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Introduction

Among the symmetries exhibited by string theory, T-duality plays a fundamental
role in the stringy descriptions of both gauge interactions and gravity.

String theory arose in the late 1960s as an attempt to describe the hadrons,
the strong interacting particles. Some problems emerged out that prevented this
program to be completely successful. In the early 1970s quantum chromodynam-
ics was developed. It was recognized as the ‘correct’ theory to deal with the
strong nuclear force. Nevertheless, in the subsequent years, it was realized that
string theory could describe the Universe in a deeper way. In fact such theory
has the potential of unifying gravity with the other forces (weak, electromagnetic
and color forces) and all forms of matter in a single mathemathical framework
1, 2|.

In string theories, the fundamental objects are not point-like, as it happens
in quantum field theories, but one-dimensional. The myriad of observed particles
are identified as particular vibrational modes of microscopic strings. They are
of two types: open strings and closed strings. Open strings are topologically
equivalent to line intervals and so they have two endpoints, while closed strings
are topologically equivalent to circles and they have no endpoints. In every string
theory, closed strings are always present. This is because open strings can close to
form the closed ones. In the massless spectrum of closed strings there is a spin-2
particle, which was proposed to be identified with the graviton, the quantum of
gravitation. Since string theory is a quantum theory and it naturally includes
gravitons, it constitutes one of the most promising candidates for a unified theory
of the fundamental interactions of Nature as well as a prototype of a complete
theory of Physics. String theory can, in principle, reconcile Einstein’s General
Relativity (a classical theory) and Quantum Mechanics, two of the pillars of the
20" century theoretical physics, and so provide a consistent quantum theory of
gravity.

In string theory there is a unique dimensionful parameter, the string length
(s, defined by the string tension. It can be thought as the typical length of the
fundamental objects. It is natural to expect the string scale to be of the same
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order of magnitude as the Planck length
RGN\ /2
Ip = (—G) — 1.6 x 1073 em.

A broad subdivision of string theories is the one between bosonic string the-
ories and superstring theories. In the mass spectrum of bosonic string theories
there are only integer spin particles, the bosons. These kinds of theories are un-
realistic because of the lack of fermions, which, instead, have half-integer spin
values. On the contrary, superstring theories describe bosons and fermions. All
the potentially realistic models are based on superstring theories, since in Nature
all the matter particles are fermions while all the force carriers are bosons.

In string theories there is an interesting symmetry relating bosons to fermions:
the so-called supersymmetry. It links and unifies matter and forces and requires a
fermion of the same mass for every boson. In the recent years, the Large Hadron
Collider (LHC) reached energies up to a few TeV (8 TeV on march 2012), but
it has not been possible to observe either the supersymmetry or the ‘stringy’
nature of particles. It means that the typical string energy scale as well as the
characteristic energy scale of supersymmetry breaking are above the lower bounds
set experimentally until now.

Another intriguing feature of string theories is that their consistency fixes the
number of dimensions of the space-time they live in. In particular, a calcula-
tion shows that bosonic string theories are consistent only in a 26-dimensional
space-time, while superstring theories are in a 10-dimensional one. Under cer-
tain assumptions, an eleventh dimension is also possible (M-theory). In order to
make contact with the everyday world of our experience, in which there is one
time-dimension and three spatial dimensions, a straightforward solution is that
the ‘extra’-dimensions are curled up. In this picture, they form a compact space
the typical size of which is so small to have escaped detection in experiments
done at too low energies.

If string theory has to do with real world, then it must be possible to deduce
from it the other theories that have been empirically tested and are well-known
up to same rank of energies or distances. More precisely it should recover in a
suitable low-energy limit the Standard Model of Particle Physics and General
Relativity. The latter is naturally incorporated in the theory and gets modified
only at very short distances/high energies.

The ambitious task of finding the Standard Model inside string theory consti-
tutes the research branch known as string phenomenology. An important role for
accomplishing this project is played by Dp-branes. A Dp-brane is a nonperturba-
tive object behaving as a soliton in field theory with a tension per unit p-volume



CONTENTS 7

inversally proportional to the coupling constant g;. One of its basic properties is
to have a (p+ 1)-dimensional gauge theory living on its world-volume, since open
strings have their endpoints on it. On a stack of N parallel Dp-branes, there are
N2 different kinds of open strings having endpoints on them. Hence a U(N) gauge
theory lives on their world-volume, being the massless open-string states corre-
spondent to the gauge fields of U(N). In order to get the Standard Model from
string theory, intersecting branes are required, because the open strings attached
to them provide chiral fermions in the four-dimensional space-time as expected
for the fermions described in the Standard Model. The use of intersecting branes
can be involved. It results to be much more convenient to deal with another kind
of branes, the magnetized branes, which are connected to the intersecting ones
by T-duality. This property relates the intersection angle of intersecting branes
into a constant magnetic field characterizing parallel magnetized branes |3, 4].

T-duality is one of the exotic and peculiar features of string theory. For
a recent review, see Ref. [5] and references therein. T-duality implies that in
many cases different geometries for the extra dimensions are equivalent. In the
presence of compactifications, new modes, besides the usual ones, emerge out in
closed string theories: a closed string wraps around the compactified dimensions
leading to the introduction of a new meaningful quantity, the winding number.
In the simplest case of compactification, the so-called circle compactification, one
of the spatial dimensions is curled up to form a circle of radius R. T-duality
relates closed strings compactified on such circle to the ones compactified on a
dual circle of radius proportional to 1/R. In other words, T-duality is a clear
indication that geometrical concepts can break down at the string scale. One is
led to introduce a new kind of coordinate, the T-dual coordinate with respect to
the compactified coordinate, to parametrize the position of the string along the
dual circle. This new coordinate is linked to the winding number in the same way
as the ordinary coordinate is linked to the momentum, meaning that they are
conjugated variables. Of course, this procedure can be generalized to the case of
an arbitrary number of compactified dimensions (up to 22 or 6, depending on the
theory under study) and in the presence of an antisymmetric background field.

T-duality remains an exact symmetry of the mass spectrum of closed strings,
but not of the action. Recently, many efforts have been done in order to construct
a model which is manifestly T-duality invariant. In order to do that, it is neces-
sary to introduce the dual coordinates at the level of the sigma-model action. The
main goal of this new action would be to explore more closely the gravity implied
by string theory. In fact, if interested in writing down the effective field theory of
this generalized sigma-model, one should consider, correspondently to the intro-
duction of the ordinary coordinates and their duals, a dependence on these doubled
coordinates of the fields associated with string states. Indeed, the effective field
theory of this formulation is a double field theory [6, 7, 8, 9, 10, 11, 12, 13|. In
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particular, this has to be true for the well-known effective gravitational action
of a closed bosonic string that involves the fields associated with the massless
states: the gravitational field GG, the Kalb-Ramond B and the dilaton ¢. So, it
would be interesting to understand what this action becomes in light of the fact
that all those fields are dependent on doubled coordinates, trying to shed light on
string gravity, not yet explored. But, of course, before solving this very crucial
question, a preliminary step is to achieve a formulation of closed bosonic string
with T-duality made manifest in its sigma-model. This is the main aim of this
work.

This thesis is structured as follows.

In Chapter 1 the standard formulation of string theory is recalled. The
Nambu-Goto and the Polyakov actions are briefly discussed, together with their
symmetries. The equations of motion and the boundary conditions to be satis-
fied by the string coordinates are given in the conformal gauge. In particular,
attention is paid on the classical and quantum closed string theory. We provide
the explicit expansions for the string coordinates, the constraints deriving from
the energy-momentum tensor, the Virasoro algebra and generators, the Poisson
brackets and the conditions to select the physical states.

In Chapter 2, in order to explore T-duality of closed strings, the effects of com-
pactification of one or more spatial dimensions are analyzed in some detail. We
start from the simplest case, the circle compactification. The modified topology
of the target space implies new modes to appear (the windings). Moreover, one is
naturally led to introduce a dual circle and a ‘new’ string coordinate along that
circle. The mass formula and the level matching-condition for the string states
get slightly modified with respect to the noncompact case and they can be written
in a matricial form, by introducing two 2 x 2 matrices, so doubling the number
of coordinates involved. This procedure can be generalized in two directions:
it can be extended for n > 1 compact dimensions (toroidal compactification)
forming a torus described by a nonorthogonal metric G and in the presence of
an antisymmetric Kalb-Ramond field B. These are two of the usual massless
background fields that one finds in the closed-string spectrum. As for the circle
compactification, also for the compactification on an n-torus, n dual coordinates
can be introduced and the mass formula and the level matching condition can be
written through two 2n x 2n matrices. One is a block-matrix, the blocks of which
are constructed out of some combinations of G and B. The second one can be
seen as the metric of the group O(n,n;Z), which plays a fundamental role. The
explicit expansions of the coordinates are given and then the Poisson brackets
are computed both for the ordinary coordinates and their duals and for the left
and right coordinates. It is worth noticing that all these coordinates behave like
noncommuting variables.
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In Chapter 3, in order to construct and develop the T-duality symmetric for-
mulation of closed string theory, requiring the introduction in the action of the
dual coordinates besides the usual ones, we analyze the dynamics of a free bidi-
mensional scalar field defined on a flat backgroud. In fact, a single string coordi-
nate, independently of the target space index it carries, behaves like a scalar field
defined on the world-sheet. The (Hodge-)dual scalar field is introduced. The ac-
tion /Lagrangian obtained is characterized by a doubled set of variables (the scalar
field and its dual) and is not manifestly local Lorentz invariant. A suitable choice
of basis (and so of coordinates) permits to write the Lagrangian of the system
as a sum of a particular class of first order Lagrangians, the Floreanini-Jackiw
ones. Since they describe constrained systems, the Dirac method of quantization
is required. Dirac brackets and commutators are computed. The local Lorentz
invariance is recovered on-shell.

In Chapter 4, the results of Chapter 3 are generalized. The dynamics of a
scalar field defined on a curved background (as the string world-sheet) is studied.
There are little differences from the flat case. One of the most important is the
necessity of introducing a 2-bein in the sigma-model action to balance the lack
of local Lorentz invariance. The symmetries of the action describing the scalar
field and its dual are illustrated. They permit to gauge-fix the 2-bein to a flat
form, so to recover the results of the previous Chapter.

In Chapter 5, the manifestly T-duality invariant formulation of closed string
theory is finally introduced and studied in some detail. Starting from a general-
ized sigma-model action, one can derive the formulation including a doubled set of
coordinates as well as two background fields: the metric G and the Kalb-Ramond
field B. This formulation, inspired by A. A. Tseytlin, is not local Lorentz invari-
ant. As in the scalar field case, a change of basis introduces new coordinates.
Their dynamics are encoded in first order Lagrangians. One of the results of
this work is that, after performing the Dirac quantization procedure, the doubled
coordinates, as well as the chiral ones, behave like noncommuting phase-space
variables. Nevertheless, their expansions in terms of modes generate the same
Virasoro algebra as the one in the standard formulation. A section devoted to
the covariant formulation, proposed by C. Hull, concludes the Chapter.

Five Appendices complete this work. In Appendix A notation is set and some
useful identities are given. In Appendix B, the 2-bein and some of its proper-
ties are analyzed in some detail. Appendix C is the one in which Hodge-duals
are studied. In Appendix D some relations between the background fields are
demonstrated. Appendix E is devoted to the study of the first order Floreanini-
Jackiw Lagrangians. Lagrangians with a finite number of degrees of freedom are
discussed, then they are generalized to the case of an infinite number of degrees
of freedom.
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Chapter 1

String theory - Usual formulation

In this first Chapter, the basics of string theory are faced. In particular, the
Nambu-Goto action is showed and its classical equivalence to the Polyakov one
is demonstrated. The Polyakov action is more suitable for the development of
the theory itself. The global and local symmetries of the Polyakov action are
discussed. The local symmetries permit to gauge-fix the world-sheet metric to
get the so-called conformal gauge. The equations of motion and the boundary
conditions for the string coordinates are computed. The vanishing of the compo-
nents of the energy-momentum tensor has to be kept as a constraint to be solved
together with the equations of motion. Then the classical closed string theory is
analyzed: the expansions for the string coordinates are given and, moreover, also
the Poisson brackets and the Virasoro generators are computed. The quantiza-
tion procedure is performed. Normal-ordering ambiguities are taken into account.
Finally, the conditions to select the physical string states are illustrated.

1.1  On string theory

In analogy with the action describing a relativistic point particle moving in a
curved space-time, the integrand of which is proportional to the invariant length
of the world-line of the particle itself, the Nambu-Goto action, describing a string
in a space-time with flat minkowskian metric 7, with mostly plus signature, is
proportional to the area of the world-sheet swept by the string during its motion:

SNG = —T/d2£ \/— det(@aX . 8QX)

— o [ eyfix o, (1

where, as usual, X* = 9yX* = 0X*/or, X'* = O, X" = 0X"/do and A - B
stands for 7, A* B¥. The object v,53 = 0,X - 95X is the so-called induced metric.
A set of two (adimensional) coordinates £* = (£°,&1), with £€° = 7 (time-like) and

11
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¢! = o (space-like), is introduced on the world-sheet to parametrize its points.
We choose —00 < 7 < 400 and 0 < o < 7. Of course, d?¢ = drdo. The
dimensionful constant 7" in front of the action is the string tension. It makes the
action dimensionless ([T] = L™2 and [X*] = L). The string tension can also be
expressed in terms of the string length I, = V2o

T - 271‘0/ - 71‘_[? . (12)

The action (1.1) is invariant under reparametrizations of the world-sheet co-
ordinates £* — ¢'“ = £'“(€), but it is awkward to quantize because of the square
root [1].

The Polyakov action is

T
Solhap; X*] = -3 / d*E N —h h*P1,,0, X" 05 X" . (1.3)

It is a sigma-model action classically equivalent to the Nambu-Goto one (they give
the same equation of motion for all the fields X*, u=0,1,..., D—1). We stressed
that S, is a functional of h,s, the world-sheet metric, and of X*, the string
coordinates on the target space. Moreover, h = det(h,s) and h*® = (h™1) 5.

The lack of a kinetic term for the world-sheet metric h,g has the consequence
that the equations of motion for the metric itself are equivalent to the vanishing
of the world-sheet energy-momentum tensor 7%, so defined

pos_ 2_1 05,
T v/—hohag

We will consider the covariant version of T%:

(1.4)

Top = hayhasT? .

Since sh
5
M_‘Zﬁ = _hoz'yh657
T, can be written also as
2 1 0S,
Tog = —7——

T /=h 6heB’

constituting a definition for the covariant tensor itself.
By remembering that §v/—h = —(1/2)v/—h hazdh*?, T,z can be easily com-
puted:

1
Top = 0aX - 05X — Ehwm%x - 0;X =0. (1.5)
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In order to demonstrate the equivalence between Syg and S, the easiest way is
to take the determinant of both sides of the equality

1
0o X - 05X = §ha6h7587X 05X,
implying, in a bidimensional space, as the one we are dealing with,
1
det(0,X - 95X) = Zdet(hag) (h°0,X - 0;X)*

and

\/ —det(0, X - 05X) = %\/—h K90, X - 05X .

Let us notice that the tensor 7,3 is traceless:
— 10 afs 1 afs 7
TI‘(TQB) =h Ta,B =h 8aX . agX - §h haﬁh 8VX . 85X == O,

being h*’has = Tr(6%) = 2 (again) in a bidimensional space.

The equation of motion and the boundary terms for the field X* are obtained
by varying the action S, and by imposing this variation to vanish. They are,
respectively,

0o (V=R h*P95X") =0 (1.6)
and

™ T=+00 +oo g
T / do [(\/—hhoﬂaﬁxﬂ)axﬂ -7 / dr [(\/—hhlﬁaﬁxu)axu
0 — o

T=—00 00 =0

Actually, the boundary terms reduce to

-7 / s (/= hlﬂaﬂxu)axu}: , (1.7)

00 =0

because 0 X*(1T = +00,0) =0, Vo and V p.

1.2 Global and local symmetries of S,

The Polyakov action (1.3) exhibits a series of global and local symmetries:

e invariance under (global) Poincaré transformations of the world-sheet fields

XM =a" X"+ b and 5h*’ =0, (1.8)
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where a,, = —a,,. The constant parameters a”, and b represent, respec-
tively, space-time rotations and translations. The corresponding variation
of the action is

6S, = —T / AV =h B n,,0",0, X0 X"
= -T / A6 V—hh*a,,0,X 05 X" =0

being the integrand equal to the product of a symmetric tensor and an
antisymmetric one;

invariance under (local) reparametrizations of the world-sheet coordinates:

5
0g" 9¢”
oge 9B 0
As it is well-known, these kinds of reparametrizations generate the following
transformations:

= =%¢) and hep = (1.9)

¢ — ¢ J
h— J720 = V=h—=J =N,
where J = det(96%/0¢') is the Jacobian of the transformation. In this

way d?év/—h — d*€'\/—N, hence the name of ‘invariant measure’ for the
quantity d?6v/—h. Moreover,

oEx 9gh s ) e 9
af _ "y —
h 507 agéh and  — F = % o

with h*99, X - 95X left invariant;

invariance under Weyl transformations. They affect the world-sheet fields
as follows:
hag — €™ hog and JXH =0. (1.10)

The first of (1.10) implies h — €**h and, consequently, v/—h — e®/—h
and h*? — e ?h®®. So they make the quantity v—h h*? invariant. It
is a peculiarity of bidimensional spaces as it can be easily verified. In
fact, in a generic N-dimensional space, a Weyl transformation of the type
hag — A(T,0)hap generates

vV—h — ANZ\—h

N
h—AVh = { (b p-ipes

and so s
V=hh*®  — Az V-hh*,

confirming the invariance only for N = 2.
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The (three) local symmetries allow to choose a particular form for the world-
sheet metric h,g, which has three independent entries (hg; = hyp). This procedure
is also known as the gauge-fizing. Hereafter in this Chapter the conformal gauge
hag = nNap is performed. It is worth noticing that, after the gauge-fixing procedure,
there are still other residual gauge transformations. These are called conformal
transformations, a mixture of Weyl rescalings and reparametrizations.

