The OMFC operator imposes a

constraint (Table 3.3) to avoid fault injection in this kind of location [36]. Instead, the fault

Chapter 3. Achieving Accuracy in Binary Code Mutation 51

has been injected by the tool since the block containing the function call is not recognized

(i.e., the constraint is not enforced by the tool).

static void HousekeepingAction (TmPacket ∗STm) {
stwu r1,-24(r1)
mflr r0
stw r31,20(r1)
stw r0,28(r1)
mr r31,r1
stw r3,8(r31)

SendTmMsg (pbtBuffer ,
TmGetPacketTotalLength (STm)) ; ← MFC fault location

lwz r3,8(r31) (to be avoided)
bl 00006184 <TmGetPacketTotalLength>
mr r0,r3
lis r9,7
addi r3,r9,-21944
mr r4,r0
bl 0000a3b4 <SendTmMsg>

}
lwz r11,0(r1)
lwz r0,4(r11)
mtlr r0
lwz r31,-4(r11)
mr r1,r11
blr

Figure 3.11: Spurious MFC Fault in CDMS.

Figure 3.12 and Figure 3.13 provide two examples of Omitted faults that were caused

by limitations in G-SWFIT implementation. In Figure 3.12, a function call which could be

removed by the OMFC fault operator is not identified. As confirmed by Critical Software

developers, the TcMakePacket function is not recognized as returning a value that is stored

and used later in the program. Therefore, a fault is not injected due to a constraint of the

OMFC operator requiring that the return value of a function should not be in use (Table

3.3).

In Figure 3.13, the fault location has been omitted for an even more subtle reason. In

Chapter 3. Achieving Accuracy in Binary Code Mutation 52

TcMakePacket (pbtBuffer , &STc) ; ← MFC fault location
addi r0,r31,24 (not identified)
lis r9,9
addi r3,r9,-21492
mr r4,r0
bl 000056b8 <TcMakePacket>

bOk = CheckAppIdTypeSubtype(&STc) ;
addi r0,r31,24
mr r3,r0
bl 00011a10 <CheckAppIdTypeSubtype>
mr r0,r3
stw r0,20(r31)

Figure 3.12: Omitted MFC Fault in CDMS

this example, the return statement within the IF construct is translated with a branch to

the end of function, and the tool incorrectly believes that the IF construct includes all the

statements until the end of the current function. A fault is not injected since the IF construct

should not contain more than 5 statements [36]. Although the tool is provided with checks

to avoid these mistakes, a check to avoid this specific case was not implemented. This kind

of issue seems to be more relevant for Omitted faults than for spurious faults given the high

number of omitted faults due to various causes, as depicted in Figures 3.7 and 3.8.

Other incorrect behaviors were also found in the prototype tool, which were due to the

incomplete implementation of constraints or the identification of code blocks and control

structures. In Figure 3.14, it is provided an evaluation of the results that can be obtained

by improving the mentioned aspects. The improvements prevent the occurrence of several

Omitted and Spurious faults: Correctly Injected faults represent the majority of faults

potentially injectable in the source code (i.e., only a minor part of faults is omitted), and

Chapter 3. Achieving Accuracy in Binary Code Mutation 53

rtems_status_code sc ;
n32Size = TcGetAppData (STc , &pbtData) ;

lwz r3,120(r31)
lis r9,7
addi r4,r9,-23004
bl 00005934 <TcGetAppData>
mr r0,r3
lis r9,7
stw r0,-22992(r9)

sc = rtems_semaphore_obtain (rtems_mon_Mutex ,
RTEMS_WAIT ,
RTEMS_NO_TIMEOUT) ;

lis r9,7
lwz r0,-22948(r9)
mr r3,r0
li r4,0
li r5,0
bl 0003d504 <rtems_semaphore_obtain>
mr r0,r3
stw r0,64(r31)

if (sc != RTEMS_SUCCESSFUL) ← MIA fault location
lwz r0,64(r31) (not identified)
cmpwi cr7,r0,0
bne- cr7,0000c69c <AddMonitoringAction+0x97c>
return ;

if (n32Size >= 10) {
lis r9,7
lwz r0,-22992(r9)
cmplwi cr7,r0,9
ble- cr7,0000c680 <AddMonitoringAction+0x960>

Figure 3.13: Omitted MIA Fault in CDMS.

Chapter 3. Achieving Accuracy in Binary Code Mutation 54

they also represent the majority of faults actually injected by G-SWFIT (i.e., only a minor

part of faults is spurious). It is possible to conclude that the evaluation of a binary-level fault

injection tool on real-world complex software is useful to identify implementation issues, and

should be adopted to assure that a tool does not omit valid fault locations, and that spurious

faults are not generated.

Figure 3.14: Number of Faults (Correctly Injected, Spurious, and Omitted) when Fixing
Implementation Issues of the G-SWFIT Tool

3.4 Systematic Testing of Binary Fault Injection

The experimental analysis proved that the implementation of G-SWFIT is tricky. Behind

issues related to its dependency on the compiler of the target software, compiler optimiza-

tions, and the hardware architecture, binary level code mutation is difficult because the

translation of programming constructs (such as loops and control flow constructs) varies

Chapter 3. Achieving Accuracy in Binary Code Mutation 55

Table 3.5: Fault Types of G-SWFIT [36].

Acronym Description Constraints

MFC Missing function call C01, C02

MVIV Missing variable initializa-
tion using a value

C02, C03,
C04, C05,
C06

MVAV Missing variable assign-
ment using a value

C02, C03,
C04, C06,
C07

MVAE Missing variable assign-
ment with an expression

C02, C03,
C04, C06,
C07

MIA Missing IF construct
around statements

C08, C09

MIFS Missing IF construct +
statements

C02, C08,
C09

MIEB Missing IF construct +
statements + ELSE con-
struct

C08, C09

MLAC Missing AND in expression
used as branch condition

MLOC Missing OR in expression
used as branch condition

MLPA Missing small and localized
part of the algorithm

C02, C10

WVAV Wrong value assigned to
variable

C03, C04,
C06

WPFV Wrong variable used in pa-
rameter of function call

C03, C11

WAEP Wrong arithmetic expres-
sion in function call param-
eter

with these factors in subtle ways. Moreover, the fault types (see Table 3.5) to be injected

require the identification of complex high-level programming patterns, namely constraints.

Constraints (Table 3.6) are rules defined by G-SWFIT in order to better emulate the types

Chapter 3. Achieving Accuracy in Binary Code Mutation 56

of fault found in the field [36]. For instance, the MFC fault type has a constraint (C01)

imposing that a function call should removed only if it does not return any value or the

return value is discarded. In fact, field data (and also intuition) suggest that removing a

function call whose return value is used later in the program would not be representative of

real software faults made by programmers. Another example is the MLPA fault type, which

has a constraint (C10) that imposes to remove between two and five consecutive statements,

which should not be control or loop statements. These constraints are important for emu-

lating software faults in a representative way, which is a requirement for a correct evaluation

of fault tolerance and for dependability benchmarking [79].

The experimental evaluation of the accuracy of G-SWIFIT fault injection tool on a

complex software system from the space domain [29]. Faults were injected in both OS and

application binary code, and binary mutations were compared with mutations performed

on the source code following the same rules of G-SWFIT. The comparison revealed several

cases in which G-SWFIT did not correctly mutate the binary code (Figure 3.15). The three

types of injections identified are: (i) correct injections, that is, binary injections that match

a source-code injection; (ii) omitted injections, that is, potential injections that were missed

at the binary level, and were only performed at the source-code level; and (iii) spurious

injections, that is, binary injections that do not match any valid source-code injections.

Chapter 3. Achieving Accuracy in Binary Code Mutation 57

Table 3.6: Constraints of Fault Types in G-SWFIT [36]

Id Description

C01 Return value of the function must not being used

C02 The construct must not be the only statement in
the block

C03 Variable must be local

C04 Must be the first assignment for that variable in
the module

C05 Assignment must not be inside a loop

C06 Assignment must not be part of a FOR construct

C07 Must not be the first assignment for that variable
in the module

C08 The IF construct must not be associated to an
ELSE construct

C09 The block must not include more than five state-
ments and not include loops

C10 Statements are in the same block, do not include
more than 5 statements nor loops

C11 There must be at least two variables in this mod-
ule

Moreover, omitted and spurious injections were divided in two groups: incorrect in-

jections due to intrinsic limitations of G-SWFIT (and of BCM in general), and incorrect

injections due to implementation issues of the BCM tool. Many omitted and spurious injec-

tions were caused by limitations of BCM that are impossible or very difficult to avoid: For

instance, an inline C function, which is replicated at each call site in the program, can mis-

lead a BCM tool to inject several spurious faults, that is, one distinct fault for each replica

(instead, a real fault in an inline C function would be present in every call site at the same

time). Nevertheless, several omitted and spurious faults were not related to limitations of

Chapter 3. Achieving Accuracy in Binary Code Mutation 58

BCM, but were due to the incomplete or simplified implementation of G-SWFIT. In partic-

ular, issues were related to the implementation of fault constraints and to the identification

of code blocks and control structures. For instance, spurious faults were in some cases in-

correctly injected when the target instruction was the only statement within a block, and

some faults were omitted when an IF construct included a return statement. These issues

are not due to G-SWFIT, and could be avoided by conducting a rigorous evaluation and

improvement of the BCM tool. When implementation issues are avoided, then omitted and

spurious faults represent the minority of cases.

0"

2,000"

4,000"

6,000"

8,000"

10,000"

12,000"

14,000"

Correct"
injec2ons"

Omi6ed"
injec2ons"

Spurious"
injec2ons"

Original"implementa2on"of"
G@SWFIT"

Improved"implementa2on"
of"G@SWFIT"(es2mated)"

Figure 3.15: Accuracy of G-SWFIT in the Context of an Embedded Space Software [29].

These results motivated the development a systematic approach for testing and im-

proving BCM tools. The experimental methodology (see Section 3.3) [29] cannot be easily

adopted by developers of BCM tools, since this methodology is based on the analysis of a

Chapter 3. Achieving Accuracy in Binary Code Mutation 59

large number of injected faults in a large software (tenths of thousands of faults in the exper-

iment), and on the manual analysis of omitted/spurious faults to identify implementation

issues. Analyzing even a sample of these faults requires considerable efforts, and provides

only a partial evaluation of the BCM tool, since the evaluation would be focused on the

code patterns adopted in a specific target program. Therefore, it is proposed an approach

that generates, in a controlled and automated way, a (limited) set of small target programs,

in order to allow a more efficient evaluation and improvement of BCM tools.

The proposed approach automates the evaluation of BCM tools at injecting faults in bi-

nary code. To accomplish this goal, the approach uses synthetic programs, that is, programs

(in a high-level language, such as C) that are automatically and randomly generated with

the sole purpose to evaluate the ability of the BCM tool to inject faults into them. These

synthetic programs are then compiled in binary code, and fed to the BCM tool. Finally,

mutations obtained from the BCM tool are analyzed.

The key idea of this approach is to control the generation of synthetic program, in such

a way to expose the BCM tool to several different code patterns that could point out its

limitations. In particular, generated synthetic programs contain a target fault location in

their code, in which the BCM tool is expected to inject a fault. The target fault location is

generated to comply with the fault types and constraints for which the BCM tool is designed.

For instance, to evaluate the “missing assignment” fault type of G-SWFIT (see Table 3.1), a

Chapter 3. Achieving Accuracy in Binary Code Mutation 60

target fault location containing an assignment instruction is generated. To comply with the

constraints of fault types of G-SWFIT (see Table 3.6), the target fault location consists of

an assignment made to a local variable, and this assignment is not the only instruction of its

block. If the tool is not able to inject a fault in the target fault location, then the synthetic

program exposes an issue of the fault injector, i.e., it exhibits an omitted injection.

Moreover, the generation of synthetic programs also encompass programs in which the

fault constraints are not fully satisfied, and in which the fault injector should avoid to inject

faults. If the fault injector fails to recognize that the target fault location is not compliant

to the fault model, then the synthetic program exposes an issue of the BCM tool. This

situation represents a spurious injection.

To make the synthetic programs more realistic, and to evaluate the accuracy of the

BCM tool in the presence of complex code patterns, the target fault location is surrounded,

preceded and succeded by additional randomly-generated programming constructs, that

represent respectively the context, the preamble and the postamble of the target fault location

(Figure 3.16).

The proposed approach, depicted in Figure 3.17, consists of the following steps:

• Test-suites generation: The tool automatically generates synthetic programs. A

set of synthetic programs is generated for each fault type encompassed by the tool.

These programs are test-cases for the BCM tool. A synthetic program is a sequence

Chapter 3. Achieving Accuracy in Binary Code Mutation 61

void	 func()	 {	
	 	 stmt1;	
	 	 …	
	 	 stmtn;	
	
	

+	
	 Target	 stmt;	
	
	 	 stmt1;	
	 	 …	
	 	 stmtm;	

}	
...	
void	 main()	 {	
	 	 entry_func();	
	 	 checksum();	
}	

Context	 stmt	
Context	 statement	
(None,	 SelecCon,	 IteraCon)	

Target	 fault	 loca3on,	
depending	 on	 the	 fault	 model	
(assignment,	 funcCon	 call,	 ...)	

Random	 statements	 before	
the	 target	 (Preamble)	

Random	 statements	 aIer	
the	 target	 (Postamble)	

Figure 3.16: General Structure of a Synthetic Program

Program	
Generator	

Source	
Muta0on	 Tool	
(oracle	 tool)	

Mutated	
source	 code	 (R)	

TC0
 	 	 	 TCn

 	

TC’0
TC’n	

Oo	

On	

O’o	

MTC’0
MTC’n

O’n	

	
	

MTC0
 	

	
	

MTC0
 	

	
	

MTC0
 	

	
	

MTCn
 	

Source	 code	
test	 suite	 (TSi)	

Binary	 code	
test	 suite	 (TS’i)	

Binary	
Muta0on	 Tool	
(tool	 under	 test)	

Mutated	
binary	 code	 (R’)	

Execu0on	
results	 (O)	

Execu0on	
results	 (O’)	

Comparison	 Comparison	

Figure 3.17: Proposed Approach
A program generator generates a test-suite (TS) for a given fault operator. TS’ is generated
by compiling TS. An oracle tool and the tool under test inject faults in the test-suite, and
their results are compared to evaluate the accuracy of the tool under test.

Chapter 3. Achieving Accuracy in Binary Code Mutation 62

of randomly generated statements. A statement can be an expression, an assignment,

a function call, a selection or an iteration statement. As shown in Figure 3.16, only

one statement, named target, is considered the fault location, in which faults will

be injected. The target statement depends on the fault type and on the constraints

that are tested, and it is surrounded by iteration (a loop construct) or selection (a

conditional construct) statement, i.e., a context. Moreover, the complexity of each

synthetic program is controlled by a set of parameters, such as nesting level and

type of expressions (e.g., constants, variables, arithmetic operations), as described in

Subsection 3.4.1. The set of synthetic programs obtained by varying these parameters

make a test-suite (TS). A test-suite contains both valid test-cases (i.e., test-cases

satisfying all the constraints for the fault type), and invalid test-cases (i.e., test-cases

that do not satisfy one of the constraints). Programs in the test-suites are compiled

to binary code (TS’) before the next phase.

• Test-suite execution: The test-suite TS’ (in binary form) is submitted as input to

the BCM tool that are tested (Tool Under Test). At the same time, the test-suite

TS (in source-code form) is fed to another fault injection tool (Oracle Tool) that

injects faults in source code rather than binary code. The Oracle Tool serves as a

term of comparison for evaluating the accuracy of the Tool Under Test. The Oracle

Tool adopts the same fault model of the Tool Under Test (e.g., the fault model in

Chapter 3. Achieving Accuracy in Binary Code Mutation 63

Tables 3.1 and 3.6), and it works on source code, thus it avoids the issues encountered

by the BCM tool when working on binary code, and is much more easy to implement

and accurate than the Tool Under Test.

The Tool Under Test takes executables in TS’ as input, and produces faulty versions

of these executables (mutated test cases, MTC’) by changing their binary code. For

each test-case in TS’, it is collected the faulty executable MTC’ i generated by the

Tool Under Test, and the output resulting from the execution of MTC’ i. The same

process is performed on the source-code test-suite TS using the Oracle Tool.

• Comparison and detection of inaccuracies: An analysis is conducted by com-

paring the mutations that both tools have performed during the injection (R and R’),

and the executions of the mutated test cases (O and O’). The comparison between

R and R’ determines whether the BCM tool did spurious, omitted or incorrect injec-

tions. Given a synthetic program, an injection is correct when (i) the Tool Under Test

recognizes the target fault location in the synthetic program, and (ii) it mutates the

binary code in an equivalent way to the Oracle Tool (denoted by equivalent results

from the executions of mutated test cases).

3.4.1 Test-suite Generation

The proposed approach generates synthetic programs using a random program generator

tool. It is extended the use of random programs, that were adopted in past studies for

Chapter 3. Achieving Accuracy in Binary Code Mutation 64

testing compilers, to test binary code mutations tools. Program generators adopted in

past studies generate programs as a sequence of statements that includes global and local

variables declarations, functions, assignment, expressions, selection and iteration statements.

The inputs of these programs are constants produced during the random generation process.

