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Introduction

Among the symmetries exhibited by string theory, T-duality plays a fundamental
role in the stringy descriptions of both gauge interactions and gravity.

String theory arose in the late 1960s as an attempt to describe the hadrons,
the strong interacting particles. Some problems emerged out that prevented this
program to be completely successful. In the early 1970s quantum chromodynam-
ics was developed. It was recognized as the `correct' theory to deal with the
strong nuclear force. Nevertheless, in the subsequent years, it was realized that
string theory could describe the Universe in a deeper way. In fact such theory
has the potential of unifying gravity with the other forces (weak, electromagnetic
and color forces) and all forms of matter in a single mathemathical framework
[1, 2].

In string theories, the fundamental objects are not point-like, as it happens
in quantum �eld theories, but one-dimensional. The myriad of observed particles
are identi�ed as particular vibrational modes of microscopic strings. They are
of two types: open strings and closed strings. Open strings are topologically
equivalent to line intervals and so they have two endpoints, while closed strings
are topologically equivalent to circles and they have no endpoints. In every string
theory, closed strings are always present. This is because open strings can close to
form the closed ones. In the massless spectrum of closed strings there is a spin-2
particle, which was proposed to be identi�ed with the graviton, the quantum of
gravitation. Since string theory is a quantum theory and it naturally includes
gravitons, it constitutes one of the most promising candidates for a uni�ed theory
of the fundamental interactions of Nature as well as a prototype of a complete
theory of Physics. String theory can, in principle, reconcile Einstein's General
Relativity (a classical theory) and Quantum Mechanics, two of the pillars of the
20th century theoretical physics, and so provide a consistent quantum theory of
gravity.

In string theory there is a unique dimensionful parameter, the string length
`s, de�ned by the string tension. It can be thought as the typical length of the
fundamental objects. It is natural to expect the string scale to be of the same
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order of magnitude as the Planck length

lP =

(
~G
c3

)1/2

= 1.6× 10−33 cm .

A broad subdivision of string theories is the one between bosonic string the-
ories and superstring theories. In the mass spectrum of bosonic string theories
there are only integer spin particles, the bosons. These kinds of theories are un-
realistic because of the lack of fermions, which, instead, have half-integer spin
values. On the contrary, superstring theories describe bosons and fermions. All
the potentially realistic models are based on superstring theories, since in Nature
all the matter particles are fermions while all the force carriers are bosons.

In string theories there is an interesting symmetry relating bosons to fermions:
the so-called supersymmetry. It links and uni�es matter and forces and requires a
fermion of the same mass for every boson. In the recent years, the Large Hadron
Collider (LHC) reached energies up to a few TeV (8 TeV on march 2012), but
it has not been possible to observe either the supersymmetry or the `stringy'
nature of particles. It means that the typical string energy scale as well as the
characteristic energy scale of supersymmetry breaking are above the lower bounds
set experimentally until now.

Another intriguing feature of string theories is that their consistency �xes the
number of dimensions of the space-time they live in. In particular, a calcula-
tion shows that bosonic string theories are consistent only in a 26-dimensional
space-time, while superstring theories are in a 10-dimensional one. Under cer-
tain assumptions, an eleventh dimension is also possible (M-theory). In order to
make contact with the everyday world of our experience, in which there is one
time-dimension and three spatial dimensions, a straightforward solution is that
the `extra'-dimensions are curled up. In this picture, they form a compact space
the typical size of which is so small to have escaped detection in experiments
done at too low energies.

If string theory has to do with real world, then it must be possible to deduce
from it the other theories that have been empirically tested and are well-known
up to same rank of energies or distances. More precisely it should recover in a
suitable low-energy limit the Standard Model of Particle Physics and General
Relativity. The latter is naturally incorporated in the theory and gets modi�ed
only at very short distances/high energies.

The ambitious task of �nding the Standard Model inside string theory consti-
tutes the research branch known as string phenomenology. An important role for
accomplishing this project is played by Dp-branes. A Dp-brane is a nonperturba-
tive object behaving as a soliton in �eld theory with a tension per unit p-volume
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inversally proportional to the coupling constant gs. One of its basic properties is
to have a (p+1)-dimensional gauge theory living on its world-volume, since open
strings have their endpoints on it. On a stack of N parallel Dp-branes, there are
N2 di�erent kinds of open strings having endpoints on them. Hence a U(N) gauge
theory lives on their world-volume, being the massless open-string states corre-
spondent to the gauge �elds of U(N). In order to get the Standard Model from
string theory, intersecting branes are required, because the open strings attached
to them provide chiral fermions in the four-dimensional space-time as expected
for the fermions described in the Standard Model. The use of intersecting branes
can be involved. It results to be much more convenient to deal with another kind
of branes, the magnetized branes, which are connected to the intersecting ones
by T-duality. This property relates the intersection angle of intersecting branes
into a constant magnetic �eld characterizing parallel magnetized branes [3, 4].

T-duality is one of the exotic and peculiar features of string theory. For
a recent review, see Ref. [5] and references therein. T-duality implies that in
many cases di�erent geometries for the extra dimensions are equivalent. In the
presence of compacti�cations, new modes, besides the usual ones, emerge out in
closed string theories: a closed string wraps around the compacti�ed dimensions
leading to the introduction of a new meaningful quantity, the winding number.
In the simplest case of compacti�cation, the so-called circle compacti�cation, one
of the spatial dimensions is curled up to form a circle of radius R. T-duality
relates closed strings compacti�ed on such circle to the ones compacti�ed on a
dual circle of radius proportional to 1/R. In other words, T-duality is a clear
indication that geometrical concepts can break down at the string scale. One is
led to introduce a new kind of coordinate, the T-dual coordinate with respect to
the compacti�ed coordinate, to parametrize the position of the string along the
dual circle. This new coordinate is linked to the winding number in the same way
as the ordinary coordinate is linked to the momentum, meaning that they are
conjugated variables. Of course, this procedure can be generalized to the case of
an arbitrary number of compacti�ed dimensions (up to 22 or 6, depending on the
theory under study) and in the presence of an antisymmetric background �eld.

T-duality remains an exact symmetry of the mass spectrum of closed strings,
but not of the action. Recently, many e�orts have been done in order to construct
a model which is manifestly T-duality invariant. In order to do that, it is neces-
sary to introduce the dual coordinates at the level of the sigma-model action. The
main goal of this new action would be to explore more closely the gravity implied
by string theory. In fact, if interested in writing down the e�ective �eld theory of
this generalized sigma-model, one should consider, correspondently to the intro-
duction of the ordinary coordinates and their duals, a dependence on these doubled
coordinates of the �elds associated with string states. Indeed, the e�ective �eld
theory of this formulation is a double �eld theory [6, 7, 8, 9, 10, 11, 12, 13]. In
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particular, this has to be true for the well-known e�ective gravitational action
of a closed bosonic string that involves the �elds associated with the massless
states: the gravitational �eld G, the Kalb-Ramond B and the dilaton φ. So, it
would be interesting to understand what this action becomes in light of the fact
that all those �elds are dependent on doubled coordinates, trying to shed light on
string gravity, not yet explored. But, of course, before solving this very crucial
question, a preliminary step is to achieve a formulation of closed bosonic string
with T-duality made manifest in its sigma-model. This is the main aim of this
work.

This thesis is structured as follows.

In Chapter 1 the standard formulation of string theory is recalled. The
Nambu-Goto and the Polyakov actions are brie�y discussed, together with their
symmetries. The equations of motion and the boundary conditions to be satis-
�ed by the string coordinates are given in the conformal gauge. In particular,
attention is paid on the classical and quantum closed string theory. We provide
the explicit expansions for the string coordinates, the constraints deriving from
the energy-momentum tensor, the Virasoro algebra and generators, the Poisson
brackets and the conditions to select the physical states.

In Chapter 2, in order to explore T-duality of closed strings, the e�ects of com-
pacti�cation of one or more spatial dimensions are analyzed in some detail. We
start from the simplest case, the circle compacti�cation. The modi�ed topology
of the target space implies new modes to appear (the windings). Moreover, one is
naturally led to introduce a dual circle and a `new' string coordinate along that
circle. The mass formula and the level matching-condition for the string states
get slightly modi�ed with respect to the noncompact case and they can be written
in a matricial form, by introducing two 2 × 2 matrices, so doubling the number
of coordinates involved. This procedure can be generalized in two directions:
it can be extended for n > 1 compact dimensions (toroidal compacti�cation)
forming a torus described by a nonorthogonal metric G and in the presence of
an antisymmetric Kalb-Ramond �eld B. These are two of the usual massless
background �elds that one �nds in the closed-string spectrum. As for the circle
compacti�cation, also for the compacti�cation on an n-torus, n dual coordinates
can be introduced and the mass formula and the level matching condition can be
written through two 2n×2n matrices. One is a block-matrix, the blocks of which
are constructed out of some combinations of G and B. The second one can be
seen as the metric of the group O(n, n;Z), which plays a fundamental role. The
explicit expansions of the coordinates are given and then the Poisson brackets
are computed both for the ordinary coordinates and their duals and for the left
and right coordinates. It is worth noticing that all these coordinates behave like
noncommuting variables.
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In Chapter 3, in order to construct and develop the T-duality symmetric for-
mulation of closed string theory, requiring the introduction in the action of the
dual coordinates besides the usual ones, we analyze the dynamics of a free bidi-
mensional scalar �eld de�ned on a �at backgroud. In fact, a single string coordi-
nate, independently of the target space index it carries, behaves like a scalar �eld
de�ned on the world-sheet. The (Hodge-)dual scalar �eld is introduced. The ac-
tion/Lagrangian obtained is characterized by a doubled set of variables (the scalar
�eld and its dual) and is not manifestly local Lorentz invariant. A suitable choice
of basis (and so of coordinates) permits to write the Lagrangian of the system
as a sum of a particular class of �rst order Lagrangians, the Floreanini-Jackiw
ones. Since they describe constrained systems, the Dirac method of quantization
is required. Dirac brackets and commutators are computed. The local Lorentz
invariance is recovered on-shell.

In Chapter 4, the results of Chapter 3 are generalized. The dynamics of a
scalar �eld de�ned on a curved background (as the string world-sheet) is studied.
There are little di�erences from the �at case. One of the most important is the
necessity of introducing a 2-bein in the sigma-model action to balance the lack
of local Lorentz invariance. The symmetries of the action describing the scalar
�eld and its dual are illustrated. They permit to gauge-�x the 2-bein to a �at
form, so to recover the results of the previous Chapter.

In Chapter 5, the manifestly T-duality invariant formulation of closed string
theory is �nally introduced and studied in some detail. Starting from a general-
ized sigma-model action, one can derive the formulation including a doubled set of
coordinates as well as two background �elds: the metric G and the Kalb-Ramond
�eld B. This formulation, inspired by A. A. Tseytlin, is not local Lorentz invari-
ant. As in the scalar �eld case, a change of basis introduces new coordinates.
Their dynamics are encoded in �rst order Lagrangians. One of the results of
this work is that, after performing the Dirac quantization procedure, the doubled
coordinates, as well as the chiral ones, behave like noncommuting phase-space
variables. Nevertheless, their expansions in terms of modes generate the same
Virasoro algebra as the one in the standard formulation. A section devoted to
the covariant formulation, proposed by C. Hull, concludes the Chapter.

Five Appendices complete this work. In Appendix A notation is set and some
useful identities are given. In Appendix B, the 2-bein and some of its proper-
ties are analyzed in some detail. Appendix C is the one in which Hodge-duals
are studied. In Appendix D some relations between the background �elds are
demonstrated. Appendix E is devoted to the study of the �rst order Floreanini-
Jackiw Lagrangians. Lagrangians with a �nite number of degrees of freedom are
discussed, then they are generalized to the case of an in�nite number of degrees
of freedom.
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Chapter 1

String theory - Usual formulation

In this �rst Chapter, the basics of string theory are faced. In particular, the
Nambu-Goto action is showed and its classical equivalence to the Polyakov one
is demonstrated. The Polyakov action is more suitable for the development of
the theory itself. The global and local symmetries of the Polyakov action are
discussed. The local symmetries permit to gauge-�x the world-sheet metric to
get the so-called conformal gauge. The equations of motion and the boundary
conditions for the string coordinates are computed. The vanishing of the compo-
nents of the energy-momentum tensor has to be kept as a constraint to be solved
together with the equations of motion. Then the classical closed string theory is
analyzed: the expansions for the string coordinates are given and, moreover, also
the Poisson brackets and the Virasoro generators are computed. The quantiza-
tion procedure is performed. Normal-ordering ambiguities are taken into account.
Finally, the conditions to select the physical string states are illustrated.

1.1 On string theory

In analogy with the action describing a relativistic point particle moving in a
curved space-time, the integrand of which is proportional to the invariant length
of the world-line of the particle itself, the Nambu-Goto action, describing a string
in a space-time with �at minkowskian metric ηµν with mostly plus signature, is
proportional to the area of the world-sheet swept by the string during its motion:

SNG = −T
∫
d2ξ
√
− det(∂αX · ∂βX)

= −T
∫
d2ξ

√
(Ẋ ·X ′)2 − Ẋ2X ′2 , (1.1)

where, as usual, Ẋµ ≡ ∂0X
µ ≡ ∂Xµ/∂τ , X ′µ ≡ ∂1X

µ ≡ ∂Xµ/∂σ and A · B
stands for ηµνA

µBν . The object γαβ ≡ ∂αX ·∂βX is the so-called induced metric.
A set of two (adimensional) coordinates ξα = (ξ0, ξ1), with ξ0 ≡ τ (time-like) and

11



12 CHAPTER 1. STRING THEORY - USUAL FORMULATION

ξ1 ≡ σ (space-like), is introduced on the world-sheet to parametrize its points.
We choose −∞ < τ < +∞ and 0 ≤ σ ≤ π. Of course, d2ξ ≡ dτ dσ. The
dimensionful constant T in front of the action is the string tension. It makes the
action dimensionless ([T ] = L−2 and [Xµ] = L). The string tension can also be
expressed in terms of the string length ls ≡

√
2α′:

T =
1

2πα′
=

1

πl2s
. (1.2)

The action (1.1) is invariant under reparametrizations of the world-sheet co-
ordinates ξα → ξ′α = ξ′α(ξ), but it is awkward to quantize because of the square
root [1].