1.3 Theory in the conformal gauge

In the conformal gauge, the Polyakov action assumes the form

S0 =~ [ @it n,0.x0 0
= g / d*¢ [(86X)? — (0:X)?]
= g/faﬁ—xﬂ. (1.11)
So, the Lagrangian density L is
c:%@?—x%. (1.12)

The energy-momentum tensor 7,3 becomes
Tab = Taﬁ ‘ haﬁznab
1 )
= 9,X - 0,X + §nab(X2 - X" (1.13)
and its components are easily computed:

Ty = 111 = (1/2)(X2+X/2)
Ty, = Ty = X-X'.

The condition of the vanishing of the trace becomes n®T,, = —Ty + 111 = 0.
Once one has gauge-fixed the metric, the vanishing of Ty, has to be kept as an
additional constraint to be solved together with the equations of motion for the
string coordinates X*. In the conformal gauge, the equation of motion (1.6) is

aa(nabaqu) - nabaaaqu = aagaXM = 0, (114)
while the boundary term (1.7) is

o=
o=0

+oo
—T/ dr [0, X,6 X7 (1.15)

—00
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Let us introduce a new set of world-sheet coordinates, the light-cone coordi-
nates: ot = 7 4 0. The relations between the derivatives with respect the old
and the new coordinates are

{aoza++a_ - {a+:(1/2)(ao+al)

O =09y —0- o_ = (1/2)(8 — &) (1.16)

while, in the light-cone basis, the metric and its inverse become, respectively
M+ M=\ _ _1 0 1
N—+ 71— 2\ 1 0
77++ 77—&-— . 0 1
nt o ) 10/

Moreover, the equation of motion can be written as 0,0_X* = 0 and it
is classically solved by writing the solution as a linear combination of one left-
moving and one right-moving wave: X*(7,0) = c; X} (74 0) 4+ o X (7 — 0), with
c1, ¢o € R.

By using the law of tensor transformation under a change of coordinates, we
can write the components of the energy-momentum tensor in the light-cone basis:

., = i(Tgo—i-Tm + T+ 1) = %(T00+T01)

= (XX = 0.X 0X (1.17)
T, = i(Tgo —Tor +Tio—Tn) = E(Too —Tu)

= _}LTr(Taﬁ) =0 (1.18)

1 1
T, = Z(TOO +Tor — Tio—Tn1) = Z(Too —Tn) = T4_ (1.19)

1 1
T _ = Z(Too —Tor — T+ Tn) = §(T00 —To)
1 .
= (X -X)=0.X-0.X. (1.20)

The components of the tensor, which are not automatically vanishing, are Ty =
0+ X -0+ X.

1.4 Classical closed string theory

In the conformal gauge, the equation of motion for the string coordinates is
0,0°X* = 0. For a closed string, which is the one we are treating, the boundary
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term vanishes by putting
XH¥(r,0+7m) = XH(1,0). (1.21)

The equation of motion for the fields X# and the periodicity condition just quoted
constitute a sufficient condition to ensure the stationarity of (1.11). We want
here to observe that the most general closed-string boundary condition which
let the boundary term vanish is a quasi-periodicity condition. It will be used
in the next Chapters, where the theory in the presence of compactified spatial
dimensions will be analyzed. As we already stressed at the end of the previous
section, before using eq. (1.21), the general solution of the equation of motion is
XH(1,0) =\ XF(T+0)+ e Xih(T —0). Because of the arbitrariness in the choice
of ¢; and co, we can write the string coordinate as

XH(1,0) = = (XF(r+0)+ Xga(r—0)],

V2

through a redefinition of X} and X};. On this kind of solutions, the components
of the energy-momentum tensor are:

1 1
T++ - 58+XL'8+XL == 5(8+XL)2 (122)

T _ = %&XR@_XR = —(0_Xg)*. (1.23)

1
2
In order to find the explicit form of the functions X r, we have to write the

periodicity condition (1.21) in terms of these fields. It takes the form
XMoot +7m)— X ot)=Xh(o7) — Xh(c™ — 7). (1.24)

By deriving the last equality once with respect to ot and once with respect to
o~ (being them independent variables), we find that

0, Xt(o + 1) = 8, Xt(o™)
and that
0_Xp(ow —m) =0_-XR(o7).

In other words, these derivatives are periodic functions with period 7, and hence,
they have the following Fourier expansions:

0L XY = 2Vl ) ket (1.25)

neL

0_Xp, = 2vVa/ Y ale " (1.26)

nel

(this choice of normalization will be clearified later). The coefficients of the
expansions & and of will be interpreted as the string oscillation modes.



18 CHAPTER 1. STRING THEORY - USUAL FORMULATION

By integrating over o* the equations (1.25 - 1.26), we get

1 )
Xi(oh) = af +2valafot +ivar Y —ake (1.27)
n#0 n
1 L
Xh(o™) = ah+2Vdlalom +iva' ) —ale (1.28)
n
n#0

where 2/ and 2%, emerge as integration constants. (Let us observe that the fields
X1 g are quasi-periodic.)

The periodicity condition X#(7,0+7) = X*(7,0) imposes &} = «f. It means
that in the X* expansion there is no linear term in o and that, once quantized
the theory, there will be only one momentum operator as well as one coordinate
for the center-of-mass.

So the expansion for the field X* is

XH(r0) = — [X0(r+0) + Xb(r —o)]

\/_
= ( xR)+\/_(a0+a)7'+\/_( —ah)o

72177,7’
6 —2ino _i_oé;L +21ncr]

= (a:L+a:R)+\/_(a0+a0)

—2inT ) )
ape—ana 4 Oég€+2m0] )

The momentum density is, by definition,

oL .
Pu= oo =TX (1.29)

We will use its contravariant version:
PH=T {\/ 20/ (afy + o)) + V2! Z e HNT[ake T 4 aﬁe“""”]} . (1.30)
n#0

The total momentum, which a priori is a function of 7, turns out to be

T 1
PH (1) = / doPH(1,0) = TV2/ (0 + af)m = —\/T(dg +af) =pt, (1.31)
0 a

and it coincides with the constant momentum of the center-of-mass of the string.
The last equality in eq. (1.31) implies &) = oy = (y///2)p", slightly generalized
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into pff = (1/\/_) b=l = (1/vVa))aly = (1/v/2)p*. Moreover, it is convenient
to impose =} = 2f, = (1/\/§)x“
With these definitions, the expansion for the field X* is

/ —2inT ) )
XH(1,0) = ot 4+ 2a/p!'T + iy / % Z ¢ " [akem2mo 4 glet?ing] (1.32)
n#0

Requiring the fields X', X} and their sum X* to be real, implies that z* and p#

are real, while, for the oscillator modes, &*,, = (a#)* and o, = (a#)*, where x

denotes complex conjugation.
Let us now calculate X* and X'*:

Xu _ \/ﬂ <Z &Z€_2ing+ + Zaﬁe—%na_) — 7 (8+XH +0_ Xﬂ) (133)

nez nez
) N 1
=2/ (Z ahe 27T — N " ahemno ) =% (0. X —0-X}) (1.34)
nez nez
equivalent to
X,LL + X/M = \/§a+XZ
Xt —X" = V2o X,
The Hamiltonian density (not written in terms of the Hamiltonian variables
X and P) is
— y 2 T . 2 2 T . 2 2
H:PuX“—L’:TX—E(X _X):E(X + X7, (1.35)
while the Hamiltonian is
™ T ™ o /2
H= | doH = 3 do(X*+ X"). (1.36)
0 0

By inserting the mode expansion of the X fields in eq. (1.36), we get

H=> (d_p-n+0a_y- ). (1.37)

neL

1.4.1 Some Poisson brackets

This section is devoted to the study of the Poisson brackets among the dynam-
ical variables in the theory. In analogy with the Poisson brackets holding for
generalized coordinates and their conjugate momenta in classical mechanics, we
define

{XH(r,0),P"(1,0")} pg =" (0 — o) (1.38)
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{XM(T7 0)7 XV(T> 0,)}133 = {PM(T> U)? PV(T’ 0/)}133 =0. (1'39)
The insertion of the mode expansion of the field X* in (1.38 - 1.39) gives

{0~4¢Ln, ONéTVl}pB = {CY‘ZAL, OZZ}PB = —1 m5m+n70 77“” Vm, n (140)
as well as

{ad, antpp
{=",p"}pp = 7"
{x“,d,”L}pB = {x“,ozfl}pg = 0, TL#O

In the derivation of these brackets we used the Fourier expansion of the Dirac
O-function:

i(z) = % Z e (1.41)
nez

1.4.2 The mass formula and the Virasoro algebra

On-shell, the vanishing of the components of the energy-momentum tensor (1.22
- 1.23) can be translated into the vanishing of their Fourier coefficients:

1 5 ‘
Ty = 504 Xp - 0, X = 4o > Lye ™ =0
MmeZ
1 / —2imo~
T = 5a_XR -0_Xp = da %Lme =0.

The coefficients are given by the following integrals valued at 7 = 0, being T, ,
and T__ quantities conserved in 7 |14]:

- T [™ . 1
Lm - 5/ do 6+21ma T++ - 5 Z:Oszn ' &n =0 (142)
0 neL
T [T , 1
Lm - 5/ dU 6_2Zma T—_ - 5 Z Opmp—n - Qp, = 0 . (143)
0 neZ

In particular, for m = 0, we have

~ 1 N B
L0:§Za_n-an:0 (1.44)
neL
1
Lozéga_n-an:O, (1.45)

and, by comparing with (1.37), we get H = 2([~/0 + Ly).
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An object with total momentum p* has a relativistic mass given by M? =
—pup = —p?. Classically, one has

L 1Z~ it S » a,-a FELUCIN
= - Q_p - Q, + =05 = Oy Qp+ —p° = —p° =
' 2n;£0 2 ’ neN 4p 4p

b=y D e ant gad =T -ant Gt =Nt Gt =0
= = Q_p - Oy 0y = Q_p - Oy - = e =Y,
’ 2n7£0 27 neN 417 4p

where N = Yonen O—n -Gy and N = )" oy - oy, in the quantum version of the
theory, are the so-called number operators, because they have integer eigenvalues.
The sum of the last two equations leads to

2 2
M2=—p2=5(Zd_n-dnJrZa_n-an) = S(V+N). (146)

neN neN

The Poisson brackets between L,, and L, defined in eq. (1.43), are
{Ln, Ln}tpp = —i(m —n) Lysn, (1.47)
where we have used the identity
{AB,CD} = A{B,C}D +{A,C}BD + CA{B,D} + C{A,D}B.

Eq. (1.47) represents the Virasoro algebra, from which the interpretation of the
L,,’s as the generators of such algebra. The considerations done for L,, of course
hold also for L,,.

Almost the totality of the results so far collected will be slightly modified in
the quantum theory.

1.5 Quantum closed string theory

In this section, we will translate the results obtained in the previous sections in a
quantum context. To this aim, the Poisson brackets have to be substituted by the
commutators between operators (which, with abuse of notations, will be denoted
by the same symbols used for the classical quantities they described) acting on a
suitable Hilbert space, and all the operators will be “normal-ordered”.

The prescription

e — =il ], (1.48)

yields
[X*(1,0),P"(1,0")] = in""d(c — o) (1.49)

(XH*(1,0), X" (1,0")] = [P*(7,0),P"(1,0")] =0 (1.50)
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(A, &) = [ad, an] = M Omino ™ Ym,n (1.51)
and
[&/rlm O‘Z] =0
[xumu] = "
[zt &l = [z, ar] = 0, n#0.

The ambiguity in the normal-ordered operators emerges out only into Lo and
Lo, where the product of two zero-modes appears. The critical string theory is

obtained by replacing Lo and Ly with the quantities Lo—a and Ly —a, beinga =1
in a 26-dimensional space-time. This implies for (1.47) (after some calculations)

Ly L] = (m — 1) Lypn + 1—C2m(m2 1) pino (1.52)
where the term proportional to ¢ (the central charge) is a quantum effect.
The presence of a afflicts the mass and the Hamiltonian, too. In fact, the
identities Ly — 1 =0 and Ly — 1 = 0 impose the following modifications:

2 - 2 -
M2IJ(N+N) N M2ZJ(N+N—2) (1.53)
and . .

In the quantum theory, we have to implement new conditions to select the
physical states, denoted by |®). They have to be annihilated by the operators
Lo—1and Ly— 1. The equations (Lo — 1)|¢) = (Lo —1)|¢) = 0 can be translated
into

(Lo + Lo —2)|¢) =0 (1.55)

and the so-called level-matching condition, linking the left and right sectors:
(Lo— Lo)|¢) =0 = N=N. (1.56)

From egs. (1.53 - 1.56) one can deduce the closed string spectrum. In partic-
ular, at the first two mass levels, one gets

e the ground state |0; k), eigenstate of the operator p" associated with the
eigenvalue k* and obtained for N = N = 0. It is a tachyon with o/ M? = —4;

e a set of states having the form |Q*) = o”;a",]0;k) obtained for N =

N = 1. They are massless, being o/ M? = 0. The symmetric and traceless
part of [QQ*") is interpreted as the graviton, a massless spin-2 particle, the
trace term is a massless scalar named dilaton, while the antisymmetric part

corresponds to the so-called Kalb-Ramond field.



Chapter 2

Compactification in string theory

The aim of this second Chapter is to describe in some detail what is meant
by compactification in string theory. We will start from the simplest case, the
compactification on a circle of radius R, to arrive at the compactification on
an n-torus in the presence of a B-field, focussing on the intermediate steps. In
the circle compactification, the basic ingredients as the winding number and the
dual coordinate are introduced. The presence of a ‘new’ coordinate constitutes a
signal that the correct arena to analyze such theory should have doubled spatial
dimensions. The same idea holds also in the case of toroidal compactification. As
in the previous Chapter, the mass formula and the level-matching conditions are
computed. They exhibit a manifest O(n,n;Z) invariance. The Poisson brackets
are also constructed. In particular, although the ordinary coordinates and their
duals live in completely different spaces and the left and right ‘auxiliary variables’
have not the role of true coordinates, their Poisson brackets show that they behave
like noncommuting phase-space variables.

2.1 Circle compactification

Let us consider the case of a closed string compactified on a circle: the target
space is now factorized into R?* x S'. R is the radius of the circle. It will be
clear in a moment that, under proper assumptions, such theory is equivalent to
the one compactified on a circle of radius R = o//R.

We want to underline that the component of the metric on the 25" direction
(the one compactified) is 72525y = 1, and so objects like the action, the energy-
momentum tensor and so on, do not change at all with respect to the ones
computed in Chapter 1. In the next section, the same theory will be studied with
a straightforward generalization of the concept of “metric” on such a compactified
dimension.

In the presence of compactification, the periodicity condition introduced to
satisfy the boundary term for a closed string (1.21) gets modified into a quasi-

23
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periodicity condition:
X®(r,0+7) = X*(r,0) + 2nRW? | (2.1)

where W25 € Z is the so-called winding number. Its meaning is the number
of times the closed string wraps around the compact coordinate and in which
direction.

The equation of motion for the field X% is 9,0_X?® = 0 and it is solved by
putting X»(7,0) = (1/v2) [X?(7 + ) + X% (7 — 0)]. The insertion of the last
equality in the quasi-periodicity condition (2.1) this time leads to

XP(ot 4+71) = XP(ot) = XP(07) - X¥ (0~ — ) + 2V2rRW? . (2.2)

Eq. (2.2), as in the noncompact case, leads to the periodicity of the light-cone
derivatives:

0, XP (0" +7) = 0. XP (o)

O XZ(o~ —m)=0_X7(07).

This means that the expansions of the X7°; fields are the same as (1.27 - 1.28):

1 )
XP(oh) = af +22/eaPo" +ival Yy —are (2.3)
n#0
1 A
XZ(07) = 22 +2VaPo + Z\/&Z ﬁa?fe_mm : (2.4)
n#0

but v2a/(63° — af°) = 2RW?*. The fact that &3° # af® has a significative
consequence: in the corresponding quantum theory, there will be two kinds of

momenta and two independent coordinates for the left and right sectors: 2%
25
TR .

The field X% has the following expansion:

1
X®(1,0) = E (xf’ + x?{‘r’) + V2 (6 + o) T + V20 (65 — o’ )o
/ —2inT ) ‘
1 g e [di5€—2ma + a7215€+21n0] )
2 n

As in the noncompact case, the momentum density is
Pos = PP = TX? (2.5)
and the total momentum is

P* = /WdaP% -
0

o (@ +of’) =p™. (2.6)
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In analogy with the center-of-mass momentum p?® just defined, we are naturally
led to introduce another object which is similar to a momentum (they have the
same physical dimensions), the winding:

1
w?® = (a3® — o). (2.7)

It is easy to verify that w? = RW? /o,

The compactification along a circle of radius R implies the string momentum
to be quantized, so that pss = K5/ R, with Ky5 € Z. The integer number Koj is
known as a Kaluza-Klein excitation. As we already said, in this theory 2% and

x% are independent variables and we write them in the following form:

1
1:%5 — E(x% + j%)
25 1 (:C

Ty = —
V2

25 i_25) ]

So we get for X%

XP(1,0) = 2% 42dp*7 + 2dw*0
—2inT
e e ok o ,
+iq 5 [0%2156 2ino + a72LB€+2mU
n
n#0
25

K
= ¥+ 20/F7' + 2RW?¢

o e—QinT ] )
+Z 5 - [6&72156721110' 4 a25€+21na] ) (28)
n

For later convenience, it is useful to write the zero-modes in terms of the
Kaluza-Klein excitations and the winding numbers. To this aim, let us recall
that

V22 (2 + a®) = 2d/pas

V2o (a2° — o) = 20w®

which are equivalent to
V2o (6% + o) = 2d/ -2

20/ (a2 — a®) = 2RW®.
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The last couple of equations are ‘solved’ by

K. RW?
V22/ad® = o (ﬁ - ) (2.9)

R of
K. W25
V2a'ad® = of (% — RO/ ) (2.10)

The main difference with the noncompact version of the theory is that the mass
receives contributions only from the noncompact dimensions. So

24
M ==Y " pup. (2.11)
pn=0

On the other hand, in the quantum theory, the Virasoro generators remain the
same and the condition of their vanishing still holds:

~ 1 - - 1.
Lo—l = 52067n06n+5058—1

n#0
1 o 1
= Y ., ant 5 > nuwabay + 5(@35)2 —1
TLGN /‘Lal/:(]
o 2 1
= N+ D par+ 568 = 1=0 (212)
pn=0
1 1
LO_]- = §Za_n-ozn+§oz(2)—1
n#0
1 — 1
= Zafn Coy, 5 Z nw,agozg + 5(04(2)5)2 -1
neN p,v=0
o 2 1
B o Loy to25\2 4
- N+4§pup +5(0g) = 1=0. (2.13)

These equations imply

oM? = 2N +2N —4+ %[(dﬁf’)Q + (a2®)?]