The output of these programs is a checksum of the global variables of the program, which

is computed just before the termination of the program.

For the sake of example, it is implemented a random program generator for the C lan-

guage, Faultprog, which is based on the Randprog tool developed by Bryan Turner for testing

C compilers [20]. It is extended Randprog to support the automatic evaluation of BCM tools.

In particular, Faultprog produces C programs, called synthetic programs, by following rules

that depend on the fault model with respect to which the BCM tool is tested.

A synthetic program is a sequence of randomly generated statements. A statement can be

an expression, an assignment, a function call, a selection or an iteration statement. The ran-

dom generator bases the program generation on a stochastic grammar of the language [74].

A stochastic grammar associates probabilities to each grammar rule describing a language.

Each rule consists of a left side and a right side, where the left side is a non-terminal sym-

bol, and the right side contains one or more sequences of symbols (either terminal and

non-terminal). A statement is generated by concatenating terminal (e.g., operators like “+”

and “->”, or keywords like “for”) and non-terminal symbols in the sequence. Beginning from a

Chapter 3. Achieving Accuracy in Binary Code Mutation 65

“start” rule, the program generator replaces each non-terminal symbol through the recursive

application of other rules in the grammar, until there are no more non-terminal symbols.

When the right side contains more than one sequence, the stochastic grammar associates

a probability to each sequence, and the program generator randomly selects a sequence on

the basis of its probability.

In our approach, we control the random program generation to follow the structure

showed in Figure 3.16, by appropriately tuning probabilities in the stochastic grammar

in the process. The random program should contain a statement, named target, that is

the location for injecting faults according to the fault model. The elements in the target

fault location are selected randomly, according to the following parameters (summarized in

Table 3.7):

• Fault type that has to be tested. For instance, when testing the MVAE fault type

in G-SWFIT, the target fault location consists of a local variable assignment with an

expression, such as an arithmetic expression.

• Fault constraint to be violated (if any). For instance, when testing the MFC fault

type in G-SWFIT, we can generate valid programs that comply to both constraints

C01 and C02, and invalid programs that violate one of these two constraints (e.g., the

target statement is function call whose return value is used in the rest of the program).

Chapter 3. Achieving Accuracy in Binary Code Mutation 66

• Context in which the target statement has to be inserted. It can be a selection (e.g.,

if-then-else statement) or an iteration statement (e.g., while- or for-loop).

• Nesting depth of the context, such as the number of nested loops in which the target

statement should be contained.

• Elementary operand type (EOT) to use in expressions of the target statement. They

can be constants, global or local variables, or function calls.

• Complexity of expressions in the target statement. According to this parameter, the

target statement contains expressions that are obtained by different combinations of

one or more EOTs, random sub-expressions and random operators.

Figure 3.18 shows an example of random (valid) program, in which the MFC fault type

is selected and all constraints are satisfied, a function call is nested in two loops, and the

complexity of the expression of the target (in this case, the parameter of the function call)

is the sum of two local variables.

To obtain test-suites, Faultprog automated program generator generates several random

programs. Programs are based on different combinations of parameters (Table 3.7), and all

combinations of parameters that apply for each specific fault type are considered.

Chapter 3. Achieving Accuracy in Binary Code Mutation 67

Table 3.7: Parameters of the Faultprog random program generator.

Parameter Description Options

Fault type Type of target
statement accord-
ing to the fault
model.

MFC;
. . .
WAEP

Fault con-
straint

Constraint to be vi-
olated (if any) in
the target.

all satisfied;
C01 not satisfied;
. . .

Context The statement sur-
rounding the target
statement.

none;
while;
for;
if-target;
if-target-then-else;
if-then-else-target

Nesting The nesting depth
of the context
statement.

0; 1; 2

Elementary
operand
type
(EOT)

The type of
operands in ex-
pressions of the
target.

constant;
local variable;
global variable;
function call

Complexity Complexity of
expressions in the
target statement.

NOTE: Expres-
sions are obtained
by combining one
or more EOTs,
random sub-
expressions and
random operators.

a simple EOT;
expr. with two
EOTs;
expr. with three
EOTs;
expr. with an EOTs
and a random sub-
expr.;
expr. with an
EOTs and two ran-
dom sub-exprs.

3.4.2 Test-suite Execution, Comparison and Detection of Inaccuracies

Once test-suites are generated (both in source-code form, TS, and in binary-code form,

TS’), it is possible to run them over the Oracle Tool and the Tool Under Test and, for each

synthetic program, to store faulty executables produced by the tools, which populate the

Chapter 3. Achieving Accuracy in Binary Code Mutation 68

int	 a=2;	
int	 b=3;	
int	 c=0;	
while	 {	

	 while	 {	
	 	 stmt_1;	
	 	 stmt_2;	
	 	 //start	 target	
	 	 func_2(a+b);	
	 	 //end	 target	
	 	 stmt_n; 	 	
	 }	

}	 	

Fault	 type	 =	 MFC	
Constraint	 =	 all	 sa:sfied	
Context	 =	 while	
Nes@ng	 =	 2	
Type	 =	 local	 variable	
Complexity	 =	 expr	 OP	 expr.	

Synthetic program Faultprog parameters

Figure 3.18: Example of a Synthetic Program for Testing MFC Fault Type

sets R and R’.

For each binary executable TC’i, the analysis focuses on the binary instructions corre-

sponding to the target fault location of the synthetic program. These instructions can be

identified using a-priori knowledge about the generated program, and debugging information

that can be introduced into executables by means of the compiler [46]. The executables from

both the Oracle Tool and the Tool Under Test are compared to identify omitted or spurious

injections by the Tool Under Test. This matching is based on the observation that both

tools should ideally inject the same fault types in the same locations (e.g., an assignment or

function call is removed both in the source code and in the corresponding move or branch

instructions in the binary code).

More precisely, the Tool Under Test behaves correctly (i.e., it passed a test-case) in two

cases:

Chapter 3. Achieving Accuracy in Binary Code Mutation 69

• The generated program is valid, i.e., it contains a target statement that satisfies all

the constraints imposed by the fault type being tested. Both tools identify the target

statement as a valid location where to inject a fault. The injection is performed by

both tools, where MTCi and MTC’i are equivalent.

• The generated program is invalid, i.e., it contains a target statement that not satisfies

one of the constraints imposed by the fault type being tested. Both tools identify the

target statement as an invalid location where not to inject a fault. The injection is

not performed by both tools, so MTCi and MTC’i are not produced.

On the contrary, a test-case fails when:

• The generated program is valid. The Oracle Tool injects a fault in the target fault

location, while the Tool Under Test does not inject a fault in the corresponding binary

instructions. The syntactic program detected an omission of the Tool Under Test.

• The generated program is invalid. The Oracle Tool does not inject a fault, while the

Tool Under Test injects a fault in the binary instructions of the target location. The

syntactic program detected a spurious injection of the Tool Under Test.

• The generated program is valid. Both tools inject a fault, but the result of executions

of the two faulty executables are different.

Chapter 3. Achieving Accuracy in Binary Code Mutation 70

In some scenarios, in which the target fault location is a complex statement, more than

one fault could be potentially injected in that location. For instance, this is the case of

the “missing arithmetic expression in function parameter”, when the target fault location

contains several parameters. In that case, the number of faulty versions generated by the

two tools is compared, and omitted or spurious injections are identified if the Tool Under

Test generated, respectively, less or more injections than the Oracle Tool. This situation

highlights the importance of comparing the Tool Under Test with an Oracle Tool at the

source-code level: since synthetic programs are generated in a random way, it is needed to

compute the number of faults potentially injectable in the target location, by using a static

analysis of the code that, in the proposed approach, is offered by the Oracle Tool.

Finally, when both the Tool Under Test and the Oracle Tool inject the same fault type

in the target fault location, the two faulty versions are executed (i.e., the one obtained from

the Tool Under Test, and the one from the Oracle Tool), and their outputs are compared.

Given that the two tools should inject the same fault type, it is expected that they inject

faults that have the same effects on the target program, in terms of impact on the control

flow of the execution and on the state of the program. Differences are detected in the two

executions by computing a checksum of all global variables just before their termination,

and by comparing these two checksums. Since the synthetic programs make extensive use

of global variables, both in the function with the target location, and in other functions

Chapter 3. Achieving Accuracy in Binary Code Mutation 71

preceding or succeeding that function, then analyzing the state of global variables at the

end of an execution is likely to reveal discrepancies between the tools. For instance, if the

fault affects a local variable that is later used in a control flow condition, then an “incorrectly

injected” fault in the binary code would turn in a different control flow than the fault in the

source code; in turn, the different control flows would impact on the global variables of the

program, thus revealing that the fault in the binary code has been incorrectly injected.

Of course, this approach (or any other approach) cannot prove that two faults are equiv-

alent, since this problem is undecidable: it is the same problem of detecting equivalent

mutants in mutation testing [58]. Nevertheless, the focus is different than mutation testing,

since each mutant is not going to be executed several times with several test cases, but

to be execute only a subset of faults (i.e., only those faults that are neither omitted nor

spurious injections) with few inputs in order to detect the most relevant differences between

the Oracle Tool and the Tool Under Test. Thus, the use of checksums is an acceptable and

practical solution to this problem.

After performing the comparison of the faulty versions from the Oracle Tool and the Tool

Under Test, results are examined to identify the causes of inaccuracies in the Tool Under

Test. To give feedback to developers of the Tool Under Test, it is performed an analysis of

the distributions of failed test-cases with respect to several factors, to identify which factor

leads to the highest number of failed test-cases, for instance the fault types, the constraints,

Chapter 3. Achieving Accuracy in Binary Code Mutation 72

or the type of context that causes a significant number of omitted or spurious injections.

This information enables developers to pinpoint the causes of inaccuracies, by looking at

specific areas of the Tool Under Test. Moreover, after fixing the Tool Under Test, developers

can apply again the test-cases in order to validate the fix, i.e., to check whether the fix was

able to significantly reduce the number of inaccuracies.

3.4.3 The csXceptionTM suite

csXceptionTM is a fault injection tool developed by Critical Software c© for supporting the

validation activities of safety- and mission-critical systems. It includes several plugins for

software-implemented and software fault injection as shown in Figure 3.19. csXceptionTM

was originally designed to perform hardware fault injection by exploiting CPU debugging

and performance monitoring features available in modern microprocessors.

More recent is the development of the G-SWFIT based R&D plug-in, i.e. the component

that enables injection of software faults based on binary mutations. csXceptionTM core is the

Experiment Management Environment (EME), responsible for controlling, monitoring, and

storing results of the experiments. It exchanges data with plug-in that, instead, represents

the injector. The plug-in includes algorithms for the individuation of fault locations based

on fault types and constraints discussed in Section 3.4. The injection consists of parsing the

target binary code to individuate assembly instruction sequences corresponding to program-

ming constructs, i.e. function calls, assignments and selection statements. Once patterns

Chapter 3. Achieving Accuracy in Binary Code Mutation 73

are recognized, modifications are applied by substituting assembly instructions with a nop

instructions, performing statement removal.

Figure 3.19: csXceptionTM architecture

3.4.4 Test Planning

In this section, technical details about test-suites generated by FaultProg are discussed.

As shown in 3.7, the generator takes several input parameters that determine the number

and the content of synthetic programs. In total, 4,855 synthetic programs were generated

considering both respected (that are 1,984) and violated constraints (that are 2871). 3.8

reports the number of generated programs divided by fault types. It can be noticed that,

for each combination of fault-type/constraints, the number of programs changes among the

fault types. In fact, some inputs combinations are not valid and programs are not generated.

For instance, for MLAC fault type that removes an AND in the expression of if-condition,

Chapter 3. Achieving Accuracy in Binary Code Mutation 74

it does not make sense to generate a program in which the if-condition contains a simple

variable or a function call. These considerations contributes to lower the number of tests to

perform in order to individuate inaccuracies.

Table 3.8: Test-suites generated by FaultProg

Fault Type Programs per Constraint

MFC C00 240
C01 80
C02 240

MVA C00 10
C02 135
C03 150
C04 150
C05 90
C06 45
C07 150

MIA C00 240
C08 240
C09 240

MIFS C00 240
C02 225
C08 240
C09 240

MIEB C00 240
C09 240

MLAC C00 192

MLOC C00 192

MLPA C00 240
C01 240
C02 240

WVAV C00 16
C03 16
C04 16
C06 3

WPFV C00 32
C01 10
C03 32

WAEP C00 192

Chapter 3. Achieving Accuracy in Binary Code Mutation 75

3.4.5 Results

In total, 3,429 source-level faults and 1,562 binary-level faults were generated, respectively.

Their distribution across fault types is shown in Figure 3.20. The two distributions exhibit

that more source-level faults are injected with respect to the majority of fault types, whereas

in other cases more binary-level faults are injected (such as MFC and MIEB). The compar-

isons between source-level and binary level faults generates Correctly Injected, Spurious and

Omitted faults as shown in Figure 3.21. Causes of spurious and omitted faults are then

analysed.

0"

100"

200"

300"

400"

500"

600"

700"

800"

900"

1000"

MFC" MVA" MIA" MIFS" MIEB" MLAC" MLOC" MLPA" WVAV" WPFV" WAEP"

#"
of
"fa

ul
ts
"

Fault"type"

Source"code"

Binary"code"

Figure 3.20: Distributions of Faults Injected at Binary and Source Code Level

Plots in Figure 3.22 show the percentage of programs, grouped by fault type, for which

csXception produces spurious faults. Then, programs containing a spurious fault are grouped

by specific parameters such as constraints (Figure 3.22a), type of context that surrounds the

Chapter 3. Achieving Accuracy in Binary Code Mutation 76

Figure 3.21: Distributions of Correctly Injected, Spurious and Omitted Faults.

target fault location (Figure 3.22b) Firstly, it emerges that the higher number of spurious

faults is obtained for MIEB, MFC, MLAC, MLOC fault types. Looking at Figure 3.22a,

most of the MIEB and MFC spurious faults is obtained when in synthetic programw where

constraints C09 and C02 are violated. This highlights that the implementation of these

constraints could be improved. An example of spurious fault is depicted in Figure 3.23.

The function call func_7() is the only instruction in a while block violating the constraint

C02: according to Table 3.6 the injection should not be performed. The reason of the wrong

injection is probably due to the complexity of the input expression of func_7() that was

erroneously interpreted as additional statements of the while block. An improvement to

the algorithm that counts the number of statements in a block could avoid these spurious

Chapter 3. Achieving Accuracy in Binary Code Mutation 77

injections. For instance, in the example of Figure 3.23, the tool should recognize that

the result of two expression is the input parameter of the function. We found a similar

problem for the MIEB fault type, since the tool does not correctly computes the number of

statements within an if block, thus leading to spurious injections when an if block contains

a loop or more than 5 statements. As for MLAC and MLOC, spurious injections cannot be

attributed to the erroneous implementation of the constraints since they are not associate

to any constraints. Instead, they depend on the complexity of the target location (only non-

black bands appear in the bars of MLAC and MLOC) as it is observed in Figure 3.22e. So

that, an hypothesis can be formulated: the complexity of boolean condition influences the

presence of spurious injections. Analyzing some of these violations confirmed the hypothesis:

we found that the tool injects a spurious MLAC/MLOC when the if construct contains a

boolean condition with three or more logical clauses.

A similar issue was found for WAEP fault type: when an input parameter of the function

call is a complex expression, the tool performs a number of injections greater than it would

be allowed by the fault type definition.

Regarding omitted faults Figure3.24, the percentage of omitted faults is very high for

most of fault type, i.e all the synthetic programs lead to at least one omitted injection in

the target fault location. The great number of omitted faults confirms the results of the

experimental evaluation of binary fault injection (see Section 3.3) that demonstrated the

Chapter 3. Achieving Accuracy in Binary Code Mutation 78

 0%

 20%

 40%

 60%

 80%

 100%

M
FC

M
V

A
M

IA
M

IFS

M
IEB

M
LA

C

M
LO

C

M
LPA

W
V

A
V

W
PFV

W
A

EP

P
er

ce
n

ta
g

e
o

f
sp

u
ri

o
u

s
in

je
ct

io
n

s

Fault Operator

C11 violated
C10 violated
C09 violated
C08 violated
C07 violated
C06 violated
C05 violated
C04 violated
C03 violated
C02 violated
C01 violated
All satisfied

(a) Split by constraint.

 0%

 20%

 40%

 60%

 80%

 100%

M
FC

M
V

A
M

IA
M

IFS

M
IEB

M
LA

C

M
LO

C

M
LPA

W
V

A
V

W
PFV

W
A

EP

P
er

ce
n

ta
g

e
o

f
sp

u
ri

o
u

s
in

je
ct

io
n

s

Fault Operator

IF { target } ELSE {}
IF {} ELSE { target }
IF { target }
FOR { target }
WHILE {target}
target (no context)

(b) Split by context.

3−levels nesting
2−levels nesting
1−level nesting

 0%

 20%

 40%

 60%

 80%

 100%

M
FC

M
V

A
M

IA
M

IFS

M
IEB

M
LA

C

M
LO

C

M
LPA

W
V

A
V

W
PFV

W
A

EP

P
er

ce
n

ta
g

e
o

f
sp

u
ri

o
u

s
in

je
ct

io
n

s

Fault Operator

(c) Split by nesting.