The Polyakov action is

Sσ[hαβ;Xµ] = −T
2

∫
d2ξ
√
−hhαβηµν∂αXµ∂βX

ν . (1.3)

It is a sigma-model action classically equivalent to the Nambu-Goto one (they give
the same equation of motion for all the �eldsXµ, µ = 0, 1, . . . , D−1). We stressed
that Sσ is a functional of hαβ, the world-sheet metric, and of Xµ, the string
coordinates on the target space. Moreover, h ≡ det(hαβ) and hαβ ≡ (h−1)αβ.

The lack of a kinetic term for the world-sheet metric hαβ has the consequence
that the equations of motion for the metric itself are equivalent to the vanishing
of the world-sheet energy-momentum tensor Tαβ, so de�ned

Tαβ ≡ 2

T

1√
−h

δSσ
δhαβ

. (1.4)

We will consider the covariant version of Tαβ:

Tαβ = hαγhβδT
γδ .

Since
δhγδ
δhαβ

= −hαγhβδ ,

Tαβ can be written also as

Tαβ = − 2

T

1√
−h

δSσ
δhαβ

,

constituting a de�nition for the covariant tensor itself.
By remembering that δ

√
−h = −(1/2)

√
−hhαβδhαβ, Tαβ can be easily com-

puted:

Tαβ = ∂αX · ∂βX −
1

2
hαβh

γδ∂γX · ∂δX = 0 . (1.5)
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In order to demonstrate the equivalence between SNG and Sσ, the easiest way is
to take the determinant of both sides of the equality

∂αX · ∂βX =
1

2
hαβh

γδ∂γX · ∂δX ,

implying, in a bidimensional space, as the one we are dealing with,

det(∂αX · ∂βX) =
1

4
det(hαβ) (hγδ∂γX · ∂δX)2

and √
−det(∂αX · ∂βX) =

1

2

√
−hhγδ∂γX · ∂δX .

Let us notice that the tensor Tαβ is traceless:

Tr(Tαβ) ≡ hαβTαβ = hαβ∂αX · ∂βX −
1

2
hαβhαβh

γδ∂γX · ∂δX = 0 ,

being hαβhαβ ≡ Tr(δαβ) = 2 (again) in a bidimensional space.

The equation of motion and the boundary terms for the �eld Xµ are obtained
by varying the action Sσ and by imposing this variation to vanish. They are,
respectively,

∂α(
√
−hhαβ∂βXµ) = 0 (1.6)

and

−T
∫ π

0

dσ
[
(
√
−hh0β∂βXµ)δXµ

]τ=+∞

τ=−∞
− T

∫ +∞

−∞
dτ
[
(
√
−hh1β∂βXµ)δXµ

]σ=π

σ=0
.

Actually, the boundary terms reduce to

−T
∫ +∞

−∞
dτ
[
(
√
−hh1β∂βXµ)δXµ

]σ=π

σ=0
, (1.7)

because δXµ(τ = ±∞, σ) = 0, ∀σ and ∀µ.

1.2 Global and local symmetries of Sσ

The Polyakov action (1.3) exhibits a series of global and local symmetries:

• invariance under (global) Poincaré transformations of the world-sheet �elds

δXµ = aµνX
ν + bµ and δhαβ = 0 , (1.8)
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where aµν = −aνµ. The constant parameters aµν and bµ represent, respec-
tively, space-time rotations and translations. The corresponding variation
of the action is

δSσ = −T
∫
d2ξ
√
−hhαβηµνaµρ∂αXρ∂βX

ν

= −T
∫
d2ξ
√
−hhαβaνρ∂αXρ∂βX

ν = 0

being the integrand equal to the product of a symmetric tensor and an
antisymmetric one;

• invariance under (local) reparametrizations of the world-sheet coordinates:

ξα → ξ′
α

= ξ′
α
(ξ) and hαβ =

∂ξ′γ

∂ξα
∂ξ′δ

∂ξβ
h′γδ . (1.9)

As it is well-known, these kinds of reparametrizations generate the following
transformations:

d2ξ → d2ξ′ J

h→ J−2h′ ⇒
√
−h→ J−1

√
−h′ ,

where J ≡ det(∂ξα/∂ξ′β) is the Jacobian of the transformation. In this
way d2ξ

√
−h → d2ξ′

√
−h′, hence the name of `invariant measure' for the

quantity d2ξ
√
−h. Moreover,

hαβ =
∂ξα

∂ξ′γ
∂ξβ

∂ξ′δ
h′
γδ

and
∂

∂ξα
=
∂ξ′β

∂ξα
∂

∂ξ′β

with hαβ∂αX · ∂βX left invariant;

• invariance under Weyl transformations. They a�ect the world-sheet �elds
as follows:

hαβ → eφ(τ,σ)hαβ and δXµ = 0 . (1.10)

The �rst of (1.10) implies h → e2φh and, consequently,
√
−h → eφ

√
−h

and hαβ → e−φhαβ. So they make the quantity
√
−hhαβ invariant. It

is a peculiarity of bidimensional spaces as it can be easily veri�ed. In
fact, in a generic N -dimensional space, a Weyl transformation of the type
hαβ → Λ(τ, σ)hαβ generates

h→ ΛNh ⇒
{ √

−h → ΛN/2
√
−h

hαβ → Λ−1hαβ

and so √
−hhαβ → Λ

N−2
2

√
−hhαβ ,

con�rming the invariance only for N = 2.
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The (three) local symmetries allow to choose a particular form for the world-
sheet metric hαβ, which has three independent entries (h01 = h10). This procedure
is also known as the gauge-�xing. Hereafter in this Chapter the conformal gauge
hαβ = ηab is performed. It is worth noticing that, after the gauge-�xing procedure,
there are still other residual gauge transformations. These are called conformal
transformations, a mixture of Weyl rescalings and reparametrizations.

1.3 Theory in the conformal gauge

In the conformal gauge, the Polyakov action assumes the form

Sσ[Xµ] = −T
2

∫
d2ξ ηab ηµν∂aX

µ∂bX
ν

=
T

2

∫
d2ξ

[
(∂0X)2 − (∂1X)2

]
=

T

2

∫
d2ξ (Ẋ2 −X ′2) . (1.11)

So, the Lagrangian density L is

L =
T

2
(Ẋ2 −X ′2) . (1.12)

The energy-momentum tensor Tαβ becomes

Tab ≡ Tαβ|hαβ=ηab

= ∂aX · ∂bX +
1

2
ηab(Ẋ

2 −X ′2) (1.13)

and its components are easily computed:

T00 = T11 = (1/2)(Ẋ2 +X ′2)

T01 = T10 = Ẋ ·X ′ .

The condition of the vanishing of the trace becomes ηabTab = −T00 + T11 = 0.
Once one has gauge-�xed the metric, the vanishing of Tab has to be kept as an
additional constraint to be solved together with the equations of motion for the
string coordinates Xµ. In the conformal gauge, the equation of motion (1.6) is

∂a(η
ab∂bX

µ) = ηab∂a∂bX
µ = ∂a∂

aXµ = 0 , (1.14)

while the boundary term (1.7) is

−T
∫ +∞

−∞
dτ [∂1XµδX

µ]σ=π
σ=0 . (1.15)
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Let us introduce a new set of world-sheet coordinates, the light-cone coordi-
nates: σ± ≡ τ ± σ. The relations between the derivatives with respect the old
and the new coordinates are{

∂0 = ∂+ + ∂−
∂1 = ∂+ − ∂−

⇔
{
∂+ = (1/2)(∂0 + ∂1)
∂− = (1/2)(∂0 − ∂1)

, (1.16)

while, in the light-cone basis, the metric and its inverse become, respectively(
η++ η+−
η−+ η−−

)
= −1

2

(
0 1
1 0

)
(
η++ η+−

η−+ η−−

)
= −2

(
0 1
1 0

)
.

Moreover, the equation of motion can be written as ∂+∂−X
µ = 0 and it

is classically solved by writing the solution as a linear combination of one left-
moving and one right-moving wave: Xµ(τ, σ) = c1X

µ
L(τ +σ) + c2X

µ
R(τ −σ), with

c1, c2 ∈ R.
By using the law of tensor transformation under a change of coordinates, we

can write the components of the energy-momentum tensor in the light-cone basis:

T++ =
1

4
(T00 + T01 + T10 + T11) =

1

2
(T00 + T01)

=
1

4
(Ẋ +X ′)2 = ∂+X · ∂+X (1.17)

T+− =
1

4
(T00 − T01 + T10 − T11) =

1

4
(T00 − T11)

= −1

4
Tr(Tαβ) = 0 (1.18)

T−+ =
1

4
(T00 + T01 − T10 − T11) =

1

4
(T00 − T11) = T+− (1.19)

T−− =
1

4
(T00 − T01 − T10 + T11) =

1

2
(T00 − T01)

=
1

4
(Ẋ −X ′)2 = ∂−X · ∂−X . (1.20)

The components of the tensor, which are not automatically vanishing, are T±± =
∂±X · ∂±X.

1.4 Classical closed string theory

In the conformal gauge, the equation of motion for the string coordinates is
∂a∂

aXµ = 0. For a closed string, which is the one we are treating, the boundary
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term vanishes by putting

Xµ(τ, σ + π) = Xµ(τ, σ) . (1.21)

The equation of motion for the �eldsXµ and the periodicity condition just quoted
constitute a su�cient condition to ensure the stationarity of (1.11). We want
here to observe that the most general closed-string boundary condition which
let the boundary term vanish is a quasi-periodicity condition. It will be used
in the next Chapters, where the theory in the presence of compacti�ed spatial
dimensions will be analyzed. As we already stressed at the end of the previous
section, before using eq. (1.21), the general solution of the equation of motion is
Xµ(τ, σ) = c1X

µ
L(τ +σ) + c2X

µ
R(τ −σ). Because of the arbitrariness in the choice

of c1 and c2, we can write the string coordinate as

Xµ(τ, σ) =
1√
2

[Xµ
L(τ + σ) +Xµ

R(τ − σ)] ,

through a rede�nition of Xµ
L and Xµ

R. On this kind of solutions, the components
of the energy-momentum tensor are:

T++ =
1

2
∂+XL · ∂+XL =

1

2
(∂+XL)2 (1.22)

T−− =
1

2
∂−XR · ∂−XR =

1

2
(∂−XR)2 . (1.23)

In order to �nd the explicit form of the functions XL,R, we have to write the
periodicity condition (1.21) in terms of these �elds. It takes the form

Xµ
L(σ+ + π)−Xµ

L(σ+) = Xµ
R(σ−)−Xµ

R(σ− − π) . (1.24)

By deriving the last equality once with respect to σ+ and once with respect to
σ− (being them independent variables), we �nd that

∂+X
µ
L(σ+ + π) = ∂+X

µ
L(σ+)

and that
∂−X

µ
R(σ− − π) = ∂−X

µ
R(σ−) .

In other words, these derivatives are periodic functions with period π, and hence,
they have the following Fourier expansions:

∂+X
µ
L = 2

√
α′
∑
n∈Z

α̃µne
−2inσ+

(1.25)

∂−X
µ
R = 2

√
α′
∑
n∈Z

αµne
−2inσ−

(1.26)

(this choice of normalization will be cleari�ed later). The coe�cients of the
expansions α̃µn and αµn will be interpreted as the string oscillation modes.
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By integrating over σ± the equations (1.25 - 1.26), we get

Xµ
L(σ+) = xµL + 2

√
α′α̃µ0σ

+ + i
√
α′
∑
n6=0

1

n
α̃µne

−2inσ+

(1.27)

Xµ
R(σ−) = xµR + 2

√
α′αµ0σ

− + i
√
α′
∑
n6=0

1

n
αµne

−2inσ−
, (1.28)

where xµL and xµR emerge as integration constants. (Let us observe that the �elds
XL,R are quasi-periodic.)

The periodicity condition Xµ(τ, σ+π) = Xµ(τ, σ) imposes α̃µ0 = αµ0 . It means
that in the Xµ expansion there is no linear term in σ and that, once quantized
the theory, there will be only one momentum operator as well as one coordinate
for the center-of-mass.

So the expansion for the �eld Xµ is

Xµ(τ, σ) =
1√
2

[Xµ
L(τ + σ) +Xµ

R(τ − σ)]

=
1√
2

(xµL + xµR) +
√

2α′(α̃µ0 + αµ0 )τ +
√

2α′(α̃µ0 − α
µ
0 )σ

+i

√
α′

2

∑
n6=0

e−2inτ

n
[α̃µne

−2inσ + αµne
+2inσ]

=
1√
2

(xµL + xµR) +
√

2α′(α̃µ0 + αµ0 )τ

+i

√
α′

2

∑
n6=0

e−2inτ

n
[α̃µne

−2inσ + αµne
+2inσ] .