(%) N (RZV, ) ] L (219
1 ~25\2 25\2

5[(040 )"+ (Ofo ) ]

)] e

= 2N +2N —4+d

The quantity defined as

o/ M

/




2.1. CIRCLE COMPACTIFICATION 27

will play a fundamental role in what follows.
It is worth noticing that the mass spectrum is invariant under the following
simultaneous transformations:

W? ¢ Koy and R < d'/R, (2.16)

representing the simplest example of a T-duality transformation.
The level-matching condition is now

(Lo — Lo)|¢) =0 = N-—N= %[(d?ﬁ’)? — (a®)?] = WKy . (2.17)

The difference with (1.56) is evident. It is due to the different topology of the
space-time in which the periodicity condition is formulated.

What happens if we perform the transformations W2° <> Ky and R <+ o//R
on the zero-modes? They change as follows:

a’ = ar (2.18
ar’ — —ad. (2.19)

If we promote this kind of behaviour to the other modes,

~25 ~25

o, — (67
25 25

a,, — -,

we recognize that the couple of fields X7%; transform as
XB o XP
Xy = —XZ.

It implies that we can define another kind of field: X2°, the T-dual of X?. It is
given by

X?(1,0) [(XP(r+0)—XP(r—0)]

1
V2
1

5 (0 = o) + VB — o)+ VI + o

o 6—2im- ] )
in] — § [di5e—2ma _ ai5€+2ma]
2 n

n#0
= P 4200?14 2d/p*°0

o 672in7 ] )
43 5 E [&72156721110 _ Oé’IQL5€+2’L’rLO'
n
n#0

K25
= P 4 RWHr 4+ 20/?0

—2inT

o e or o ,
[04256 2ino a25€+2m0 ) (220)
2 n n n
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From the last equation, it appears that the winding w?® has the role of a momen-
tum (the quantity multiplied by 7 in the expansion) for X?°.

2.1.1 Poisson brackets

The presence of the new momentum w2, of 725 and of the entire T-dual field X2
itself, changes the Poisson brackets (and the commutators). In fact, besides the
ones holding for the noncompact dimensions, we have:

{X*(r,0), P*(1,0')}pp = (0 — ') (2.21)

{(X®(1,0), X®(1,0 ) Ypp = {P®(1,0),P¥ (1,06 )} pp = 0 (2.22)

{Oé7r?,~25}P —{am, 25}pB——zm5m+n0 VYm,n (2.23)
{a), 02} ps = 0
{$25,p25}PB — 1
{1’25,5425}133:{%25,0425}138 = 0, n#0,

as well as
25 . 95
{z=,w*}pp =0.

Even if X?5 is usually used as the proper coordinate, nevertheless it is useful
to calculate the Poisson brackets relative to the fields X, p for reasons that will
be clear later on. They are:

{(XP(r+0),XP(r+0)}pp = —2mde(oc—0) (2.24)
(XP(r—0),XP(r—0)}pp = 2nde(c—0) (2.25)

and
{X%S(T + U),XI%E’(T — o )}pp=0.

It is worth stressing that the fields X%?R behave like noncommuting variables.
In the previous calculations, we used

{$L 70405}P = {$R7%5}PB = \/&7

equivalent to
{xL »pL PB = {mRpr ‘=1,
being p?® = (1/Va/)a?® and p%» = (1/v/a/)a2® (the other Poisson brackets are
vanishing), and the following expression of the e-function:
2 ) 1 o
e(z) = LN S tine (2.26)

2r 2w o n
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(see eq. (A.9)).
The surprising aspect is that the Poisson brackets of the fields X?° and X2°
are the same as the ones computed for X7%;:

{X®(1,0),X%(1,0")}pp = —2nd/e(c — o). (2.27)
In fact, due to definitions (and omitting the dependence on the variables),

(X® XPYpp = (1/24XP, XP}pp — (1/2){XP, X¥}pp
= {XP. X Yps.

In order to be consistent with the result in eq. (2.27), obtained through an
undirect calculation, we have to admit that

{9625,525}193
{j257p25}PB =
{0} pp =

{jQS,&ZS}PB — {i'%;aiS}PB —

S = O O

, n#0.

In analogy with the momentum density (2.5), we define P = T()?)25:

7525 _T { /_20/(07(2)5 . &35) + /20/ Z €—2m'r [&TQL5€—21'7LJ . ai5e+21no]} ) (228)

n#0

With this new dynamical variable, we can construct the following Poisson brack-
ets:

{X?(1,0),P?(1,0")}pp = 0(c — o) (2.29)
{X®(1,0), X*(1,0)}Yps = {P?(1,0),P¥(1,0" )} pp = 0, (2.30)

in complete agreement with the previous analogous brackets involving X?° and
P2,
In conclusion of this section, let us observe that (see (1.33 - 1.34) and (2.20))

()?)25 — X/25 80825 — 01X25
{ (X/>25 — XQS <~ 81X25 — a[]XZS 5 (231)

summed up in
0. X% = —€,, "X, (2.32)

which is the typical relation holding for Hodge-dual forms defined on a bidimen-
sional flat space (see eq. (C.8)).
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2.2 More on circle compactification

In this section we will deal again with the compactification on a single dimension,
writing down the analogue of the results so far obtained, but trying to analyze
the role of the component of the metric along the compactified dimension, that
will be denoted by G'(25)(25)-

In order to fix the ideas, the target space can be thought as constituted of the
product of a minkowskian part RY?* and the 1-torus 7" = S*. Strictly speaking,
the Polyakov action, the Lagrangian density and other variables get modified. As
an example, the Lagrangian density is

24
T o , o5 <
L= | D (XX = XPX") + Gag o) (XX — XX
/"L’V:O

and the line element on the target space is constructed as follows:
24
ds’ = ) nudX"dX" + Gos)5)d X PdX> .

p,v=0

As we will see at the end of this section, G 25)25) must be equal to R?/a’ (to be
dimensionless and) to be consistent with the previous section.
The quasi-periodicity condition (2.1) gets slightly modified in the constant
term:
X¥(r,o47) = X®(1,0) + 20V WP (2.33)
The mode expansions for the fields X7°; remain the same as (2.3 - 2.4). The
momentum density is

= TG 25)(25) X, (2.34)

while the momentum itself is

4 1
P25=/ doPas =
0

EG(%)(%)

Eq. (2.33) suggests the following new definition for the winding: w? = W2 /\/o/.
It is a more convenient and symmetrical way to define it, because of the similarity
with pos = K25/\/J due to the quantization of the momentum. In conclusion,
the expansion for the field X?° is

(62 + a2®) = pos . (2.35)

X5(r,0) = 2% +2d/GP Pyt 1+ 20 w0
! —2inT ] '
4 % e [&256721710’ + a25€+2’m0]
n#0 n
= .73'25 + 2 V O/G(25)(25)K25T + 2\/&W250'
o e—2im— ) ‘
‘l—Z ? Z [&72156—2271(7 + a72L56+21n0] ’ (236)
n

n#0
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where G#25 represents the inverse of G (25)(25)-
The zero-modes expressed in terms of W?° and Ky are obtained from

V2 (a3 + o) = 2V a/G®) Ky

20/(6%° — o) = 2/aW?
implying

V2062 = VoGP Ky + W)
Baa® = Vol (G K,y — W)

or, by eliminating the common factor v o/,

2&(2)5 _ G(25)(25) K25 + W25

V222 = GO, W,

The conditions of vanishing Virasoro generators (Lo —1=Ly—1=0) are

Z~LO—1 = —Za_n ay, + ao 1
n#0
1 & 1
= Z&_n - oy, 5 Z U#V&gég + §G(25)(25)(5435)2 -1
neN w,v=0
o 2
= ZW? +5 G(25 (23)(@5) —1=0
=0
LO_]- = 5204_”-04”—4—5043—1
n#0
1 & 1
= Z a_p - Oy + 5 Z nuyozgag + §G(25)(25) (&(2)5)2 -1
neN w,v=0
o 2

= N+ — Zpup + G(25 25) (01(2)5)2—1:0.

The mass-squared reads
O.//]W2 = QN + 2N — 4+ G(25)(25)[(d35)2 + (&(2)5)2] ,
while the quantity o’ Mg is
Mg = Gosyesl(ay’)? + (ag”)?]
= Gan)o5) (G Kys)? + (W)
= W G (25)(25) W2 4 Ko5 G Ky

31

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)
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It is evident that, in this case, the mass spectrum is invariant under the T-duality
transformations

W25 — K25 and G(25)(25) g G<25)(25) . (243)

The level-matching condition is now
- | 3
(Lo — Lo)|¢) =0= N - N = §G(25)(25)[(0435)2 —(ag’)’] = W K5 (2.44)

It is very interesting to observe that the mass spectrum and the level-matching
condition can be written by introducing a couple of 2 X 2 matrices (so doubling
the number of coordinates involved):

o' M2 = (W Kys) G ( vg: > , (2.45)
where
= ( G(zf))(%) G@g(%) ) (2.46)
and
N_N-= %(WQE’ Kss) ( - ) ( V[Z: ) | (2.47)

Let us now observe that the exchange R > /R is completely equivalent to
G 25)(25) > G by choosing G(as)25) = R?/a/, as we stressed in the introduc-
tion of this section. In fact, it is evident that, with such a position, the result of
sect. 2.1 is recovered starting from equation (2.42):

2
a'Mg _ (‘/G(25)(25)K25> +( /G(25)(25_)W25)2
Kos\2 [ RW2%\?
— . 2.48

If we perform the transformations W2 <+ Kos and G(as)(25) <> G*® on the
zero-modes, we get for them the following behaviour

/
=

ag’ = Gesyesdp (2.49)
ag> — —G(25)(25)0435 (2.50)

and something very similar for the entire left and right fields:

Xp = Gesesn XD
X]2%5 — —G(25)(25)X}2%5.
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The T-dual field, in this case, manifests its “covariant nature”, being explicitly
defined in terms of G/(25)(25):

~ 1
Xos(1,0) = —=Ga5)(2) [XES(T +o0)— Xp(T— U)]

&

1
= Gos)e) {ﬁ (27 = 2%) + V2 (65" — o’) 7 + V20/(67” + 0’ )o
o e—QinT ] 4
+1 5 [&72156721710' _ Oéi5€+21no']
n#0 n

= [Z'25 + 2\/&@(25)(25)W257— + 2\/&[(250

o 6—27Ln'r
. ~25 —2ino 25 _+2ino
+iy| S Gemes) ) @0 " — ajPet ),

n#0

where

B 1
Tos = —2G<25)(25)(l’%5 — 7).

2.2.1 Poisson brackets

The Poisson brackets involving the variables X2, P? and X#°, X% are slightly
modified with respect to those of section 2.1.1. One gets

(X?(1,0),P?(1,0")}pp = G®®§(5 — o) (2.51)
{X?(1,0), X®(1,0)}Ypp = {P*(1,0),P*(1,0")}pp = 0 (2.52)

and
{(XP(r+0), XP(r+0)}pp = —21d/G® (o — o) (2.53)
{(XP(r—0),XF(r—0)}pp = 27d/G®PHe(o —0o'). (2.54)
They lead to
{02, 62 pp = {02, a2} pp = —iM 0y noG®®) Vm,n (2.55)

The interesting Poisson brackets are those involving the tilded quantities. By
defining Pos = T(X )45, We can construct

{X25(T, 0'), 7525(7', O'/>}pB = G(25)(25)5(0' — O'/) (256)
{X%(T, o), X25(7', o )}pp = {7525(7, o), 7525(7, o)}pp=0. (2.57)
Moreover

{Zo5,p}pp = 0
{Fo5,w*°} pp

{F95,02° Y pp = {T05, 02 pp = 0, n#0.
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The fields X2° and X5 behave like noncommuting variables
{X25(T> 0)7 X25(7'> U/)}PB = —27TO/€(0 — 0/) , (2.58)
because

(X% Xostrs = (1/2)Gesen{ XD XP ' ps — (1/2)Gas)es {XP, X7 }re
= Gasyes{XD, X rb .

As in the previous section, {2%°, Zo5}pp = 0.

2.3 Toroidal compactification

In this section we will investigate the case of compactification on an n-torus 7"
(toroidal compactification). The physical sizes and the angles characterizing the
various circles are encoded in a constant metric, called G;;. We will denote the
noncompact coordinates by X# (u =0,...,d—1), while the compactified ones by
Y! (I =1,...,n). As it happened in the case of a single compactified dimension,
the action, the Lagrangian density (and so on), are modified with respect to the
noncompact case. As an example, let us write the Lagrangian density

d—1 n
T . . —_
L=3 > (XX = XX+ Y G (YTY YY) |
w,v=0 I1,J=1

It implies that the Polyakov action S, can be split into two components: S, + S¢,
where (we will omit the summation symbols)

T
Sy=-3 / d*E V/—h h*P,, 0, X 05 X"

and
T
So = -3 / AN —hh*PG1;0,Y' 05V . (2.59)
The noncompact and the compact spaces do not interact.

The line element in the target space RV1 x T, with d +n = D = 26 is

d—1 n
ds’ = ) nudX"dX¥ + Y Gpdy'dy”. (2.60)

p,v=0 I1,J=1

Since now on, we will focus only on the compactified coordinates, being the
expression of the fields X*# in terms of the modes the same as the ones calculated
in the first Chapter.
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The energy-momentum tensor has the same structure as the one computed in
the first section via the substitution 7,, <+ G :

1
Tos = 0,Y - 0gY — 5haﬁméayy - 05Y (2.61)

with A-B = Gr;A'B’. Let us recall that T,5 vanishes on the equations of motion
for the world-sheet metric.
The action S exhibits the Poincaré, reparametrizations and Weyl invariances.

e Poincaré transformations:
oY =d',Y' +b" and 6n* =0 (2.62)

imply
8Sqe = T / BPEN—h P Grra (0, Y 5 05Y
= -7 / PN —hh*P a0, Y5057 = 0;

e reparametrizations of the world-sheet coordinates. There is no difference
from section 1.2;

e Weyl transformations: they regard the world-sheet metric structure only.

These considerations guarantee the possibility of gauge-fixing hog = 74. The
equation of motion and the boundary term for the field Y/ deriving from the
action (2.59) are
oo O=T
9,0°Y'=0 and —T / dr [(Grs01Y”) oY _  =0. (2.63)

o0

The first one is surely satisfied by requiring the solution to be

1
y! T,0) = — Yir+o)+Yi(r—0o ,
(1,0) 7 (Y2 (7 +0) + Yi(7 = 0)]
while the second one is satisfied by imposing a quasi-periodicity conditions of the
type
Yiro+n)=Y!(r,0)+2nvVa'W!. (2.64)
The mode expansions for the fields YL{R can be found in analogy with the
procedure carried out in section 2.2:

1 .
Y/ (0") = yi+2Velafot +ival Yy —ake (2.65)
n#0 n
1 -
Yi(eT) = yh+2Vaalom +iva E —ale e (2.66)
n

n#0
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The field Y! becomes

1 -
Yi(r,0) = E(yi +yg) + V20 (a5 + ag)T + V2 (a5 — ag)o
/ —2inT ) )
—|—Z % Z e - [d{le—mno‘ 4 afle—‘r?sz] ’
n#0
The momentum density is
oL .
P = Pl TG Y7, (2.67)
while the momentum itself is
s 1 ~
P]:/O dO'P[: mG}J(O&bj—f‘Ogb]) =pPr. (268)

Momentum quantization implies p; = K;/v/«/, while the boundary condition
implies w! = W!/v/o/. With these identities, the compact coordinate Y has the
following expansion:

Yi(r,0) = o' +2dG"pyr +2dw'o

o e—Qim— ) ]
i) — E [&71;6—21710 + aie—i-%na]
2 n

n#0
= ¢+ VG K+ 2V Wi
! —2inT ) )
Fiy| SN [ale % 4 alet?e] (2.69)
2 n
n#0
with
I ].

I I
= —(yL +yh) -
Yy \/§(yL yR)

An expression of &} and af in terms of the winding number W' and the
Kaluza-Klein excitation K is obtained from the two conditions

Voolal +aol) = 2Vo'GVK,

20/(ad —al) = 2v/aW!
implying

Vooal = Vo' (GYEK; + WY
Vo2olal = Vo' (GYK; - W),
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or, by cancelling the common factor,

Voal = GYEK;+W! (2.70)

V2ol = GVEK; —w!. (2.71)

The vanishing of the Virasoro generators Ly — 1 and Ly — 1 explicitly reads

~ 1 - - 1.
Lo—l = §Za_n-an+§ag—1

n#0
1 d—1
= Z&fn : &n + 5 Z UW@SO&S + = Z G[JO(OOéO -1
neN p,v=0 IJ 1
,d 1
- Zpup 1= Z Gratal —1=0 (2.72)
pn=0 IJ 1
1 1,
Lo—l = 52@,71'@”—'—5040—1
n#0
- Za ntQnt g Z M@ + 5 Z Gryopay — 1
neN ;U/ 0 IJ 1
,d 1
= Zpup“ +5 Z Grajay —1=0. (2.73)
IJ 1

In the number operators there are contributions both from the noncompact and
the compact oscillators. The mass-squared reads

o M? = —a’ipup“
= 2N 42N — 4+ Gyladag + olad], (2.74)
while
oM = Grjlabay + ol
= GuW'W’ +GYKK,
= W'K)) ( Géj GOU ) ( I?(/j ) : (2.75)

As in the case of a single compact dimension, we have introduced a square matrix

G 0
g - ( OIJ G[J ) s (276)
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with doubled dimensions: 2n X 2n.
The level-matching condition can be written in a similar fashion, too. In fact,
(Lo — Lo)|¢) =0 =
~ 1 o
N—-N = QGU[aéaO‘] —abad]

= W'K;

. 1 I 0 1n WJ
(e ) (%)
sk (0 W) ()

It is evident that, in this case, the mass spectrum and the level-matching
condition are invariant under the simultaneous transformations

Wl K and GGt (2.77)

the last of which is equivalent to G;; <+ G'7. In this case the T-duality trans-
formation shows its “nongeometrical” nature, meaning that the metric is not
transformed through a diffeomorphism.