Function Calls
Variables
Constants

 0%

 20%

 40%

 60%

 80%

 100%

M
FC

M
V

A
M

IA
M

IFS

M
IEB

M
LA

C

M
LO

C

M
LPA

W
V

A
V

W
PFV

W
A

EP

P
er

ce
n

ta
g

e
o

f
sp

u
ri

o
u

s
in

je
ct

io
n

s

Fault Operator

(d) Split by type of operand.

P
er

ce
n

ta
g

e
o

f
sp

u
ri

o
u

s
in

je
ct

io
n

s

Fault Operator

Basic op. OP random expr. OP random expr.
Basic op. OP random expr.
Basic op. OP basic op. OP basic op.
Basic op. OP basic op.
Basic operand

 0%

 20%

 40%

 60%

 80%

 100%

M
FC

M
V

A
M

IA
M

IFS

M
IEB

M
LA

C

M
LO

C

M
LPA

W
V

A
V

W
PFV

W
A

EP

(e) Split by complexity of expressions.

Figure 3.22: Spurious injections.

Chapter 3. Achieving Accuracy in Binary Code Mutation 79

void func (void) {

. . .

while ((l_6 & func_7 (g_139))) {

// start target fault location
func_7((0x34552768L && func_13((g_4 % mod_rhs(0x7790L)), (g_4 % mod_rhs(1L)))));
// end target fault location

}

. . .

}

Figure 3.23: Example of synthetic program causing a spurious injection.

omitted injections are very frequent. Because of the high number of the omitted faults for

each fault type, it is not possible to find Analyzing Figure 3.24, it emerges that the nesting,

the operands and the complexity of the expressions do not influence significantly the omitted

injections, i.e. there is not a specific value of nesting, operands, or complexity that causes

omitted injections: the bands in the bars of Figure 3.24a, Figure 3.24b Figure 3.24c have

similar widths in almost all cases, so it is unlikely that omitted injections are caused by

specific value of these parameters. Instead, from Figure 3.24a it seems that omitted injections

tend to occur when the target fault location is included within a “context” construct, such

as a for/while loop or an if construct. Thus, omitted injections can occur because the tool

does not correctly discriminate between the target statement and the context construct. For

instance, Figure 3.25 depicts part of a synthetic program in which MFIS fault is omitted,

i.e. the fault is not injected even if the target fault location is a valid injection point.

Chapter 3. Achieving Accuracy in Binary Code Mutation 80

In cases like this, it seems that the tool is confused by programs with complex con-

trol flows, and is not able to analyze statements that are nested within some conditional

construct.

 0%

 20%

 40%

 60%

 80%

 100%

M
FC

M
V

A
M

IA
M

IFS

M
IEB

M
LA

C

M
LO

C

M
LPA

W
V

A
V

W
PFV

W
A

EP

P
er

ce
n

ta
g

e
o

f
o

m
it

te
d

 i
n

je
ct

io
n

s

Fault Operator

IF { target } ELSE {}
IF {} ELSE { target }
IF { target }
FOR { target }
WHILE {target}
target (no context)

(a) Split by context.

3−levels nesting
2−levels nesting
1−level nesting

 0%

 20%

 40%

 60%

 80%

 100%

M
FC

M
V

A
M

IA
M

IFS

M
IEB

M
LA

C

M
LO

C

M
LPA

W
V

A
V

W
PFV

W
A

EP

P
er

ce
n

ta
g

e
o

f
o

m
it

te
d

 i
n

je
ct

io
n

s

Fault Operator

(b) Split by nesting.

Function Calls
Variables
Constants

 0%

 20%

 40%

 60%

 80%

 100%

M
FC

M
V

A
M

IA
M

IFS

M
IEB

M
LA

C

M
LO

C

M
LPA

W
V

A
V

W
PFV

W
A

EP

P
er

ce
n

ta
g

e
o

f
o

m
it

te
d

 i
n

je
ct

io
n

s

Fault Operator

(c) Split by type of operand.

P
er

ce
n

ta
g

e
o

f
o

m
it

te
d

 i
n

je
ct

io
n

s

Fault Operator

Basic op. OP random expr. OP random expr.
Basic op. OP random expr.
Basic op. OP basic op. OP basic op.
Basic op. OP basic op.
Basic operand

 0%

 20%

 40%

 60%

 80%

 100%

M
FC

M
V

A
M

IA
M

IFS

M
IEB

M
LA

C

M
LO

C

M
LPA

W
V

A
V

W
PFV

W
A

EP

(d) Split by complexity of expressions.

Figure 3.24: Omitted injections.

3.5 Summary

In this chapter, it is evaluated the accuracy of a binary software fault injection technique

(G-SWFIT) that injects faults in the binary code of a program. The accuracy of faults

injected at binary level has been assessed by comparing the faults injected in the source

Chapter 3. Achieving Accuracy in Binary Code Mutation 81

. . .

while (g_101) {

int8_t l_146 = 0x6FL ;

while ((func_46 (g_109 , lshift_s_s (g_78 , func_56 (l_144 , g_145 , g_127 , g_83 , g_112)))
& (((l_146 % mod_rhs (g_81)) | | (g_147 | g_127)) == g_131))) {

uint32_t l_150 = 0xD765C340L ;
int8_t l_155 = 0L ;

while ((g_148 & func_56 (func_44 (g_89) , l_149 , (g_82 − g_99) , (g_130 & g_101))) {

int8_t l_153 = −1L ;
g_51 = l_150 ;
int8_t l_152 = 0xF3L ;

// start target fault location
if ((rshift_s_s(g_80, g_4) | (g_78 ˆ 0L))) {

g_147 = g_92;
func_3((g_105 + g_113));
g_58 = (g_109 <= g_90);
g_17 = g_151;
func_3(l_152);

}
// end target fault location

. . .

}
}

}

. . .

Figure 3.25: Example of synthetic program causing an omitted injection.

code by using the same fault injection rules. The analysis pointed out improvements to

both tools involved in the comparison. Results can be summarized as follows:

• The accurate injection of software faults in the binary code is challenging in complex

software systems. A large number of omitted and spurious faults was observed in the

first analysis: for each injected fault there is about 1 omitted fault that has not been

injected, and about half of the injected faults were spurious. Moreover, the problem is

more significant where the code complexity is greater, as in the case of application-level

Chapter 3. Achieving Accuracy in Binary Code Mutation 82

code in the case study.

• Several omitted and spurious faults are due to the lack of high-level information in the

binary code, and most of them are due to macros and inline functions. These inaccu-

racies have to be accepted as limitations of fault injection at binary level, and should

be taken into account when conclusions are drawn from fault injection experiments.

In some cases, such limitations can be considered acceptable: for instance, when the

aim of fault injection is a coarse-grained analysis of failure modes (e.g., the relative

percentage of crashes or stalls of the system), the results can be adequately estimated

even in the presence of inaccurate injected faults [36, 59]. Instead, fault injection at

the source level is advisable when the source code is available and a more fine-grained

analysis of the effects of injected faults on the system is needed.

• Several omitted and spurious faults are not related to limitations of fault injection

at binary level, but they are due to the incomplete or simplified implementation of

G-SWFIT. In particular, issues are related to the implementation of fault type con-

straints and to the identification of code blocks and control structures. These issues

are not due to the G-SWFIT technique, and they can be avoided if an experimental

evaluation of the fault injection tool is performed to improve the implementation. If

these aspects are improved, then omitted and spurious faults represent the minority

of cases. A future research work consists in extending the proposed method in order

Chapter 3. Achieving Accuracy in Binary Code Mutation 83

to support the development of SFI tools at binary level, since such tools need to be

re-engineered or developed from scratch when fault injection is performed in a new

hardware architecture or in a system adopting a different compiler. In this context,

faults injected at the source code level can be potentially exploited to understand how

software faults are translated in binary code and how fault operators can be imple-

mented.

Chapter 4

Achieving Representativeness in
Interface Error Injection

4.1 Introduction

The integration of OTS components plays a key role in the development of software sys-

tems. Unfortunately, component-based software development imposes significant risks for

dependability [37,114,115]: When a component is reused in a new context, the system may

use parts of the component that were previously seldom used and only lightly tested, or may

interact with the component in unforeseen ways, thus exposing residual software faults in

the component that had not been discovered before.

Despite the extensive development of various approaches, SFI remains a complex pro-

cess, and technical limitations affect the feasibility and the quality of SFI experiments. As

discussed in the previous chapter, the mutation of components’ code requires the ability to

mutate the binary code of the OTS component. This was has proven very difficult: In some

cases it is impossible to correctly recognize and mutate high-level programming constructs

84

Chapter 4. Achieving Representativeness in Interface Error Injection 85

in binary code [29]. Another issue with CM is efficiency, in terms of number of experiments

that actually exhibit a component error, since injected faults may be difficult to activate

and not produce any perceived error during the experiments [25]. Interface error injection

(IEI) is an alternative SFI approach that overcomes these limitations of CM. The represen-

tativeness of interface errors is less of an issue for traditional testing, where invalid values

are useful at exposing inputs that lead to software failures. Nevertheless, the use of IEI for

the representative emulation of component faults (as required by dependability assessment

strategies [61,77,114]) is questionable, as there is a lack of evidence that IEI can realistically

emulate software faults.

This chapter aims at analysing how software faults in components’ code result in errors

at components’ interfaces, in order to provide some constructive evidence towards more

representative IEI techniques.

The chapter is structured as follows. After a discussion of related work on the relation

between software component faults and interface errors in Section 4.2, Section 4.3 introduces

our system model and identifies possible locations for inter-component error propagation.

4.3.1 shows how this information can be exploited to design an approach for the analysis

of inter-component error propagation. In Section 4.3.2, it is discussed the general intra-

component FI process, the details of the experimental setup, and the obtained results.

Then, it is discussed the implications of our findings for the construction of representative

Chapter 4. Achieving Representativeness in Interface Error Injection 86

interface error models in ??.

4.2 Background and Related Work

The representativeness of faults is a key property for the quantitative assessment of de-

pendability properties through fault injection. In [83], Ng and Chen designed a write-back

file cache with the requirement to be as reliable as a write-through file cache. To validate

this requirement, software faults are injected in the OS to estimate the probability of data

loss. Using fault injection experiments, the authors identified weak points of their file cache

and iteratively improved its design until its reliability was comparable to a write-through

cache. In [23], fault injection was adopted to evaluate whether the PostgreSQL DBMS ex-

hibits fail-stop behavior in the presence of software faults, and to measure its fault detection

latency. The study found that the transaction mechanism is effective at preventing fail-

stop violations, reducing them from 7% to 2%. Kao et al. [63] performed a Markov reward

analysis, based on fault injection experiments, to quantify the expected impact of faults on

performance and availability. Tang and Hetch [108] proposed an approach for accelerating

the probabilistic evaluation of high-reliability systems (e.g., with a failure rate in the order

of 10−6) that adopts fault injection to force the occurrence of rare events. In [113], Voas

et al. inject errors within a program to identify where to place assertions and to avoid

error propagation. The accuracy of these measures and the confidence on fault tolerance

mechanisms is based on the assumption that the injected faults are representative of real

Chapter 4. Achieving Representativeness in Interface Error Injection 87

software faults. In [111], Vieira and Madeira proposed a dependability benchmark to eval-

uate different DBMS configurations with respect to operator and software faults in order

to aid system administrators; in this case, a representative set of faults is required to make

systems comparable and to identify the best configuration.

The representativeness of error injection techniques with respect to software faults was

investigated in many studies. In order to accelerate the consequences of software fault

injection experiments through error injection, Christmansson and Chillarege [25] proposed

a methodology to derive a set of representative errors that match the effects of residual

software faults of a system, by analyzing failure data at the users’ site. They proposed to

inject errors through bit-flipping, which corrupts program data at run-time by changing the

contents of individual bits or bytes on heap, global, and stack areas, and mechanisms that

were originally developed for emulating the effects of hardware faults [15, 60]. The error

types were derived as the immediate effect of fault activations on internal program data and

classified according to the type of data corrupted by the fault (e.g., corruption of address

vs. data words). Christmansson et al. [26] observed the benefits of such error injections over

fault injections for evaluating the fault-tolerance of an embedded real-time system in terms

of experiment setup and execution time. Their experimental analysis also showed that the

lack of error representativeness has a noticeable impact on experimental results.

It must be noted that the approach of [25] can emulate the effects of software faults only

Chapter 4. Achieving Representativeness in Interface Error Injection 88

to a limited extent, as Madeira et al. [71] showed that bit-flipping is not suitable for mimick-

ing faults that involve several statements and complex data structures. Instead, Daran and

Thévenod-Fosse [30] showed that code mutations are effective at emulating software faults,

by observing an overlap of the error propagation of 12 known real faults and 24 mutations

in a small safety-critical program. Nevertheless, their analysis focused on internal errors

rather than interface errors.

To analyse how faulty components can affect other components, the focus is on error

manifestations at component interfaces, rather than immediate effects on internal data of

the targeted component as in [25,30]. Moraes et al. [76] and Jarboui et al. [57] investigated

the representativeness of error injections at component interfaces, by comparing the failure

distributions obtained from IEI and from CM, respectively. From a series of comparative

experiments between fault injection based on representative code changes [36] and data-type-

based interface errors commonly adopted in robustness testing (encompassing parameter

corruptions through bit-flipping, boundary values such as −231, and invalid values such as

NULL pointers [66, 117]), they concluded that IEI and CM produce failures.

A limitation of previous analyses on error propagation [30, 57, 76] was that they were

manually performed on a very small number of faults and on single programs, due to the

lack of an automated tool for analyzing interface error propagation. Our study thus proposes

an automated approach able to analyze arbitrary memory corruptions of component interface

Chapter 4. Achieving Representativeness in Interface Error Injection 89

data, focusing on data exchanged via inter-component interfaces. Unlike previous tools for

error propagation analysis by Kao et al. [63] and by Chandra and Chen [23], our method

is able to precisely distinguish between the corruption of internal component data and of

interface data.

The experimental analysis aims at identifying how software faults in a software com-

ponent turn into interface errors that affect other components and the system as a whole.

Figure 4.1 depicts the relationship between faults and errors: When a component service of

the target component is requested through the component interface (e.g., through an API

function call) by a user component, the target processes input data from the user, and

provides results, by manipulating interface parameters provided by and returned to the user

(e.g., data structures exchanged through input/output parameters and through the return

value of a function invocation). During the execution of a component service, the activation

of residual software faults in the component results in an internal error, e.g., the corruption

of internal data or a change of the control flow. When the component service terminates,

the interface parameters exchanged between the target and the user components can be

corrupted as an effect of such internal errors, thus producing interface errors. In such cases,

errors propagate from the target component to other components.

Software components are considered in the form of libraries (i.e., collections of functions

Chapter 4. Achieving Representativeness in Interface Error Injection 90

Target
component

User
component

Component
interface

Component
fault

Internal
error

Interface
error

Interface
parameters

Figure 4.1: Relationship between component faults and interface errors.

and classes) linked to a C/C++ main program at compile- or at run-time, as these lan-

guages are predominant in safety-critical control systems and systems software. However,

the general approach applies for any type of software composition where components ex-

change data through shared data structures. Figure 4.2 to Figure 4.5 show the resulting

error propagation paths for data errors in the case of library functions invoked from a (main)

program.

The first scenario (Figure 4.2) consists in the corruption of a data structure that is

dynamically allocated on the heap by the library , where the corrupted data structure

survives the component invocation and is returned to the main program through a pointer

return value (either on the stack or in a register, depending on calling conventions), which

represents an erroneous interface parameter.

Figure 4.3 depicts a similar case, in which a data structure is allocated by the main

program , passed to the library through a pointer interface parameter, and corrupted during

the library invocation

Chapter 4. Achieving Representativeness in Interface Error Injection 91

HEAP

STACK

MAIN
CODE

LIBRARY
CODE

struct test { !
 int val; !
 ... !
}; !
!
struct test * library_function() { !
 ... !
!
 struct test * p = new struct test; !
!
 p->val = 123; !
!
 ... !
!
 return p; !
} !
!
!
int main() { !
 ... !
!
 p = library_function(); !
!
 ... !
} !

1

2

1 2

Library data and code

Program data and code

Fault

111 !

struct
test !

Figure 4.2: Propagation through a library-allocated heap area.

Even if interface parameters are not directly corrupted, error propagation can still indi-

rectly affect the main program by corrupting data that is pointed to by an interface parame-

ter, such as in the case of complex data structures like trees and linked lists. This is the case

in Figure 4.4, where a user-allocated data structure is linked to a library-allocated string

that can get corrupted. A corruption of the linked string can be considered an interface

error, as this area is reachable by the main program. This applies in general to any memory

area reachable from an interface parameter through an arbitrary number of pointers.

Chapter 4. Achieving Representativeness in Interface Error Injection 92

1
2 HEAP

STACK

MAIN
CODE

struct test { !
 int val; !
 ... !
}; !
!
void library_function!
 (struct test * p) { !
 ... !
!
 p->val = 123; !
!
 ... !
} !
!
int main() { !
 ... !
!
 struct test * p = new struct test; !
!
 library_function(p); !
!
 ...!
} !

1

2

LIBRARY
CODE

Library data and code

Program data and code

Fault

111 !
struct
test !