The momentum density is, by de�nition,

Pµ ≡
∂L
∂Ẋµ

= TẊµ . (1.29)

We will use its contravariant version:

Pµ = T

{
√

2α′(α̃µ0 + αµ0 ) +
√

2α′
∑
n6=0

e−2inτ [α̃µne
−2inσ + αµne

+2inσ]

}
. (1.30)

The total momentum, which a priori is a function of τ , turns out to be

P µ(τ) =

∫ π

0

dσPµ(τ, σ) = T
√

2α′(α̃µ0 + αµ0 )π =
1√
2α′

(α̃µ0 + αµ0 ) ≡ pµ , (1.31)

and it coincides with the constant momentum of the center-of-mass of the string.
The last equality in eq. (1.31) implies α̃µ0 = αµ0 = (

√
α′/2)pµ, slightly generalized
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into pµL ≡ (1/
√
α′)α̃µ0 = pµR ≡ (1/

√
α′)αµ0 = (1/

√
2)pµ. Moreover, it is convenient

to impose xµL = xµR = (1/
√

2)xµ.
With these de�nitions, the expansion for the �eld Xµ is

Xµ(τ, σ) = xµ + 2α′pµτ + i

√
α′

2

∑
n6=0

e−2inτ

n
[α̃µne

−2inσ + αµne
+2inσ] . (1.32)

Requiring the �elds Xµ
L, X

µ
R and their sum Xµ to be real, implies that xµ and pµ

are real, while, for the oscillator modes, α̃µ−n = (α̃µn)∗ and αµ−n = (αµn)∗, where ∗
denotes complex conjugation.

Let us now calculate Ẋµ and X ′µ:

Ẋµ =
√

2α′

(∑
n∈Z

α̃µne
−2inσ+

+
∑
n∈Z

αµne
−2inσ−

)
=

1√
2

(∂+X
µ
L + ∂−X

µ
R) (1.33)

X ′
µ

=
√

2α′

(∑
n∈Z

α̃µne
−2inσ+ −

∑
n∈Z

αµne
−2inσ−

)
=

1√
2

(∂+X
µ
L − ∂−X

µ
R) (1.34)

equivalent to

Ẋµ +X ′
µ

=
√

2∂+X
µ
L

Ẋµ −X ′µ =
√

2∂−X
µ
R .

The Hamiltonian density (not written in terms of the Hamiltonian variables
X and P) is

H ≡ PµẊµ − L = TẊ2 − T

2
(Ẋ2 −X ′2) =

T

2
(Ẋ2 +X ′

2
) , (1.35)

while the Hamiltonian is

H =

∫ π

0

dσH =
T

2

∫ π

0

dσ(Ẋ2 +X ′
2
) . (1.36)

By inserting the mode expansion of the X �elds in eq. (1.36), we get

H =
∑
n∈Z

(α̃−n · α̃n + α−n · αn) . (1.37)

1.4.1 Some Poisson brackets

This section is devoted to the study of the Poisson brackets among the dynam-
ical variables in the theory. In analogy with the Poisson brackets holding for
generalized coordinates and their conjugate momenta in classical mechanics, we
de�ne

{Xµ(τ, σ),Pν(τ, σ′)}PB ≡ ηµνδ(σ − σ′) (1.38)
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{Xµ(τ, σ), Xν(τ, σ′)}PB = {Pµ(τ, σ),Pν(τ, σ′)}PB ≡ 0 . (1.39)

The insertion of the mode expansion of the �eld Xµ in (1.38 - 1.39) gives

{α̃µm, α̃νn}PB = {αµm, ανn}PB = −im δm+n,0 η
µν ∀m,n (1.40)

as well as

{α̃µm, ανn}PB = 0

{xµ, pν}PB = ηµν

{xµ, α̃νn}PB = {xµ, ανn}PB = 0 , n 6= 0 .

In the derivation of these brackets we used the Fourier expansion of the Dirac
δ-function:

δ(x) =
1

π

∑
n∈Z

e2inx . (1.41)

1.4.2 The mass formula and the Virasoro algebra

On-shell, the vanishing of the components of the energy-momentum tensor (1.22
- 1.23) can be translated into the vanishing of their Fourier coe�cients:

T++ =
1

2
∂+XL · ∂+XL = 4α′

∑
m∈Z

L̃me
−2imσ+

= 0

T−− =
1

2
∂−XR · ∂−XR = 4α′

∑
m∈Z

Lme
−2imσ−

= 0 .

The coe�cients are given by the following integrals valued at τ = 0, being T++

and T−− quantities conserved in τ [14]:

L̃m =
T

2

∫ π

0

dσ e+2imσ T++ =
1

2

∑
n∈Z

α̃m−n · α̃n = 0 (1.42)

Lm =
T

2

∫ π

0

dσ e−2imσ T−− =
1

2

∑
n∈Z

αm−n · αn = 0 . (1.43)

In particular, for m = 0, we have

L̃0 =
1

2

∑
n∈Z

α̃−n · α̃n = 0 (1.44)

L0 =
1

2

∑
n∈Z

α−n · αn = 0 , (1.45)

and, by comparing with (1.37), we get H = 2(L̃0 + L0).
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An object with total momentum pµ has a relativistic mass given by M2 =
−pµpµ = −p2. Classically, one has

L̃0 =
1

2

∑
n 6=0

α̃−n · α̃n +
1

2
α̃2

0 =
∑
n∈N

α̃−n · α̃n +
α′

4
p2 = Ñ +

α′

4
p2 = 0

L0 =
1

2

∑
n 6=0

α−n · αn +
1

2
α2

0 =
∑
n∈N

α−n · αn +
α′

4
p2 = N +

α′

4
p2 = 0 ,

where Ñ ≡
∑

n∈N α̃−n · α̃n and N ≡
∑

n∈N α−n ·αn, in the quantum version of the
theory, are the so-called number operators, because they have integer eigenvalues.
The sum of the last two equations leads to

M2 = −p2 =
2

α′

(∑
n∈N

α̃−n · α̃n +
∑
n∈N

α−n · αn

)
=

2

α′
(Ñ +N) . (1.46)

The Poisson brackets between Lm and Ln, de�ned in eq. (1.43), are

{Lm, Ln}PB = −i (m− n)Lm+n , (1.47)

where we have used the identity

{AB,CD} = A{B,C}D + {A,C}BD + CA{B,D}+ C{A,D}B .

Eq. (1.47) represents the Virasoro algebra, from which the interpretation of the
Lm's as the generators of such algebra. The considerations done for Lm of course
hold also for L̃m.

Almost the totality of the results so far collected will be slightly modi�ed in
the quantum theory.

1.5 Quantum closed string theory

In this section, we will translate the results obtained in the previous sections in a
quantum context. To this aim, the Poisson brackets have to be substituted by the
commutators between operators (which, with abuse of notations, will be denoted
by the same symbols used for the classical quantities they described) acting on a
suitable Hilbert space, and all the operators will be �normal-ordered�.

The prescription
{· , ·}PB → −i[· , ·] , (1.48)

yields
[Xµ(τ, σ),Pν(τ, σ′)] = iηµνδ(σ − σ′) (1.49)

[Xµ(τ, σ), Xν(τ, σ′)] = [Pµ(τ, σ),Pν(τ, σ′)] = 0 (1.50)
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[α̃µm, α̃
ν
n] = [αµm, α

ν
n] = mδm+n,0 η

µν ∀m,n (1.51)

and

[α̃µm, α
ν
n] = 0

[xµ, pν ] = iηµν

[xµ, α̃νn] = [xµ, ανn] = 0 , n 6= 0 .

The ambiguity in the normal-ordered operators emerges out only into L̃0 and
L0, where the product of two zero-modes appears. The critical string theory is
obtained by replacing L̃0 and L0 with the quantities L̃0−a and L0−a, being a = 1
in a 26-dimensional space-time. This implies for (1.47) (after some calculations)

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1) δm+n,0 , (1.52)

where the term proportional to c (the central charge) is a quantum e�ect.
The presence of a a�icts the mass and the Hamiltonian, too. In fact, the

identities L̃0 − 1 = 0 and L0 − 1 = 0 impose the following modi�cations:

M2 =
2

α′
(Ñ +N) → M2 =

2

α′
(Ñ +N − 2) (1.53)

and
H = 2(L̃0 + L0) → H = 2(L̃0 + L0 − 2) . (1.54)

In the quantum theory, we have to implement new conditions to select the
physical states, denoted by |φ〉. They have to be annihilated by the operators
L̃0−1 and L0−1. The equations (L̃0−1)|φ〉 = (L0−1)|φ〉 = 0 can be translated
into

(L0 + L̃0 − 2)|φ〉 = 0 (1.55)

and the so-called level-matching condition, linking the left and right sectors:

(L0 − L̃0)|φ〉 = 0 ⇒ N = Ñ . (1.56)

From eqs. (1.53 - 1.56) one can deduce the closed string spectrum. In partic-
ular, at the �rst two mass levels, one gets

• the ground state |0; k〉, eigenstate of the operator pµ associated with the
eigenvalue kµ and obtained forN = Ñ = 0. It is a tachyon with α′M2 = −4;

• a set of states having the form |Ωµν〉 = αµ−1α̃
ν
−1|0; k〉 obtained for N =

Ñ = 1. They are massless, being α′M2 = 0. The symmetric and traceless
part of |Ωµν〉 is interpreted as the graviton, a massless spin-2 particle, the
trace term is a massless scalar named dilaton, while the antisymmetric part
corresponds to the so-called Kalb-Ramond �eld.



Chapter 2

Compacti�cation in string theory

The aim of this second Chapter is to describe in some detail what is meant
by compacti�cation in string theory. We will start from the simplest case, the
compacti�cation on a circle of radius R, to arrive at the compacti�cation on
an n-torus in the presence of a B-�eld, focussing on the intermediate steps. In
the circle compacti�cation, the basic ingredients as the winding number and the
dual coordinate are introduced. The presence of a `new' coordinate constitutes a
signal that the correct arena to analyze such theory should have doubled spatial
dimensions. The same idea holds also in the case of toroidal compacti�cation. As
in the previous Chapter, the mass formula and the level-matching conditions are
computed. They exhibit a manifest O(n, n;Z) invariance. The Poisson brackets
are also constructed. In particular, although the ordinary coordinates and their
duals live in completely di�erent spaces and the left and right `auxiliary variables'
have not the role of true coordinates, their Poisson brackets show that they behave
like noncommuting phase-space variables.

2.1 Circle compacti�cation

Let us consider the case of a closed string compacti�ed on a circle: the target
space is now factorized into R1,24 × S1. R is the radius of the circle. It will be
clear in a moment that, under proper assumptions, such theory is equivalent to
the one compacti�ed on a circle of radius R̃ ≡ α′/R.

We want to underline that the component of the metric on the 25th direction
(the one compacti�ed) is η(25)(25) = 1, and so objects like the action, the energy-
momentum tensor and so on, do not change at all with respect to the ones
computed in Chapter 1. In the next section, the same theory will be studied with
a straightforward generalization of the concept of �metric� on such a compacti�ed
dimension.

In the presence of compacti�cation, the periodicity condition introduced to
satisfy the boundary term for a closed string (1.21) gets modi�ed into a quasi-

23
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periodicity condition:

X25(τ, σ + π) = X25(τ, σ) + 2πRW 25 , (2.1)

where W 25 ∈ Z is the so-called winding number. Its meaning is the number
of times the closed string wraps around the compact coordinate and in which
direction.

The equation of motion for the �eld X25 is ∂+∂−X
25 = 0 and it is solved by

putting X25(τ, σ) = (1/
√

2) [X25
L (τ + σ) +X25

R (τ − σ)]. The insertion of the last
equality in the quasi-periodicity condition (2.1) this time leads to

X25
L (σ+ + π)−X25

L (σ+) = X25
R (σ−)−X25

R (σ− − π) + 2
√

2πRW 25 . (2.2)

Eq. (2.2), as in the noncompact case, leads to the periodicity of the light-cone
derivatives:

∂+X
25
L (σ+ + π) = ∂+X

25
L (σ+)

∂−X
25
R (σ− − π) = ∂−X

25
R (σ−) .

This means that the expansions of the X25
L,R �elds are the same as (1.27 - 1.28):

X25
L (σ+) = x25

L + 2
√
α′α̃25

0 σ
+ + i

√
α′
∑
n6=0

1

n
α̃25
n e
−2inσ+

(2.3)

X25
R (σ−) = x25

R + 2
√
α′α25

0 σ
− + i

√
α′
∑
n6=0

1

n
α25
n e
−2inσ−

, (2.4)

but
√

2α′(α̃25
0 − α25

0 ) = 2RW 25. The fact that α̃25
0 6= α25

0 has a signi�cative
consequence: in the corresponding quantum theory, there will be two kinds of
momenta and two independent coordinates for the left and right sectors: x25

L 6=
x25
R .
The �eld X25 has the following expansion:

X25(τ, σ) =
1√
2

(
x25
L + x25

R

)
+
√

2α′(α̃25
0 + α25

0 )τ +
√

2α′(α̃25
0 − α25

0 )σ

+i

√
α′

2

∑
n6=0

e−2inτ

n
[α̃25
n e
−2inσ + α25

n e
+2inσ] .

As in the noncompact case, the momentum density is

P25 = P25 = TẊ25 (2.5)

and the total momentum is

P 25 =

∫ π

0

dσP25 =
1√
2α′

(α̃25
0 + α25

0 ) ≡ p25 . (2.6)
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In analogy with the center-of-mass momentum p25 just de�ned, we are naturally
led to introduce another object which is similar to a momentum (they have the
same physical dimensions), the winding :

w25 ≡ 1√
2α′

(α̃25
0 − α25

0 ) . (2.7)

It is easy to verify that w25 = RW 25/α′.
The compacti�cation along a circle of radius R implies the string momentum

to be quantized, so that p25 = K25/R, with K25 ∈ Z. The integer number K25 is
known as a Kaluza-Klein excitation. As we already said, in this theory x25

L and
x25
R are independent variables and we write them in the following form:

x25
L =

1√
2

(x25 + x̃25)

x25
R =

1√
2

(x25 − x̃25) .