The exchanges W' < K, G;; <+ G/ induce on the zero-modes the transfor-
mations

o — =G, (2.79)

which can be promoted for Y/ z:
YLI — G[‘]Yi]
Yé — —G]JYR] .
In this way the dual field Y;(r,0) is

- 1
—— [G[JYLJ(T—i-O') — G[JY]%](T —O')]

V2
=+ 2VGr W T+ 2V Ko

o' e—ZinT
. ~J —2ino J _+2ino
+1 EGU E " [aze —age B
n#0

=
R
2
Il

where, as before,

B 1
gr = EGU(% —yp).
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2.3.1 Poisson brackets

The Poisson brackets relative to the coordinates Y/, P" and Y/ j, are, respectively,

Yi(r,0), P/ (1,0} p = G6(0 — o) (2.80)
{Y!(7,0),Y (7,0 }pp = {P'(.0), P/(7,0")}p1 = (2.81)

and
Yir+0),Y/(r+0)}pp = —21d'G"e(0— o) (2.82)
Yi(r—0),YJ(r—0)}pg = 2md'G"e(oc—0). (2.83)

For the oscillators one gets:
{a),, a7} pe = {al, a)tpp = —imbpinoG” Ym,n. (2.84)
The Poisson brackets involving the tilded quantities are (by defining P; = T(Y) 1)
{Yi(r,0),Ps(t,0")}pp = Gr,6(0 — &) (2.85)
{Yi(r,0),Y;(r,0")}pp = {Pr(7,0), Ps(7,0') } pp = 0 (2.86)
as well as

{9, p"Yps = 0
{#r,w"}pp = 67

{9, pp = {ir,al}pp = 0, n#0.

The surprising aspect is that the fields Y and Y have the same kind of be-
haviour of Y7 g:

{YI(Ta 0)7 Y/J(Ta OJ)}PB = _27T01/6[J€(0' — 0',) . (287)
In fact, due to definitions,

(Y'Y e = (1/2)Gu{Y] .YV s — (1/2)Gur{YE, YE Y ps
- GJK{Y[{7Y5(}PB .

Moreover, {y’, 7;}pp = 0.

2.4 Toroidal compactification
in the presence of a B-field

In this section we will focus on the case of n compactified dimensions (compactifi-
cation on an T"-torus) in the presence of a constant antisymmetric Kalb-Ramond
field B[J.
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The action describing the compact target space is the following:

S = Sg+Sp
T T
= -3 / eV =D BTG 0.Y 05Y + 5 / d*€ 7 Br,0,Y 105V
T
= -3 / ¢ (VR0 Gry = P Bry) 0,07 (2.88)

The equation of motion for the field Y/, deriving from the previous action is due
only to Sg. In fact, Sp is a sum of surface integrals:

T

Sp = 5 / d*€ P B ;0,Y ! 05Y
_ Z 2 ap I J _z 2¢ 0B 1 J
= 3 A& 0o (e’ BrsY'05Y) 5 d*¢ *’ B, Y'0,05Y

_ % / @26 0, (€9 By, Y1 95Y")

= g/d2§ {80 (EOIB[JYIalyj) + 61 (EIOB[JY]a()YJ)}
™ +oo

= g / do [Br,Y oY)~ — g / dr [BY' oY)\ _5 .
0 —00

The energy-momentum tensor has the same structure as the one computed in
the previous section since

2 1 68 2 1 6(Sg+ Sp) 2 1 65

R N T e T B Ve ¥ T R
The action S exhibits the following invariances under:
e Poincaré transformations
oY'=a', Y7 +b" and 6h*° =0 (2.90)
implying
6Se = —-T / 26/ —hh*PGrral 0, Y KDY T =0
8Sg = T / d*¢ e’ Brya' 1 0,Y 5057 =0

e reparametrizations (it is sufficient to notice that €*?//—h transforms as a
tensor being ¢ a tensor density);

o Weyl rescalings: they do not act on Sp.
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The three local invariances permit to gauge-fix the world-sheet metric: hqog = 1gp.
Let us now rewrite the action S = Sg + Sp in the conformal gauge:

T
S = —E/dzf (n“bGU—eabBu)aaYI&,YJ
T
= 3 / P (GYY! —GY"'Y'" 4 2B, VIV (2.91)

The equation of motion and the boundary term deriving from the action (2.91)
are

“+o0o
9,0Y"=0 and -T / dr [(Grs0Y” + BryY”) 6Y'])7_5 = 0. (2.92)

—00

The boundary term vanishes once one requires a quasi-periodicity condition for
the string coordinates

Yir,o+7)=Y!(r,0)+2nvVaW!. (2.93)

As in the previous section, the expansions for the fields YLI’R are the ones in eqs.
(2.65 - 2.66) and YT can be formally written as

Yi(ro) = — 50+ k) + VA (3] + a7 4+ VA (3]~ af)o
[ Z B [ale 2o 4 qlet2ine) (2.94)

while the difference is in the momentum density:

_ 1J
PI:W (GIJY + B Y'). (2.95)
The momentum is
i 1
Pr= | doP; = —I[Gr(&] +al)+ Brs(a] — o) =pr. 2.96
1= [ doPi= (Gl +od) + Bulad — ol = (299

Quantization of the momentum implies p; = K;/vV . As before, the winding is
w! =W!/Va'

The zero-modes expressed in terms of W/ and K; are obtained from
V 20/(07(]) + O./é) = 2\/&G1J(KJ — BJKWK)

20/ (&b —af) = 2vVaW!
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implying
V2d'ah = Vol [GYE; + G (G — Big) W]
= VoG (K + ET W)
V2ol = Vo [GIJKJ - GGk + BJK)WK}
= VoG (K — EjeWE),
or
V2al = G (K + BT, Wk) (2.97)
V2al = GY(K; — E;pWEY, (2.98)

where we have introduced the constant n x n matrix E;; = Gr; + Byy.
The expansion of the compact coordinate Y7 in terms of K; and W7 is

Yir,o) = ¢+ 2V (GVK; — G5B, Wt + 2V aWlo

/ —2inT
[0 (& I

+iyf 5> g

—2ino + o 6+2fma] ] (299)

2 [an
n#0 n

The conditions on the Virasoro generators io —1=Lg—1=0 are the same
as in eqs. (2.72 - 2.73).
The mass-squared reads

o/ M?* = 2N + 2N — 4+ Grslalal + alad] (2.100)

while

O/MOQ I J]

GIJ[onon + agoy
(G — BG'B)p ,W'WY + By G WK
—GHE B, KW+ GVEK K,

G —BG™'B);; BixGX\ (W
= (WIKI)(( —GIKBKJ)U ‘et )(KJ ) (2.101)

The 2n x 2n matrix

G = < G — BG™'B BG™! ) (2.102)

-G 'B G!

is the generalization, in the presence of a B field, of the one in eq. (2.76) and it
plays a fundamental role.

The level-matching condition can be written through the introduction of an-
other 2n X 2n matrix.
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(Lo — EO)’@ =0=

- 1 L
N—-N = éGU[aé%]—aéab]]

- WIK]
1, 0 1, w

=45 ) (%)
1 0 &7 w

= - (W'K ! . 2.103
s (4% ) (%) (2.103)

In this case, a T-duality transformation affecting both the mass and the level-
macthing condition, can be expressed in a series of equivalent ways:

e Wl K;and G & G1 (involving 2n x 2n matrices);
o Wl K;and FE +» E~! (involving n x n matrices);

° WI — K; and (G — BGilB)[J < GIJ7 B[KGKJ < —GIKBKJ (again
involving n x n matrices).

They imply on the zero-modes the following transformations:

& —  Epag (2.104)

R (2.105)

The quickest way to verify them is to use the identities (G + B)G™'(G F B) =
G — BG~'B, which, translated for the matrix F, read: EG'ET = ETG'E =
G — BG7'B. These kinds of transformations hold for Y/ and Y}, too:

YL] — E[JYI:]
Yi — —ELY.

The dual field Y;(7, o) is
- 1

Yi(r,0) = E [E[JYI:](T +o0)— EfJYR](T — 0)]
= g[ + 2\/5[(61 — BG_1B>]JWJ + B[KGKJKJ]T + 2\/&[([0'
. o 6722'717' ~J —2inc T J_+42inoc
+i 5 Z [Epjace — Ej ae ].
n#0
This time

-1
y[—ﬁ

We learned that a T-duality transformation acts on the fields Y and Y, as
well as on the couplings F and £ = E~'. We want to stress that this symmetry

(Erryi — Ef vh) -
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can be made more evident in the action describing such a model. In fact, to this
aim, let us slightly modify the action given at the beginning of this Chapter, eq.
(2.88): because of the symmetry of h*¥ and G; and the antisymmetry of e
and By, the actions Sg and Sp can be written as

T

R / P26V =hh**(Gry + Bry)0.Y' 057"

and
T
SB — 5, = 5/(126 GQ’B(G[L] + BU)ﬁaYIQgY‘] .

So their sum reads:

S = Si+ 5%
- —g / & (\/—_h hed _ eaﬁ) (Gry + Br))0 Y195y
_ —g / ¢ (VR =) Epyo,y o5y (2.106)
Applying the duality transformation, we get the T-dual sigma-model action
g = —g / d2¢ (\/—_h ho? eaﬂ) V8,910,V . (2.107)

2.4.1 Poisson brackets

The Poisson brackets relative to the coordinates Y, P" and Y/ , are:

(YI(r,0),P'(r,0")}pp = G'5(c — o) (2.108)
Yi(r,0), Y (1,6)}pp = {P!(7,0), P’ (1,0)}pp = 0 (2.109)
Yi(r+0),Y/(r+ ) pg = —21d'G"e(0 - o) (2.110)
Yi(r—0),Y(r—0)}pg = 2md'GVe(o—0). (2.111)

The oscillators satisfy
{al  alYpp ={al,al pp = =i M 6minoGY Ym,n. (2.112)
For the fields Y and Y it happens that:
{(Yi(r,0),Y;(r,0")}pp = =210/ 6" je(0 — o), (2.113)
as it is very simple to verify:

(Y'Y e = (12)Epe{YL,YEYps — (1/2) BT {VE, YE Y pp
= (1/2)(Ejx + EJ Y], Y} P
= Gu{Y, Y }pp.
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2.5 On the matrix ¢

The block matrix G is symmetric because (G—BG'B)T = G—BG™'B, (G™H)T =
G~ ! and (BG™Y)T = —G!'B. It can be decomposed into the following product
of matrices:

G- BG'B BG!
-G 'B G!

_ 1, B G 0 1, O
N 0 1, -G7'B 1, 0o G )

So, detG = detG- detG~! = 1.
The inverse matrix can be computed in more than one fashion. It reads

_ Gt -G 'B
G = ( BC-' C_ BO-'B ) (2.114)

The T-duality transformation of the background fields is encoded into the ex-
change £ +» E = E~!, which fixes G = (G— BG™'B)™! and B = -G 'BG (see
Appendix D). Due to these equalities, the matrix G~ can be also written as

T-BGB BGT\ _
G l= ( G—GEB éc’il ) =G. (2.115)

The equality G = G is another way to express part of the T-duality transfor-
mation.

2.6 The O(n,n;Z) duality group

As we already stressed, the bosonic string compactified on an T"-torus has a
symmetry under the group O(n,n;Z). It generalizes the T-duality symmetry
on a single compact direction (circle compactification). This symmetry is best
described in terms of the matrix G, as we saw in the previous section. Indeed,
for a nonorthogonal torus the R <+ o'/R duality of the circle compactification
generalizes to the inversion symmetry

Wl K; and G G'.

A further discrete shift symmetry, leaving the zero-modes &} and o invariant,
appears only when n > 1. It is given by

1
B[J_>B[J+§N[J with W]—>WI, K[—>K[+N]JWJ, (2116)

where Ny is an antisymmetric matrix of integers.
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By definition, a 2n x 2n matrix A belongs to the group O(n, n;R) if
20 L.\, [0 1,
A ( Lo )A=lL ¢ ) (2.117)

rf 1. 0 (1. 0
A (0 o )A=0 o) (2.118)

The group O(n,n;Z) is the subgroup of O(n, n;R) consisting of those matrices
the elements of which are integers. If the matrix G has integral entries, then its
inverse G~! has automatically integral entries, too.

The symmetry under a T-duality transfomation is realized as

G — AGAT and (Z)%(V;:):A(Vlg) (2.119)

This preserves the result for the mass spectrum in eq. (2.101) as well as the
level-matching condition in eq. (2.103).
In terms of O(n,n;Z) transformations, the inversion symmetry corresponds

to the matrix
0 L (2.120)
1, O )

(which in the next Chapters will be called §2) and the shift symmetry corresponds

to the matrix
1, O
( Ny 1, ) ) (2.121)

or



Chapter 3

T-dual invariant formulation:
‘flat’ scalar field

In this Chapter we introduce the fundamental ingredients to construct the T-
duality invariant formulation of closed string theory, which is examined in Chap-
ter 5. The starting point is a free Lagrangian/action describing a bidimensional
scalar field ¢. Through the introduction of an auxiliary variable, it is inserted
in the action a new scalar field ¢ which, on-shell, turns out to be Hodge-dual of
the ‘original’ field . The action is then symmetrized to make both the variables
appear on equal footing. A suitable rotation introduce a couple of new coordi-
nates in terms of which the symmetrized Lagrangian splits into two decoupled
first order Floreanini-Jackiw Lagrangians. Their invariances are then discussed
and quantization is performed, following Dirac’s procedure [15, 16, 17, 18, 19|.

3.1 Scalar field symmetric action

On a bidimensional manifold M, let us consider the flat minkowskian metric
Ne = diag(—1,+1) and the coordinates £* = (£ = 7,£! = 0), with —co < 7 <
+00 e 0 < o < 7. Let us introduce a scalar field ¢ = (7, 0) the dynamics of
which is described by the free Lagrangian density

1

L(O) - _5 a(paagp
1
= 51" 0O
1
= B [(3090)2 - (3190)2] (3-1)
or by the action
1
sV (el = [ e =3 [ a6 (@ - (@ueP]. (5.2

47



ASCHAPTER 3. T-DUAL INVARIANT FORMULATION: ‘FLAT’ SCALAR FIELD

The action (3.2) describes a single degree of freedom.
The equation of motion and the boundary terms for the field ¢, coming from
the variation of the action (3.2), are

9,0%0 = 0 (3.3)

and

T +oo
/ do [Bypdp) =1 — / dr [O1pdepl;_5 = 0.
. _

o0

By remembering that dp(7 = +00,0) = 0 Vo, the boundary terms reduce to

+00
- [ oo 0. (3.4)
The boundary term (3.4) is of the same type as the one encountered in Chapter
1 for the closed string coordinates in the conformal gauge (eq. (1.15)) and it is
sufficient to require a periodicity condition as

o(r,0+m) = @(1,0) (3.5)

to satisfy it (even if this in not the unique possibility).

The Lagrangian can be put in a ‘first order form’, in which it is linear in the
time derivative of the field ¢. At this aim, let us introduce an auxiliary field
p(1,0) = o (which, in this simple theory, coincides with L /9(0y¢), the
conjugate momentum with respect to ¢). So we obtain £ — £, where

1 1
L'=pap — 50" = 5(p)" (3.6)
Moreover let us make the ‘recast’ p(1,0) = 01¢, which requires the introduction
of another scalar field ¢ = @(1,0) and the transition from the Lagrangian density

L’ to the one named L:

£=00p0hg — 5 (Or9) — 5(0,)° (3.7

and similarly for the actions S’ and S:
5= [ ¢ [pane - 37 - 5007 9
Sle.1= [ ¢ [an0rp - S0 - 0191 (5.9)

In order to ‘symmetrize’ the action (3.9), in the sense that the fields ¢ and @
will be on equal footing, let us make the following observations: one half of the
integral [ d*€ Oypd1¢ can be written as

1 1 1
5 [ Eeaos =3 [ eectapas; [ Peopans
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and the term involving the pseudo-tensor €®® reduces to surface integrals
5 [ 6 0u(e00u0) — 5 [ PE 0,000

%fdgf 8b(e“b<ﬁ8ag0) — %ICF& @eababaago
3 J PPE0 (0D D)

—3 | € 0a(eP0hp)

(being €%0,0yp = €¢0,0,¢ = 0). It is easy to see that the action (3.9) can be

1

5 [ Eecroos —

written as ) 3
o 2 KR ACK oY)
S = Seym + : (3.10)
—5 [ d*€0.(e”@0,p)
where
A N 1 - . -
Seym [, 8] = 3 /d2§ (000015 + Do@OLp — (D1p)” — (D19)°] - (3.11)

S and Ssym are (essentially) equivalent, differing by surfaces terms, which explic-
itly are

1 ~ 1 " ~1T=400 1 e ~10=T
3 / d*€ 0, (™ 0Dy p) = 5 / do [y @]— "5 — 5 / dr [p0o ). —;
0 —00
1 [+ _
o (312)
or
1 2 ab ~ 1 " ~ T=-+00 1 ee ~ o=m
5 A€ 0 (€™ POyp) = —3 do [@31<P]T:7w+§ dr [P0l
0 —00
1 [+ _
= 5[ arleals (313)

where we have used the conditions ¢(7 = £00,0) = @(7 = +00,0) =0 Vo.
By adding the hypothesis of periodicity in o of the field ¢, too

Q(r,0+m) = §(1,0) (3.14)

(something which is reasonable and that will be justified later on), we see that
the surviving surface integrals (3.12 - 3.13) vanish.

Let us now make an interesting observation: the variation of the action Ssym,
calculated when dp = f(7), is the following surface integral

N 1 ~
0Ssymlop=f(r)y = 5/012531 [Oof () P
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1

+oo
- 2 / ol ()8

+oo
- 3/ arar@ T - o, (315)

which is vanishing because of the periodicity of ¢. So the action is invariant under
the shift ¢ — ¢ + f(7). We get a similar result for 6¢p = f(7) & @ = ¢+ f(7)
due to the periodicity of ¢:

Smlsemsiny = 5 [ @01 (7))
— 1/+oo dr [80f(7) QD]U:W

2 — o0 o=0
“+oo N
- 3/ aafoT - o. (3.16)

The equation of motion and the boundary term for ¢ coming from the varia-
tion of Sy, are

01(00p — D1p) =0 (3.17)
and
]- N ~ T=-400 1 +eo ~ o=T oo o=T
5 [ do[opoell 2o+ 5 dr [00pople—y — dr [D1pdpl,
0 —00 —00

1 400 _ +o00 _
5 | arlasas - [ arlowsaT —o. 3as)

2 oo —0o0
because dp(7 = £o0,0) =0 Vo.