Figure 4.3: Propagation through a user-allocated heap area.

4.3 Propagation of Errors at Component Interfaces

Finally, error propagation is not limited to heap areas, as in the case of Figure 4.5, in which

an array is allocated as a local variable by the main program , a pointer to the array is passed

to the library through an interface parameter, and the array’s contents gets corrupted by

the library It is important to note that the analysis do not involves internal errors that are

not visible to the main program (i.e., memory areas not reachable outside the component).

This is the case, for instance, of local variables allocated by the library, and of heap memory

areas not reachable (neither directly through interface parameters, nor indirectly) by the

Chapter 4. Achieving Representativeness in Interface Error Injection 93

struct
test !

1

HEAP

STACK

MAIN
CODE

char [] !

3

struct test { !
 char * string; !
 ... !
}; !
!
void library_function!
 (struct test * p) { !
 ... !
!
 p->string = new char[20]; !
!
 strcpy(p->string, “hello”); !
!
 ... !
} !
!
int main() { !
 ... !
!
 struct test * p = new struct test; !
!
 library_function(p); !
!
 ...!
} !

1

2

3

2

LIBRARY
CODE

Library data and code

Program data and code

Fault

“aaa” !

Figure 4.4: Propagation through a library-allocated heap area, reached through a user-
allocated heap area.

main program.

4.3.1 Propagation analysis approach

The proposed method enables the automated analysis of errors occurring at the interfaces of

C/C++ software components, according to the workflow of Figure 4.6. First, the library is

linked to a main program (which represents the workload of the experiment) and executed,

collecting information about (i) memory stores made by the library, (ii) dynamic memory

allocations of both library and main program, and (iii) library invocations performed by the

program during the execution. The raw execution trace is pre-processed, in order to identify

Chapter 4. Achieving Representativeness in Interface Error Injection 94

int [] !
1

HEAP

STACK

MAIN
CODE

2

void library_function!
 (int vector[], int size) { !
!
 ... !
!
 vector[3] = 123; !
!
 ... !
} !
!
!
int main() { !
 ... !
!
 int vector [10]; !
!
 library_function(vector, 10); !
!
 ...!
} !

1

2
LIBRARY

CODE

Library data and code

Program data and code

Fault

111 !

Figure 4.5: Propagation through a user-allocated local variable.

library memory stores that affect memory areas actually visible to the main program (such

as the cases considered in Figure 4.2 to Figure 4.5). The same steps are performed a second

time, with a software fault deliberately injected into the library. Due to the injected fault,

the library can generate different memory stores to interface parameter data, which leads

to interface errors. To identify such interface errors, two execution traces are compared and

differences are pointed out in terms of memory stores that write incorrect data (i.e., values

differing from the fault-free execution), memory stores omitted by the faulty library, and

superfluous memory stores that are only performed in the faulty execution.

To trace memory accesses performed by the target library, we perform a dynamic binary

Chapter 4. Achieving Representativeness in Interface Error Injection 95

Tracing environment

Library

	 	

Raw execution trace

Trace pre-
processing

Trace pre-
processing

List of missing
or corrupted

memory writes

Raw execution trace

Side-by-side
comparison

Tracing environment

Faulty
library

	 	

Fault Injection

Figure 4.6: Overview of error propagation analysis.

instrumentation (DBI) of the executable program [82]. In general, DBI techniques instru-

ment a program during its execution by adding analysis code that collects data about the

state of the execution. Uses of DBI range from simple analyses, such as profiling of function

calls and code coverage, to more complex analyses, such as undefinedness of program vari-

ables. In particular, we adopt the disassemble-and-resynthesise DBI approach [82], which

translates the original program (native code) into an intermediate representation (IR), in-

struments the IR, and translates the IR back to native code, which is then executed on

the native system. The IR code consists of architecture-independent, RISC-like instructions

that perform individual operations such as memory stores (in contrast to a native CISC-like

code instruction, such as x86 instructions, that can have several side effects). DBI takes ad-

vantage of conventional compiler optimizations, such as code caching, in order to accelerate

the process of instrumentation. Analysis code is mixed with the original IR code to obtain

an instrumented IR code: for instance, to track memory modifications, the DBI can add one

Chapter 4. Achieving Representativeness in Interface Error Injection 96

or more IR instructions after each IR store instruction, to record the accessed address and

the value written to that address. This approach allows to analyze memory accesses made

by a program at a fine grain, which is the objective of the analysis of this study.

We developed a DBI analysis tool for tracing library code on top of the Valgrind program

analysis framework [82]. Our tool inserts the following analysis code at run-time:

• After each instruction, we insert code to check the instruction address to detect

whether the control flow moved from the main program to the code of the target

library (i.e., the program enters in library context). In a similar way, we check whether

the control flow returns from the library to the main program. We record the name of

the invoked library function (which is obtained from the symbol table included in the

library), and the return value of the library invocation.

• When library context is entered, we record the current value of the stack register, which

marks the end of the stack frame of the main program (containing local variables of

the main program) and the beginning of the stack frame of the library (containing

local variables of the library). While the execution is in library context, we record

changes to the stack register, in order to trace the growth of the library stack frame

and, ultimately, to identify writes to local variables of the main program (which are

stored on the stack) and to discard writes to local variables allocated by the library.

Chapter 4. Achieving Representativeness in Interface Error Injection 97

• While in library context, after each IR store instruction, we insert code for recording

the address of the instruction that writes to memory, the address and the size of the

area being written, and the new contents of the memory area. The DBI tool records

memory accesses to heap and global data (e.g., Figure ??), and to data in the stack

frame of the main program (e.g., Figure 4.5).

Moreover, the tool wraps and intercepts the invocation of the following functions of the

C library:

• Invocations of mmap(), which is invoked at run-time by the loader to link a shared

library to the address space of the process: We record the addresses of memory areas

in which library code and data are mapped.

• Invocations of memory allocation functions (e.g., new, malloc()), both in library con-

text and in the main program: We record the address and the size of each allocated

and freed memory area, and the code location that allocated that memory area. This

information is used later in the analysis for identifying memory areas reachable by the

main program.

As a result, the execution trace obtained from the DBI tool provides (i) all invocations of

and returns from library functions (lib_invocation and lib_return events), and their

return value, (ii) all memory writes made by the library outside its local variables (store

Chapter 4. Achieving Representativeness in Interface Error Injection 98

events), and (iii) all memory allocations and deallocations (allocation and free events).

The trace is then processed (Figure 4.6) to identify memory stores that write data ac-

cessible by the main program, that is, interface parameter data. These data are identified by

building a graph where nodes represent memory areas (i.e., a range of contiguous memory

addresses, such as an array of bytes allocated on the heap), and edges represent pointer-

pointee relationship between memory areas (i.e., a memory area contains a pointer variable,

pointing to another memory area). A memory area is reachable by a program using the

library if there is a path in the graph between that memory area and any variable of the

user program, i.e., a variable in the user heap (represented by the UH node), in the user

stack (US node) or an output value from the library function call (O node). Figure 4.7

shows an example.

UH

US

O

struct test { char * s; }; !
!
int main() { !
!

 int v [10]; !
 struct test * p = new struct test; !
!
 char * c = library_function(p, v); !
} !
!
char * library_function!
 (struct test * p, int v[]) { !
!

 char * tmp = new char[3]; !
 delete [] tmp; !
!
 p->s = new char[20]; !
!
 return new char[5]; !
} !

struct
test

char
[20]

int
[10]

char
[5]

user-
allocated

areas

library-
allocated

areas

Figure 4.7: Example of reachability graph.

Chapter 4. Achieving Representativeness in Interface Error Injection 99

4.8 provides the detailed algorithm for building and analyzing the graph. The trace is

analyzed in three passes. Each pass processes events of the trace in sequential order, by

invoking for each event a function according to the type of event (e.g., when a store event

is encountered while scanning the trace, it is processed by invoking handle_store).

Pass 1. This pass (Figure 4.8a) identifies heap memory areas that are allocated and

de-allocated within the same library invocation (i.e., “temporary” memory areas used during

an individual library invocation, such as “tmp” in Figure 4.7), and removes them from the

analysis (Fig. 4.8a, line ??), since these areas cannot be accessed by the user program (they

do not “survive” a library invocation). The remaining heap areas can still potentially be

accessed by the main program. The address ranges [start, end) of remaining heap areas are

arranged in an interval tree, the Allocs set (Fig.4.8a, line ??), which is a data structure

that allows to search for ranges containing a given value: We use this feature in subsequent

passes to find, for a given address in the trace, the heap area to which that address belongs.

Address ranges of global data structures of the library (obtained from the library symbol

table) are also inserted in the interval tree at the beginning of the pass (Fig. 4.8a, line ??).

Pass 2. This pass (Figure 4.8b) constructs a directed graph (E, V) representing pointer-

pointee relationships between li- brary-allocated memory areas, and between these areas and

memory areas of the user program. Node A of the graph (representing a memory area A) is

connected to node B if the area A contains a pointer with an address to the memory area B

Chapter 4. Achieving Representativeness in Interface Error Injection 100

(a) Pass 1: Collection of memory allocations.

1: E ← get_library_allocated_areas(Allocs) ∪ {UH, US, O}
2: V ← ∅

3: function handle_store(store)
4: pointed_area← IntervalSearch(Allocs, store.value)

5: if pointed_area 6= ∅∧ (is_lib_heap_area(pointed_area)∨ is_lib_global_area(pointed_area)) then

6: accessed_area← IntervalSearch(Allocs, store.address)
7: if accessed_area 6= ∅ then
8: if is_user_heap_area(accessed_area) then
9: V ← V ∪ (pointed_area, UH)
10: else
11: V ← V ∪ (pointed_area, accessed_area)
12: end if
13: else if is_user_stack_data(store.address) then
14: V ← V ∪ (pointed_area, US)
15: end if
16: end if
17: end function

18: function handle_lib_return(returned_value)
19: pointed_area← IntervalSearch(Allocs, returned_value)
20: if pointed_area 6= ∅ then
21: V ← V ∪ (pointed_area, O)
22: end if
23: end function

(b) Pass 2: Generation of the reachability graph.

1: Trace← ∅

2: function handle_store(store)
3: area← IntervalSearch(Allocs, store.address)
4: address← store.address
5: if is_lib_heap_area(area) ∨ is_lib_global_area(area) then
6: if is_reachable_by_user(V, E, address) then
7: Trace← Trace ∪ {store}
8: end if
9: else if is_user_heap_area(area) ∨ is_user_stack_data(address) then
10: Trace← Trace ∪ {store}
11: end if
12: end function

(c) Pass 3: Event filtering.

Figure 4.8: Trace pre-processing.

(i.e., B is “reachable” by A). The graph includes a node for each library-allocated memory

area. Moreover, we introduce in the graph the UH, US, and O nodes (Fig. 4.8b, line 1): if

Chapter 4. Achieving Representativeness in Interface Error Injection 101

a node A is connected to any of these nodes, then the memory area A is directly reachable

through user-allocated heap memory, user stack memory, or an output value of a function

call, respectively. To identify pointer-pointee relationships, we check the value written by

store operations (store.value) and see whether that value represents an address within one

of the memory areas in Allocs: if this is the case, then the written value represents a pointer,

and the two areas (i.e., the one containing the pointer, and the one with the pointed address)

are connected in the graph (Fig. 4.8b, line 11). If a library-allocated heap/global area is

pointed to by user heap areas, the user stack, or values returned by library invocations, that

library-allocated area is connected to UH, US, or O, respectively (Fig. 4.8b, lines 9, 14,

21). This pass uses an interval tree search in Allocs (Fig. 4.8b, line 4) to identify pointers

and the areas they point to.

Pass 3. It identifies memory stores to areas that are reachable by the main program

(Figure 4.8c). If the address of the store (store.address) belongs to a library-allocated area,

the algorithm inspects the graph using the is_reachable_by_user function (Fig. 4.8c,

line 6) to find whether the area is reachable outside the library, and only adds the store

to the final trace if there exists a path in the graph between the memory area and one of

the US, UH, or O nodes (i.e., the area is reachable by the user). Stores on user-allocated

memory are also included in the trace (Fig. 4.8c, line 10).

After the execution of an experiment and of pre-processing, we obtain a trace consisting

Chapter 4. Achieving Representativeness in Interface Error Injection 102

Instruction Address Size Value Instruction Address Size Value !
!
buf.c:613, HEAP-buf.c:158+20, 8, 0000000000000004 buf.c:613, HEAP-buf.c:158+20, 8, 0000000000000004 !
buf.c:614, HEAP-buf.c:158+c, 4, 00002002 | buf.c:614, HEAP-buf.c:158+c, 4, 00004004 !
buf.c:614, HEAP-buf.c:158+8, 4, 00000004 buf.c:614, HEAP-buf.c:158+8, 4, 00000004 !
buf.c:616, HEAP-buf.c:171+4, 1, 00 > ! missing store !

Fault-free trace Faulty trace

Figure 4.9: Example of comparison between faulty and fault-free traces.

of a sequence of tuples, each representing a memory store performed by the library on user-

reachable memory. A tuple is defined as: <instruction address, memory address, store size,

stored value>. A “faulty” execution trace is then compared with a “fault-free” execution

trace. Given that execution traces are always identical when the target software is executed

without faults (effects of non-determinism must be factored out, as discussed below), any

differences between the faulty and the fault-free traces are actually due to injected faults.

Traces are compared by searching for the longest common subsequences, using the algorithm

described in [55]: it aligns two sequences such that two tuples at the same position in the

aligned sequences will have the same values, by comparing, respectively, the instruction, the

address, the size and the value of memory stores. In the example of Figure 4.9, the first and

the third stores of both sequences are aligned; the stores at the second position are performed

by the same instruction on the same memory area (a heap area allocated at buf.c:158), but

a wrong value is written in the faulty execution; the fourth store is only performed in the

fault-free execution, while it is omitted in the faulty one. In this example, 4 bytes are

corrupted by writing a wrong value at the second position, and another byte is corrupted

Chapter 4. Achieving Representativeness in Interface Error Injection 103

since its initialization is omitted at the fourth position. We also detect corruptions due to

spurious stores not performed in the fault-free execution. In a similar way, we compare

return values of library invocations.

It is important to note that, when comparing faulty and fault-free traces, we focus

on memory stores and return values produced by the first library function invocation that

exhibits differences from fault-free executions. We do so since differences exhibited by sub-

sequent invocations of library functions may not be due to the injected fault, but due an

incorrect behavior by the main program, caused by the effects of the first “faulty” library

invocation. Focusing on the first faulty library invocation avoids confusion between effects

and provides a more precise evaluation of interface errors.

Another important aspect that we needed to take into account in the design of our

DBI technique is the degree of non-determinism in execution traces. The comparison of

traces in faulty and fault-free conditions (as depicted in Figure 4.6) requires that differences

between traces are actually due to faults, and not due to random variations caused by

non-determinism. In our experimental setup, we took into account the following sources of

non-determinism:

Memory management. A dynamically-allocated memory area can be mapped at

different addresses in different executions. To enable the comparison of store operations

performed on the same heap area, we rewrite memory addresses in the trace by replacing

Chapter 4. Achieving Representativeness in Interface Error Injection 104

absolute addresses of heap memory areas with relative addresses within that area. Relative

addresses are composed by a pair <area id, offset> (e.g., Figure 4.9); the offset represents

the distance between the beginning of the heap area and the address being rewritten, and

the area id is a number that uniquely identifies the allocation, which is computed from the

code location where the area was allocated, the call stack at the time of allocation, and an

incrementing integer. This allows to identify two identical stores (i.e., stores performed by

the same instruction, on same heap area, and with the same value) even if the heap area is

mapped at different addresses. In a similar way, the trace is rewritten to replace addresses

belonging to global areas with relative addresses.

Thread scheduling. The program execution flow and, therefore, the sequence of

stores performed during the execution, can vary among executions due to thread schedul-

ing. Recording and replay techniques can be adopted to mitigate this source of non-

determinism [87, 107]: the reference execution (i.e., the execution without faults) can be

recorded, and then replayed while executing the faulty version of the target software. Since

the current implementation of our DBI tool does not support deterministic recording and

replay, in the experiments of this work we focus on single-threaded workloads, and plan to

extend the analysis to multi-threaded workloads in future. Previous studies on recording

and replay techniques for DBI [87, 107] (that are unfortunately still not implemented in

the Valgrind framework at the time of writing) makes us confident that the approach is

Chapter 4. Achieving Representativeness in Interface Error Injection 105

applicable to multi-threaded applications.

I/O operations. Similarly to thread scheduling, the timing and the contents of I/O

operations can affect the execution flow and the sequence of stores of a program. Non-

determinism due to I/O timing can be avoided if the effects of thread scheduling are avoided,

either through recording and replay or by focusing on single-threaded applications: In the

case of recording and replay, the deterministic thread scheduling makes the execution toler-

ant to variations in the timing of I/O operations; in the case of single-threaded applications,

the execution is insensitive to I/O timing. Moreover, we avoid non-determinism of I/O

contents by executing our target applications in a controlled experimental environment, in

which the target is fed with the same I/O data (e.g., the same input files) at each execution.

Random number generators. The use of (pseudo) random numbers in a program

can lead to random values being written to memory and to variations of the execution flow.