So we get for X25

X25(τ, σ) = x25 + 2α′p25τ + 2α′w25σ

+i

√
α′

2

∑
n6=0

e−2inτ

n
[α̃25
n e
−2inσ + α25

n e
+2inσ]

= x25 + 2α′
K25

R
τ + 2RW 25σ

+i

√
α′

2

∑
n6=0

e−2inτ

n
[α̃25
n e
−2inσ + α25

n e
+2inσ] . (2.8)

For later convenience, it is useful to write the zero-modes in terms of the
Kaluza-Klein excitations and the winding numbers. To this aim, let us recall
that

√
2α′(α̃25

0 + α25
0 ) = 2α′p25

√
2α′(α̃25

0 − α25
0 ) = 2α′w25

which are equivalent to

√
2α′(α̃25

0 + α25
0 ) = 2α′

K25

R

√
2α′(α̃25

0 − α25
0 ) = 2RW 25 .
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The last couple of equations are `solved' by

√
2α′α̃25

0 = α′
(
K25

R
+
RW 25

α′

)
(2.9)

√
2α′α25

0 = α′
(
K25

R
− RW 25

α′

)
(2.10)

The main di�erence with the noncompact version of the theory is that the mass
receives contributions only from the noncompact dimensions. So

M2 = −
24∑
µ=0

pµp
µ . (2.11)

On the other hand, in the quantum theory, the Virasoro generators remain the
same and the condition of their vanishing still holds:

L̃0 − 1 =
1

2

∑
n6=0

α̃−n · α̃n +
1

2
α̃2

0 − 1

=
∑
n∈N

α̃−n · α̃n +
1

2

24∑
µ,ν=0

ηµνα̃
µ
0 α̃

ν
0 +

1

2
(α̃25

0 )2 − 1

= Ñ +
α′

4

24∑
µ=0

pµp
µ +

1

2
(α̃25

0 )2 − 1 = 0 (2.12)

L0 − 1 =
1

2

∑
n6=0

α−n · αn +
1

2
α2

0 − 1

=
∑
n∈N

α−n · αn +
1

2

24∑
µ,ν=0

ηµνα
µ
0α

ν
0 +

1

2
(α25

0 )2 − 1

= N +
α′

4

24∑
µ=0

pµp
µ +

1

2
(α25

0 )2 − 1 = 0 . (2.13)

These equations imply

α′M2 = 2Ñ + 2N − 4 +
1

2
[(α̃25

0 )2 + (α25
0 )2]

= 2Ñ + 2N − 4 + α′

[(
K25

R

)2

+

(
RW 25

α′

)2
]
. (2.14)

The quantity de�ned as

α′M2
0 ≡ 1

2
[(α̃25

0 )2 + (α25
0 )2]

= α′

[(
K25

R

)2

+

(
RW 25

α′

)2
]

(2.15)
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will play a fundamental role in what follows.
It is worth noticing that the mass spectrum is invariant under the following

simultaneous transformations:

W 25 ↔ K25 and R↔ α′/R , (2.16)

representing the simplest example of a T-duality transformation.
The level-matching condition is now

(L0 − L̃0)|φ〉 = 0 ⇒ N − Ñ =
1

2
[(α̃25

0 )2 − (α25
0 )2] = W 25K25 . (2.17)

The di�erence with (1.56) is evident. It is due to the di�erent topology of the
space-time in which the periodicity condition is formulated.

What happens if we perform the transformations W 25 ↔ K25 and R↔ α′/R
on the zero-modes? They change as follows:

α̃25
0 → α̃25

0 (2.18)

α25
0 → −α25

0 . (2.19)

If we promote this kind of behaviour to the other modes,

α̃25
n → α̃25

n

α25
n → −α25

n ,

we recognize that the couple of �elds X25
L,R transform as

X25
L → X25

L

X25
R → −X25

R .

It implies that we can de�ne another kind of �eld: X̃25, the T-dual of X25. It is
given by

X̃25(τ, σ) ≡ 1√
2

[
X25
L (τ + σ)−X25

R (τ − σ)
]

=
1√
2

(
x25
L − x25

R

)
+
√

2α′(α̃25
0 − α25

0 )τ +
√

2α′(α̃25
0 + α25

0 )σ

+i

√
α′

2

∑
n6=0

e−2inτ

n
[α̃25
n e
−2inσ − α25

n e
+2inσ]

= x̃25 + 2α′w25τ + 2α′p25σ

+i

√
α′

2

∑
n6=0

e−2inτ

n
[α̃25
n e
−2inσ − α25

n e
+2inσ]

= x̃25 + 2RW 25τ + 2α′
K25

R
σ

+i

√
α′

2

∑
n6=0

e−2inτ

n
[α̃25
n e
−2inσ − α25

n e
+2inσ] . (2.20)
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From the last equation, it appears that the winding w25 has the role of a momen-
tum (the quantity multiplied by τ in the expansion) for X̃25.

2.1.1 Poisson brackets

The presence of the new momentum w25, of x̃25 and of the entire T-dual �eld X̃25

itself, changes the Poisson brackets (and the commutators). In fact, besides the
ones holding for the noncompact dimensions, we have:

{X25(τ, σ),P25(τ, σ′)}PB = δ(σ − σ′) (2.21)

{X25(τ, σ), X25(τ, σ′)}PB = {P25(τ, σ),P25(τ, σ′)}PB = 0 (2.22)

{α̃25
m , α̃

25
n }PB = {α25

m , α
25
n }PB = −im δm+n,0 ∀m,n (2.23)

{α̃25
m , α

25
n }PB = 0

{x25, p25}PB = 1

{x25, α̃25
n }PB = {x25, α25

n }PB = 0 , n 6= 0 ,

as well as
{x25, w25}PB = 0 .

Even if X25 is usually used as the proper coordinate, nevertheless it is useful
to calculate the Poisson brackets relative to the �elds XL,R for reasons that will
be clear later on. They are:

{X25
L (τ + σ), X25

L (τ + σ′)}PB = −2πα′ε(σ − σ′) (2.24)

{X25
R (τ − σ), X25

R (τ − σ′)}PB = 2πα′ε(σ − σ′) (2.25)

and
{X25

L (τ + σ), X25
R (τ − σ′)}PB = 0 .

It is worth stressing that the �elds X25
L,R behave like noncommuting variables.

In the previous calculations, we used

{x25
L , α̃

25
0 }PB = {x25

R , α
25
0 }PB =

√
α′ ,

equivalent to
{x25

L , p
25
L }PB = {x25

R , p
25
R }PB = 1 ,

being p25
L = (1/

√
α′)α̃25

0 and p25
R = (1/

√
α′)α25

0 (the other Poisson brackets are
vanishing), and the following expression of the ε-function:

ε(x) =
2x

2π
− i

2π

∑
n6=0

1

n
e2inx (2.26)
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(see eq. (A.9)).

The surprising aspect is that the Poisson brackets of the �elds X25 and X̃25

are the same as the ones computed for X25
L,R:

{X25(τ, σ), X̃25(τ, σ′)}PB = −2πα′ε(σ − σ′) . (2.27)

In fact, due to de�nitions (and omitting the dependence on the variables),

{X25, X̃25}PB = (1/2){X25
L , X

25
L }PB − (1/2){X25

R , X
25
R }PB

= {X25
L , X

25
L }PB .

In order to be consistent with the result in eq. (2.27), obtained through an
undirect calculation, we have to admit that

{x25, x̃25}PB = 0

{x̃25, p25}PB = 0

{x̃25, w25}PB = 1

{x̃25, α̃25
n }PB = {x̃25, α25

n }PB = 0 , n 6= 0 .

In analogy with the momentum density (2.5), we de�ne P̃25 ≡ T ( ˙̃X)25:

P̃25 = T

{
√

2α′(α̃25
0 − α25

0 ) +
√

2α′
∑
n6=0

e−2inτ [α̃25
n e
−2inσ − α25

n e
+2inσ]

}
. (2.28)

With this new dynamical variable, we can construct the following Poisson brack-
ets:

{X̃25(τ, σ), P̃25(τ, σ′)}PB = δ(σ − σ′) (2.29)

{X̃25(τ, σ), X̃25(τ, σ′)}PB = {P̃25(τ, σ), P̃25(τ, σ′)}PB = 0 , (2.30)

in complete agreement with the previous analogous brackets involving X25 and
P25.

In conclusion of this section, let us observe that (see (1.33 - 1.34) and (2.20)){
( ˙̃X)25 = X ′25

(X̃ ′)25 = Ẋ25
⇔

{
∂0X̃

25 = ∂1X
25

∂1X̃
25 = ∂0X

25 , (2.31)

summed up in

∂aX̃
25 = −εab ∂bX25 , (2.32)

which is the typical relation holding for Hodge-dual forms de�ned on a bidimen-
sional �at space (see eq. (C.8)).
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2.2 More on circle compacti�cation

In this section we will deal again with the compacti�cation on a single dimension,
writing down the analogue of the results so far obtained, but trying to analyze
the role of the component of the metric along the compacti�ed dimension, that
will be denoted by G(25)(25).

In order to �x the ideas, the target space can be thought as constituted of the
product of a minkowskian part R1,24 and the 1-torus T 1 = S1. Strictly speaking,
the Polyakov action, the Lagrangian density and other variables get modi�ed. As
an example, the Lagrangian density is

L =
T

2

[
24∑

µ,ν=0

ηµν(Ẋ
µẊν −X ′µX ′ν) +G(25)(25)(Ẋ

25Ẋ25 −X ′25
X ′

25
)

]
and the line element on the target space is constructed as follows:

ds2 =
24∑

µ,ν=0

ηµνdX
µdXν +G(25)(25)dX

25dX25 .

As we will see at the end of this section, G(25)(25) must be equal to R
2/α′ (to be

dimensionless and) to be consistent with the previous section.
The quasi-periodicity condition (2.1) gets slightly modi�ed in the constant

term:
X25(τ, σ + π) = X25(τ, σ) + 2π

√
α′W 25 . (2.33)

The mode expansions for the �elds X25
L,R remain the same as (2.3 - 2.4). The

momentum density is

P25 ≡
∂L
∂Ẋ25

= TG(25)(25)Ẋ
25 , (2.34)

while the momentum itself is

P25 =

∫ π

0

dσP25 =
1√
2α′

G(25)(25)(α̃
25
0 + α25

0 ) ≡ p25 . (2.35)

Eq. (2.33) suggests the following new de�nition for the winding: w25 ≡ W 25/
√
α′.

It is a more convenient and symmetrical way to de�ne it, because of the similarity
with p25 = K25/

√
α′ due to the quantization of the momentum. In conclusion,

the expansion for the �eld X25 is

X25(τ, σ) = x25 + 2α′G(25)(25)p25τ + 2α′w25σ

+i

√
α′

2

∑
n6=0

e−2inτ

n
[α̃25
n e
−2inσ + α25

n e
+2inσ]

= x25 + 2
√
α′G(25)(25)K25τ + 2

√
α′W 25σ

+i

√
α′

2

∑
n6=0

e−2inτ

n
[α̃25
n e
−2inσ + α25

n e
+2inσ] , (2.36)
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where G(25)(25) represents the inverse of G(25)(25).
The zero-modes expressed in terms of W 25 and K25 are obtained from

√
2α′(α̃25

0 + α25
0 ) = 2

√
α′G(25)(25)K25

√
2α′(α̃25

0 − α25
0 ) = 2

√
α′W 25

implying
√

2α′α̃25
0 =

√
α′(G(25)(25)K25 +W 25)

√
2α′α25

0 =
√
α′(G(25)(25)K25 −W 25)

or, by eliminating the common factor
√
α′,

√
2α̃25

0 = G(25)(25)K25 +W 25 (2.37)

√
2α25

0 = G(25)(25)K25 −W 25 . (2.38)

The conditions of vanishing Virasoro generators (L̃0 − 1 = L0 − 1 = 0) are

L̃0 − 1 =
1

2

∑
n6=0

α̃−n · α̃n +
1

2
α̃2

0 − 1

=
∑
n∈N

α̃−n · α̃n +
1

2

24∑
µ,ν=0

ηµνα̃
µ
0 α̃

ν
0 +

1

2
G(25)(25)(α̃

25
0 )2 − 1

= Ñ +
α′

4

24∑
µ=0

pµp
µ +

1

2
G(25)(25)(α̃

25
0 )2 − 1 = 0 (2.39)

L0 − 1 =
1

2

∑
n6=0

α−n · αn +
1

2
α2

0 − 1

=
∑
n∈N

α−n · αn +
1

2

24∑
µ,ν=0

ηµνα
µ
0α

ν
0 +

1

2
G(25)(25)(α

25
0 )2 − 1

= N +
α′

4

24∑
µ=0

pµp
µ +

1

2
G(25)(25)(α

25
0 )2 − 1 = 0 . (2.40)

The mass-squared reads

α′M2 = 2Ñ + 2N − 4 +G(25)(25)[(α̃
25
0 )2 + (α25

0 )2] , (2.41)

while the quantity α′M2
0 is

α′M2
0 ≡ G(25)(25)[(α̃

25
0 )2 + (α25

0 )2]

= G(25)(25)[(G
(25)(25)K25)2 + (W 25)2]

= W 25G(25)(25)W
25 +K25G

(25)(25)K25 . (2.42)
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It is evident that, in this case, the mass spectrum is invariant under the T-duality
transformations

W 25 ↔ K25 and G(25)(25) ↔ G(25)(25) . (2.43)

The level-matching condition is now

(L0 − L̃0)|φ〉 = 0⇒ N − Ñ =
1

2
G(25)(25)[(α̃

25
0 )2 − (α25

0 )2] = W 25K25 . (2.44)

It is very interesting to observe that the mass spectrum and the level-matching
condition can be written by introducing a couple of 2× 2 matrices (so doubling
the number of coordinates involved):

α′M2
0 = (W 25K25)G

(
W 25

K25

)
, (2.45)

where

G ≡
(
G(25)(25) 0

0 G(25)(25)

)
(2.46)

and

N − Ñ =
1

2
(W 25K25)

(
0 1
1 0

)(
W 25

K25

)
. (2.47)

Let us now observe that the exchange R ↔ α′/R is completely equivalent to
G(25)(25) ↔ G(25)(25) by choosing G(25)(25) = R2/α′, as we stressed in the introduc-
tion of this section. In fact, it is evident that, with such a position, the result of
sect. 2.1 is recovered starting from equation (2.42):

α′M2
0 =

(√
G(25)(25)K25

)2

+
(√

G(25)(25)W
25
)2

= α′

[(
K25

R

)2

+

(
RW 25

α′

)2
]
. (2.48)

If we perform the transformations W 25 ↔ K25 and G(25)(25) ↔ G(25)(25) on the
zero-modes, we get for them the following behaviour

α̃25
0 → G(25)(25)α̃

25
0 (2.49)

α25
0 → −G(25)(25)α

25
0 (2.50)

and something very similar for the entire left and right �elds:

X25
L → G(25)(25)X

25
L

X25
R → −G(25)(25)X

25
R .
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The T-dual �eld, in this case, manifests its �covariant nature�, being explicitly
de�ned in terms of G(25)(25):

X̃25(τ, σ) ≡ 1√
2
G(25)(25)

[
X25
L (τ + σ)−X25

R (τ − σ)
]

= G(25)(25)

{
1√
2

(
x25
L − x25

R

)
+
√

2α′(α̃25
0 − α25

0 )τ +
√

2α′(α̃25
0 + α25

0 )σ

+i

√
α′

2

∑
n6=0

e−2inτ

n
[α̃25
n e
−2inσ − α25

n e
+2inσ]

}
= x̃25 + 2

√
α′G(25)(25)W

25τ + 2
√
α′K25σ

+i

√
α′

2
G(25)(25)

∑
n6=0

e−2inτ

n
[α̃25
n e
−2inσ − α25

n e
+2inσ] ,

where

x̃25 ≡
1√
2
G(25)(25)(x

25
L − x25

R ) .