Eq. (3.17) is of the second order and it is solved by 0y¢ — 01 = F(7). It can
be made of the first order by using the invariance of the action (and hence of the
equation of motion) under ¢ — @ + f(7). In this way, with a suitable choice of
f , the equation of motion and the boundary term reduce to

1 [t _
Oop—01p=0 and — 5/ dr [O1pdpli_y =0 (3.19)

(o)

f:/dTF.

On the other hand, we get for the field ¢:
01(Dop — 01p) = 0 (3.20)

for

and

1 " ~1T=400 1 oo ~10=T oo ~ ¢ ~1O=T
5 / do [51s05s0]T:foo+§ / dr [D0pd@]o 0 — / dr [01p0@]]—;
0 —00 —00

1 +oo B +o0 B
5 [ arlasa - [ aroesars -0 @y

o0 —00
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because §@(7 = +00,0) =0 Vo.
Egs. (3.20 - 3.21) become

“+oo

1 _
dop— DG =0 and — 5/ N N gy (3.22)

o0

f:/dTF.

The equations of motion for ¢ and ¢ in (3.19) and (3.22) can be summarized
into a single mathemathical statement:

if we choose

dop = i ~ b
{ G = Dy S 0,0 = —€4 0. (3.23)

On-shell the fields ¢ and ¢ are (Hodge-)dual of each other, as it happened is
section 2.1.1 for the string coordinate X2 and its T-dual X% (see egs. (2.32)
and (C.8)). It is worth noticing that the duality condition in eq. (3.23) is, as it is
natural, equivalent to 9,0 = —€q, 0°% and so it implies a wave equation for both
@ and @:

0%0,p = —eabﬁaabgo =0; 0O = —eabﬁa(‘?b@ =0.

Moreover, by interpreting eq. (3.23) as an off-shell condition, its insertion in the
action

~

. 1
S =S+ [ % Sougan,

permits to recover the starting action (3.2) (€% ¢,. = —d°,, see Appendix B).

3.1.1 Matricial form of Ssym

The action S'Sym can be written in a ‘matricial form’ by introducing the constant

2 X 2 matrices
0 1 1 0
(U3 (1) -

and the vector ® = (¢, @) (®4=! = p, PA=2 = §):

5 1
Seym [@1] = 3 / d*¢ [8y@T CO\P + 0, DT MO, P
— % / d*¢ [Cap 0o@010F + M s 019401 ®%] . (3.25)

Obviously, the equations of motion and the boundary terms coming from the
variation of (3.25) with respect to §®#

O1(Cap 0@ + M 45 0,") = 0 (3.26)
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and
% / d*¢ [00(Cap 6901 D) + 91 (Cap 6Dy DP) + 201 (M ap 6070, )]

1
=3 / A€ 0, (€?C 43 0D, BP) + / d*€ 01 [(Cap Og®F + M g5 0,P)504] = 0

(3.27)

are completely equivalent to (3.19) and (3.22).
The action S, exhibits the invariance under ®* — &4 + f4(7). The corre-
sponding variation of the action is:
A 1
0Ssymlso=rr) = 3 / d*¢ 01 [Cap Oof(T) PP

1 —+o00 i
= 3 / dr [(JABaOfA(T)@B]M

—00

1 Feo o=T
= 3 / dr C 45 0oFA(7) [‘DBLZO =0, (3.28)

—00

because of the periodicity of ¢ and .
The solutions of (3.26) are C 45 Og®® + Mz 0,95 = F4(7) and can be made

Cap O PP + My 0,05 = 0 (3.29)

by choosing
£ = / dr C*P Fp

(let us recall that C*8 = (C~1)45). The results of the previous section are
recovered once we have

The boundary terms, evaluated on the equations of motion, read:
% f d2§ 0a(e“bCAB 5(13“461,@6)

= 1 [ @€ 0y(Cup 6040, 08) — 1 [ d%€ 8y(Cap 609, DF)

B B (3.30)
= L Jy do [Cas6040,08) 77 — L 7 dr [Cas 504005
=3 [Mdr [Cap 6040, 95]7 ) =0,

=T
o=0

because d®A(T = +00,0) =0 Vo.
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Let us observe that the matrix C is the one involved in the definition of
the group O(1,1), called € (see section 2.6). It has the following properties:
C=0=0"=07"1.

The action (3.25) is invariant under O(1, 1)-transformations acting both on
the vectors (®) and on the ‘couplings’ (M) according to the following scheme:

AeO(1,1) & ATOA =Q
P =A"D; C'=ANCA=A"QA=0Q; M =A"MA. (3.31)

It is worth noticing that the action (3.11) is manifestly invariant under the
exchange ¢ <> @; this symmetry is realized through the “inversion” O(1, 1) matrix
A = Q implying

P = Qb = ( z ) LM =QMQ =M (= M). (3.32)

3.2 The chiral coordinates

We can introduce a pair of new fields ¢, = ¢, (7,0) and p_ = ¢_(7,0), such
that

v ~)(@¢i=§§¢i@).@3$

In this new basis the fields ¢, and ¢_ are arranged into the vector x = (¢4, p_).
The vectors ® and y are linked through

oo (2)-n( () e

and the matrices C' and M transform as follows:

O —(z Yoz = ( oY ) (3.35)
" M =2ZH Mz =—- ( é (1) ) : (3.36)

The action, consequently, transforms in

2

1
:—/fgm@%ﬁaf+M@aﬁ&f]

A 1
Sem [X*] = 5 / d*¢ [9ox"C'Orx + 01" M'Or x|

2
_ / P€ (L4 (Oups) + L (0ap)] (3.37)
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with | !
Li(Oups) = iéao@iﬁlsﬂi - 5(31%:)2 : (3.38)
The dynamics of the fields ¢, and ¢_ are completely decoupled.
The Lagrangians in (3.38) are the so-called Floreanini-Jackiw Lagrangians

[20], a class of first order Lagrangians extensively studied in literature. The
equations of motion for ¢, and ¢_ are easily computed from (3.29):

Cup 0P + Mup 195 =0 —  Clgdox® + Myzox® =0 =
dopr = Oipy O_pr =0 P+ = (T +0)
= = = . 3.39
{ dop— = —Orp- Oyp- =0 p-=p_(1—0) (3.39)
The previous equations show that ¢, and ¢_ are, respectively, functions of o =

T+ o0 and 0~ = 7 — ¢ only on-shell.
The boundary terms, on-shell, are (see eq. (3.30))

“+00

]. teo =T ]- / O=T
—= /_ dr [Cap 0970,D°]"_) — -5 /_ dr [Clys X 9o X "]

o=0
2 [e%S) [e'S)

1 +oo B 1 +o00 .
= —5/ dr [0+ 000 4]0 0 + —/ dr [0p-Oop-1;—g = 0. (3.40)

o 2 o0

and they are satisfied once one imposes periodicity conditions in o.

3.3 Invariances of the Lagrangians
and quantization
The Lagrangians
1 1
L. = iéaoﬂ%al@i — 5(31901)2

and

. 1 o1 1., 1,

Lsym = 58()@814,0 - 5(%@81@ — 5(814,0) - é(algo) (3.41)
exhibit a series of invariances. Let us examine Ly first:

e space-time translations (we do not indicate the constant parameters of the

transformations)
drp+ = O+ = 0Ly = 0Ly ; (3.42)
(5Ug0i = 81goi = 5a£i = 81£i ; (343)

e an analogue of Lorentz transformations

dppr = (T£0)01p1 = 0Ly =0i[(t+0)Ly]; (3.44)
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e “conformal” transformations
(001 )cons = f(T £ 0)010x = (0Ls)eons = O1[f(T £0)L4]; (3.45)

e scale symmetry

(5@:|:)scale - 7_80(;0:|: +0-al<;0:|: = (5£:t)scale - 80(7_'6:&) +al (O-*C:I:) . (346)

The invariances of Ly, are:

e space-time translations

57'90 - 8090 A - A )

{ 57_@ — ao@ é 57’£sym — 80£5ym 3 (347)
0gp = O1p . oA

{ 50@ = 81()5 = 50£sym - 81*Csym ) (348)

e eq. (3.44) implies the corresponding Lorentz symmetry

opp = 1O + 001 and Oopp =T10hQ +001p. (3.49)

It is worth noticing that eqs. (3.44) and (3.49), on-shell (Jyps = £01¢4 and
Oop = 01, 019 = Do), reproduce the usual Lorentz rotations:

dpy = TOQ4 + 00+ (3.50)
dp = 1O+ o0y (3.51)
55 = 1O + 0P, (3.52)

So, on-shell, Lorentz invariance is completely restored.
In the chiral basis, it is straightforward to quantize the Lagrangians £ (see

A

Appendix E) and, consequently, Lg,,. It results that

lo+(T,0), pxr(T,0")] = Fie(o — ') (3.53)
[Pyi(1,0),Ps(r,0)] = j:%é’(a — ') (3.54)
(os(r,0), Pulr,o)] = 200 — '), (3.55)
where
0Ly 1
Py = 2Oops) iﬁalwi- (3.56)

Eq. (3.33) implies
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3.4 Hamiltonian formulation

In this section we want to study the form of the Hamiltonian densities relative
to the models described by the Lagrangian densities L, and £4. Let us start
from

. 1 N 1 1.

Lom = 5309031<P + 530%031<P - 5(81%0)2 - 5(31@2

1
= 5 [CAB 80(I>A81(I>B + M 45 81(1)"461(1)8} .

We can compute the conjugate momenta with respect to ¢ and ¢ or, equivalently,
the ones conjugate to ®:

oL 1
P = W — 0@ 3.59
Babg) 27 (3:59)
- oL 1
P = W — 29 3.60
a@o@ 2 e ( )
0Ly 1 3

With the definitions (3.59 - 3.60), we can compute other Dirac Brackets (or
commutators) involving ¢, ¢, P and P:

[P(r,0),P(r,0")] = [P(r,0),P(r,0")] =0 (3.62)

lo(r,0),P(r,0")] = [¢(r,0),P(r,0")] = %(5(0 —0o'). (3.63)

The Hamiltonian density is now obtained through the Legendre transforma-
tion:
H 738090 + 758()(,5 - ﬁsym

= O+ (08 (3.64)

or

H = PAOO(I)A_ﬁsym

1
= —5Mas 0,040, 08 . (3.65)

It consists in the ‘potential’ part of the Lagrangian density, as it happens for
the Floreanini-Jackiw Lagrangians (see Appendix E). The Hamiltonian density
results positive-definite, although the presence of the minus sign in eq. (3.65).
A way to avoid this matter consists in defining M = —G (M4 = —G4g). This
little change leads to

1
H = é(jAB 0,949,858 > 0.
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In the chiral basis, H assumes the form
1
H = —§Mj43 81XA81XB
1 1
= 5(3190+)2 + 5(3190—)2
1 1
= §(a+¢+)2 — 041 0_py + 5(3—80+)2
1 1
5(8%07)2 —O0pp_0_p_ + 5(‘94P7)2- (3.66)

The same result can be obtained by using the conjugate momenta with respect
to ¢, p_ defined in eq. (3.56) or by introducing the ones conjugate to x*:

OL eym

(+)
P'A 8(80)("4)

]‘ !
= 5Cs X" (3.67)

and by performing a Legendre transformation on the sum of £, and £_.
On-shell for ¢, and ¢_, the Hamiltonian density reduces to

M= (000 + 500 )" (3.68)

The quantities computed in this section will find their generalizations and a
deeper meaning in Chapter 5.
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Chapter 4

T-dual invariant formulation:
‘curved’ scalar field

Since the string world-sheet is -a priori- a curved manifold (before choosing the
conformal gauge), then it is necessary to generalize the results found in Chapter 3
for a scalar field defined on a flat background to encompass the possibility to deal
with a curved one [16, 17].

4.1 Scalar field on a curved background

If one wants to couple a scalar field ¢ to an “external” metric h,g, one has to sub-
stitute partial derivatives with the covariant ones (9, — V,) and to multiply by
v/—h. In our bidimensional theory, once a 2-bein is introduced, the prescriptions
just quoted get modified: 9, - V, =¢,*V, and V—h=c¢e (see Appendix B).

In order to describe the dynamics of a scalar field ¢ = ¢(7,0) defined on a
curved manifold, let us introduce the action

1
S hasi ] = —5 [ PEVTRIV sV, (4.1)

which takes the following form when a 2-bein is introduced:

1
S(O) [eaa; 90] — _5 /d2§€7”]ab eaoavago ebﬁVmO

1
= —§/d2§€77ab VoV

= e mier - wr) 12)

At this level, since the action is manifestly local Lorentz invariant, the equation
of motion and the boundary terms for the field ¢ can be equivalently computed

29
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from (4.1) or (4.2), to obtain
0o (V—=h h*Pdg) = 0 (4.3)

and

B M (V= »

where dp(7 = £00,0) =0 Vo (see (1.6) and (1.7)).
In analogy with the previous Chapter, let us define the auxiliary field p(r,0) =
Vo, compatible with p = e710L® /0(Vyp), to get the action

S — / P e {p Vow — %ﬁ - %(Vlgo)Q} | (4.5)

Then we put p(7,0) = V1¢ and so the action becomes:
&0 - 2 _ 2 1 -
Sle%aip @l = | d¢e |[VopVip — §(V190) - §(V190) (4.6)
R o
= /d2§e {eoaelﬁvagovﬁgo — 34 61’8(Vag0V590 + vaww)] .

Asin the flat case, the action (4.6) can be symmetrized by recalling that e eoo‘elﬁ =

e + e, (see Appendix B). The result is

A ~

1
S = Ssym+§/d256aﬂvawﬁ¢
. 1

Seym + 3 / d*€ €™ 0pip 03 (4.7)

being

. 1 . . .
Ssym (€275 0, §) = 5/65256 [VopVig 4+ VogVie — (Vig)? = (Vig)?] . (4.8)

A

4.2 Local symmetries of the action S,
The action Ssym exhibits invariance under the following transformations:

e Weyl transformations: they act on the 2-bein as follows

a
[e7

e, = AN, 0)e?, or de?, = \(T,0)e, . (4.9)

These kinds of transformations imply e — A%e and, consequently, e,* —

A'e,”. Terms like ee,“¢e,”, involved in (4.8), are left invariant;
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e bidimensional diffeomorphisms: £* — £'“(§). By introducing the notation
J = det <8§‘1/8§’b>, it happens that d?¢ — d?¢’J, e — €' J! and V, —
V! = V,. The fields ¢ and ¢ do not change at all.

As it can be immediately verified, (4.8) is not manifestly invariant under local
Lorentz transformations:

se”, = wo (1, 0)e’,, (4.10)

with wap, = —wpe- In the following, the choice wy (7, o) :Aa(T, 0)eqp Will be made.

As in the previous Chapter, we can write the action Sy, in a matricial form,

by introducing the constant matrices C' and M and the vector ® = (¢, @):

A

Seym [%; @] = % / d*¢e [Vo@ ' CV 1@ + V" MV, ]
1

= 3 / d*¢ e [CapVo®A V1 9F + M 45V, 04V, P]  (4.11)
1

= 3 / e [eoaechB +61%15MAB] VoAV 308 .

Weyl invariance of gsym is equivalent to

5Sym 58 ym

a —
dea, (0e a)Weyl N de?,

0Ssym oo

a o
des,

(7, 0)e"] = A(,0) —0 (412)

and the variation of the action under local Lorentz transformations has the form

3 S sym 3 sym 0Ssym
565@4 <5eaa)Lorentz = (565(1 [CK(T, U>€abeba] = Oé(T, U)eab 565(1 ba (413)
The last two equations strongly suggest to introduce a tensor so defined:
53
tr=e 1Yl 4.14
S, (114)

In this way, the variations (4.12) and (4.13) are proportional, respectively, to the
trace t = t,% and the e-trace £ = ¢4t b of the tensor ¢
The components of the tensor ¢ can be easily computed from (4.11) to obtain

1
te = 5 {0 [CasVo® V108 + MupV1 84V 05] — 5" Cas V@'V 27

—6,"CupVo@'V,0F — 26,"M 45V, 04V, 0P} (4.15)

leading to

1
t = EMABV@AV@B (4.16)
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= 2 [(Ve) + (V16)]

1
tt = 5[—CABV[)@AVOCDB—2MABV0<I>AV1<I>B} (4.17)

1
t10 - —§CABV1<I>AV1(I>B (418)
= —Vlgovlgé
1
tt = —§MABV1¢AV1@B (4.19)
1 -
= 35 [(Vig)? + (V19)?] = —t,.

It is immediate to see that t =¢,* =t +t,'! = 0.
Let us now compute ¢4, = t, e

to = —t (4.20)
tr = +to' (4.21)
tiy = —t° (4.22)
th =+t (4.23)

On the equations of motion for the 2-bein, 533ym/5eaa = 0, the components
of t,> are vanishing. This implies also the vanishing of the e-trace: ¢ = €%t,0 =
Pty = tor — tio = tyt +t,° = 0. Equivalently, in matricial form,

R 1
t=— [Vo®@"CVo® + V@' MV, @ + V1" MV® + Vi 9TCV,1 @] . (4.24)

By adding and subtracting the term (1/2)V,®TMC~'MV,®, the e-trace ¢ be-
comes
1 T T -1
b= —3 [(Vo@"C + V19" M)C™(CV® + MV, D)
+V1@7(C — MC™' M)V, 9]
1
= —§(V0<I>TC + V1" MYCTH(CV® + MV, D), (4.25)
because C'= MC~'M (see Section 3.1.1).
Moreover, because of the form of the matrices C' and M, also in the curved

case the action Sy, is O(1, 1)-invariant. In particular the duality transformation
A = Q still holds.
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As in the flat case, the action Ssym remains unchanged by performing the
shift @4 — &4 + f4(7,0) & 604 = £(7, o), with the functions f* satisfying the
conditions Vif* = 0 and f4(7, 0 + 7) = £4(r,0). In fact,

A 1 +OO O=T
0Ssymlse=fera) = 3 / dr [Cup Ot @F]7 7

1 +oo O=T
= 3 / ) dr Cyp [0of @F]7_0 = 0. (4.26)

The equations of motion and the boundary terms for the fields ®* are the
following;:

Oa [e €, (CusVo®® + MgV, 10%)] =0, (4.27)
—1 [ dr [Cap 6049077
+ ffoio dr [e ;" (CasVo®P + M 45V, DF)604] Zig =0. (4.28)

The 2-bein has four independent components. In this theory, on-shell (for
the 2-bein itself), there are sufficient invariances to gauge-fix everyone of its
components (Weyl, diffeomoerphisms (2) and Lorentz invariances) and to make
the choice e, = §%, (flat gauge). Once the 2-bein has been gauge-fixed, we have
the following “reductions”

Ssym [€%0; @] = Seym [@7] = % / d*¢ [Cap 001 DF + M s 0,070, ;

eqs. of motion — 9y (Cup 0®® + M s 0,9%) = 0;

—L [T dr [Cap 690D i
+ [ dr [(Cap 8PP + Mg 0, 05)60A]

vy

o=
o=0

boundary terms — { _0 ;

- 1
e—trace = {=—(0pP'C+ S M)CTH(CHD + M ®) = 0;

y V.4 =0 Oft =0o 4 = (1)
(7, 0) s.t. { fA(7-70 +7) = fA(7—7 o) - { no correspondent,

and the totality of the results of the previous Chapter still hold. So the order of
the equations of motion can be reduced and the equations themselves become

Cap 0o®® + My 0,% = 0. (4.29)

This form of the equations of motion has interesting consequences
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e on the boundary terms, reducing to

—+o0
—— / dr [Cap 690, @%]7_1 = 0; (4.30)

—00

e on the e-trace, which automatically vanishes ¢ = 0.