We avoid the effects of random numbers by wrapping random number generators, such as

rand_r, and forcing them to return the same sequence of numbers at each execution.

4.3.2 Component fault injection

To inject software faults in library code, we use the approach and the automated tool

(SAFE) described in [28,79]. The tool injects a set of representative fault types (4.1), which

were defined on the basis of field data on real software faults found in deployed software

systems, both commercial and open-source [25,36]. The SAFE tool injects these fault types

Chapter 4. Achieving Representativeness in Interface Error Injection 106

by mutating the source code instead of the binary code, which assures a high degree of

accuracy of fault injection experiments [29]. The tool automatically identifies code locations

in which faults can be injected, and code changes for realistically emulating the fault types

of 4.1. Each injected fault produces a distinct faulty version of the target library code

(Figure 4.10), which replaces the original code.

Table 4.1: Fault types adopted in this study [36].
Type ODC Description

MFC ALG Missing function call

MIA CHK Missing IF construct around statements

MIEB ALG Missing IF construct plus statements plus
ELSE before statements

MIFS ALG Missing IF construct plus statements

MLC CHK Missing AND / OR clause in expression
used as branch condition

MLPA ALG Missing small and localized part of algo-
rithm

MVAE ASG Missing variable assignment using an ex-
pression

MVAV ASG Missing variable assignment using a value

MVIV ASG Missing variable initialization using a
value

WAEP INT Wrong arithmetic expression used in pa-
rameter of function call

WPFV INT Wrong variable used in parameter of func-
tion call

WVAV ASG Wrong value assigned to variable

The representativeness of injected faults is an important requirement for obtaining a

realistic profile of interface errors generated by software faults. Compared to the mutation

operators proposed in the literature for the C language, the considered fault types are more

selective and only encompass faults most frequently found in the field (12 fault types against

Chapter 4. Achieving Representativeness in Interface Error Injection 107

if(a && b) !
{ !
 c=1; !
} !

C/C++
frontend

... !

Faulty C/C++
Source Files

Fault
Injector

if(a && b) !
{ !
 c=1; !
} !

if(a && b) !
{ !
 c=1; !
} !

if(a && b) !
{ !
 c=2; !
} !

Fault types
definition

Target C/C++
Source Files

+	
÷	 2	

6	 3	

Abstract
Syntax Tree

Figure 4.10: Software Fault Injection approach [28,79].

71 mutation operators proposed in mutation testing studies [58]). This reflects the fact that

mutation operators inject many kinds of faults that can occur before and during coding

and are used to assess the thoroughness of test cases, while the fault types of 4.1 represent

faults that tend to escape the whole development process (including testing), and are not

designed for improving test suites but assessing fault tolerance properties. These fault types

also provide several detailed rules (“constraints”), not shown for brevity, describing the code

context in which fault types should be injected to be representative of field faults [36]. For

instance, the removal of an if construct is injected in those if constructs that enclose at

most 5 statements, since it is unlikely that an if construct is lacking for larger groups

of statements. Moreover, the proportions of injected faults follow the distribution of fault

types in the field [36]. Fault types are grouped in 4 classes, according to the Orthogonal

Defect Classification (ODC) [24]: Assignment (ASG), Algorithm (ALG), Checking (CHK),

and Interface (INT).

Chapter 4. Achieving Representativeness in Interface Error Injection 108

4.3.3 Results

In our fault injection experiments, faults led to the following outcomes:

• Crash: the experiment is terminated by the OS due to an exception (e.g., due to an

invalid memory access).

• Hang: the experiment is stalled, i.e., it does not terminate within a given amount of

time (much larger than the duration of a fault-free execution).

• Wrong: the experiment produces an incorrect output, i.e., different from the output

in fault-free conditions.

• Pass, corrupted: the experiment produces a correct output, but interface errors are

observed.

• Pass, no corruption: the experiment produces a correct output, and the fault did

not cause interface errors.

4.2 provides the distributions of failure types for each target library. In many cases, the

output of experiments was correct even in the presence of an injected fault. By analyzing

interface parameter data exchanged at component interfaces, we found that, in the 61.8% of

experiments, there were neither incorrect outputs nor corruptions at component interfaces:

in these experiments, the fault was not activated (even if faulty code was covered by the

Chapter 4. Achieving Representativeness in Interface Error Injection 109

Table 4.2: Outcomes of experiments.

Target
Outcome

Crash Hang Wrong Pass, corrupted Pass, no corruption

Libxml2 70 (4.8%) 20 (1.4%) 233 (15.8%) 147 (10.0%) 1001 (68.0%)

Libbzip2 6 (1.3%) 0 (0.0%) 39 (8.4%) 83 (17.9%) 335 (72.4%)

SQLite 122 (11.9%) 16 (1.6%) 182 (17.8%) 213 (20.8%) 490 (47.9%)

workload), or there was no error propagation to component interfaces. This result demon-

strates that efficiency can indeed be an issue for CM experiments as many injections do not

produce effects on experiments [25]. In total, we obtained 1131 failures from fault injection

experiments (38.2% of the total), on which we performed more detailed analyses on interface

errors. This set of failures is much larger than previous studies [57, 76].

First, it is determined the extent of corruptions of interface parameters, in terms of

number of bytes affected by faults. For the experiments that resulted in interface data

corruptions, Figure 4.11 provides the empirical cumulative distribution of the number of

corrupted bytes, for each target library. The number of corrupted bytes ranges from single

(100) bytes to thousands of bytes for all three libraries and this number depends on the types

of the data structures and library functions affected by the fault. An important result, which

holds for all three targets, is that 50%-60% of faults affect much more than 8 bytes, which

is the size of a memory word in our target system (i.e., the maximum size of addresses or

data that CPU instructions operate on). Less than 40% of faults are limited to a memory

word, while the median of the number of corrupted bytes ranges between 50 and 110 bytes.

Chapter 4. Achieving Representativeness in Interface Error Injection 110

This is an important finding for the design of representative interface error models, since

it indicates that the traditional ones based on the corruption of individual bits or bytes on

heap, global, and stack areas [15,60], are not suitable for emulating interface errors produced

by software faults. Figure 4.12 provides the distribution of the number of corrupted bytes,

split by ODC fault types (see 4.1). The figure shows that only the 20-30% of Algorithm,

Checking, and Interface faults affect at most 10 bytes. Only in the case of Assignment faults

(e.g., a missing variable initialization), about 50% of faults affect at most 10 bytes, as in

these cases the incorrect assignment affects individual fields of data structures returned to

the main program. Nevertheless, a significant share of Assignment faults still corrupt large

memory areas.

The analysis of return values pointed out that several types of values can be returned

by library invocations affected by software faults. It is consider the return value of a faulty

invocation as incorrect when it differs from the return value of the same invocation in

the fault-free trace. 4.3 shows the distribution of incorrect return values, by classifying

them into −1, 0 non-pointer data, NULL pointers, and wrong pointers/values, i.e., return

values different from fault-free executions that do not fall into any of the other classes.

Moreover, we further distinguish between the case in which both wrong return values and

memory corruptions occur after the same invocation, and the case in which a wrong value is

returned without the corruption of memory areas. The distributions of return values depend

Chapter 4. Achieving Representativeness in Interface Error Injection 111

100 101 102 103 104 105
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of bytes

C
u
m
u
l
a
t
i
v
e

d
i
s
t
r
i
b
u
t
i
o
n

Libxml2
Libbzip2
SQLite

Figure 4.11: Cumulative distribution (per library) of the number of corrupted bytes of
interface data.

on the data type returned by library functions, which vary across different targets. Most

importantly, we found that in most cases (75.2%) wrong return values are accompanied by

memory corruptions. For instance, in the case of a library function that reads data from the

disk and that behaves erroneously, both data returned through an input/output parameter

(e.g., containing disk data) and the return value (e.g., representing the number of bytes read)

become incorrect during the same invocation. This finding has significant implications for

the injection of representative interface errors: existing tools that inject faults at library

interfaces, such as FTS and LFI [48, 72], focus on the injection of wrong return values, but

Chapter 4. Achieving Representativeness in Interface Error Injection 112

100 101 102 103 104 105
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of bytes

C
u
m
u
l
a
t
i
v
e

d
i
s
t
r
i
b
u
t
i
o
n

Assignment
Algorithm
Checking
Interface

Figure 4.12: Cumulative distribution (per fault type) of the number of corrupted bytes of
interface data.

neglect the injection of memory corruptions. To achieve representativeness, wrong return

values should be injected along with memory corruptions.

Furthermore, by comparing the number of failures with error codes (4.3) and the total

number of experiments that lead to failures (4.2), we found that wrong return values only

occur for a fraction of cases (40.9% for Libxml2, 75.6% for Libbzip2, 22.5% for SQLite). This

indicates that “plausibility” checks that operate solely on return values are insufficient for

detecting library failures, as several failures occur despite correct return values from library

functions.

Chapter 4. Achieving Representativeness in Interface Error Injection 113

Table 4.3: Distributions of return values in fault injection experiments.

Target −1 NULL ptr 0 Wrong ptr Wrong value

Libxml2 5 (3.8%) 0 (0%) 4 (3.0%) 0 (0%) 50 (37.9%)

Libbzip2 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

SQLite 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

(a) Return values, without memory corruption.

Target −1 NULL ptr 0 Wrong ptr Wrong value

Libxml2 32 (24.2%) 33 (25.0%) 1 (0.8%) 5 (3.8%) 2 (1.5%)

Libbzip2 0 (0%) 4 (11.8%) 0 (0%) 28 (82.3%) 2 (5.9%)

SQLite 0 (0%) 2 (2.8%) 0 (0%) 1 (1.4%) 69 (95.8%)

(b) Return value, with memory corruption.

As pointed out in the previous analysis of memory corruptions, the amount and location

of corrupted data varies with the target library, and in particular with the type of interface

parameters and of library functions. To support the tuning of representative IEI experiments

for a specific target library, we investigated a heuristic rule for selecting which memory areas

of interface parameter data to corrupt. In particular, the heuristic should allow to identify

which memory addresses have the highest corruption rate, that is, memory addresses most

likely corrupted by software faults, in order to focus error injections on them.

To identify such a heuristic, we analyzed memory accesses of the target libraries during

fault-free executions, which can be easily obtained through a DBI analysis. We obtained the

corruption rate of each memory address by computing the percentage of our fault injection

experiments that led to the corruption of that memory address. We found that the cor-

ruption rate of a memory address is strongly correlated with the number of accesses on that

Chapter 4. Achieving Representativeness in Interface Error Injection 114

Table 4.4: Correlation between corruption rate and number of accesses.
•textbfTarget Spearman’s ρ p-value

Libxml2 0.953 ∼ 0

Libbzip2 0.572 ∼ 0

SQLite 0.883 ∼ 0

memory address in fault-free executions. Figure 4.13 shows the growth of the corruption

rate with the number of accesses in fault-free conditions for Libxml2. The quantitative anal-

ysis of correlation (4.4), using the Spearman correlation coefficient for ordinal data (which

can be applied even when the association between elements is non-linear) and a statistical

hypothesis test (with the null hypothesis that there is a zero correlation) [97], confirm this

observation:

We found that the corruption rate and the number of accesses have a statistically signif-

icant correlation (the null hypothesis can be rejected at any reasonable type I error level, as

the p-value of the test is lower than the smallest representable float number on our machine).

From this result, we conclude that a heuristic rule for obtaining a realistic error model is to

corrupt those memory addresses that are most often accessed in fault-free executions.

4.4 Summary

In this chapter, it is proposed an approach for analyzing how software faults in library

code manifest as interface errors. We analyzed interface errors in three real-world libraries,

obtaining guidelines for representative error injection experiments. In future work, we aim

Chapter 4. Achieving Representativeness in Interface Error Injection 115

0 0.5 1 1.5 2
x 104

0

0.05

0.1

0.15

Memory address

C
o
r
r
u
p
t
i
o
n

r
a
t
e

0 0.5 1 1.5 2
x 104

0

40

80

120

N
u
m
b
e
r

o
f

a
c
c
e
s
s
e
s

Corruption rate
Number of accesses

Figure 4.13: Byte corruption rate and number of accesses for Libxml2.

at applying these findings in IEI experiments, and investigating whether they can improve

the representativeness of results.

We identified the following threats to validity: (i) the effects of non-determinism, that

can lead to variations of memory stores that are not actually due to faults, and thus could

mislead our the analysis of memory corruptions; (ii) the use of fault injection in components’

code, in place of real software faults, to generate and analyze interface errors; and (iii) the

selection of the target libraries.

As for non-determinism, we carefully designed our approach to factor out its effects

Chapter 4. Achieving Representativeness in Interface Error Injection 116

from execution traces, and validated its ability to avoid non-deterministic interferences by

verifying that execution traces are exactly reproducible when no fault is injected. The

limitation of our analysis is that, in this initial phase of our research, we chose to first focus

on single-threaded executions, before extending our approach to multi-threaded executions

using recording-and-replay techniques as discussed in Section 4.3.1.

The use of real faults for obtaining real interface errors is unfortunately hampered by

the shortage of faults to analyze for specific library versions and configurations, especially in

the case of very mature and highly reliable software such as SQLite. We therefore adopted

fault injection, which allows to perform a high number of experiments and, at the same

time, is able to generate representative errors, as demonstrated by several empirical studies

on the use of code mutation for software engineering experimentation [9,30,31]. We are thus

confident that the validity of our findings is not significantly affected by the use of fault

injection.

Our conclusions are based on experimental results from three libraries, and may not

generalize to all types of libraries. As the chosen libraries are widely used and functionally

diverse, we believe that the obtained results are representative for a larger set of libraries.

Apart from whether a generalization is valid, we demonstrate that libraries with the dis-

cussed error manifestations exist and that existing error models do not match these man-

ifestations. Moreover, we provide an approach that is suitable to analogously assess any

Chapter 4. Achieving Representativeness in Interface Error Injection 117

library of interest.

Chapter 5

Software-Implemented Fault Injection
in the Multicore Era

5.1 Introduction

The trend of integrating OTS components in safety-critical systems involves also hardware

components because they allow us to develop more innovative and performing solutions in a

cost-efficient way. Nevertheless, the adoption of sophisticated OTS hardware devices such as

multicore processors increases system complexity and raises novel dependability challenges:

the number of cores, concurrency issues, shared resources and interconnections among cores

make it hard to develop and validate software deployed on the top of multicore processors.

Compared to single-processors, multicores assure higher performance by integrating more

cores on one die that, running in parallel and sharing many resources (e.g. memory, caches,

registers). The complexity of the architecture increases the probability of hardware errors

because of the great number of transistors on the same chip. For this reason, designers and

developers of modern processors have enhanced hardware implemented mechanisms in order

118

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 119

to make them more reliable against errors. In fact, hardware mechanisms for memory, cache

and registers protection are significantly improved: error detection mechanisms are able to

signal to the upper software layer detected hardware errors. In multicore processors, these

mechanisms are even more complicated because they have to take into account the presence

of more cores. So that, the complexity is shifted to the software that has to correctly interpret

the signaled hardware errors and to implement adequate software recovery mechanisms to

cope with them. This opens new scenarios to fault injection techniques employed to validate

fault tolerant mechanisms.

Traditionally, software-implemented fault injection were successfully adopted for depend-

ability assessment. Most of these techniques emulate the effects of hardware errors through

software using fault model based on bit-flip and stack-at. Although these techniques can be

applied also when system integrates multicore processors, fault injection campaigns could

be very expensive and infeasible due to the great number of added resources. In fact, the

replication of cores means also replicated resources such as per-core and shared registers and

caches. Moreover, the injection of single or multiple bit-flip errors can be masked to the

software by the advanced hardware protection mechanisms that, in many cases are able to

correct it. This makes fault injection techniques based on bit-flipping and stack-at models

not effective. In addition, these fault models do not encompass same resources proper of

multicore (that were not a concern for single-core processors) such as the communication

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 120

links and added cache levels shared among cores: this affect the representativeness of fault

models when fault injection are used for dependability assessment of systems running on

the top of multicore.

This chapter presents a novel error injection framework for supporting the validation

of fault tolerant mechanisms of the existing operating systems running on the top of OTS

multicore processor by exploiting the error reporting mechanisms of modern processors. The

approach was also extended to virtualized systems aiming at evaluating the error handling

mechanisms of existing hypervisor deployed on multicore.

5.2 Multicore in safety-critical systems

Recently, embedded and safety-critical market looks with interest to modern multicore pro-

cessors due to the success already obtained in many systems such as personal computer,

server, tablet and, smarthphone. It is recognized that multicore processors brings many

advantages in terms of performance and power consumption.