2.2.1 Poisson brackets

The Poisson brackets involving the variables X25,P25 and X25
L , X

25
R are slightly

modi�ed with respect to those of section 2.1.1. One gets

{X25(τ, σ),P25(τ, σ′)}PB = G(25)(25)δ(σ − σ′) (2.51)

{X25(τ, σ), X25(τ, σ′)}PB = {P25(τ, σ),P25(τ, σ′)}PB = 0 (2.52)

and

{X25
L (τ + σ), X25

L (τ + σ′)}PB = −2πα′G(25)(25)ε(σ − σ′) (2.53)

{X25
R (τ − σ), X25

R (τ − σ′)}PB = 2πα′G(25)(25)ε(σ − σ′) . (2.54)

They lead to

{α̃25
m , α̃

25
n }PB = {α25

m , α
25
n }PB = −im δm+n,0G

(25)(25) ∀m,n (2.55)

The interesting Poisson brackets are those involving the tilded quantities. By

de�ning P̃25 ≡ T ( ˙̃X)25, we can construct

{X̃25(τ, σ), P̃25(τ, σ′)}PB = G(25)(25)δ(σ − σ′) (2.56)

{X̃25(τ, σ), X̃25(τ, σ′)}PB = {P̃25(τ, σ), P̃25(τ, σ′)}PB = 0 . (2.57)

Moreover

{x̃25, p
25}PB = 0

{x̃25, w
25}PB = 1

{x̃25, α̃
25
n }PB = {x̃25, α

25
n }PB = 0 , n 6= 0 .
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The �elds X25 and X̃25 behave like noncommuting variables

{X25(τ, σ), X̃25(τ, σ′)}PB = −2πα′ε(σ − σ′) , (2.58)

because

{X25, X̃25}PB = (1/2)G(25)(25){X25
L , X

25
L }PB − (1/2)G(25)(25){X25

R , X
25
R }PB

= G(25)(25){X25
L , X

25
L }PB .

As in the previous section, {x25, x̃25}PB = 0.

2.3 Toroidal compacti�cation

In this section we will investigate the case of compacti�cation on an n-torus T n

(toroidal compacti�cation). The physical sizes and the angles characterizing the
various circles are encoded in a constant metric, called GIJ . We will denote the
noncompact coordinates by Xµ (µ = 0, . . . , d−1), while the compacti�ed ones by
Y I (I = 1, . . . , n). As it happened in the case of a single compacti�ed dimension,
the action, the Lagrangian density (and so on), are modi�ed with respect to the
noncompact case. As an example, let us write the Lagrangian density

L =
T

2

[
d−1∑
µ,ν=0

ηµν(Ẋ
µẊν −X ′µX ′ν) +

n∑
I,J=1

GIJ(Ẏ I Ẏ J − Y ′IY ′J)

]
.

It implies that the Polyakov action Sσ can be split into two components: Sη+SG,
where (we will omit the summation symbols)

Sη = −T
2

∫
d2ξ
√
−hhαβηµν∂αXµ∂βX

ν

and

SG = −T
2

∫
d2ξ
√
−hhαβGIJ∂αY

I∂βY
J . (2.59)

The noncompact and the compact spaces do not interact.
The line element in the target space R1,d−1 × T n, with d+ n = D = 26 is

ds2 =
d−1∑
µ,ν=0

ηµνdX
µdXν +

n∑
I,J=1

GIJdY
IdY J . (2.60)

Since now on, we will focus only on the compacti�ed coordinates, being the
expression of the �elds Xµ in terms of the modes the same as the ones calculated
in the �rst Chapter.
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The energy-momentum tensor has the same structure as the one computed in
the �rst section via the substitution ηµν ↔ GIJ :

Tαβ = ∂αY · ∂βY −
1

2
hαβh

γδ∂γY · ∂δY , (2.61)

with A·B ≡ GIJA
IBJ . Let us recall that Tαβ vanishes on the equations of motion

for the world-sheet metric.
The action SG exhibits the Poincaré, reparametrizations andWeyl invariances.

• Poincaré transformations:

δY I = aIJY
J + bI and δhαβ = 0 (2.62)

imply

δSG = −T
∫
d2ξ
√
−hhαβGIJa

I
K∂αY

K∂βY
J

= −T
∫
d2ξ
√
−hhαβaJK∂αY K∂βY

J = 0 ;

• reparametrizations of the world-sheet coordinates. There is no di�erence
from section 1.2;

• Weyl transformations: they regard the world-sheet metric structure only.

These considerations guarantee the possibility of gauge-�xing hαβ = ηab. The
equation of motion and the boundary term for the �eld Y I deriving from the
action (2.59) are

∂a∂
aY I = 0 and − T

∫ +∞

−∞
dτ
[(
GIJ∂1Y

J
)
δY I

]σ=π

σ=0
= 0 . (2.63)

The �rst one is surely satis�ed by requiring the solution to be

Y I(τ, σ) =
1√
2

[
Y I
L (τ + σ) + Y I

R(τ − σ)
]
,

while the second one is satis�ed by imposing a quasi-periodicity conditions of the
type

Y I(τ, σ + π) = Y I(τ, σ) + 2π
√
α′W I . (2.64)

The mode expansions for the �elds Y I
L,R can be found in analogy with the

procedure carried out in section 2.2:

Y I
L (σ+) = yIL + 2

√
α′α̃I0σ

+ + i
√
α′
∑
n6=0

1

n
α̃Ine

−2inσ+

(2.65)

Y I
R(σ−) = yIR + 2

√
α′αI0σ

− + i
√
α′
∑
n6=0

1

n
αIne

−2inσ−
. (2.66)
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The �eld Y I becomes

Y I(τ, σ) =
1√
2

(yIL + yIR) +
√

2α′(α̃I0 + αI0)τ +
√

2α′(α̃I0 − αI0)σ

+i

√
α′

2

∑
n6=0

e−2inτ

n
[α̃Ine

−2inσ + αIne
+2inσ] ,

The momentum density is

PI ≡
∂L
∂Ẏ I

= TGIJ Ẏ
J , (2.67)

while the momentum itself is

PI =

∫ π

0

dσPI =
1√
2α′

GIJ(α̃J0 + αJ0 ) ≡ pI . (2.68)

Momentum quantization implies pI = KI/
√
α′, while the boundary condition

implies wI = W I/
√
α′. With these identities, the compact coordinate Y I has the

following expansion:

Y I(τ, σ) = yI + 2α′GIJpJτ + 2α′wIσ

+i

√
α′

2

∑
n6=0

e−2inτ

n
[α̃Ine

−2inσ + αIne
+2inσ]

= yI + 2
√
α′GIJKJτ + 2

√
α′W Iσ

+i

√
α′

2

∑
n6=0

e−2inτ

n
[α̃Ine

−2inσ + αIne
+2inσ] , (2.69)

with

yI ≡ 1√
2

(yIL + yIR) .

An expression of α̃I0 and αI0 in terms of the winding number W I and the
Kaluza-Klein excitation KI is obtained from the two conditions

√
2α′(α̃I0 + αI0) = 2

√
α′GIJKJ

√
2α′(α̃I0 − αI0) = 2

√
α′W I

implying

√
2α′α̃I0 =

√
α′(GIJKJ +W I)

√
2α′αI0 =

√
α′(GIJKJ −W I) ,
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or, by cancelling the common factor,

√
2α̃I0 = GIJKJ +W I (2.70)

√
2αI0 = GIJKJ −W I . (2.71)

The vanishing of the Virasoro generators L̃0 − 1 and L0 − 1 explicitly reads

L̃0 − 1 =
1

2

∑
n6=0

α̃−n · α̃n +
1

2
α̃2

0 − 1

=
∑
n∈N

α̃−n · α̃n +
1

2

d−1∑
µ,ν=0

ηµνα̃
µ
0 α̃

ν
0 +

1

2

n∑
I,J=1

GIJ α̃
I
0α̃

J
0 − 1

= Ñ +
α′

4

d−1∑
µ=0

pµp
µ +

1

2

n∑
I,J=1

GIJ α̃
I
0α̃

J
0 − 1 = 0 (2.72)

L0 − 1 =
1

2

∑
n6=0

α−n · αn +
1

2
α2

0 − 1

=
∑
n∈N

α−n · αn +
1

2

d−1∑
µ,ν=0

ηµνα
µ
0α

ν
0 +

1

2

n∑
I,J=1

GIJα
I
0α

J
0 − 1

= N +
α′

4

d−1∑
µ=0

pµp
µ +

1

2

n∑
I,J=1

GIJα
I
0α

J
0 − 1 = 0 . (2.73)

In the number operators there are contributions both from the noncompact and
the compact oscillators. The mass-squared reads

α′M2 = −α′
d−1∑
µ=0

pµp
µ

= 2Ñ + 2N − 4 +GIJ [α̃I0α̃
J
0 + αI0α

J
0 ] , (2.74)

while

α′M2
0 ≡ GIJ [α̃I0α̃

J
0 + αI0α

J
0 ]

= GIJW
IW J +GIJKIKJ

= (W I KI)

(
GIJ 0

0 GIJ

)(
W J

KJ

)
. (2.75)

As in the case of a single compact dimension, we have introduced a square matrix

G =

(
GIJ 0

0 GIJ

)
, (2.76)
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with doubled dimensions: 2n× 2n.
The level-matching condition can be written in a similar fashion, too. In fact,

(L0 − L̃0)|φ〉 = 0⇒

N − Ñ =
1

2
GIJ [α̃I0α̃

J
0 − αI0αJ0 ]

= W IKI

=
1

2
(W I KI)

(
0 1n
1n 0

)(
W J

KJ

)
=

1

2
(W I KI)

(
0 δ J

I

δIJ 0

)(
W J

KJ

)
.

It is evident that, in this case, the mass spectrum and the level-matching
condition are invariant under the simultaneous transformations

W I ↔ KI and G ↔ G−1 , (2.77)

the last of which is equivalent to GIJ ↔ GIJ . In this case the T-duality trans-
formation shows its �nongeometrical� nature, meaning that the metric is not
transformed through a di�eomorphism.

The exchanges W I ↔ KI , GIJ ↔ GIJ induce on the zero-modes the transfor-
mations

α̃I0 → GIJ α̃
J
0 (2.78)

αI0 → −GIJα
J
0 , (2.79)

which can be promoted for Y I
L,R:

Y I
L → GIJY

J
L

Y I
R → −GIJY

J
R .

In this way the dual �eld ỸI(τ, σ) is

ỸI(τ, σ) ≡ 1√
2

[
GIJY

J
L (τ + σ)−GIJY

J
R (τ − σ)

]
= ỹI + 2

√
α′GIJW

Jτ + 2
√
α′KIσ

+i

√
α′

2
GIJ

∑
n6=0

e−2inτ

n
[α̃Jne

−2inσ − αJne+2inσ] ,

where, as before,

ỹI ≡
1√
2
GIJ(yJL − yJR) .
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2.3.1 Poisson brackets

The Poisson brackets relative to the coordinates Y I ,PI and Y I
L,R are, respectively,

{Y I(τ, σ),PJ(τ, σ′)}PB = GIJδ(σ − σ′) (2.80)

{Y I(τ, σ), Y J(τ, σ′)}PB = {PI(τ, σ),PJ(τ, σ′)}PB = 0 (2.81)

and

{Y I
L (τ + σ), Y J

L (τ + σ′)}PB = −2πα′GIJε(σ − σ′) (2.82)

{Y I
R(τ − σ), Y J

R (τ − σ′)}PB = 2πα′GIJε(σ − σ′) . (2.83)

For the oscillators one gets:

{α̃Im, α̃Jn}PB = {αIm, αJn}PB = −im δm+n,0G
IJ ∀m,n . (2.84)

The Poisson brackets involving the tilded quantities are (by de�ning P̃I ≡ T ( ˙̃Y )I):

{ỸI(τ, σ), P̃J(τ, σ′)}PB = GIJδ(σ − σ′) (2.85)

{ỸI(τ, σ), ỸJ(τ, σ′)}PB = {P̃I(τ, σ), P̃J(τ, σ′)}PB = 0 (2.86)

as well as

{ỹI , pJ}PB = 0

{x̃I , wJ}PB = δ J
I

{ỹI , α̃Jn}PB = {ỹI , αJn}PB = 0 , n 6= 0 .