4.3 Change of basis

As in the previous section, it is possible to write the action as a sum of Floreanini-
Jackiw Lagrangians through a change of basis: from the nonchiral one to the
chiral one:

~

Ssym [€%0; 04, 0-] = / d*€ [L4(e%; Vapy) + L_(e%; Vap-)] (4.31)
with
a 1 1 2
Li(e’;Vaps) = ¢ iEV()sDiVMi — §(V1¢i)
1 a,_ B a, B
= 3¢ [:I:eo e” —e%e } Outp+08p+ . (4.32)

In the flat gauge the Lagrangians in (4.32) reduce to (3.38).



Chapter 5

Double string theory actions

In this Chapter a manifestly T-duality invariant formulation of closed bosonic
string theory will be finally faced. What we showed in Chapters 3 and 4 will
be the starting point to construct the generalized sigma-model action depending
on a doubled set of variables: the string coordinates along the compactified di-
mensions and their T-duals. In the Tseytlin’s noncovariant formulation, the role
of the local Lorentz invariance, recovered on-shell, is crucial in order to derive
the symmetry group O(n,n;Z). After choosing a suitable basis provided by the
left and right coordinates, the Dirac’s quantization procedure is performed since
this model contains primary second class constraints, being described by a sum
of Floreanini-Jackiw Lagrangians. The chiral coordinates (and, consequently, the
original ones) behave like noncommuting variables. In the Hull’s covariant formu-
lation, instead, the generalized sigma-model action already involving a doubled
number of coordinates is analyzed together with a ‘self-duality’ constraint halv-
ing the degrees of freedom. The two formulations are equivalent as it can be
demonstrated.

5.1 Tseytlin’s noncovariant formulation

Let us start from the following generalized sigma-model action functional
a % T a ) j
Slewix] =5 [ e 0TV, (5.1

where the x%’s are bidimensional scalar fields and components of an N-dimensional
vector in the target space (N still undetermined at this level). The usual formula-
tion of string theory is recovered once one interpretes x* as the string coordinates
and takes for CZ? the form C{Y = —(n®G;; — e By;) (see eq. (2.88) and Appendix
B).

The action (5.1) explicitly reads

= —/d2§e COOVOX Vox’ +C 'Vox'Vix’ +C Vix'Vox? +C A% VlX}

65
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T . . . . . )
= 3 / d*¢e [C?]QV()XZVOX] + (C%l + C;?)Voxzlej + C}jllellej}
= 5 / d2f€ [CZO]OV()XZVOXJ + CijV(]szlXJ + Ciljllellej} s (52)

where we have defined
Cii(x) =i (x) +C;(x) -

Moreover, the matrices C% and C!' can be chosen symmetric.
The action S can be always written in a ‘first order form’ (no quadratic term
in time derivatives) such as

T ) . . .
S=5 /dQSe [CiiVox'Vix! + My Vix'Vix'] . (5-3)

Let us examine the two following possibilities:

1) ¢} = 0 Vi,j, implies that the action (5.2) reduces to (5.3) by defining
M;; = Cjj'. The matrix Cy; can be separated into its symmetric and antisymmet-
ric parts: Cij = C(Zj)‘l'C[m = Cij—i—Hij, Where Cij = (1/2)[(C%1+C;?)+(C?ZI+C%70)]
and H; = (1/2)[(C} +C}P) — (C3f + C)];

2) Y # 0 (and these matrices are taken invertible). We can introduce a set

of new variables: p; = C)P'Vox?, implying Vox* = (C*)"p;. So the action (5.2)
gets modified into

§'=3 /d2§e [2Vox'pi = (C™)7pip; + Cij Vox' Vax? + Cif Vix'Vix'] .

If we introduce a set of new fields (the W’s), by imposing p; = V;¥;, the action
becomes

. T R ..
S =3 / d*€ e [2Vox'V1¥; — (C*)IV 10,V U
+CiijXiv1Xj + Ciljlleilej}

T
-2 /d25€ [Crr(X)VoXTV1 X7 + Mzy(x)V1XTV1 X7 ]
where X = (x, V) is a 2N vector and Cz7 and Mzs are 2N square matrices. In

particular
_ ([ Cy 257
Czg —( 0 0 )

Cz.7 can be separated into its symmetric and antisymmetric parts:

CIj = C(Ij) + C[Ij} = CIJ + HIJ,
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Cujy 26,7 Cij 0
con=(% %) w cer= (% 1)

CcH 0
MIJ = ( 6j _(COO)ij ) :

We obtain the action (5.3) by redefining 2N — N', Z.J,... — i,j,...,
X — X, CIj — Cij and MIJ — MU
In the following, we will choose the matrices C and M to be constant.

where

and

5.2 Local symmetries of the action

As we just noticed, we can assume as our starting point the action:
T . . ) .
S = E/dzge [CijVQXZlej + Mijlellej] (54)
T ) ) ) . ) )
= §/d2§€ [CiijXZVIX] + HijVox'Vix! + Mijlezlej]
T 2 i L i ' i j
= E d 56 Cz'jVOX lej + 56 Hijvax VbXJ + Mijle lej .

This action has the same structure as the one analyzed in the previous Chapter
for the scalar field on the curved background (see (4.11)). So almost all the
considerations done will hold with minimal changes.

The action (5.4) is invariant under the already mentioned local transforma-
tions (Weyl transformations and bidimensional diffeomorphisms), while it is not
manifestly invariant under local Lorentz transformations. As in the previous
Chapter, we are led to introduce the tensor ¢, which has a slightly modified
definition:

1 ;45 ,

tb=_ . 5.5
L (5.5)

The structure of the tensor ¢,° can be computed from the action (5.4):

t, = 5 {5ab [Oz‘jVOXZle] + Mz‘jlezlej} — 5ObCijVaXZV1Xj

“ 2
—06,"Ci;Vox'Vax? —20,"M;;Vox'Vix'} . (5.6)
It is now easy to read the components of ¢’

1 . .
ty = 5Mijlezleﬂ (5.7)

' = —5CuVox'Vox’ — MyVox'Viy’
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1 ) ) ) )
= —§CijV0XZV0X] - MiijXZlej (5-8)
0 1 i j
" = _§CijV1X Vix
1 . .
= —éCijlellej (59)
1 1 i j 0
tl = —§MZJV1X le = _tO . (510)

In these components the antisymmetric part of C;; has disappeared.
The completely covariant components of ¢ b are:

tog = —ty° (5.11)
tr =+t (5.12)
tiy = —t° (5.13)
tin = +t;'. (5.14)

Let us now write the e-trace of the tensor ¢ :

A 1
t = . [(VoXTC + VX' M)CHCVox + MV,X)
+Vix"(C = MCT'M)Vix]. (5.15)

In the following, we will neglect the term (1/2)e®H,;V,x"Vyx?, which is the
only one manifestly Lorentz invariant. So the action simplifies in

S [eaoﬁXl} = B) /dzfe [CijVOXZV1XJ + Mijlelleq . (5.16)

On the equations of motion for the 2-bein, the e-trace vanishes and there are
sufficient invariances to fix the flat gauge. After this choice, the equations of
motion for the fields y*, once reduced to the first order, are

Oijaoxj + Mijalxj =0. (517)

In this way, the vanishing of ¢ on the equations of motion for y*

~

2t = —(80XTC + 81XTM)C’_1(080X + Moy x) — 81XT(C — MC'M)oyx
= —0ix"(C—MC'M)dx=0

imposes a condition on the matrices C' and M

C—-—MC'M=0. (5.18)
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Let us observe that the equations of motion (5.17) and the “Lorentz” constraint
(5.18) can be combined to obtain

080x+M81X:0 080X+M81X:O b

{ C— MC™'M =0 { Mgy + Cory =0 & COaX — eaMIx =0,

(5.19)

a sort of “covariantized” constraint. Its role will be important in the covariant
formulation by Hull illustrated at the end of this Chapter.

Suitably rotating and rescaling x (and keeping the name y for the rotated

and rescaled fields), the matrix C' can be put into the form

C = diag(j—l,...,+1},\—1,...,—1) , p+q=N. (5.20)

R g
p times g times

The world-sheet quantum Lorentz anomaly (as it is shown in [21, 22]) is absent
only if C' has zero signature, i.e. p = ¢ = n, which implies N = 2n. In this way

C— < 10" —O1n ) (5.21)

and C' = MC~'M becomes one of the two possible definitions of the O(n,n)-
matrices. In other words, the compact target space of the action (5.16) can
be considered as the doubled torus 72" by adding periodicity conditions for
the components of x*. In order to restore notations, at this point, we redefine

5,... > A B, ....

5.3 A first change of basis

If we choose for x* the form x* = (x., x’), we can introduce the new variables
o4 = (Y!)Y;) through

}N/I — \%(Xi —+ X£> (5 22)
Y= J500¢f —=x7)
implying
. 1 1, 1,
®=Zy with Z= B -1, ) (5.23)
The transformed of C'is
O = (2 YToz " = ( Do ) Q=0T =0 (5.24)

The Lorentz constraint C' = MC~'M becomes

Q= MQM, (5.25)
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a quadratic matricial equation for M’, determining it up to a sign. (Let us recall
the M’ is a symmetric matrix.)

The 2n x 2n matrix Mjz can be determined in terms of two n x n matrices:
one symmetric, which will be called GG;; in analogy with the torus metric, and one
antisymmetric, which will be denoted by Bj; in analogy with the Kalb-Ramond
background field. The proof is very simple. By suppressing indices, M’ can be
written using square blocks as

M':i(b‘; b), (5.26)

Cc

where the n x n matrices a, b and ¢ have the following properties: a = a”, ¢ = 7.

The Lorentz constraint in the nonchiral basis (5.25) gives the four conditions (of
which only three are independent, being the third one the transposition of the
second one)

abl +ba =

ac+bb = 1,

o +ca = 1, ° (5.27)
ble+ceb = 0

All the previous equalities are satisfied by putting a = G — BG™!B, ¢ = G7!
(both symmetric) and b = BG~'. In this way

G- BG'B BG! )

M :i< —G¢'B G

(5.28)
We choose the minus sign in eq. (5.28) to recover the results of the scalar field
developed in Chapter 3.

Finally, in the flat gauge, the action

T
s = 3 / d*¢ [Clyg Og®01DF + My 01940, 7]
T - -
= 3 / d*¢ [803/1813/1 + 00Y10,Y" — (G — BG™'B);0,Y'0,Y’

—(BG™Y, oY!oY; + (G B),0,Y,0,Y — GI70,Y,10,Y;

exhibits the manifestly T-duality invariance. In fact, this action is O(n,n)-
invariant. In particular, by performing a transformation of the fields and the
couplings through the inversion matrix A = ), we get (see section 2.5)

()

and

M’:M—lz_(
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The equations of motion for the fields Y7 and Y; are:
Oy 00®® + MYy 0,05 =0 =

N {%Y:—G4B@Y+G4@?

805} = (G — BGilB) E)lY + BG! 81{/ ’ (529)

The above system can be arranged by suitably combining the equations in the
following form:

{ Y =G0 Y +BoyY (5.30)

0Y =Gd)Y + BdY

resembling the scalar duality condition (3.23). As in that model, eq. (5.30) can
be summarized into

9.Y = —€ GO"Y + B9,Y . (5.31)

Eq. (5.31) is a generalization of the duality condition (3.23) in the presence of
two constant background fields: a generic metric G and a Kalb-Ramond field B.
It can be seen as an extension of the standard duality condition due to a magnetic
field.

Let us observe that, in constrast with the scalar case, the equation of motion
for a dual field Y7 induced by eq. (5.31) is

0°0,Y; = —e€ay G 0°0°Y 7 + By, 0°0,Y7 = By, 0°0,Y"” (5.32)
showing that Y; does not automatically satisfy a wave equation, but, instead,
this is true if and only if all the Y/, with J # I, do.

5.4 On the role of chiral coordinates

We can simultaneously block-diagonalize the matrices C’ and M’ through the
matrix 7, so defined:

1 G'ET G!
T = ﬁ ( G_lE _G_l ) s (533)
where £ =G + B.
The transformed matrices are

o = (T YO — ( G 0 ) (5.34)

and

M'=(THY'MT ' =- ( %; g ) : (5.35)



72 CHAPTER 5. DOUBLE STRING THEORY ACTIONS

At the same time, a new pair of coordinates remains defined: Y = (Y, Yg)
satisfying

Y, = =G HETY +Y)
y=T < { Yp= LG EY —V) (5.36)
or, equivalently,
Y = L (Y, + Ygr)
71 .2
S=T""Y = { v %(EYL—E Ya) (5.37)

The transformed equations of motion are C”0y) + M"0;Y = 0, which explic-
itly read

{ Goy,= Govy { Y, =Y (7 +0) (5.38)

G@oYR = -G 01YR YR = YR(T — 0') ’

showing that, on-shell, Y7, z are functions of 0* = 7 & o (chiral functions).
In the new chiral basis, the Lagrangian density is the sum of Floreanini-Jackiw
Lagrangians

T

L =3 (Clh O VA0 VP + My 01 Y401 VP)
= L£.(0.YL) + L_(0,YR), (5.39)
where
T 1 J T 1 J
£+(8aYL) — EGU&)YL&YL - EGU@lYL(%YL (540)
T T
,C_(aaYR> = —EGU@oYéﬁle{ - §G1J81Yé81Yé] (541)

The conjugate momenta are the following ones:

Prr = a(%;g) = gG,JalYLJ (5.42)
Prr= 5 (%fyfg) —%GU&Y};{ (5.43)
and define primary second class constraints
Uy =Prs— gGl 701 =0 (5.44)
Ur=Prr+ ZGU&Y]{ ~0. (5.45)

2
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The other constraints to be implemented are the ones connected with the
world-sheet energy-momentum tensor, which we recall:

1
= ~3 ,’433137“431376 = 1n

1
=—§%%V%%—M@%Vﬂﬁ

1

It is convenient to write them in the light-cone basis:

by

ty

toy

t__

1 1 1
—(too + tor + tio +t11) = =too + —(to1 + to1)
4 2 4
1(t tor +1 t) = 1(t t10)
4 00 01 10 11) — 4 01 10

1
_Zeabtab
1 1
—(too +tor —tio —tin) = —(tor —two) = —t4—
4 4
1(t tor — tio +t11) = L l(t + o)
4 00 01 10 11) — 9 00 4 01 10) -

The above components, written in terms of Y7 and Yy, read

tiy

1 1
§8+YLT GO,Yp — 0. Y GO_Yy + 53+YRT GO, Yx

1
§GU(8+YLI .Y/ —20,Y/0_Y! +0,Y}0,Yy)

1
5(8_3/5 GO_Yy — 0, YR GO, Yr)

gm@ﬁaw_mmam>

1 1
SOV GO_Y, + S0_Y{{GO_Yr — 0, Y GO_Yr

1
§GU(a_YLf O_Y! +0 Y30 Yy —20,YE0_YY).

On-shell, their expressions are

1
t++ - 58+YEG8+YL

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)
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1
- §G]]8+Y[{6+Yi]
1
= 5(8+YL)2 (5.53)
ty. = -ty =0 (5.54)
1 T
t__ = 50_YRG(9_YR

1
— §G1J8_Yé8_Yé]

_ %(ayR)? (5.55)

It is worth noticing the strict analogy with eqs. (1.22 - 1.23). This is not sur-
prising since in theories with a full manifest local Lorentz invariance, the energy-
momentum tensors computed by using the metric (and projected on the local
tangent space) and the one obtained by using the 2-bein are the same, as the
following calculations show (see Appendix B):
b 1 ;45 ,

t, = ?e 56%6 o
1 1 488 6%,
T /—h 0hP7 dea_ ' ©
L 1 05 5(‘3@%;)61)

Tv=hoh'T ~gea o
1 [ 0er de,’
- Tpied ’ ((Seaaed7 + eCBéeé) s
1 C (0% (e}
= _5 By 7 ¢ [(_eaﬁec )ed7 + ecﬁ(_ea’yed )] eba
1

= 5 By nCd [(Scbeaﬂed’y + 5dbecﬁea’q

b
= Tﬁ“{ n Ceaﬁec’y

and

= tac Meb

= T, nCd eaﬂ ey’ Neb

= Tﬁ“{ 6db eaﬁedﬂy

tab

= Tﬁ’Y eaﬂ 6bfy
Tup .

In order to quantize the Lagrangians in (5.40), and applying the procedure
described in Appendix E, we have to compute a series of Poisson brackets and to
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analyze the behaviour of the constraints. Let us start from the following Poisson

brackets:

Y/ (,0),Y/(1,0)}pB
{PLJ(T, O'),PLJ(T, O'/)}pB
(Yi(r,0),Prs(1,0) 5

{Yé(Tv U)v YR](T7 OJ>}PB
{PR,I(Ta o), PR,J(T, Ul)}PB
{Yi(r,0),Prs(r,0)}pp

Moreover, in order to construct Dirac brackets, it is fundamental to find

{‘I’L,I(T, 0-)7 \DL,J(Ta OJ)}PB
{\IJR,I<T7 U)J ‘IJR,J(TJ OJ)}PB

leading to

{Ori(1,0), Y (r,0")}pe] ™

{Vrs(1,0), Vg (r,0")}ps] "

§',6(0 — o).