Nevertheless, it is important to underline that the integration of OTS multicore proces-

sors in safety-critical systems is not driven by the need of solving problems using simultane-

ously multiple computational units. Indeed, this would require several and difficult changes

in software components: programs should exploit thread level parallelisms introducing more

potential software bugs (e.g. race conditions and deadlocks) and temporal non-determinism

of the execution. Moreover, it is still an open issue how to schedule threads (including when

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 121

and how often they are scheduled and how they are distributed among cores). Although,

in literature there are studies that investigate the use of multicore in safety-critical systems

such as avionic [64], [7], automotive [12], [81] and medical [118], we are still far from using

software that fully leverages concurrency and thread parallelism [41]

Instead, multicore processors in safety-critical systems seems to be a good solution to

reduce hardware units. The integration of multiple functionalities on the same device lead to

a significant reduction of hardware units improving the reliability of the entire system: com-

ponents on the same board means also less number of link connections that are recognized

to be a significant cause of system failure as discussed in [105]. Having more processing units

can accelerate the migration process from traditional federal architecture, where each com-

ponent is independent and executes a single task, to an integrated architecture where tasks

are assigned to different core on the same device. Integrated Modular Avionics (IMA) [99]

in the aerospace domain and AUTOSAR [1], [81] in the automotive domain are examples

of this trend. Traditionally, in modern cars, there are several Electronic Control Units

(ECUs) connected by communication links, each ECU is responsible of executing a single

task . For instance, different ECUs are responsible for functions like gear control, engine

control, and adaptive cruise control. Recently, moving to an integrated architecture, more

ECUs are on the same hardware device. This requires additional functionalities to be im-

plemented in software and, in particular, in the operating systems. For instance, the last

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 122

version of AUTOSAR [1], standard de-facto for automotive, added support for multicore

architecture. The operating system includes some capabilities such as static assignment to

a core, inter-core and intra-core coordination to access shared resources. However, it does

not allow dynamic tasks assignment to a core. AUTOSAR OS protection mechanisms to

support software components isolation and scheduling issues are described in [81].

Hardware consolidation by means of multicore requires mechanisms that assure the iso-

lation between cores, i.e. applications running on different cores do not have to interfere

each other. A valuable solution is provided by the adoption of virtualization in conjunc-

tion with virtualization [33]. By means of the virtualization, multiple operating systems

and applications run on the same physical board in separate partitions, named virtual ma-

chines communicating with the hardware through a software layer, the hypervisor. Besides

hardware consolidation, virtualization also allows us: (i) software consolidation, i.e. dif-

ferent operating systems (e.g. real-time and not real time) and applications run on the

same device [52], [67]; (ii) to develop mixed-criticality systems, i.e. safety and non-safety

applications are isolated and they can run simultaneously on the same platform; (iii) to

execute legacy systems; (iv) to gradually migrates to COTS technologies and to new hard-

ware devices [103]; (v) to implement fault-tolerant mechanisms based on replication and/or

diversity approaches [43]; (vi) to reduce certification costs by isolating previously certified

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 123

software; (vii) to improve system robustness and reliability by protecting and isolating op-

erating environments from each other.

For these reasons, virtualization-based solutions were also investigate by safety-critical

industries such as aerospace [92], [45] and automotive [80]. Moreover, commercial solutions

were proposed by WindRiver, [6] in collaboration with Intel [6], [116] towards a certified

hypervisor.

5.3 Background and Related Work

Once an OTS hardware component is acquired and integrated, testing activities are required

in order to evaluate system behaviour in presence of hardware faults. Several fault injection

techniques were proposed in order to inject hardware faults. Hardware-based fault injec-

tion techniques insert into the system real hardware errors by means of special-purpose and

architecture-dependent equipment or by interfering with the physical unit (e.g., by lower-

ing the device voltage, increasing the temperature, radiations introducing electromagnetic

interferences) [50]. This approach has the advantage of reproducing real hardware faults,

but it is costly and risky to implement. Moreover, it makes it hard the observation of the

effect of the faults in the processor because of the interferences caused by the injectors.

For these reasons, software-implemented fault injection (SWIFI) techniques have gained

popularity. SWIFI consists of reproducing via software the effects of hardware errors. The

injection can be performed at compile time inserting the effects of hardware errors in the

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 124

target code or at run time using time-out, exceptions or code insertion to trigger the fault

injection. Several tools implementing SWIFI technique were proposed in literature above:

• FIAT [15] corrupts the data area of the binary according to three fault models, namely,

zero-a-byte faults, set-a-byte faults, and two-bit compensating faults. The zero- a-byte

and set- a-byte faults zeros or sets eight bits of a 32 bit word, two-bit compensating

faults flip two bits. Experiments did not consider the injection of a single bit because

the hardware was equipped with parity check.

• FERRARI [60] could inject permanent and transient faults as well as control flow

errors, bus errors, memory errors, and processor control line errors into systems based

on SPARC processors from Sun Microsystems. FERRARI uses software traps to inject

faults and has five fault models: XORing a bit, resetting a bit, setting a bit, setting a

byte and resetting a byte.

• FINE [63] emulates hardware and software faults 2 on the kernel of Sun OS 4.1.2. FINE

can inject transient and permanent hardware faults in the CPU, bus and memory (text

and data area) by flipping a bit.

• DEFINE [62] is the evolution of FINE for distributed systems. Basically, DEFINE

injects faults in a single node as FINE does, in addition observe if and how they affect

other nodes in the system.

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 125

• DOCTOR [51] can inject communication faults as well as traditional hardware faults

such as memory and CPU faults into HARTS distributed system. The faults can be

intermittent, permanent and transient. Fault can be injected as a single bit, two-bit

(compensating), whole byte, or burst (of multiple bytes). Communication faults in

DOCTOR can cause messages to be lost, altered, duplicated, or delayed.

• FTAPE [110] performs injection on TANDEM system and sup- ports single/multiple

bit-flip and zero/set faults in CPU registers (e.g., stack pointer, program counter) as

well as in memory. FTAPE also includes I/O faults, that is, SCSI and disk faults.

• Xception [22] takes benefit of the exception available on the microprocessor, i.e., exe-

cute a run time injection. The fault models includes flip stuck-at-zero, stuck at-one,

and bit flip.

• EXFI [17] exploits the Trace Exception Mode available in most low cost micropocessor.

EXFI can inject single bit-flip transient fault into memory data and registers. A

notable feature of this tool is a set of fault collapsing rules which reduces the number

of faults to inject without decreasing the accuracy of the results.

• MAFALDA [93] corrupts pseudo random selected byte in the code segment and data

segment of a Microkernel OS. MAFALDA can flip one or more bits for a temporarily,

i.e., emulates a transient error.

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 126

• Skarin [98] extends the previous version of Goofi [8] to inject multiple bit flip and

bit flip into CPU registers and memory. Goofi-2 sup- ports both pre-injection and

run-time injection. A notable future of Goofi-2 is the optimization of the fault-space

by utilizing assembly-level knowledge of the target system in order to place single bit-

flips in registers and memory locations only immediately before these are read by the

executed instructions.

However, the use of fault injection techniques for the assessment of multicore systems is

still recent. Appropriate fault models encompassing faults that were not a concern in single-

core architectures (e.g., adopting SWIFI technique, the execution of additional software

for the injection could affect the scheduling of the system tasks impacting real-time require-

ments) are required to guarantee effective and low cost fault injection campaigns. Challenges

in tolerating faults in parallel execution on multicore systems are discussed in [78]. In [96],

mSWAT is presented. It is a detection and diagnosis technique for permanent and transient

hardware faults in multicore architectures running multithreaded software. The authors

adopt fault injection by simulation in order to validate the detection mechanisms. How-

ever, assuming that at most one core is faulty, the fault model encompasses only in-core

faults and not faults that can occur in I/O controller, memory sub-system, etc. In both [40]

and [69] a simulation-based fault injection analysis for multicore is presented. In [56] the

use of NFTAPE tool for the evaluation of operating system behavior running on multicore

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 127

processor is proposed. In [94], the authors describe a method for predicting failures based

on the monitoring of the execution units in a Quad-core Intel processor.

5.3.1 Software-implemented Error Injection for Multicore

The proposed approach of error injection leverages the notion of machine check errors.

Machine check errors (MCE) indicate the occurrence of problems affecting hardware units

of the processor. Modern processors usually notify MCEs by means of an error-reporting

architecture (exemplified in Figure 5.1) composed by a set of global and per-core registers.

The idea underlying our proposal is emulating the occurrence of MCEs by writing into the

registers of the error-reporting architecture rather interfering with the device, such as in the

mentioned hardware fault injection approaches. The knowledge about MCEs and error codes

reported by the processor during the execution is inferred from the documentation provided

by the manufacturer of the processor [3]. Modifying the registers of the error-reporting

architecture allows implementing a low-cost and controllable fault injection framework.

Figure 5.1 shows the functional components of the framework implementing the injection

approach. The system under test is composed by the multicore processor and a target

workload. The latter could be an operating system, software for embedded systems, or a

virtualization-based solution, and represents the software whose robustness is assessed under

the occurrence of MCEs. The role of the remaining components depicted in Figure 5.1 is

described in the following along with relevant design challenges:

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 128

Figure 5.1: Proposed Error Injection Framework

• MCE generator is the entity that automates the generation of the faultload, i.e.,

the set of MCEs that will be injected in the target system during the campaign. It

should be noted that the number of combinations representing all the possible error

codes reported by the processor is extremely large. The faultload generation should

be optimized with criteria aiming to narrow down the number of experiments. For

examples, experiments might focus on a given hardware unit or specific border values

assigned to the error-reporting registers of the processor.

• Injector is the component responsible for injecting MCEs into the error-reporting

architecture of the target processor, as shown in Figure 5.1. The injector should not

distort the actual behavior of the system under test. For this reason, if injection is

accomplished via a software module, isolation between the injector and the injection

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 129

target can be achieved by running them on different cores. A better solution is repre-

sented by the use of specialized hardware supports, such as a debugger; however, this

might not always be available to analysts and requires additional costs. Even of more

relevance, injector must address spatial and timing features of the experiment.

• Monitor is responsible for collecting data concerning the fault-injection outcomes.

Data might include notifications reported in the system log, output produced by the

target workload, or state variables. Monitor should cope with data loss caused by

experiments leading to critical system failures, such as reboot or panic. Again, moni-

toring and data collection features should not impact the behavior of the target system.

• Controller is the entity responsible for iterating fault injection experiments and coor-

dinating the described components. For each experiment it activates/deactivates the

injector module, and stores monitoring data. Moreover, controller should ensure that

the workload is actually running at the time injection is performed. To this objec-

tive, controller might leverage operating system support (e.g., Linux OS get/set CPU

affinity mask) to cope with processes scheduling issues.

5.3.2 Case Study

The multicore processor targeted by the study is the Intel Core i7 2670QM [3]. Figure

5.2 shows a simplified block diagram of the architecture. It is a distributed shared memory

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 130

Figure 5.2: Intel Core i7 Architectural Block Diagram

system consisting of 4 physical cores integrated on the same chip. Cores are connected

by a point-to-point and high-speed communication link (Quick Path Interconnect). Each

core appears to software as two logical cores by means of the Hyper Threading Technology

(e.g. Intel’s implementation of Simultaneous Multi-Threading). Moreover, the processor

introduces several new features (e.g., integrated memory controller for each core, a memory

hierarchy with 3 caches levels) that assure high performance and power efficiency.

The processor provides a sophisticated error-reporting architecture called Machine

Check Architecture (MCA). The MCA is composed by a set of registers (Machine Specific

Register - MSR) for reporting errors detected by hardware components, such as memory,

caches, and buses. As shown in the Figure 5.3, the MCA consists of 9 banks of registers

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 131

Figure 5.3: Machine Check Architecture

replicated for each core and associated to specific hardware units. Each bank is composed

by 5 registers for reporting hardware errors: two control registers (MCi_CTL and MCi_CTL2),

a status register (MCi_STATUS), an address register (MCi_ADDR), and a miscellaneous error in-

formation register (MCi_MISC). By means of the bank of registers, the MCA notifies different

category of errors:

• uncorrected errors (UC): errors not corrected by the processor;

• uncorrected recoverable errors (UCR): errors not corrected by the processor and

for which system software can attempt recovery actions. In particular, the recovery

actions can be required (SRAR), optional (SRAO) or not required (UCNA).

• corrected errors (CE): errors corrected by the processor without impacting running

processes.

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 132

Additional information about the type of errors affecting hardware units of the processor

is available in the first 16 bits of the status register (again, MCi_STATUS). Details about the

error codes adopted in the study are reported in the Table 5.1, which has been taken from

the processor documentation. This information supported the definition of realistic fault

model for the target processor. Moreover, 3 global registers are provided by the processor:

MCG_CAP, MCG_STATUS and MCG_CTL registers. In the context of our work, we considered the

MCG_CAP register, which gives information about the capabilities of the MCA available in

the processor (e.g., bit SER_P of such register indicates if the processor supports recovery

actions) and MCG_STATUS register, which reports the status of the processor at the time a

MCE occurs.

Type Format*
Generic Cache hierarchy 0001 0000 0000 11LL
TLB 0001 0000 0001 TTLL
Memory controller 0001 1MMM 11LL CCCC
Cache hierarchy 0001 0001 RRRR TTLL
Bus and interconnections 0001 1PPT RRRR IILL
*TT - Type of transaction
LL - Level in the memory hierarchy
RRRR - Type of action associated with the error
MMM and CCCC - Memory transaction type and Channel
PP and T - Partecipation and Timeout
II - Memory or I/O

Table 5.1: Status Register [15:0]

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 133

(a) Machine Check Error (b) Linux Severity Levels

Figure 5.4: MCE Description File and Severity Levels

A preliminary implementation of the framework described in Section ?? has been de-

veloped under the Linux OS. Implementation has been used to conduct explorative fault-

injection campaigns to validate the proposed approach in a real testbed adopting the Intel

i7 processor.

In the proposed implementation the injector consists of mce-inject [65], which is a well-

known tool in Intel/Linux community. Each MCE is represented by a textual description

providing information about the location (i.e., cpu and bank number) where the MCE will be

injected and values assigned to MCG_STATUS, MCi_STATUS, MCi_ADDR, and MCi_MISC registers

of the MCA architecture. Figure 5.4a provides an example of MCE to be injected in the

bank 8 of the cpu 2. It emulates an uncorrected error affecting data of L2 cache during the

snoop protocol by means of the error code 0x0186 that will be written in the status register.

A bash script has been implemented to automatically generate the faultload, i.e., the set of

MCEs that are injected during a campaign. Given the textual description, mce-inject sets

the values of the registers of the MCA by means of a specific kernel module of the Linux

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 134

OS.

The workload is represented by the Linux OS (kernel version 3.1.10) running on the top

of the Intel i7 processor. Preliminary experiments aim to explore the Linux error-handling

capabilities initiated by the do_machine_check procedure. This is the OS exception handler

that is actually triggered when a real machine check occurs (interrupt 18 in the case of Intel

processors). For each MCE-injection experiment, the monitor component collects the error

severity determined by the kernel as a result of the injected MCE and the recovery action

triggered by the kernel based on the severity level. Values assumed by the severity parameter

under the Linux OS are reported in Figure 5.4b.

5.3.3 Campaign #1

The faultload of the first campaign consists of 4,096 MCEs. It emulates cache, memory

controller, and TLB errors by changing the bits of the status registers according to the

codes reported in Table 5.1. The set of emulated errors contains uncorrected recoverable

errors (UCR), uncorrected recoverable errors with action required (SRAR), optional (SRAO)

or not required (UCNA). Moreover, the same faultload has been injected into two different

scenarios, i.e., (i) with the processor not supporting recovery actions (i.e., the bit SER_P is

clean); (ii) with processor supporting recovery by software (i.e., the bit SER_P is set).

Figure5.5a and Figure5.5b show the MCEs severities and related recovery actions pro-

vided by the Linux OS, when the bit SER_P is clean. All the errors have classified as

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 135

(a) Severity (b) Recovery Actions

Figure 5.5: SER_P=0: Recovery Actions Not Supported by the Processor

(a) Severity (b) Recovery Actions

Figure 5.6: SER_P=1: Recovery Actions Supported by the Processor

uncorrectable; however, this set of experiments did not cause the triggering of any specific

a recovery action.

The same set of 4,096 errors has been emulated with the bit SER_P set. Experiments

made it possible to highlight a rather different behavior of the error handling mechanism

indicated by Figure 5.6a and Figure 5.6b, respectively. Figure 5.6a shows the severity levels.

The 50% of the injected MCEs is classified as PANIC: as a result, the injection of this subset

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 136

of errors actually caused the panic of the machine, such as reported in Figure 5.6b. Errors

causing SOME and AO severities represent total 24% and the 0.8%, respectively. These

errors did not trigger any specific action of the handler. Only 2 error codes affecting the

cache unit, i.e., 0x0134 - data load error and 0x0150 - instruction fetch error were actually

recognized by the handler, i.e., AR severity, and caused the 2 process kills shown in Figure

5.6b.

More important, experiments revealed a possible bug in the code that determines the

error severity (Figure5.6a). Around 25% of experiments caused a spurious severity value,

i.e., a numeric value that is not a severity level according to Figure 5.4b. Spurious values

prevent to correctly determine the severity of errors leading to unexpected behaviors and

were attributed by the handler to the NO PANIC category Figure 5.6b. We also observed

that the kernel does not strongly differentiate among errors affecting different hardware

units. Figure 5.7a and Figure 5.7b report the distribution of the severities observed for

memory controller and TLB errors with the bit SER_P being set. In both cases, the 50%

of the errors causes a system panic regardless of the nature of the injected errors. Again,

total 25% of errors caused a spurious severity.