The surprising aspect is that the �elds Y and Ỹ have the same kind of be-
haviour of YL,R:

{Y I(τ, σ), ỸJ(τ, σ′)}PB = −2πα′δIJε(σ − σ′) . (2.87)

In fact, due to de�nitions,

{Y I , ỸJ}PB = (1/2)GJK{Y I
L , Y

K
L }PB − (1/2)GJK{Y I

R , Y
K
R }PB

= GJK{Y I
L , Y

K
L }PB .

Moreover, {yI , ỹJ}PB = 0.

2.4 Toroidal compacti�cation

in the presence of a B-�eld

In this section we will focus on the case of n compacti�ed dimensions (compacti�-
cation on an T n-torus) in the presence of a constant antisymmetric Kalb-Ramond
�eld BIJ .
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The action describing the compact target space is the following:

S = SG + SB

= −T
2

∫
d2ξ
√
−hhαβGIJ∂αY

I∂βY
J +

T

2

∫
d2ξ εαβBIJ∂αY

I∂βY
J

= −T
2

∫
d2ξ

(√
−hhαβGIJ − εαβBIJ

)
∂αY

I∂βY
J . (2.88)

The equation of motion for the �eld Y I , deriving from the previous action is due
only to SG. In fact, SB is a sum of surface integrals:

SB =
T

2

∫
d2ξ εαβBIJ∂αY

I∂βY
J

=
T

2

∫
d2ξ ∂α

(
εαβBIJY

I∂βY
J
)
− T

2

∫
d2ξ εαβBIJY

I∂α∂βY
J

=
T

2

∫
d2ξ ∂α

(
εαβBIJY

I∂βY
J
)

=
T

2

∫
d2ξ

{
∂0

(
ε01BIJY

I∂1Y
J
)

+ ∂1

(
ε10BIJY

I∂0Y
J
)}

=
T

2

∫ π

0

dσ
[
BIJY

I∂1Y
J
]τ=+∞
τ=−∞ −

T

2

∫ +∞

−∞
dτ
[
BIJY

I∂0Y
J
]σ=π

σ=0
.

The energy-momentum tensor has the same structure as the one computed in
the previous section since

Tαβ = − 2

T

1√
−h

δS

δhαβ
= − 2

T

1√
−h

δ(SG + SB)

δhαβ
= − 2

T

1√
−h

δSG
δhαβ

. (2.89)

The action S exhibits the following invariances under:

• Poincaré transformations

δY I = aIJY
J + bI and δhαβ = 0 (2.90)

implying

δSG = −T
∫
d2ξ
√
−hhαβGIJa

I
K∂αY

K∂βY
J = 0

δSB = T

∫
d2ξ εαβBIJa

I
K∂αY

K∂βY
J = 0 ;

• reparametrizations (it is su�cient to notice that εαβ/
√
−h transforms as a

tensor being εαβ a tensor density);

• Weyl rescalings: they do not act on SB.
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The three local invariances permit to gauge-�x the world-sheet metric: hαβ = ηab.
Let us now rewrite the action S = SG + SB in the conformal gauge:

S = −T
2

∫
d2ξ (ηabGIJ − εabBIJ)∂aY

I∂bY
J

=
T

2

∫
d2ξ (GIJ Ẏ

I Ẏ J −GIJY
′IY ′

J
+ 2BIJ Ẏ

IY ′
J
) . (2.91)

The equation of motion and the boundary term deriving from the action (2.91)
are

∂a∂
aY I = 0 and − T

∫ +∞

−∞
dτ
[(
GIJ∂1Y

J +BIJ∂0Y
J
)
δY I

]σ=π

σ=0
= 0 . (2.92)

The boundary term vanishes once one requires a quasi-periodicity condition for
the string coordinates

Y I(τ, σ + π) = Y I(τ, σ) + 2π
√
α′W I . (2.93)

As in the previous section, the expansions for the �elds Y I
L,R are the ones in eqs.

(2.65 - 2.66) and Y I can be formally written as

Y I(τ, σ) =
1√
2

(yIL + yIR) +
√

2α′(α̃I0 + αI0)τ +
√

2α′(α̃I0 − αI0)σ

+i

√
α′

2

∑
n6=0

e−2inτ

n
[α̃Ine

−2inσ + αIne
+2inσ] , (2.94)

while the di�erence is in the momentum density:

PI ≡
∂L
∂Ẏ I

= T (GIJ Ẏ
J +BIJY

′J) . (2.95)

The momentum is

PI =

∫ π

0

dσPI =
1√
2α′

[GIJ(α̃J0 + αJ0 ) +BIJ(α̃J0 − αJ0 )] ≡ pI . (2.96)

Quantization of the momentum implies pI = KI/
√
α′. As before, the winding is

wI = W I/
√
α′.

The zero-modes expressed in terms of W I and KI are obtained from

√
2α′(α̃I0 + αI0) = 2

√
α′GIJ(KJ −BJKW

K)

√
2α′(α̃I0 − αI0) = 2

√
α′W I
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implying

√
2α′α̃I0 =

√
α′
[
GIJKJ +GIJ(GJK −BJK)WK

]
=
√
α′GIJ(KJ + ET

JKW
K)

√
2α′αI0 =

√
α′
[
GIJKJ −GIJ(GJK +BJK)WK

]
=
√
α′GIJ(KJ − EJKWK) ,

or

√
2α̃I0 = GIJ(KJ + ET

JKW
K) (2.97)

√
2αI0 = GIJ(KJ − EJKWK) , (2.98)

where we have introduced the constant n× n matrix EIJ ≡ GIJ +BIJ .
The expansion of the compact coordinate Y I in terms of KI and W

I is

Y I(τ, σ) = yI + 2
√
α′(GIJKJ −GIKBKJW

J)τ + 2
√
α′W Iσ

+i

√
α′

2

∑
n6=0

e−2inτ

n
[α̃Ine

−2inσ + αIne
+2inσ] . (2.99)

The conditions on the Virasoro generators L̃0 − 1 = L0 − 1 = 0 are the same
as in eqs. (2.72 - 2.73).

The mass-squared reads

α′M2 = 2Ñ + 2N − 4 +GIJ [α̃I0α̃
J
0 + αI0α

J
0 ] , (2.100)

while

α′M2
0 ≡ GIJ [α̃I0α̃

J
0 + αI0α

J
0 ]

= (G−BG−1B)IJW
IW J +BIKG

KJW IKJ

−GIKBKJKIW
J +GIJKIKJ

= (W I KI)

(
(G−BG−1B)IJ BIKG

KJ

−GIKBKJ GIJ

)(
W J

KJ

)
. (2.101)

The 2n× 2n matrix

G ≡
(
G−BG−1B BG−1

−G−1B G−1

)
(2.102)

is the generalization, in the presence of a B �eld, of the one in eq. (2.76) and it
plays a fundamental role.

The level-matching condition can be written through the introduction of an-
other 2n× 2n matrix.
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(L0 − L̃0)|φ〉 = 0⇒

N − Ñ =
1

2
GIJ [α̃I0α̃

J
0 − αI0αJ0 ]

= W IKI

=
1

2
(W I KI)

(
0 1n
1n 0

)(
W J

KJ

)
=

1

2
(W I KI)

(
0 δ J

I

δIJ 0

)(
W J

KJ

)
. (2.103)

In this case, a T-duality transformation a�ecting both the mass and the level-
macthing condition, can be expressed in a series of equivalent ways:

• W I ↔ KI and G ↔ G−1 (involving 2n× 2n matrices);

• W I ↔ KI and E ↔ E−1 (involving n× n matrices);

• W I ↔ KI and (G − BG−1B)IJ ↔ GIJ , BIKG
KJ ↔ −GIKBKJ (again

involving n× n matrices).

They imply on the zero-modes the following transformations:

α̃I0 → EIJ α̃
J
0 (2.104)

αI0 → −ET
IJα

J
0 . (2.105)

The quickest way to verify them is to use the identities (G ± B)G−1(G ∓ B) =
G − BG−1B, which, translated for the matrix E, read: EG−1ET = ETG−1E =
G−BG−1B. These kinds of transformations hold for Y I

L and Y I
R , too:

Y I
L → EIJY

J
L

Y I
R → −ET

IJY
J
R .

The dual �eld ỸI(τ, σ) is

ỸI(τ, σ) ≡ 1√
2

[
EIJY

J
L (τ + σ)− ET

IJY
J
R (τ − σ)

]
= ỹI + 2

√
α′[(G−BG−1B)IJW

J +BIKG
KJKJ ]τ + 2

√
α′KIσ

+i

√
α′

2

∑
n6=0

e−2inτ

n
[EIJ α̃

J
ne
−2inσ − ET

IJα
J
ne

+2inσ] .

This time

ỹI ≡
1√
2

(EIJ y
J
L − ET

IJ y
J
R) .

We learned that a T-duality transformation acts on the �elds Y and Ỹ , as
well as on the couplings E and Ẽ ≡ E−1. We want to stress that this symmetry
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can be made more evident in the action describing such a model. In fact, to this
aim, let us slightly modify the action given at the beginning of this Chapter, eq.
(2.88): because of the symmetry of hαβ and GIJ and the antisymmetry of εαβ

and BIJ , the actions SG and SB can be written as

SG → S ′G = −T
2

∫
d2ξ
√
−hhαβ(GIJ +BIJ)∂αY

I∂βY
J

and

SB → S ′B =
T

2

∫
d2ξ εαβ(GIJ +BIJ)∂αY

I∂βY
J .

So their sum reads:

S = S ′G + S ′B

= −T
2

∫
d2ξ

(√
−hhαβ − εαβ

)
(GIJ +BIJ)∂αY

I∂βY
J

= −T
2

∫
d2ξ

(√
−hhαβ − εαβ

)
EIJ∂αY

I∂βY
J . (2.106)

Applying the duality transformation, we get the T-dual sigma-model action

S̃ = −T
2

∫
d2ξ

(√
−hhαβ − εαβ

)
ẼIJ∂αỸI∂βỸJ . (2.107)

2.4.1 Poisson brackets

The Poisson brackets relative to the coordinates Y I ,PI and Y I
L,R are:

{Y I(τ, σ),PJ(τ, σ′)}PB = GIJδ(σ − σ′) (2.108)

{Y I(τ, σ), Y J(τ, σ′)}PB = {PI(τ, σ),PJ(τ, σ′)}PB = 0 (2.109)

{Y I
L (τ + σ), Y J

L (τ + σ′)}PB = −2πα′GIJε(σ − σ′) (2.110)

{Y I
R(τ − σ), Y J

R (τ − σ′)}PB = 2πα′GIJε(σ − σ′) . (2.111)

The oscillators satisfy

{α̃Im, α̃Jn}PB = {αIm, αJn}PB = −im δm+n,0G
IJ ∀m,n . (2.112)

For the �elds Y and Ỹ it happens that:

{Y I(τ, σ), ỸJ(τ, σ′)}PB = −2πα′δIJε(σ − σ′) , (2.113)

as it is very simple to verify:

{Y I , ỸJ}PB = (1/2)EJK{Y I
L , Y

K
L }PB − (1/2)ET

JK{Y I
R , Y

K
R }PB

= (1/2)(EJK + ET
JK){Y I

L , Y
K
L }PB

= GJK{Y I
L , Y

K
L }PB .
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2.5 On the matrix G
The block matrix G is symmetric because (G−BG−1B)T = G−BG−1B, (G−1)T =
G−1 and (BG−1)T = −G−1B. It can be decomposed into the following product
of matrices:

G =

(
G−BG−1B BG−1

−G−1B G−1

)
=

(
1n B
0 1n

)(
G 0

−G−1B 1n

)(
1n 0
0 G−1

)
.

So, detG = detG· detG−1 = 1.
The inverse matrix can be computed in more than one fashion. It reads

G−1 =

(
G−1 −G−1B
BG−1 G−BG−1B

)
. (2.114)

The T-duality transformation of the background �elds is encoded into the ex-
change E ↔ Ẽ ≡ E−1, which �xes G̃ = (G−BG−1B)−1 and B̃ = −G−1BG̃ (see
Appendix D). Due to these equalities, the matrix G−1 can be also written as

G−1 =

(
G̃− B̃G̃−1B̃ B̃G̃−1

−G̃−1B̃ G̃−1

)
≡ G̃ . (2.115)

The equality G̃ = G−1 is another way to express part of the T-duality transfor-
mation.

2.6 The O(n, n;Z) duality group

As we already stressed, the bosonic string compacti�ed on an T n-torus has a
symmetry under the group O(n, n;Z). It generalizes the T-duality symmetry
on a single compact direction (circle compacti�cation). This symmetry is best
described in terms of the matrix G, as we saw in the previous section. Indeed,
for a nonorthogonal torus the R ↔ α′/R duality of the circle compacti�cation
generalizes to the inversion symmetry

W I ↔ KI and G ↔ G−1 .

A further discrete shift symmetry, leaving the zero-modes α̃I0 and αI0 invariant,
appears only when n > 1. It is given by

BIJ → BIJ +
1

2
NIJ with W I → W I , KI → KI +NIJW

J , (2.116)

where NIJ is an antisymmetric matrix of integers.
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By de�nition, a 2n× 2n matrix A belongs to the group O(n, n;R) if

AT
(

0 1n
1n 0

)
A =

(
0 1n
1n 0

)
, (2.117)

or

AT
(

1n 0
0 −1n

)
A =

(
1n 0
0 −1n

)
. (2.118)

The group O(n, n;Z) is the subgroup of O(n, n;R) consisting of those matrices
the elements of which are integers. If the matrix G has integral entries, then its
inverse G−1 has automatically integral entries, too.