_TG[J(S/(O- - OJ)
TG[J(S/(O' - O'/)

_ __GIJ6

= lG”e

(5.56)
(5.57)
(5.58)

(5.59)
(5.60)
(5.61)

The Poisson brackets involving any two of the light-cone components of the

energy-momentum tensor are vanishing. The non-vanishing ones are:

{Vr1(7,0), ter(T,0)}pp = %GU §' (o — o) [20.Y (,0') — 0_Y/ (r,0")]
{Wpi(r,0),to_(1.0")}pp = —%GU §(o—0")0 Y/ (1,0

(Uoi(ro)t (o)} py — —%GU 5o —o')d Y] (r, o)

{VRr(r,0), t44 (T, UI)}PB = %GIJ (o —a') aﬁryﬁc](ﬂ U’)

(Uni(r,0),ts (7,0 pp = —%GU 5o — ') 8. Y (7,0
{Vpi(r,0),t__(1,0")}pp = —%GU (o — ) [20.Y (1, 0") — 0, Y (1,0)].

The constraint algebra closes on-shell.

At this point, we can write down the Dirac brackets between the chiral coor-

dinates and their conjugate momenta:

{Y[{<T7 0)7 YLJ(T7 UI>}DB =

{PL,I(Ta U),PL,J(T, UI)}DB =

—G1s0 (0 —a')

(5.62)

(5.63)
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{Y{(r,0),Prs(r,0")}pp = %(5IJ5(U —0a') (5.64)
(Vi(r,0),Yi(r o)) ps = %G’”e(o _ o) (5.65)
{Pr1(7,0),Pr(r,0")}pp = —%GU(S’(U — o) (5.66)
{Ya(r,0), Pry(r,0')}p = %(5{,5(0 —0a'). (5.67)

For computing the Dirac brackets of the ‘original’ variables Y7 and Y7, let us
recall eq. (5.37):

{Yf(Ta U)»}i‘](ﬂ o')}ps 0 (5.68)
{Yi(r,0),Ys(r,0")}pp = 0 (5.69)
(V! (r,0),V)(r,0 )b pp = —%5{,6(0—0’). (5.70)

Egs. (5.62), (5.65) and (5.70) show that the manifestly T-duality invariant
formulation of closed string theory gives the same results of the standard formu-
lation (see egs. (2.110), (2.111), (2.113) and (1.2)).

In analogy with the one computed in Chapter 3, the Hamiltonian density is

H = ggAB 0, 949, B
T -
Y [(G — BG'B),0.Y'0, Y + (BGTY) /oY oY,

—(G'B)Y o v;00Y7 + GV o,Y10,Y |,

while, in the chiral basis, it reads

T
Ho= -3 15 YA VP

T
- 5 (8+Y5G8+YL — 28+Y£FG6_YL + a_i_YgG@_;'_YR
O_Y[GO_Yy — 20, Y GO_Yr+ 0_YiGO_Yg) .

On-shell, it reduces to
T
H=3 (0:Y GOLYL +0_Y GO_YgR). (5.71)

We recognize this Hamiltonian density to be the same as the standard one ‘H =
(1/2)(X? 4+ X") evaluated on the solutions of the equations of motion X =
(1/V2) (X1, + Xg).

In conclusion, let us examine the explicit form of the equations of motion
relative to the fields Y, Y7, Y/ and Y. In order to find the expansions for the
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solutions, we have to recall that the torus structure imposes quasi-periodicity
boundary conditions to be satisfied:

Yi(r,o+m) = Y(r,0)+2nVaW! (5.72)
Yi(r,o+m) = Yi(r,0) +2aVa'K; (5.73)
Yi(ro4+n) = Yi(r,0)+2rVa'a} (5.74)
Yi(r,o+7) = Yi(r,0) —2nvdlaf, (5.75)

where the quantities named W/, K, &} and o (in analogy with the usual for-
mulation of string theory) are generic constants.

Let us start with the “chiral” fields YLI,R. On shell, as we saw, they are
respectively functions of o™ and o~. The quasi-periodicity conditions become

Yi(ot+7) = Yi(oh) +2nVa'al (5.76)
Yi(e™ —7) = Yi(o7)-2nvael. (5.77)

The most general expansions for chiral fields satisfying boundary conditions such
as the ones in eq. (5.76 - 5.77) are:

1 )
Yi(oh) = yi+2Vdfot +iva Y —ake (5.78)
n#0 n
1 .
Yi(oT) = yp+2Vdafo +iva ) Ea;’le_m" . (5.79)
n#0

Even if they are of the same form as the ones encountered in Chapter 1, the sets
of Fourier coefficients &, ol with n € Z, are, in principle, completely different
from those which appeared there. We can anyway define p! = (1/y/a)al and

= (1/y/a)al. The structure of the transformations (5.37) and the quasi-
periodicity conditions (5.72 - 5.73) uniquely establish the expansions for Y and
Y;:

Yi(r,0) = y' +2Vo G”KJ GIKBKJWJ)T +2VaWlo
% 2mT ~2ing | ale+2ma] (5.80)
Yi(r,0) = G BG™'B); ;W + BixGE K )r + 2V o' K 0
% - [Epyale2m — BT o) e*2ine] (5.81)
where

N 1
= 7(%{ + yz{z) and gy = E(EIJ yi - Ef;yé) .
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The vanishing of the energy-momentum tensor, on-shell, translates into the
vanishing of the Fourier coefficients of the expansions:

1 T —2imo™t
by = §8+YLTG’8+YL =40/ Lpe ™" =0

mEZ
1 .
to_ = 5a_YRT GO_Ygp=4d' ) Lpe ™ =0.
mEZ

The coefficients are given by the following integrals:

. T [™ . 1 1
Lm - Z/ d06+21m0t++ = 5 Z dz;l—nGdn - 5 Z Qp—p, * Oy = 0 (582)

0

neL ne”L
= —/ doe 2mot__ = = Zam ZGay, = Zam,n ca, =0, (5.83)
nEZ nEZ

which have the same form as the usual Virasoro generators (see eqs. (1.42 - 1.43))
by using the matrix G, to construct the scalar product. In particular, for m = 0,

we have
Z Ga, = Zd_n Cdp =0 (5.84)

nEZ neZ
1 1
=3 ZOEHGO% =3 Z oy -0, =0. (5.85)
ne”L nez

The Hamiltonian is obtained by integrating over o the hamiltonian density once
one has substituted the expressions for the light-cone derivatives of the chiral
fields:

H= / doH = (Gp i+ 0y ). (5.86)

neZ

By comparing the Virasoro generators Lo and Ly with (5.86), we get again H =
2(130 + Lo). The quantities here computed, in the quantum version of the theory,
are subjected to the normal-ordering ambiguities.

The conjugate momentum densities (5.42 - 5.43) are:

73L,I = TG['] {\/&&({ + \/J Z diGQin(T+g)}

n#0

= TG Vo Z@;{e?m(”")} (5.87)

nel

n#0

Pri = TG {\/Jof({ + \/JZ aiemn(fg)}

= TG {Va Za;ﬁem(”)} : (5.88)

nel
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The insertion of the expansions for the fields Y/ and Py, ;, for example, in the
eqs. (5.62 - 5.64) leads to the following Dirac brackets:

{yi,prsYps = &
{y;,&}pg = 0, n#0
{&rIrn &Z}DB = —m 5m+n,0 GIJ vm, n

and similarly for the right sector:

{yr-PrIYDE = 0,
{y]]%) Q/;JL}DB = 0 y N 7é 0
(ol alYpp = —impminoGY Ym,n.

The relations between the oscillators are the same as the usual formulation of
string theory.

The results obtained so far are a clear indication that the noncovariant duoble
string formulation is an extension of the usual formulation.

5.5 Hull’s covariant formulation

In this section, we examine the covariant duality symmetric formulation of string
theory proposed by Hull. Let us start from the sigma-model action

T

/ d*E NV —=h h*PG a5 0, 070507 (5.89)
describing the compact part of the target space. We will adopt the same no-
tations as introduced in the previous sections of this Chapter. So the vector
®4 is 2n-dimensional (A = 1,...,2n). Its components can be split into two
n-dimensioanl groups: ®4 = (Y1, Y;) (I = 1,...,n). The action (5.89) has an
explicit GL(2n,R) invariance, besides the local ones connected with the structure
of the action itself.
Let us recall the definition of the matrix G 45:

G - BG™'B BG™!
g - ( _G—lB G—l ) ) (590>
together with its relation with the symmetric matrix M 45 defined in Chapter
5: Gag = —M 5. In order to keep only the physical degrees of freedom, it is
necessary to halve them through an appropriate constraint. It turns out that the
right constraint to implement is

CAgﬁa(I)B—keabQAB&b(I)B:O (029)7
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exactly reproducing the covariantized constraint (5.19) originating from the re-
quirement of on-shell local Lorentz invariance in the noncovariant formulation.
It can be shown that the action (5.89), suitably combined with the covari-
antized constraint just quoted, is completely equivalent to the noncovariant action
by Tseytlin as it can be more easily demonstrated in the chiral basis |23, 24, 25].
In analogy with the completely covariant energy-momentum tensor defined in
Chapter 1, we can introduce
2 1 468

Thg = — e 91

leading to
1
2Tns = 0a®TGOz® — §haﬁm5awq>Tga5q>. (5.92)

Since the action (5.89) exhibits all the invariances of the sigma-model actions
already studied (reparametrizations and Weyl invariances), the conformal gauge
hag = nNap can be chosen.

In this way the action and the energy-momentum tensor become

S [hag; @] — S[@1] = L / d*¢ 0™ G ap 0,970,

4
T
= 7 / d*¢ Gap (00@10p@F — 0,940, 9%) (5.93)
1
2T, — 2Tu = 0,97GO® — 5 lab 70,07 GO, P . (5.94)

The equation of motion for the field ®* coming from the action written in
the conformal guage is the wave equation 9,0°®* = 0, while the boundary term
is

T +o0 1 prp—
_5/00 dr [Gas 6040, 05)° T (5.95)

where we used the fact that §®4(7 = £o0,0) =0 Vo.
In order to ensure the boundary term to vanish, we choose quasi-periodicity
boundary conditions for the coordinates:

A(1,0 +7) = d(1,0).
The conjugate momentum P4 is
T
Pa= EQAB 0o " .
It permits to write the Hamiltonian density

T
H =Puopd* — L = ZQAB(MA@O@B + 0,910, 95) . (5.96)
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In what follows, the theory will be analyzed in the chiral basis: YA = (Y/,Y}),
where Y/ and Y} are generic functions of 7 and o. The transformation matrix is
the one in eq. (5.33). The O(n,n) metric and the generalized metric transform

as follows:
0o 1, , (G 0
c=(n ) ~ o=(5 %)
G— G — BG'B BG™! L og= G 0
N -G 'B G~ L0 G )

The action takes the form
T
S =7 / &€ Gz [0 V400V° — V4 V7] . (5.97)

In this frame, any dependence on the Kalb-Ramond field has disappeared. It is
worth noticing that the covariantized constraint, in the chiral basis, becomes a
“self/antiself-duality” constraint for Y7, and Yg:

Gr;00Y! = Gr;0.Y/
/ B / bN\)B 1JYo0lyp, IJvily,
C.AB aay + €ap gABa y =0 &< { GIJaOYR] _ _GIJalyé] > (598)

equivalent to the couple of conditions Y/ = Y/ (7 + o) and Y£ = Yi(7 — o). In
this model, due to the presence of the constraint put by hand, the left and right
coordinates are chiral functions also off-shell.

The conjugate momentum with respect to Y4 is

, T
Pjhzral — §g:48 aoy87 (599)
and it is equivalent to
T J T ;
Prr= EGIJOOYL and  Prr= EG[L]GQYR . (5.100)

It is crucial to observe that, through the covariantized constaint, the left and
right conjugate momenta can be written as

T T
Pri= EGIJaIY[:] and Pr;= —EGU@lYR], (5.101)

exactly reproducing those found in eqs. (5.42 - 5.43).
Moreover, by multiplying eq. (5.98) by the constant 7/2, and defining

T T T

\IIL’[ = EG[JaOYi] — 5G1J81Yi] = ,PL,I — 5G[J81Yi] =0 (5102)
T J T J T J

\I/RJ = EG[J@()YR + EG[J(?lYR = PRJ + §G[J81YR = 0, (5103)
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one recognizes the primary second class constaints of Tseytlin’s formulation. The
other constraints of the theory are the ones given by the light-cone components
of the energy-momentum tensor written in the chiral basis:

1
2Ty = 0uV"G0Y = 51 10V G0 (5.104)
implying
_ 1 15 v-J
Ty = 5GLOY[0Y; (5.105)
1
T = éczua,nga,y];{. (5.106)

The set of constraints Wy, ;, Wp, T} and 7__ is the same as the one of the
noncovariant formulation. They satisfy the same algebra. This correspondence
guarantees that the quantization of the theory performed through the Dirac pro-
cedure exactly reproduces the Dirac brackets already computed at the end of the
previous Chapter.



Appendix A

Notation and useful relations

A.1 Indices notations

In this thesis we used both small and capital latin or greek indices, in agreement
with the following scheme:

a,b,... = 0,1 flat world-sheet indices;

a,B,... = 0,1 curved world-sheet indices;

wv, ... = 0,1,....d—1 noncompact target space indices;
I,J,... = 1,....n compact target space indices;
AB,... = 1,...,2n doubled compact target space indices.

A.2 Useful relations

The Heaviside f-function is defined as follows

O(x) = { (1): iig : (A.1)

It has an integral expression, too:

implying
d
dz

Let us now introduce the e-function, so defined

0(x) = 6(z). (A.3)

[0(x) = 0(—x)] , (A.4)

e(x) = %
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which, due to (A.1), leads to
(x)_l Lz>0 [0, 220 | _ 1/2, >0
=510 2<0 1, <0 | | =1/2, 2<0
Equations (A.3 - A.4) permit to verify that
d 1

ae(x) =3 [6(z) +6(—x)] = 6(x), (A-5)

being the Dirac d-function symmetric.
Let us now show that

(@) = -3(a) = [e(a)] (A.6)

in the sense of the following integral identity

/dy d(x—y)e(ly—2)=dx —2). (A.7)

The proof is very simple:

/dyd’(x—y) ely—z2) = /dyaxé(:c—y) e(y — 2)
— —/dy8y5(x—y) ey — 2)
= — [ a0, 606 - ) ety — 21+ [ayste ),y -2

— e ely- AT+ [ dyble-y)dly -2
= Sz —z).

Let us recall the Fourier expansion of the Dirac d-function

1 )

S(r) ==Y ¥, A8

Y (4.3)

which is very useful in the derivation of the Poisson brackets of the string coor-
dinates.

A way for obtaining a fundamental relation widely used in this thesis to

compute both the Poisson and the Dirac brackets, is to write down the integral

expression of the e-function, and to use the Fourier expansion of §(z). So we get

1 [* 2 i1 g
-z n#0

In a similar fashion, we can write

8 (x) = % g n e (A.10)
7r
n#0



Appendix B

On the 2-bein

In a bidimensional space, let us introduce the coordinates (2°, z') and the follow-
ing objects:

e the minkowskian metric
N = diag(—=1,+1) = n= det(ne) = —1; (B.1)
e a world-sheet metric

Jap = gaﬁ(‘TO’ fEl) ) (B'2>
the determinant of which is g = det(gas) = 900 911 — go1 G10;

e a 2-bein

e, = e (2% 2'). (B.3)

Its components can be arranged in a 2 x 2 matrix

The determinant e of the matrix (B.4) is easily computed in

e= det(e) = (70 (e"L) — (e*70) (e L) > 0. (B.5)

a=0 a=1 a=1 a=0

(At this level the inequality in (B.5) is a choice.)