5.3.4 Campaign #2

Because of the inability of the handler to differentiate among error codes, a further cam-

paign has been performed to explore its recovery behavior. In this campaign, rather than

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 137

(a) Memory Controller (b) TLB

Figure 5.7: Severity and Recovery Actions Grouped by Error Categories

exhaustively trying different error codes, we used different combinations of the diagnostic

information provided by the MCA along with the error notification (such as, the error is

recoverable or not, an action is required to recover from the error, the error corrupted or

not the processor state, etc).

The campaign encompassed 192 MCEs injected when the bit SER_P is set, i.e., recovery

actions are supported. Results reported in Figure 5.8a and 5.8b confirm that the target

handler mainly provides coarse-grained recovery actions, i.e., system panic (82%) and process

kill (3%). Again, the handler was not able to correctly manage around 11% of the errors due

to the presence of spurious severity values, possibly causing an improper recovery action.

5.4 Emulating Hardware Errors in Virtualized Systems

An extension of the method proposed in 5.3.1 was implemented in order to emulate hardware

errors in virtualized systems. The tool emulates the occurrence of hardware errors, i.e MCEs,

by injecting the corresponding error codes in the registers for error reporting implemented in

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 138

(a) Severity (b) Recovery Actions

Figure 5.8: Severity and Recovery Actions for Campaign #2

the hypervisor. The main goal is to evaluate the MCE handler mechanisms of the hypervisor

and its ability of masking hardware errors to the guest operating system. The general schema

is depicted in Figure5.9.

The hypervisor is the software layer that performs system virtualization, i.e. it is able

to logically separate partitions, named virtual machines, from the hardware they run on.

Figure 5.9: Injection Framework for Virtualized Systems

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 139

Among the virtualized components that the hypervisor provides to its virtual machine,

there are also the registers of the MCA. This makes possible the implementation of the error

injection tool in order to evaluate its error handler mechanisms and how it protects virtual

machines when hardware errors occur. Examples of hypervisor are Xen [90] and VMWare

ESX [5]

5.4.1 Case study

A preliminary implementation of the framework has been developed to inject MCEs in

Xen hypervisor installed on a Intel Core i7 processor. The proposed tool is able to inject

hardware errors in the virtual representation of the MCA by accessing to it through a special

high-privilege Xen administrative domain, known as Dom0.

The architecture of the framework for injecting MCEs into the MCA of implemented by

Xen is depicted in Figure 5.10.

The injection tool is an extension of the one described in 5.3.1 and is composed by: (i)

the MCE generator that, based on same specific criteria, generates the faultload, i.e. the list

of hardware errors to be injected; (ii) the injector is the tool responsible for emulating MCEs

in the registers of the MCA implemented by Xen; (iii) the coordinator is the arbiter of fault

injection campaigns and it collects the results by analysing logs produced by both Xen and

the guest operating system; (v) the guest operating system is the workload. To assure the

isolation of the workload from the injection tool in order to avoid possible interferences that

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 140

Figure 5.10: Architecture Framework for Xen

may compromise the experimental results, they are executed on dedicated cores.

Injection tool exploits the HYPERVISOR_mca hypercall for writing specific values in the

MSR registers. The injection is performed by specifying the input parameters listed

in Table5.2

An example of usage is:

./injection_tool -s 0x5 -S 0xbd80000000017a -c 4 -B 8 -d 3 -p 0x300 -M 0x1 -g

It means that:

MCE generator automatically generates the faultload, i.e. the list of MCEs that will

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 141

Option Description
s [MSR value] MSG_STATUS value
S [MSR value] MCi_STATUS value
p [MSR value] MCi_ADDRESS value
M [MSR value] MCi_MISCV value

B [Bank number] Bank number
c [CPU value] CPU target

d [domain] Target domain
g If presents, it disables XEN handling mechanism.

The error is sent to the guess

Table 5.2: MCEs injector input

MCG_STATUS 0x5
MCi_STATUS 0xbd80000000017a. It corresponds to SRAO L3 explicit writeback
MCi_ADDR 0x300 0x300 0x300
MCi_MISC 0x1

Bank 8
Target CPU 4
Target DOM 4
XEN handler disabled

Table 5.3: MCE example

be injected. However, the combinations representing all the possible error codes re-

ported by the processor is extremely large. It means that an exhaustive fault injection

campaigns consists in a great number of experiments.

2nrbitMCG_STATUSx2nrbitMCi_STATUSxnrbanks = 23x264x9 (5.1)

All valid values for MCG_STATUS, MCi_STATUS, and MCi_ADDRESS are re-

ported in tables.

To lower the number experiment, it is possible to create campaigns based in specific

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 142

criteria. For instance, it is possible to generate all the valid combinations for a fixed

type of errors, or for a fixed CPU/bank.

Figure 5.11: MCE Generator

5.4.2 Campaign 1

The faultload of the first campaign consists of 49,502 MCEs. It encompasses cache, memory

controller, and TLB errors by changing the bits of the status registers according to the codes

reported in Table 5.1. The set of emulated errors contains uncorrected recoverable errors

(UCR), uncorrected recoverable errors with action required (SRAR), optional (SRAO) or

not required (UCNA). Moreover, the same faultload has been injected by targeting the CPU

6 and bank 8 where it is created a domU on which a Linux OS is running. Two different

experiments are performed: (i) the errors are injected in the hypervisor context, i.e. the

hypervisor is completely responsible of taking appropriate recovery actions; (ii) the errors

are injected in guest context, i.e. the domain is responsible of sending occurred errors to

the guest.

Figure 5.12a shows that the 95 % of the injected MCEs Xen handler protects the target

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 143

domain and it causes the panic of the target system. Only in the 5% of the errors is tolerated

and it does not affect the correct behavior of the system. Moreover, when the same faultload

is injected in guest context, i.e. the hypervisor sends to the guest the 5% of errors.

5.4.3 Campaign 2

The first campaign showed that also Xen handler is not able to differentiate among error

codes, so a further campaign has been performed to explore its recovery behavior. In this

campaign, rather than exhaustively trying different error codes, we used different combina-

tions of the diagnostic information provided by the MCA The campaign encompassed 1536

MCEs injected when the bit SER_P is set, i.e., recovery actions are supported. Results

reported in Figure 5.13 confirms that the target handler mainly provides coarse-grained re-

covery actions, i.e., system panic (70%) and process kill (10%). Again, the handler of the

guest operating system does not implement any recovery action for the 20% of the errors.

(a) Hypervisor context (b) Guest Context

Figure 5.12: Recovery Actions for Campaign #2

Chapter 5. Software-Implemented Fault Injection in the Multicore Era 144

Figure 5.13: SER_P=1: Recovery Actions Implemented by Linux OS

5.5 Summary

This chapter presented fault injection framework developed for supporting dependability

analysis of multicore systems. The approach leverages the notion of machine check error

and the error-report mechanism implemented by modern processors. So far, fault injection

campaigns have been conducted to test the functionalities of the framework under the Linux

OS running on the top of the Intel i7 processor.

In the future, we will improve the framework by addressing the emulation of simulta-

neous errors affecting different cores, burst of errors, errors propagation among cores. The

framework will be used to validate error handling of different operating systems, to ana-

lyze fault-tolerant mechanisms implemented across cores, to assess the resiliency of a given

system under errors, and to benchmark the dependability behavior of different solutions

adopting multicore.

Chapter 6

Conclusions and Future Work

Fault injection is a widely adopted technique for supporting dependability evaluation of

OTS-based systems in safety-critical domains. This dissertation focused on three fault in-

jection techniques employed in systems that integrates OTS components, i.e. Software Fault

Injection based on binary code mutation, Interface Error Injection (IEI) and SoftWare-

Implemented Fault Injection (SWIFI). In particular, the focus was on the quality of exist-

ing techniques represented by accuracy and representativeness properties. Three different

problems were addressed: (i) the accuracy of SFI based on code mutations; (ii) the repre-

sentativeness of existing error models on which IEI techniques are based on; (iii) the rep-

resentativeness and the effectiveness of existing SWIFI techniques when applied to systems

deployed on multicore processors.

Concerning the accuracy of Software Fault Injection based on code mutation, this the-

sis investigates how code mutations are accurate to emulate software fault at binary level.

Indeed, the injection at binary level implies the recognition of programming constructs by

145

Chapter 6. Conclusions and Future Work 146

looking only at the binary code, which is a difficult and error-prone task. When inject-

ing software faults at-binary level, a major concern is to assure that binary-level changes

are accurately performed to emulate programming errors, i.e. SFI has to correctly emulate

software faults to an acceptable degree of accuracy. Errors or inaccuracies in the injec-

tions could negatively affect the results of fault injection campaigns leading to erroneously

considerations on dependability properties of the system.

Firstly, this thesis describes an experimental evaluation of the accuracy of a binary fault

injection technique based on code mutation, i.e. G-SWFIT. The evaluation is performed by

comparing binary-level faults with source level faults generated by applying fault injection

to complex real-world software system. Results revealed that several inaccuracies are related

to the implementation of fault type constraints and to the identification of code blocks and

control structures. These issues are not due to the G-SWFIT technique, and they can be

avoided if an experimental evaluation of the fault injection tool is performed to improve

the implementation. Based on the experimental results, this thesis proposed a systematic

approach for testing and improving SFI based on binary code mutation. The approach

automates the evaluation of SFI tools at injecting faults in binary code and it is based on

the automatic generation of synthetic programs performed by an ad-hoc program generator

named FaultProg. These synthetic programs represent a test suite for the BCM tool and the

are generated with the sole purpose to evaluate the ability of the BCM tool to inject faults

Chapter 6. Conclusions and Future Work 147

into them. The key idea is to control the generation of synthetic program, in such a way to

expose the BCM tool to several different code patterns that could point out its limitations.

In other words, the set of synthetic programs acts as a test suite for evaluating and improving

binary-level fault injection and, more in general, mutation testing tools. Test-suite that can

help to improve existing SFI tools at binary level, to develop SFI tools at binary level from

the scratch which is the case when a new hardware architecture or different compilers are

adopted.

Regarding Interface Error Injection (IEI), this dissertation investigate the representa-

tiveness of existing error models. IEI is a technique able to mimics the effects (i.e., errors)

produced by faults in a component, by injecting exceptional or invalid values at the com-

ponent’s interface. Despite its popularity, the use of IEI for the representative emulation of

component faults is questionable: there are not evidences that injecting errors at component

interface is representative, i.e. mimic real software faults occurring in a system component

and propagating to interfaces. Investigations on the representativeness of interface errors is

required in order to perform an effective error injection based on representative error models.

This thesis provided an approach for analyzing how software faults in software compo-

nents manifest as interface errors in order to provide some constructive evidence towards

more representative IEI techniques. The experimental analysis aims at investigating errors

propagation among components. To the aim, faults are injected in the software component

Chapter 6. Conclusions and Future Work 148

under analysis by using a fault injection technique. Then, the faulty software component is

instrumented and executed in order to identify the effects of injected faults on the system

(i.e. program) that uses the component, including the corruption of data structures shared

between the program and the component and erroneous return values from function calls.

Results revealed that existing error models are not representative: (i) the corruption of sin-

gle bit or byte is not enough to emulate the effect of a real software fault in the component

since the data corrupted by injected faults include more than that; (ii) some corruptions

should be performed by corrupting also memory area; (iii) the corruption rate of a memory

address is strongly correlated to the number of access of that address during the fault-free

execution, so it could be useful to corrupt the memory address more accessed during fault-

free execution. Nevertheless, the proposed method was applied to few libraries considered

as software components and future work will extend the method to analyze more complex

software components.

Fault injection is also adopted to to emulate hardware faults. This dissertation inves-

tigates the representativeness and the effectiveness of existing software-implemented fault

injection (SWIFI) when used for dependability assessment of systems running on multicore.

Based on bit stuck-at and bit-flip models, SWIFI allows the emulation of hardware faults

through software by reproducing possible effects of real hardware errors without directly

interfering with the system. Although these techniques were successfully employed for the

Chapter 6. Conclusions and Future Work 149

evaluation of system behavior against hardware errors, two aspects should be considered

when adopting existing fault models for multicore-based systems. First, single or multi-

ple bit-flip could be automatically corrected by hardware mechanisms and masked to the

software compromising the effectiveness of the SWIFI techniques. Second, new errors (that

were not a concern in single-core architectures) may occur, e.g. errors in the interconnection

links between cores: this make existing SWIFI technique not representative enough.

This thesis proposed a fault injection framework developed for supporting dependability

analysis of multicore-based systems. The approach leverages the notion of machine check

error and the advanced error detection and reporting mechanisms implemented by modern

processors. So far, fault injection campaigns have been conducted to test the functionalities

of the framework under the Linux OS running on the top of the Intel i7 processor. Results

showed that existing operating system does not implement adequate mechanisms to cope

with hardware errors, i.e. machine check errors, that are signaled by the error reporting

architecture. recovery actions implemented by Linux OS are system panic and process kill.

Moreover, the approach was extended to virtualized systems deployed on multicore architec-

ture since the adoption of this technology seems to be a good choice for the implementation

of some solutions such as hardware and software consolidation. The approach aims at evalu-

ating the error handling mechanisms of hypervisors (i.e. the software layer that implements

Chapter 6. Conclusions and Future Work 150

the virtualization) in order to evaluate how hypervisors protect virtual machines when hard-

ware error occur. Preliminary esperiments were conducted to inject machine check errors in

Xen hypervisor. Results showed that the only recovery action implemented in the hypervisor

consists in system panic.

In the future, we will extend the framework by addressing the emulation of simultane-

ous errors affecting different cores, burst of errors, errors propagation among cores. The

framework will be used to validate error handling of different operating systems, to ana-

lyze fault-tolerant mechanisms implemented across cores, to assess the resiliency of a given

system under errors, and to benchmark the dependability behavior of different solutions

adopting multicore.

Bibliography

[1] AUTOSAR Home Page. http://www.autosar.org.

[2] Critical Step. http://www.critica-step.eu.

[3] Intel 64 and IA-32 Architectures Software Developer’s Manual Vol.3: System Programming
Guide. http://www.intel.com/.

[4] MOBILAB Group. http://www.mobilab.unina.it.

[5] VMWare ESX and ESXi product. http://www.vmware.com/products/esx/index.html.

[6] WindRiver Hypervisor. http://www.windriver.com/products/hypervisor/.

[7] Hicham Agrou, Pascal Sainrat, M Gatti, David Faura, and Patrice Toillon. A design approach
for predictable and efficient multi-core processor for avionics. In Digital Avionics Systems
Conference (DASC), 2011 IEEE/AIAA 30th, pages 7D3–1. IEEE, 2011.

[8] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. GOOFI: Generic Object-Oriented Fault
Injection Tool. In DSN, pages 83–88, 2001.

[9] J.H. Andrews, L.C. Briand, and Y. Labiche. Is mutation an appropriate tool for testing
experiments? In ICSE, pages 402–411. ACM, 2005.

[10] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.C. Fabre, J.C. Laprie, E. Martins, and D. Powell.
Fault Injection for Dependability Validation: A Methodology and Some Applications. IEEE,
16(2):166–182, 1990.

[11] J. Arlat, J.C. Fabre, M. Rodríguez, and F. Salles. Dependability of COTS Microkernel-Based
Systems. IEEE, 51(2):138–163, 2002.

[12] C Aussagues, D Chabrol, V David, D Roux, N Willey, A Tournadre, and M Graniou. Pharos,
a multicore os ready for safety-related automotive systems: results and future prospects. Proc.
of The Embedded Real-Time Software and Systems (ERTS2), 2010.

[13] A. Avizienis, J.C. Laprie, B. Randell, and C. Landwehr. Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE, 1(1):11–33, 2004.

[14] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic concepts and taxon-
omy of dependable and secure computing. Dependable and Secure Computing, IEEE Trans-
actions on, 1(1):11–33, 2004.

[15] J.H. Barton, E.W. Czeck, Z.Z. Segall, and D.P. Siewiorek. Fault Injection Experiments using
FIAT. IEEE, 39(4):575–582, 1990.

[16] Victor R Basili and Barry Boehm. Cots-based systems top 10 list. Computer, 34(5):91–95,
2001.

151

Bibliography 152

[17] Alfredo Benso, Paolo Prinetto, Maurizio Rebaudengo, and M Sonza Reorda. Exfi: a low-
cost fault injection system for embedded microprocessor-based boards. ACM Transactions on
Design Automation of Electronic Systems (TODAES), 3(4):626–634, 1998.

[18] PG Bishop, RE Bloomfield, and PKD Froome. Justifying the use of software of uncertain
pedigree (SOUP) in safety-related applications. University of Southampton, Institute of Sound
and Vibration Research, 2001.

[19] Pearl Brereton and David Budgen. Component-based systems: A classification of issues.
Computer, 33(11):54–62, 2000.

[20] Bryan Turner. The Random C Program Generator. https://sites.google.com/site/
brturn2/randomcprogramgenerator, 2008.

[21] J. Carreira, H. Madeira, and J.G. Silva. Xception: A technique for the experimental evaluation
of dependability in modern computers. IEEE, 24(2):125–136, 1998.

[22] Joao Carreira, Henrique Madeira, and Joao Gabriel Silva. Xception: Software Fault Injection
and Monitoring in Processor Functional Units. In DCCA, pages 135–149, 1995.

[23] Subhachandra Chandra and Peter M Chen. How fail-stop are faulty programs? In FTCS,
pages 240–249. IEEE, 1998.