The symmetry under a T-duality transfomation is realized as

G → AGAT and

(
W
K

)
→
(
W ′

K ′

)
= A

(
W
K

)
. (2.119)

This preserves the result for the mass spectrum in eq. (2.101) as well as the
level-matching condition in eq. (2.103).

In terms of O(n, n;Z) transformations, the inversion symmetry corresponds
to the matrix (

0 1n
1n 0

)
(2.120)

(which in the next Chapters will be called Ω) and the shift symmetry corresponds
to the matrix (

1n 0
NIJ 1n

)
. (2.121)



Chapter 3

T-dual invariant formulation:

`�at' scalar �eld

In this Chapter we introduce the fundamental ingredients to construct the T-
duality invariant formulation of closed string theory, which is examined in Chap-
ter 5. The starting point is a free Lagrangian/action describing a bidimensional
scalar �eld ϕ. Through the introduction of an auxiliary variable, it is inserted
in the action a new scalar �eld ϕ̃ which, on-shell, turns out to be Hodge-dual of
the `original' �eld ϕ. The action is then symmetrized to make both the variables
appear on equal footing. A suitable rotation introduce a couple of new coordi-
nates in terms of which the symmetrized Lagrangian splits into two decoupled
�rst order Floreanini-Jackiw Lagrangians. Their invariances are then discussed
and quantization is performed, following Dirac's procedure [15, 16, 17, 18, 19].

3.1 Scalar �eld symmetric action

On a bidimensional manifold M, let us consider the �at minkowskian metric
ηab = diag(−1,+1) and the coordinates ξa = (ξ0 ≡ τ, ξ1 ≡ σ), with −∞ < τ <
+∞ e 0 ≤ σ ≤ π. Let us introduce a scalar �eld ϕ = ϕ(τ, σ) the dynamics of
which is described by the free Lagrangian density

L(0) = −1

2
∂aϕ∂

aϕ

= −1

2
ηab∂aϕ∂bϕ

=
1

2

[
(∂0ϕ)2 − (∂1ϕ)2

]
(3.1)

or by the action

S(0) [ϕ] =

∫
d2ξ L(0) =

1

2

∫
d2ξ

[
(∂0ϕ)2 − (∂1ϕ)2

]
. (3.2)

47
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The action (3.2) describes a single degree of freedom.
The equation of motion and the boundary terms for the �eld ϕ, coming from

the variation of the action (3.2), are

∂a∂
aϕ = 0 (3.3)

and ∫ π

0

dσ [∂0ϕδϕ]τ=+∞
τ=−∞ −

∫ +∞

−∞
dτ [∂1ϕδϕ]σ=π

σ=0 = 0 .

By remembering that δϕ(τ = ±∞, σ) = 0 ∀σ, the boundary terms reduce to

−
∫ +∞

−∞
dτ [∂1ϕδϕ]σ=π

σ=0 = 0 . (3.4)

The boundary term (3.4) is of the same type as the one encountered in Chapter
1 for the closed string coordinates in the conformal gauge (eq. (1.15)) and it is
su�cient to require a periodicity condition as

ϕ(τ, σ + π) = ϕ(τ, σ) (3.5)

to satisfy it (even if this in not the unique possibility).
The Lagrangian can be put in a `�rst order form', in which it is linear in the

time derivative of the �eld ϕ. At this aim, let us introduce an auxiliary �eld
p(τ, σ) = ∂0ϕ (which, in this simple theory, coincides with ∂L(0)/∂(∂0ϕ), the
conjugate momentum with respect to ϕ). So we obtain L(0) → L′, where

L′ = p ∂0ϕ−
1

2
p2 − 1

2
(∂1ϕ)2 . (3.6)

Moreover let us make the `recast' p(τ, σ) = ∂1ϕ̃, which requires the introduction
of another scalar �eld ϕ̃ = ϕ̃(τ, σ) and the transition from the Lagrangian density
L′ to the one named L̂:

L̂ = ∂0ϕ∂1ϕ̃−
1

2
(∂1ϕ)2 − 1

2
(∂1ϕ̃)2 (3.7)

and similarly for the actions S ′ and Ŝ:

S ′ =

∫
d2ξ

[
p ∂0ϕ−

1

2
p2 − 1

2
(∂1ϕ)2

]
(3.8)

Ŝ [ϕ, ϕ̃] =

∫
d2ξ

[
∂0ϕ∂1ϕ̃−

1

2
(∂1ϕ)2 − 1

2
(∂1ϕ̃)2

]
. (3.9)

In order to `symmetrize' the action (3.9), in the sense that the �elds ϕ and ϕ̃
will be on equal footing, let us make the following observations: one half of the
integral

∫
d2ξ ∂0ϕ∂1ϕ̃ can be written as

1

2

∫
d2ξ ∂0ϕ∂1ϕ̃ =

1

2

∫
d2ξ εab∂aϕ∂bϕ̃+

1

2

∫
d2ξ ∂1ϕ∂0ϕ̃
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and the term involving the pseudo-tensor εab reduces to surface integrals

1

2

∫
d2ξ εab∂aϕ∂bϕ̃ =


1
2

∫
d2ξ ∂a(ε

abϕ∂bϕ̃)− 1
2

∫
d2ξ ϕεab∂a∂bϕ̃

1
2

∫
d2ξ ∂b(ε

abϕ̃∂aϕ)− 1
2

∫
d2ξ ϕ̃εab∂b∂aϕ

=


1
2

∫
d2ξ ∂a(ε

abϕ∂bϕ̃)

−1
2

∫
d2ξ ∂a(ε

abϕ̃∂bϕ)

(being εab∂a∂bϕ = εab∂a∂bϕ̃ = 0). It is easy to see that the action (3.9) can be
written as

Ŝ = Ŝsym +


1
2

∫
d2ξ ∂a(ε

abϕ∂bϕ̃)

−1
2

∫
d2ξ ∂a(ε

abϕ̃∂bϕ)
, (3.10)

where

Ŝsym [ϕ, ϕ̃] =
1

2

∫
d2ξ

[
∂0ϕ∂1ϕ̃+ ∂0ϕ̃∂1ϕ− (∂1ϕ)2 − (∂1ϕ̃)2

]
. (3.11)

Ŝ and Ŝsym are (essentially) equivalent, di�ering by surfaces terms, which explic-
itly are

1

2

∫
d2ξ ∂a(ε

abϕ∂bϕ̃) =
1

2

∫ π

0

dσ [ϕ∂1ϕ̃]τ=+∞
τ=−∞ −

1

2

∫ +∞

−∞
dτ [ϕ∂0ϕ̃]σ=π

σ=0

= −1

2

∫ +∞

−∞
dτ [ϕ∂0ϕ̃]σ=π

σ=0 (3.12)

or

−1

2

∫
d2ξ ∂a(ε

abϕ̃∂bϕ) = −1

2

∫ π

0

dσ [ϕ̃∂1ϕ]τ=+∞
τ=−∞ +

1

2

∫ +∞

−∞
dτ [ϕ̃∂0ϕ]σ=π

σ=0

=
1

2

∫ +∞

−∞
dτ [ϕ̃∂0ϕ]σ=π

σ=0 , (3.13)

where we have used the conditions ϕ(τ = ±∞, σ) = ϕ̃(τ = ±∞, σ) = 0 ∀σ.
By adding the hypothesis of periodicity in σ of the �eld ϕ̃, too

ϕ̃(τ, σ + π) = ϕ̃(τ, σ) (3.14)

(something which is reasonable and that will be justi�ed later on), we see that
the surviving surface integrals (3.12 - 3.13) vanish.

Let us now make an interesting observation: the variation of the action Ŝsym,
calculated when δϕ = f(τ), is the following surface integral

δŜsym|δϕ=f(τ) =
1

2

∫
d2ξ ∂1 [∂0f(τ) ϕ̃]



50CHAPTER 3. T-DUAL INVARIANT FORMULATION: `FLAT' SCALAR FIELD

=
1

2

∫ +∞

−∞
dτ [∂0f(τ) ϕ̃]σ=π

σ=0

=
1

2

∫ +∞

−∞
dτ∂0f(τ) [ϕ̃]σ=π

σ=0 = 0 , (3.15)

which is vanishing because of the periodicity of ϕ̃. So the action is invariant under
the shift ϕ → ϕ + f(τ). We get a similar result for δϕ̃ = f̃(τ) ⇔ ϕ̃ → ϕ̃ + f̃(τ)
due to the periodicity of ϕ:

δŜsym|δϕ=f(τ) =
1

2

∫
d2ξ ∂1

[
∂0f̃(τ)ϕ

]
=

1

2

∫ +∞

−∞
dτ
[
∂0f̃(τ)ϕ

]σ=π

σ=0

=
1

2

∫ +∞

−∞
dτ∂0f̃(τ) [ϕ]σ=π

σ=0 = 0 . (3.16)

The equation of motion and the boundary term for ϕ coming from the varia-
tion of Ŝsym are

∂1(∂0ϕ̃− ∂1ϕ) = 0 (3.17)

and

1

2

∫ π

0

dσ [∂1ϕ̃δϕ]τ=+∞
τ=−∞ +

1

2

∫ +∞

−∞
dτ [∂0ϕ̃δϕ]σ=π

σ=0 −
∫ +∞

−∞
dτ [∂1ϕδϕ]σ=π

σ=0

=
1

2

∫ +∞

−∞
dτ [∂0ϕ̃δϕ]σ=π

σ=0 −
∫ +∞

−∞
dτ [∂1ϕδϕ]σ=π

σ=0 = 0 , (3.18)

because δϕ(τ = ±∞, σ) = 0 ∀σ.
Eq. (3.17) is of the second order and it is solved by ∂0ϕ̃− ∂1ϕ = F (τ). It can

be made of the �rst order by using the invariance of the action (and hence of the
equation of motion) under ϕ̃ → ϕ̃ + f̃(τ). In this way, with a suitable choice of
f̃ , the equation of motion and the boundary term reduce to

∂0ϕ̃− ∂1ϕ = 0 and − 1

2

∫ +∞

−∞
dτ [∂1ϕδϕ]σ=π

σ=0 = 0 (3.19)

for

f̃ =

∫
dτ F .

On the other hand, we get for the �eld ϕ̃:

∂1(∂0ϕ− ∂1ϕ̃) = 0 (3.20)

and

1

2

∫ π

0

dσ [∂1ϕδϕ̃]τ=+∞
τ=−∞ +

1

2

∫ +∞

−∞
dτ [∂0ϕδϕ̃]σ=π

σ=0 −
∫ +∞

−∞
dτ [∂1ϕ̃δϕ̃]σ=π

σ=0

=
1

2

∫ +∞

−∞
dτ [∂0ϕδϕ̃]σ=π

σ=0 −
∫ +∞

−∞
dτ [∂1ϕ̃δϕ̃]σ=π

σ=0 = 0 , (3.21)
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because δϕ̃(τ = ±∞, σ) = 0 ∀σ.
Eqs. (3.20 - 3.21) become

∂0ϕ− ∂1ϕ̃ = 0 and − 1

2

∫ +∞

−∞
dτ [∂1ϕ̃δϕ̃]σ=π

σ=0 = 0 (3.22)

if we choose

f =

∫
dτ F̃ .

The equations of motion for ϕ and ϕ̃ in (3.19) and (3.22) can be summarized
into a single mathemathical statement:{

∂0ϕ̃ = ∂1ϕ
∂1ϕ̃ = ∂0ϕ

⇔ ∂aϕ̃ = −εab ∂bϕ. (3.23)

On-shell the �elds ϕ and ϕ̃ are (Hodge-)dual of each other, as it happened is
section 2.1.1 for the string coordinate X25 and its T-dual X̃25 (see eqs. (2.32)
and (C.8)). It is worth noticing that the duality condition in eq. (3.23) is, as it is
natural, equivalent to ∂aϕ = −εab ∂bϕ̃ and so it implies a wave equation for both
ϕ and ϕ̃:

∂a∂aϕ̃ = −εab∂a∂bϕ = 0 ; ∂a∂aϕ = −εab∂a∂bϕ̃ = 0 .

Moreover, by interpreting eq. (3.23) as an o�-shell condition, its insertion in the
action

Ŝ = Ŝsym +
1

2

∫
d2ξ εab∂aϕ∂bϕ̃ ,

permits to recover the starting action (3.2) (εab εac = −δbc, see Appendix B).

3.1.1 Matricial form of Ŝsym

The action Ŝsym can be written in a `matricial form' by introducing the constant
2× 2 matrices

C =

(
0 1
1 0

)
; M = −

(
1 0
0 1

)
(3.24)

and the vector Φ ≡ (ϕ, ϕ̃) (ΦA= 1 = ϕ, ΦA= 2 = ϕ̃):

Ŝsym
[
ΦA
]

=
1

2

∫
d2ξ

[
∂0ΦTC∂1Φ + ∂1ΦTM∂1Φ

]
=

1

2

∫
d2ξ

[
CAB ∂0ΦA∂1ΦB +MAB ∂1ΦA∂1ΦB

]
. (3.25)

Obviously, the equations of motion and the boundary terms coming from the
variation of (3.25) with respect to δΦA

∂1(CAB ∂0ΦB +MAB ∂1ΦB) = 0 (3.26)
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and

1

2

∫
d2ξ

[
∂0(CAB δΦ

A∂1ΦB) + ∂1(CAB δΦ
A∂0ΦB) + 2∂1(MAB δΦ

A∂1ΦB)
]

=
1

2

∫
d2ξ ∂a(ε

abCAB δΦ
A∂bΦ

B) +

∫
d2ξ ∂1

[
(CAB ∂0ΦB +MAB ∂1ΦB)δΦA

]
= 0

(3.27)

are completely equivalent to (3.19) and (3.22).
The action Ŝsym exhibits the invariance under ΦA → ΦA + fA(τ). The corre-

sponding variation of the action is:

δŜsym|δΦ=f(τ) =
1

2

∫
d2ξ ∂1

[
CAB ∂0f

A(τ) ΦB
]

=
1

2

∫ +∞

−∞
dτ
[
CAB ∂0f

A(τ) ΦB
]σ=π

σ=0

=
1

2

∫ +∞

−∞
dτ CAB ∂0f

A(τ)
[
ΦB
]σ=π

σ=0
= 0 , (3.28)

because of the periodicity of ϕ and ϕ̃.
The solutions of (3.26) are CAB ∂0ΦB +MAB ∂1ΦB = FA(τ) and can be made

CAB ∂0ΦB +MAB ∂1ΦB = 0 (3.29)

by choosing

fA =

∫
dτ CABFB

(let us recall that CAB ≡ (C−1)AB). The results of the previous section are
recovered once we have

f(τ) =

(
f̃(τ)
f(τ)

)
and F(τ) =

(
F̃ (τ)
F (τ)

)
.