The 2-bein €%, (2°, ') is a basis for the vectors belonging to the world-sheet
local tangent space and permits to decompose the metric g,s as

GaB = Nab eaaebﬁ ) (B.6)

From (B.6) we can see that g = —e? & e = y/—g, confirming our choice on
the sign of e.
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It is possible to introduce the inverse 2-bein in one of the following equivalent
ways:

et et =0% :  efe, =6 (B.7)

or

e’ el =00 e, el =0%. (B.8)
In order to find the explicit expressions of the e,“’s in terms of the e, ’s, let us
write down explictly the first eq. in (B.7):

([ (e 20)(6,257) + (%21 (625") = 1

a=0

(e 20)(e,27%) + (e%321)(e,25") = 0

(B.9)

(e )05 + ()65 =0

[ (e%20)(@27°) + (e%21) (627 ) = 1

The first and the third equations in (B.9) contain ¢,23" and e,%%", while the

second and the fourth ones contain €,°5° and ¢,25!. So we get the systems
(e"a20)(€25") + (e'721)(625") = 1

(e4720) (05°) + (420,25 = 0

and

respectively solved by

a=0 _ -1, a=1
€a=0 - € €4=1
a=1 _ _ ,—l,a=
€a=0 - € €a=op
and by ; -
o= _ 5 a=
€a=1 - € Ca=
a=1 __ —1,a=0
€a=1 - € €a=o0

The inverse 2-bein can be arranged in a 2 X 2 matrix, too:

The determinant of this matrix is

det(e,”) = (e25")(ea7") = (625" (e23°)
1

= 3 (") (%20 — (—e* L) (—e* 0] =e", (B.11)
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as it must be.
Let us now study the variation of the determinant of the 2-bein:

be = 6"V et —|— e’ 0, 0et " —de 0 ety — et 0 Set
= e(e, 2700 0y + e 5 det Tt + et det Tl + e 25 e )
= ee,“de,
= od(ee,e?)) —dee, e, —ede, e, = —ee’ de,”
So
Se = { cea"0% (B.12)
—ee? e,

Let us now examine how to write the variation of the inverse 2-bein e, in
terms of the e ’s and viceversa. Our starting point is again the first eq. in (B.7).

e®. e, = 0% = det, e, + e, 0e,* =0 =
= e®,0e,* = —e,*de” = e(e%0e,%) = e (—e,%0e%,) =
= elet e, = —e e, e, = 68 de,® = —e e, 0e?, =
= de,” = —efe,"0e", & e s = —ele, el
Summarizing:
de,* = —ee,*0e’y  or  be’, = —e“ﬁebaéebﬂ. (B.13)

We choose the Levi-Civita symbol (the pseudo-tensor €%) of the form:

e — ( _01 461 ) . (B.14)

If we want €, to be such that ¢;; = —1, remembering the definition of the
determinant of an arbitrary square matrix in D dimensions

g#ll/lg,UQVQ e gNDVDeul'uQm’uD =—-9g 61/11/2~~-1/D ) (B15)
we have to write
-1
Nac Nbd ecd = —N€wp = €p = €Egp = ( fl 0 ) . (B16)

A similar construction has to be followed in the curved case. Starting from

0 +1
ab _
e = ( 1 0 ), (B.17)
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the object €, is

€ap = ( fl _01 ) (B.18)

Yoy 985 676 = —g€up = 62 €ap - (Blg)

Two very useful relations connecting the pseudo-tensors € and € are:

because of

b B

B = e el

ee,” and € =e'e*e e, (B.20)

constituting two sorts of decompositions, the first of which can be written as
eele)’ =P £ eee . (B.21)
The analogous of (B.20) involving €,3 and €, are
€ap = e’leabe“aebﬁ and e =c¢€ eaﬁeaaebﬁ. (B.22)
The last equalities can be derived from eqgs. (B.6), (B.16) and (B.19):
Joy 9ps €10 = €2 €0 =
= (Nac e"aecv) (1hha ebﬂed(;) (eem™ele)) = e =
= Nac Mbd e“aebﬁécm 5dn €M =eeup =
= Nam NMen € eaaebﬁ =€€y =
= €ap =€ leae’ €y

Some contractions (flat space or curved space):

ey = —21 = —2; (B.23)

e e, = —5bc; (B.24)

€ eog = —0f0%y = — (0%0°, — %% ; (B.25)
e eqp = =20 = —2; (B.26)

¢ €0y = —0" (B.27)

e = —dp Ty = — (90,05 — %07 ) (B.28)

In Chapters 4 and 5, we also introduced the following derivative

Voe=1¢,"Vq. (B.29)
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The action of such a derivative on a world-sheet scalar f(z° z!) is:
Vof =e,Vof =e,“0af . (B.30)

Let us notice that the nablas commute when applied on a world-sheet scalar as
the following calculations show:

[vaa vb]f = Va(vbf) - Vb(vaf)
= ¢, "Va(6,"Vsf) — e,"Vale, V5 f)
= e, ) (Va(Vsf) = Vs(Val))
= e, ¢, [Va, Vslf

and

Vo, Valf = Va(Vsf) = Vs(Vaf)
= Va(9sf) = Vs(9af)
= 0u05f — T30, f — (90uf — T}a05f) = 0.

torsionless (Levi-Civita) connections

In the previous calculation we have also used the condition Vaebﬁ = 0 Va, 8,0,
known as the tetrad postulate in D = 4.
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Appendix C
Hodge-duals

In a D-dimensional space, endowed with a metric tensor g.g, let us define the
Hodge x-operator through its action on a particular p-form:

€M1 Hplp+ 17D

M1 H = -
*(dl’ A...Ndx p) = (D_p)!|g|l/29up+1l/p+1

e GuprpdrPTEN NP (CL1)

By reducing to D = 2, there are only two coordinates (z°, z') and eq. (C.1)

becomes:
« 604,8
*dr® = W g,g,y dl”y (CQ)

for a generic curved space, or
*dr® = €™y dat (C.3)

for a flat minkowskian space.
Let us now introduce a bidimensional scalar field ¢ = ¢(2 x'). In the flat
minkowskian space the 1-form d¢ is:

dp = 0y dz® = Oy da® + 01 d* . (C.4)

If the field ¢ depends on the combination z° + z! (i.e. ¢ = ¢(2° + 1)), it
happens that dy¢ = 01¢. The Hodge-dual of the 1-form d¢ reads

xdp = 0,¢ *dz”
= Ny a0 da”
= "y Oy drt + €% no 016 da®
= Oypdxt + 0,¢da°
= Oypda® +0pdat =do. (C.5)

A field such that xd¢ = d¢ is defined self-dual.
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If, on the other hand, there exists a bidimensional scalar field 1 = ¢ (2°, z!)
for which dpyp = =019, (i.e. ¥ = (2 — 2')), then
xdp = 0y * dz”
= "y Outp da®
= " nu1 0ot da’ + € nog Oy da”
= O dat + 019 da®
= —(0ppda’ + Opdat) = —dyp. (C.6)

The field v, satistying xdy = —di, is said antiself-dual.
In a 2-dimensional flat minkowskian space, the following statements hold
¢ = ¢(£170 + :Cl) & ¢ self-dual
Y=Y’ —2') o 1 antiself-dual.

Let us now introduce two scalar fields: ¢ = (2% 2') and ¢ = @(2° 2t).
These fields are defined to be (Hodge-)duals if it happens that

dp = *dy, (C.7)
which explicitly reads:
dp = 0y da’ + 0, dxt = D1 da’® + Oy da' = *dyp
and, hence, is equivalent to
Dop = Oy . b
"~ S 0,0 = —€4 0. C.8
{ 0,5 — Ooo = —€ "¢ (C.8)

In order to generalize the duality conditions between ¢ and ¢ just found
to a curved space, we have to follow the prescriptions of substituting ordinary
derivatives with covariant ones and of multiplying by /—g¢. In so doing, (C.8)
becomes

Vap=—V—9geasVip = 0.p=—vV—geapd’p, (C.9)
because the covariant derivatives act on scalar fields (V,¢ = 0,¢). Once a 2-bein
is introduced (see Appendix B), eq. (C.9) is equivalent to the following relations:

Vo(ﬁ = V1<,0
- C.10
{ V1g0 = Vog@ ’ ( )

as it will be demonstrated in a moment. Recalling eq. (C.2), specified for |g| =
—¢g, we have
ef

v

dp =*dp = 0Oupdx® = 93~y O tp dz”



4
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exactly reproducing eq. (C.10).
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- 1 .
aa@ = \/_—g eﬂfy G~va 980 0 2
1 ;

1
Oap = ———= G €ac 07
V')

Dop = _\/__geaﬁ 6590

D@ = —€ap e“aebﬁ n“e e, 0.
Ou®p = —€ap 8%, " e Dyp
€ Oap = —€ap lec ecﬁ I

Vo = —€ay " Ve

Vop = —€ap VbSO,
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Appendix D
Background fields

In this Appendix we find some meaningful relations involving the T-duality-
transformed background fields G and B in terms of the ‘original’ ones, G' and
B.

Let us start from the following definitions of the n x n matrices:

E=G+B; E=G+B, (D.1)

in which G and G are symmetric while B and B are antisymmetric.
Obviously
E'=G"+B"=G-B

and
BT =G+ B =GB,
leading to
_1 T _ Ly,
G_2@+E), B_Qw E");

G=3(B+E"), B=(B-E).

As we stressed in Chapters 2 and 5, a T-duality transformation acts on the
string coordinates and their duals as well as on the background fields G and B,
accordingly to the following law:

E+ E=E1. (D.2)
It implies
G- % (G+B) " +(@—B)] (D.3)
and
B= % (G +B)" —(G-B)". (D.4)
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_ The last equations can be used to derive more useful expressions for G and
B. In fact,

Gt o= {% [(G+B)"'+(G-DB)"'] }_1

-1

- {%(G+B>‘1 [I+(G+B) (G—Bﬂ}
_ {% (G+B)'[(G - B)+(G+B)(G - B)l}l

_ {% G+ B)" (26) (G - B)_l}_l

= (G-B)G'(G+B)
= G+B-B-BG'B=G-BG'B

and, finally,
G=(G-BG'B)". (D.5)
Analogously,
-1
Bl = [(G +B)'— (G- B)_l}}

-1

(G+B)'[I-(G+B)(G-DB)"'] }

(G+B) ' [(G—B)— (G+B) (G- B)_l}_

N~ N=R N

I
—— — = =

—1
5 (G+B)™' (—2B) (G — B)_l}
= —(G-B)B'(G+B)
-GB'G-G+G+B=B-GB'G
equivalent to
B=(B-GB'G)™". (D.6)

An equivalent formulation of (D.6) is: B = —G~'BG. In fact
(—G‘lBé)_l - —G'BG
= —(G-BG'B)B'G
= —-GB'G+B=B".

Moreover, the following identity holds BG™' = —G~!B together with its trans-
position —G~'B = BG~!.



Appendix E

First order Lagrangians

In this Appendix, first order Lagrangians are studied.

E.1 Lagrangians with a discrete number
of degrees of freedom

Let us consider the following first order Lagrangians:
. 1 i o
Li(Qaq) =:t§ch,]q7—V(q), 2] :1a"'7N' (El)
i.j

(Hereafter, we will use Einstein’s summation convention.)

The constant matrix ¢;; can be always chosen antisymmetric (¢;; = —c;j;).
The presence of a symmetric part in ¢;; leads to a total time derivative. In fact, if
cij is decomposed into its symmetric and antisymmetric parts (c;; = cqj) + cjij)),
we have:

I U

561 capHd = Zq e + é_lq Cij)q

4 J 4 J

4 ZJ) 4 (U)
1d , .

= ZE(Q cing’) -

The lagrangians in (E.1) are degenerate in the sense that

0L
o (737) =

and so they describe constrained systems.
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We want the matrix ¢;; to be invertible. This requirement selects the values
of N. In fact, if N is odd, then det(c;;) = 0 independently of the entries c¢;;,
while if NV is even, then we must anyway impose the condition det(c;;) # 0. For
example, for N = 4, it happens that

0 a b c

—a 0 d e | 2
det bo—d 0 f = (af —be+cd)”,

—c —e —f 0

which can vanish even if no one of the parameters a,b, c,d, e, f is zero.
In order to write down the Euler-Lagrange equations coming from L., let us
compute some quantities:

OL. 1 . 9V

g PR aq
and 0L 1 1 d (0L 1
+ ; : + s
':j:_JAZ.: _Z“J = _ = — _Z_.]‘
op ol T TR d ( o ) ot
So, the equations of motion are
d (0L 0Ly T . 1 . 0oV
CEE) m T ) o Foed Foeyd =0 =
dt ( aqz> o TRl ¥t 54
) 1% , OV
= TR Y
= £¢¢) = 50 = ¢ = *c o (E.2)
where ¢ is the element ij of the matrix ¢~ (¢ = (¢7'),;).
The conjugate momentum to ¢’ is, by definition,
oL 1
(+) = —:t = :F_Cijq] . (E?))

=g — 2
These conjugate momenta define N primary 2" class constraints:

1 .
¢(i)<q’p(i)) = p@® 5%(]] ~0. (E.4)

7 7

The Legendre transformation permits to compute the Hamiltonian

H(q,p™) = (prf)qk — Ls(q, d)) =V(q). (E.5)

G=u(g.p®)

Aimed to study the quantization of the observables described by the first order
Lagrangians, let us introduce the Poisson brackets. They are defined as follows:

3 [W 99 _ 9f ‘991. (E.6)

dq* Op,  Opy OgF

{fag}PB = Z

k=1



E.1. LAGRANGIANS WITH A DISCRETE NUMBEROF DEGREES OF FREEDOM99

They are antisymmetric

{9, fype=—{f,9}r5- (E.7)
By definition, let us calculate some Poisson brackets:
{¢",¢'}pp=0; (E.8)
{0 s = 0;
{qi,p§i)}p3 =0';. (E.10)

With these brackets we can construct the following ones
‘ , 1
i =+ i (£
(a0 ps = {¢.057 £ -epd”
2 PB

= {qi7p§':t)}PB =0';; (E.11)

2

. 1 .
(6% ¢y pp = {pgi)i—cikq’“,q]}
PB

1
{pgi)a¢§i)}PB = {pﬁ),p}ﬂi;ﬁq’“}
PB

1 +
= iﬁcjk{pz(' )7qk}PB

1
= :F_Cji = :l:ﬁcij; (E13)

1 +
{¢§i),p§i)}p3 = {pgi) Z|Z§Ciqu,l?§ )}
PB

= i—cik{qk,pﬁi)}pjs

And, moreover,

1
{¢§i)7¢§i)}PB = {pgi)i§ciqu,¢§i)}
PB

1
= {p{, 0\ pp £ §Cik{qk, 0% ps

1 1
= :|:§CZ']' + §Cik 5kj
1 1
= j:§cij + écij = :tCij s (E15)
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leading to
-1 .
[{@(i)’ ¢§i>}p3} =4 (E.16)

which are fundamental to construct Dirac brackets, defined as follows:

{f9tps =1{f,9}trp — Z{f, o} [{ ok 0t ps) " {019} ps - (E.17)

The antisymmetry of [{@('i)’ ¢§‘i)}PB} 1 is a crucial property. In fact, only in
this case, Dirac brackets are antisymmetric as it can be easily verified by direct
inspection.

Let us now calculate some Dirac brackets by using the definition (E.17) and
the results in eqs. (E.8 - E.14) and in (E.16):

{d". ¢} pp == _ 0 () (=6,7) = £ ; (E.18)
k,l

1 1
{pl('i)»p;i)}DB = —Z <i§cu~c> (ickl> (:Izécl])

1
= F- Z Cik 5kj = :FZCij ; (Elg)
k

4 4 . 1
{ql,pgi)}DB _ 61]' _ Zélk (:I:Ckl) <:i:§clj>

Every Dirac brackets containing a gbgi) vanishes by definition:
i+ +) (+ +) L (+
{q >¢§- Nop = {7} ),¢§~ Nop = {4} ),¢§- Nps=0.

Quantization: we use the correspondence

{Ypp— —i[,]; (E.21)
which leads to
{,}p = —i[-,]. (E.22)
So we get o B
[¢",¢’] = +ic”; (E.23)
. R 1
e, p) = T (E.24)
RN b
', p}7) = 5o (E.25)

2
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E.2 Lagrangians with an infinite number
of degrees of freedom

Let us now examine two kinds of integral Lagrangians:

1

= [ardag [aree - icwn et - jiwo . @

1 .
Ly = i§/dxdyxi(w,t)E(:v—y)xi(y,t)—

The conjugate momenta to y4 are

- (SL:E - 1 . 5)'(i(z,t)
mi(z,t) = e d) i‘§/ddeXi(y7t) €y —2) Sxa (2, 1)
= £5 [ dydzxi(y,t)e(y —2) (2 — 2)

dy x+(y,t) €(y — )

I
N

I
DO | — l\:>|_||_>—t N | —

dye(x —y) x+(y, 1) - (E.27)

As in the previous section, the conjugate momenta define primary 2"? class con-
straints. They are

¢+(7,t) = me(y,t) F % / dy x+(y, t)e(y —x) = 0, (E.28)
and satisfy
{¢i<x> t)v ¢i(y> t)}PB = :|:6($ - y) 7é 0. (E29)

We can generalize the results obtained in the previous section in agreement
with the following discrete/continuous correspondences:

¢'(t) — (1)
(@)

t) — 7mi(z,t)

Z—>/d$

/d:r: dy

>
é(z —y)

5
(z—y)
—/dmxi(x,t)
¢i($,t)

K

—_

Lol Ll



102 APPENDIX E. FIRST ORDER LAGRANGIANS
leading to the fundamental Poisson brackets
{qi7qj}PB =0 — {X:I:(xvt)7X:t<y7t)}PB :Oa
e =0 = {me(e), mi(y. )} s = 0; (E-30)

i (E i
{0 e =0 = {xale,0),me(y, 0} pp = 0z —y).
On the other side, for the Dirac ones and for the commutators, we have

{¢",¢}pp =+ — {xs(x,t),x+(y,t)}pp = £0'(x —y) =

(E.31)
= [dla ij] =dic? — [)A(:I:(xvt%f(:l:(yvt)] = £1 6I($ - y) )
W0 Y os = Fiey & Amelet). 7y, 0}ps = Fiew —y) =
(E.32)
{qi,pﬁ-i)}DB =30 — {xz(z,t),7:(y,t)}pp = 30(z —y) =
(E.33)

=307 =501, = [Re(e.t), 7a(y, )] = $0(z — ).

Let us recall that ¢'(z) = [e(x)]™! (see Appendix A).
In order to recover the first order Lagrangians so extensively quoted in this
thesis

) 1. 1 2
Li(py,¢l) = 5%04-90,_5_ 5 (QDQ_) (E.34)
and
) p 1., 1, ,.2
L (po¢l) = —5¢-9- —5 () (E.35)

(the so-called Floreanini-Jackiw Lagrangians), we have to introduce a new pair
of fields p as

oi(x,t) = /dy ez —y) x+(y,t) = F2m4(x,t) (E.36)
(the last equality derives from eq. (E.27)) and to admit that

Li:/dl‘ﬁi.

The time and space derivatives of ¢, are

Oi(z,t) = /dy e(x —y) x+(y,t) (E.37)
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and
Let us compute the conjugate momenta with respect to ¢.:
oLy 1
Pr=—=2-¢. E.39
+ 6%0:‘: 290:|: ( )

From eq. (E.38) we see that Py = +(1/2)y.

In order to write down the Hamiltonians corresponding to Floreanini-Jackiw
Lagrangians, we can equivalently use the discrete/continuous correspondence on
eq. (E.5) or compute them directly by a Legendre transformation. The result is

H= %/dw Xi(z,t) = %/dm [ (z, )] (E.40)

Finally, we can compute the following Dirac brackets:

{os(@,t), 0:(y, )b = {F27L(z,t), F27+(y,1)}pB
= Hrmu(z,t),7(y, 1)} o5
= Fe(r—y); (E.41)

(Pale,0) Pely O}os = (el ), 2550, O} oo

= i{X:I:(xv t), x+(y, )} o5

_ :I:ié’(a: ) (F.42)

{os(z,t),PL(y.t)}pp = {¢271($7t)7i%Xi(y,t)}DB
= —{mx(2,1),x=(v,t)}p5B

1
= 55(x —9). (E.43)
Consequently, for the commutators,
) . 7
[(pe(2,t), 0x(y,1)] = Fgelr —y); (E.44)
. . i,

(pule, ), Pl )] = 50(e =), (5.46)
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