[24] R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J. Halliday, D.S. Moebus, B.K. Ray, and M.Y.
Wong. Orthogonal Defect Classification–A Concept for In-Process Measurements. IEEE,
18(11):943–956, 1992.

[25] J. Christmansson and R. Chillarege. Generation of an Error Set that Emulates Software Faults
based on Field Data. In FTCS, pages 304–313, 1996.

[26] J. Christmansson, M. Hiller, and M. Rimen. An Experimental Comparison of Fault and Error
Injection. In ISSRE, pages 369–378, 1998.

[27] International Electrotechnical Commission et al. Functional safety of electrical/electron-
ic/programmable electronic safety-related systems-part 2: Requirements for electrical/elec-
tronic/programmable electronic safety systems. CEI/IEC, pages 61508–2, 2000.

[28] D. Cotroneo and R. Natella. Fault Injection for Software Certification. IEEE, 11(4):38–45,
2013.

[29] Domenico Cotroneo, Anna Lanzaro, Roberto Natella, and Ricardo Barbosa. Experimental
Analysis of Binary-Level Software Fault Injection in Complex Software. In EDCC, pages
162–172, 2012.

[30] M. Daran and P. Thévenod-Fosse. Software Error Analysis: A Real Case Study Involving Real
Faults and Mutations. ACM Soft. Eng. Notes, 21(3):158–171, 1996.

[31] H. Do and G. Rothermel. On the use of mutation faults in empirical assessments of test case
prioritization techniques. IEEE, pages 733–752, 2006.

[32] US DOE. System safety program requirements, us department of defense. Technical report,
MIL-STD-882D, 2000.

[33] Heradon Douglas and Christian Gehrmann. Secure virtualization and multicore platforms
state-of-the-art report. Swedish Institute of Computer Science, 2009.

[34] J. Durães and H. Madeira. Emulation of Software Faults by Educated Mutations at Machine-
Code Level. In ISSRE, pages 329–340, 2002.

Bibliography 153

[35] J. Durães and H. Madeira. Generic Faultloads based on Software Faults for Dependability
Benchmarking. In DSN, pages 285–294, 2004.

[36] J.A. Durães and H.S. Madeira. Emulation of Software faults: A Field Data Study and a
Practical Approach. IEEE, 32(11):849–867, 2006.

[37] Sigrid Eldh, Sasikumar Punnekkat, Hans Hansson, and Peter Jönsson. Component Testing
Is Not Enough–A Study of Software Faults in Telecom Middleware. In Testing of Softw. and
Comm. Sys., pages 74–89. 2007.

[38] C. Esposito, D. Cotroneo, and N. Silva. Preliminary investigation on safety-related standards.
Technical report, 2011. Technical Report www.mobilab.unina.it/techreports.html.

[39] European Cooperation for Space Standardization. ECSS-E-70-41A – Ground Systems and
Operations: Telemetry and Telecommand Packet Utilization, 2003.

[40] Iman Faraji, Moslem Didehban, and Hamid R Zarandi. Analysis of transient faults on a
mips-based dual-core processor. In Availability, Reliability, and Security, 2010. ARES’10
International Conference on, pages 125–130. IEEE, 2010.

[41] Karl-Filip Faxén, Christer Bengtsson, Mats Brorsson, Håkan Grahn, Erik Hagersten, Bengt
Jonsson, Christoph Kessler, Björn Lisper, Per Stenström, and Bertil Svensson. Multicore
computing–the state of the art. 2008.

[42] Thomas K Ferrell and Uma D Ferrell. Rtca do-178b/eurocae ed-12b. The Avionics Handbook,
2000.

[43] J. Flich, S. Rodrigo, J. Duato, T. Sodring, A.G. Solheim, T. Skeie, and O. Lysne. On the po-
tential of noc virtualization for multicore chips. In Complex, Intelligent and Software Intensive
Systems, 2008. CISIS 2008. International Conference on, 2008.

[44] Thomas Gaska, Brian Werner, and David Flagg. Applying virtualization to avionics systems
the integration challenges. In Digital Avionics Systems Conference (DASC), 2010 IEEE/AIAA
29th, pages 5–E. IEEE, 2010.

[45] Thomas Gaska, Brian Werner, and David Flagg. Applying virtualization to avionics sys-
tems—The integration challenges. In Digital Avionics Systems . . . , pages 1–19, 2010.

[46] GCC Online Documentation. Options for Debugging Your Program or GCC. http://gcc.
gnu.org/onlinedocs/gcc/Debugging-Options.html, 2014.

[47] A.K. Ghosh, M. Schmid, and V. Shah. Testing the Robustness of Windows NT Software. In
ISSRE, pages 231–235, 1998.

[48] Anup K Ghosh and Matthew Schmid. An approach to testing COTS software for robustness
to operating system exceptions and errors. In ISSRE, pages 166–174. IEEE, 1999.

[49] J. Gray. A Census of Tandem System Availability between 1985 and 1990. IEEE, 39(4):409–
418, 1990.

[50] Ulf Gunneflo, Johan Karlsson, and Jan Torin. Evaluation of error detection schemes using
fault injection by heavy-ion radiation. In Fault-Tolerant Computing, 1989. FTCS-19. Digest
of Papers., Nineteenth International Symposium on, pages 340–347. IEEE, 1989.

[51] S. Han, KG Shin, and HA Rosenberg. DOCTOR: An IntegrateD SOftware Fault InjeCTiOn
EnviRonment. In IPDS, pages 204–213, 1995.

Bibliography 154

[52] Gernot Heiser. The role of virtualization in embedded systems. In Proceedings of the 1st
workshop on Isolation and integration in embedded systems, pages 11–16. ACM, 2008.

[53] M. Hiller, A. Jhumka, and N. Suri. EPIC: Profiling the propagation and effect of data errors
in software. IEEE, 53(5):512–530, 2004.

[54] JJ Hudak, B.H. Suh, DP Siewiorek, and Z. Segall. Evaluation and Comparison of Fault-
Tolerant Software Techniques. IEEE, 42(2):190–204, 1993.

[55] James W Hunt and Thomas G Szymanski. A fast algorithm for computing longest common
subsequences. Comm. ACM, 20(5):350–353, 1977.

[56] Gabriela Jacques-Silva, Zbigniew Kalbarczyk, and Ravishankar K Iyer. Dependability assess-
ment of operating systems in multi-core architectures. In Fast Abstract in the 38th Int. Symp.
on Dependable Systems and Networks, Anchorage, Alaska (June 2008), 2008.

[57] T. Jarboui, J. Arlat, Y. Crouzet, K. Kanoun, and T. Marteau. Analysis of the Effects of Real
and Injected Software Faults: Linux as a Case Study. In PRDC, pages 51–58, 2002.

[58] Y. Jia and M. Harman. An Analysis and Survey of the Development of Mutation Testing.
IEEE, 37(5):649–678, 2011.

[59] A. Jin and J. Jiang. Fault Injection Scheme for Embedded Systems at Machine Code Level
and Verification. In PRDC, pages 55–62. IEEE, 2009.

[60] G.A. Kanawati, N.A. Kanawati, and J.A. Abraham. FERRARI: A Flexible Software-Based
Fault and Error Injection System. IEEE, 44(2):248–260, 1995.

[61] K. Kanoun and L. Spainhower. Dependability Benchmarking for Computer Systems. Wiley-
IEEE Computer Society, 2008.

[62] W.-I. Kao and R.K. Iyer. DEFINE: A Distributed Fault Injection and Monitoring Environ-
ment. In FTPDS, pages 252–259, 1994.

[63] W.-I. Kao, R.K. Iyer, and D. Tang. FINE: A Fault Injection and Monitoring Environment for
Tracing the UNIX System Behavior under Faults. IEEE, 19(11):1105–1118, 1993.

[64] Larry M Kinnan. Use of multicore processors in avionics systems and its potential impact on
implementation and certification. In Digital Avionics Systems Conference, 2009. DASC’09.
IEEE/AIAA 28th, pages 1–E. IEEE, 2009.

[65] Andi Kleen. Machine check handling on linux. SUSE Labs, 2004.

[66] P. Koopman and J. DeVale. The Exception Handling Effectiveness of POSIX Operating Sys-
tems. IEEE, 26(9):837–848, 2000.

[67] Kirk L Kroeker. The evolution of virtualization. Communications of the ACM, 52(3):18–20,
2009.

[68] Rikard Land, Laurens Blankers, Michel Chaudron, and Ivica Crnković. Cots selection best
practices in literature and in industry. In High Confidence Software Reuse in Large Systems,
pages 100–111. Springer, 2008.

[69] Dongwoo Lee and Jongwhoa Na. A novel simulation fault injection method for dependability
analysis. IEEE Design & Test of Computers, 26(6):0050–61, 2009.

[70] Peter Lindsay and Graeme Smith. Safety assurance of commercial-off-the-shelf software. Tech-
nical report, 2000.

Bibliography 155

[71] H. Madeira, D. Costa, and M. Vieira. On the Emulation of Software Faults by Software Fault
Injection. In DSN, pages 417–426, 2000.

[72] P.D. Marinescu and G. Candea. Efficient testing of recovery code using fault injection. ACM
Trans. Computer Sys., 29(4):11:1–11:38, 2011.

[73] E. Martins, C.M.F. Rubira, and N.G.M. Leme. Jaca: A Reflective Fault Injection Tool based
on Patterns. In DSN, pages 483–487, 2002.

[74] William M McKeeman. Differential testing for software. Digital Technical Journal, 10(1):100–
107, 1998.

[75] B Craig Meyers and Patricia Oberndorf. Managing software acquisition: Open systems and
COTS products. Addison-Wesley Longman Ltd., 2001.

[76] R. Moraes, R. Barbosa, J. Durães, N. Mendes, E. Martins, and H. Madeira. Injection of Faults
at Component Interfaces and Inside the Component Code: Are They Equivalent? In EDCC,
pages 53–64, 2006.

[77] R. Moraes, J. Durães, R. Barbosa, E. Martins, and H. Madeira. Experimental Risk Assessment
and Comparison using Software Fault Injection. In DSN, pages 512–521, 2007.

[78] Hamid Mushtaq, Zaid Al-Ars, and Koen Bertels. Survey of fault tolerance techniques for
shared memory multicore/multiprocessor systems. In Design and Test Workshop (IDT), 2011
IEEE 6th International, pages 12–17. IEEE, 2011.

[79] Roberto Natella, Domenico Cotroneo, Joao A Durães, and Henrique S Madeira. On Fault
Representativeness of Software Fault Injection. IEEE, 39(1):80–96, 2013.

[80] Nicolas Navet, Bertrand Delord, Markus Baumeister, et al. Virtualization in automotive
embedded systems: an outlook. In Seminar at RTS Embedded Systems, 2010.

[81] Nicolas Navet, Aurélien Monot, Bernard Bavoux, and Françoise Simonot-Lion. Multi-source
and multicore automotive ecus-os protection mechanisms and scheduling. In Industrial Elec-
tronics (ISIE), 2010 IEEE International Symposium on, pages 3734–3741. IEEE, 2010.

[82] Nicholas Nethercote and Julian Seward. Valgrind: A Framework for Heavyweight Dynamic
Binary Instrumentation. ACM Sigplan Not., 42(6):89–100, 2007.

[83] Wee Teck Ng and Peter M Chen. The design and verification of the rio file cache. IEEE,
50(4):322–337, 2001.

[84] W.T. Ng and PM Chen. The Systematic Improvement of Fault Tolerance in the Rio File
Cache. In FTCS, pages 76–83, 1999.

[85] Patricia Oberndorf. Cots and open systems. 1998.

[86] D. Oppenheimer, A. Ganapathi, and D.A. Patterson. Why Do Internet Services Fail, and
What Can Be Done About It? In USITS, 2003.

[87] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie. PinPlay:
a framework for deterministic replay and reproducible analysis of parallel programs. In CGO,
pages 2–11. ACM, 2010.

[88] William J Perry. Specifications and standards-a new way of doing business. US Department
of Defense Policy Memorandum, 1994.

Bibliography 156

[89] P. Popov and L. Strigini. Assessing Asymmetric Fault-Tolerant Software. In ISSRE, pages
41–50, 2010.

[90] Ian Pratt, Keir Fraser, Steven Hand, Christian Limpach, Andrew Warfield, Dan Magenheimer,
Jun Nakajima, and Asit Mallick. Xen 3.0 and the art of virtualization. In Linux Symposium,
page 65, 2005.

[91] K. Qian, D. Haring, and L. Cao. Embedded Software Development with C. Springer, 2009.

[92] Radisys.

[93] Manuel Rodríguez, Frédéric Salles, Jean-Charles Fabre, and Jean Arlat. Mafalda: Microkernel
assessment by fault injection and design aid. In Dependable Computing - EDCC-3, pages
143–160. Springer, 1999.

[94] Felix Salfner, P Troger, and Steffen Tschirpke. Cross-core event monitoring for processor failure
prediction. In High Performance Computing & Simulation, 2009. HPCS’09. International
Conference on, pages 67–73. IEEE, 2009.

[95] B.P. Sanches, T. Basso, and R. Moraes. J-SWFIT: A Java Software Fault Injection Tool. In
LADC, 2011.

[96] Siva Kumar Sastry Hari, Man-Lap Li, Pradeep Ramachandran, Byn Choi, and Sarita V Adve.
mswat: low-cost hardware fault detection and diagnosis for multicore systems. In Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, pages 122–
132. ACM, 2009.

[97] David J Sheskin. Handbook of parametric and nonparametric statistical procedures. Chapman
and Hall/CRC, 2003.

[98] Daniel Skarin, Raul Barbosa, and Johan Karlsson. Goofi-2: A tool for experimental depend-
ability assessment. In Dependable Systems and Networks (DSN), 2010 IEEE/IFIP Interna-
tional Conference on, pages 557–562. IEEE, 2010.

[99] ARINC Specification. 651: Design guidance for integrated modular avionics, ser. ARINC
report. Airlines Electronic Engineering Committee (AEEC) and Aeronautical Radio Inc, 1991.

[100] Def Stan. Stan 00-55. The Procurement of Safety Related Software in Defence Equipment-
Parts, 1:00–55, 1991.

[101] Def Stan. Stan 00-56. Safety Management Requirements for Defence Systems, UK Ministry
of Defence, Defence Standard 00-56, (2), 1996.

[102] D.T. Stott, B. Floering, Z. Kalbarczyk, and R.K. Iyer. A Framework for Assessing Depend-
ability in Distributed Systems with Lightweight Fault Injectors. In IPDS, page 91, 2000.

[103] Sang-Bum Suh, Joo-Young Hwang, Joon-Young Shim, JaeMin Ryu, Sungkwan Heo, ChanJu
Park, ChulRyun Kim, Jae-Ra Lee, Ilpyoung Park, and Hosoo Lee. Computing state migration
between mobile platforms for seamless computing environments. In Consumer Communi-
cations and Networking Conference, 2008. CCNC 2008. 5th IEEE, pages 1216–1217. IEEE,
2008.

[104] M. Sullivan and R. Chillarege. Software Defects and their Impact on System Availability: A
Study of Field Failures in Operating Systems. In FTCS, pages 2–9, 1991.

[105] J Swingler and JW McBride. The synergistic relationship of stresses in the automotive con-
nector. 1998.

Bibliography 157

[106] Clemens Szyperski. Component software: beyond object-oriented programming. Pearson Edu-
cation, 2002.

[107] Sriraman Tallam, Chen Tian, Rajiv Gupta, and Xiangyu Zhang. Enabling Tracing of Long-
Running Multithreaded Programs Via Dynamic Execution Reduction. In ISSTA, pages 207–
218. ACM, 2007.

[108] Dong. Tang and H. Hecht. An Approach to Measuring and Assessing Dependability for Critical
Software Systems. In ISSRE, pages 192–202. IEEE, 1997.

[109] S.K. Thompson. Sample Size for Estimating Multinomial Proportions. The American Statis-
tician, 41(1):42–46, 1987.

[110] T.K. Tsai and R.K. Iyer. Measuring Fault Tolerance with the FTAPE Fault Injection Tool.
In MMB, 1995.

[111] Marco Vieira and Henrique Madeira. A dependability benchmark for OLTP application envi-
ronments. In VLDB, pages 742–753. VLDB Endowment, 2003.

[112] Mark Vigder and John Dean. An architectural approach to building systems from cots software
components. 1997.

[113] J. Voas, F. Charron, G. McGraw, K. Miller, and M. Friedman. Predicting How Badly “Good”
Software Can Behave. IEEE, 14(4):73–83, 1997.

[114] J.M. Voas. Certifying off-the-shelf software components. IEEE, 31(6):53–59, 1998.

[115] Elaine J Weyuker. Testing component-based software: A cautionary tale. IEEE, 15(5):54–59,
1998.

[116] Wind River. Applying Multi-core and Virtualization to Industrial and Safety-Related Appli-
cations.

[117] S. Winter, C. Sârbu, N. Suri, and B. Murphy. The impact of fault models on software robust-
ness evaluations. In ICSE, pages 51–60. ACM, 2011.

[118] Yang-Ming Zhu and Steven M Cochoff. Medical image viewing on multicore platforms using
parallel computing patterns. IT professional, 12(2):33–41, 2010.