The boundary terms, evaluated on the equations of motion, read:

1
2

∫
d2ξ ∂a(ε

abCAB δΦ
A∂bΦ

B)

= 1
2

∫
d2ξ ∂0(CAB δΦ

A∂1ΦB)− 1
2

∫
d2ξ ∂1(CAB δΦ

A∂0ΦB)

= 1
2

∫ π
0
dσ
[
CAB δΦ

A∂1ΦB
]τ=+∞
τ=−∞ −

1
2

∫ +∞
−∞ dτ

[
CAB δΦ

A∂0ΦB
]σ=π

σ=0

= −1
2

∫ +∞
−∞ dτ

[
CAB δΦ

A∂0ΦB
]σ=π

σ=0
= 0 ,

(3.30)

because δΦA(τ = ±∞, σ) = 0 ∀σ.
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Let us observe that the matrix C is the one involved in the de�nition of
the group O(1, 1), called Ω (see section 2.6). It has the following properties:
C ≡ Ω = ΩT = Ω−1.

The action (3.25) is invariant under O(1, 1)-transformations acting both on
the vectors (Φ) and on the `couplings' (M) according to the following scheme:

Λ ∈ O(1, 1)⇔ ΛTΩΛ = Ω

Φ′ = Λ−1Φ ; C ′ = ΛTCΛ = ΛTΩΛ = Ω ; M ′ = ΛTMΛ . (3.31)

It is worth noticing that the action (3.11) is manifestly invariant under the
exchange ϕ↔ ϕ̃; this symmetry is realized through the �inversion� O(1, 1) matrix
Λ = Ω implying

Φ′ = ΩΦ =

(
ϕ̃
ϕ

)
; M ′ = ΩMΩ = M−1(= M) . (3.32)

3.2 The chiral coordinates

We can introduce a pair of new �elds ϕ+ = ϕ+(τ, σ) and ϕ− = ϕ−(τ, σ), such
that{

ϕ = 1√
2
(ϕ+ + ϕ−)

ϕ̃ = 1√
2
(ϕ+ − ϕ−)

⇔

{
ϕ+ = 1√

2
(ϕ+ ϕ̃)

ϕ− = 1√
2
(ϕ− ϕ̃)

(
⇔ ϕ± =

1√
2

(ϕ± ϕ̃)

)
. (3.33)

In this new basis the �elds ϕ+ and ϕ− are arranged into the vector χ ≡ (ϕ+, ϕ−).
The vectors Φ and χ are linked through

χ = ZΦ ⇔
(
ϕ+

ϕ−

)
=

1√
2

(
1 1
1 −1

)(
ϕ
ϕ̃

)
(3.34)

and the matrices C and M transform as follows:

C ′ = (Z−1)TCZ−1 =

(
1 0
0 −1

)
(3.35)

and

M ′ = (Z−1)TMZ−1 = −
(

1 0
0 1

)
. (3.36)

The action, consequently, transforms in

Ŝsym
[
χA
]

=
1

2

∫
d2ξ

[
∂0χ

TC ′∂1χ+ ∂1χ
TM ′∂1χ

]
=

1

2

∫
d2ξ

[
C ′AB ∂0χ

A∂1χ
B +M ′

AB ∂1χ
A∂1χ

B]
=

∫
d2ξ [L+(∂aϕ+) + L−(∂aϕ−)] , (3.37)
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with

L±(∂aϕ±) = ±1

2
∂0ϕ±∂1ϕ± −

1

2
(∂1ϕ±)2 . (3.38)

The dynamics of the �elds ϕ+ and ϕ− are completely decoupled.
The Lagrangians in (3.38) are the so-called Floreanini-Jackiw Lagrangians

[20], a class of �rst order Lagrangians extensively studied in literature. The
equations of motion for ϕ+ and ϕ− are easily computed from (3.29):

CAB ∂0ΦB +MAB ∂1ΦB = 0 → C ′AB ∂0χ
B +M ′

AB ∂1χ
B = 0 ⇒

⇒
{
∂0ϕ+ = ∂1ϕ+

∂0ϕ− = −∂1ϕ−
⇒
{
∂−ϕ+ = 0
∂+ϕ− = 0

⇒
{
ϕ+ = ϕ+(τ + σ)
ϕ− = ϕ−(τ − σ)

. (3.39)

The previous equations show that ϕ+ and ϕ− are, respectively, functions of σ+ ≡
τ + σ and σ− ≡ τ − σ only on-shell.

The boundary terms, on-shell, are (see eq. (3.30))

−1

2

∫ +∞

−∞
dτ
[
CAB δΦ

A∂0ΦB
]σ=π

σ=0
→ −1

2

∫ +∞

−∞
dτ
[
C ′AB δχ

A∂0χ
B]σ=π

σ=0

= −1

2

∫ +∞

−∞
dτ [δϕ+∂0ϕ+]σ=π

σ=0 +
1

2

∫ +∞

−∞
dτ [δϕ−∂0ϕ−]σ=π

σ=0 = 0 . (3.40)

and they are satis�ed once one imposes periodicity conditions in σ.

3.3 Invariances of the Lagrangians

and quantization

The Lagrangians

L± = ±1

2
∂0ϕ±∂1ϕ± −

1

2
(∂1ϕ±)2

and

L̂sym ≡
1

2
∂0ϕ∂1ϕ̃+

1

2
∂0ϕ̃∂1ϕ−

1

2
(∂1ϕ)2 − 1

2
(∂1ϕ̃)2 (3.41)

exhibit a series of invariances. Let us examine L± �rst:

• space-time translations (we do not indicate the constant parameters of the
transformations)

δτϕ± = ∂0ϕ± ⇒ δτL± = ∂0L± ; (3.42)

δσϕ± = ∂1ϕ± ⇒ δσL± = ∂1L± ; (3.43)

• an analogue of Lorentz transformations

δLϕ± = (τ ± σ)∂1ϕ± ⇒ δLL± = ∂1[(τ ± σ)L±] ; (3.44)
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• �conformal� transformations

(δϕ±)conf = f(τ ± σ)∂1ϕ± ⇒ (δL±)conf = ∂1[f(τ ± σ)L±] ; (3.45)

• scale symmetry

(δϕ±)scale = τ∂0ϕ±+σ∂1ϕ± ⇒ (δL±)scale = ∂0(τL±) +∂1(σL±) . (3.46)

The invariances of L̂sym are:

• space-time translations{
δτϕ = ∂0ϕ
δτ ϕ̃ = ∂0ϕ̃

⇒ δτ L̂sym = ∂0L̂sym ; (3.47){
δσϕ = ∂1ϕ
δσϕ̃ = ∂1ϕ̃

⇒ δσL̂sym = ∂1L̂sym ; (3.48)

• eq. (3.44) implies the corresponding Lorentz symmetry

δLϕ = τ∂1ϕ+ σ∂1ϕ̃ and δLϕ̃ = τ∂1ϕ̃+ σ∂1ϕ . (3.49)

It is worth noticing that eqs. (3.44) and (3.49), on-shell (∂0ϕ± = ±∂1ϕ± and
∂0ϕ̃ = ∂1ϕ, ∂1ϕ̃ = ∂0ϕ), reproduce the usual Lorentz rotations:

δϕ± = τ∂1ϕ± + σ∂0ϕ± (3.50)

δϕ = τ∂1ϕ+ σ∂0ϕ (3.51)

δϕ̃ = τ∂1ϕ̃+ σ∂0ϕ̃ . (3.52)

So, on-shell, Lorentz invariance is completely restored.
In the chiral basis, it is straightforward to quantize the Lagrangians L± (see

Appendix E) and, consequently, L̂sym. It results that

[ϕ±(τ, σ), ϕ±(τ, σ′)] = ∓iε(σ − σ′) (3.53)

[P±(τ, σ),P±(τ, σ′)] = ± i
4
δ′(σ − σ′) (3.54)

[ϕ±(τ, σ),P±(τ, σ′)] =
i

2
δ(σ − σ′) , (3.55)

where

P± ≡
∂L±

∂(∂0ϕ±)
= ±1

2
∂1ϕ± . (3.56)

Eq. (3.33) implies

[ϕ(τ, σ), ϕ(τ, σ′)] = [ϕ̃(τ, σ), ϕ̃(τ, σ′)] = 0 , (3.57)

[ϕ(τ, σ), ϕ̃(τ, σ′)] = −iε(σ − σ′) . (3.58)
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3.4 Hamiltonian formulation

In this section we want to study the form of the Hamiltonian densities relative
to the models described by the Lagrangian densities L̂sym and L±. Let us start
from

L̂sym =
1

2
∂0ϕ∂1ϕ̃+

1

2
∂0ϕ̃∂1ϕ−

1

2
(∂1ϕ)2 − 1

2
(∂1ϕ̃)2

=
1

2

[
CAB ∂0ΦA∂1ΦB +MAB ∂1ΦA∂1ΦB

]
.

We can compute the conjugate momenta with respect to ϕ and ϕ̃ or, equivalently,
the ones conjugate to ΦA:

P ≡ ∂L̂sym
∂(∂0ϕ)

=
1

2
∂1ϕ̃ (3.59)

P̃ ≡ ∂L̂sym
∂(∂0ϕ̃)

=
1

2
∂1ϕ (3.60)

PA ≡ ∂L̂sym
∂(∂0ΦA)

=
1

2
CAB ∂1ΦB . (3.61)

With the de�nitions (3.59 - 3.60), we can compute other Dirac Brackets (or
commutators) involving ϕ, ϕ̃, P and P̃ :

[P(τ, σ),P(τ, σ′)] = [P̃(τ, σ), P̃(τ, σ′)] = 0 (3.62)

[ϕ(τ, σ),P(τ, σ′)] = [ϕ̃(τ, σ), P̃(τ, σ′)] =
i

2
δ(σ − σ′) . (3.63)

The Hamiltonian density is now obtained through the Legendre transforma-
tion:

H ≡ P∂0ϕ+ P̃∂0ϕ̃− L̂sym

=
1

2
(∂1ϕ)2 +

1

2
(∂1ϕ̃)2 (3.64)

or

H ≡ PA∂0ΦA − L̂sym

= −1

2
MAB ∂1ΦA∂1ΦB . (3.65)

It consists in the `potential' part of the Lagrangian density, as it happens for
the Floreanini-Jackiw Lagrangians (see Appendix E). The Hamiltonian density
results positive-de�nite, although the presence of the minus sign in eq. (3.65).
A way to avoid this matter consists in de�ning M = −G (MAB = −GAB). This
little change leads to

H =
1

2
GAB ∂1ΦA∂1ΦB ≥ 0 .
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In the chiral basis, H assumes the form

H = −1

2
M ′
AB ∂1χ

A∂1χ
B

=
1

2
(∂1ϕ+)2 +

1

2
(∂1ϕ−)2

=
1

2
(∂+ϕ+)2 − ∂+ϕ+∂−ϕ+ +

1

2
(∂−ϕ+)2

1

2
(∂+ϕ−)2 − ∂+ϕ−∂−ϕ− +

1

2
(∂−ϕ−)2 . (3.66)

The same result can be obtained by using the conjugate momenta with respect
to ϕ+, ϕ− de�ned in eq. (3.56) or by introducing the ones conjugate to χA:

P(±)
A ≡ ∂L̂sym

∂(∂0χA)
=

1

2
C ′AB ∂1χ

B (3.67)

and by performing a Legendre transformation on the sum of L+ and L−.
On-shell for ϕ+ and ϕ−, the Hamiltonian density reduces to

H =
1

2
(∂+ϕ+)2 +

1

2
(∂−ϕ−)2 . (3.68)

The quantities computed in this section will �nd their generalizations and a
deeper meaning in Chapter 5.
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Chapter 4

T-dual invariant formulation:

`curved' scalar �eld

Since the string world-sheet is -a priori - a curved manifold (before choosing the
conformal gauge), then it is necessary to generalize the results found in Chapter 3
for a scalar �eld de�ned on a �at background to encompass the possibility to deal
with a curved one [16, 17].

4.1 Scalar �eld on a curved background

If one wants to couple a scalar �eld ϕ to an �external� metric hαβ, one has to sub-
stitute partial derivatives with the covariant ones (∂a → ∇α) and to multiply by√
−h. In our bidimensional theory, once a 2-bein is introduced, the prescriptions

just quoted get modi�ed: ∂a → ∇a ≡ e α
a ∇α and

√
−h = e (see Appendix B).

In order to describe the dynamics of a scalar �eld ϕ = ϕ(τ, σ) de�ned on a
curved manifold, let us introduce the action

S(0) [hαβ;ϕ] = −1

2

∫
d2ξ
√
−hhαβ∇αϕ∇βϕ , (4.1)

which takes the following form when a 2-bein is introduced:

S(0) [eaα;ϕ] = −1

2

∫
d2ξ e ηab e α

a ∇αϕ e
β
b ∇βϕ

= −1

2

∫
d2ξ e ηab∇aϕ∇bϕ

=
1

2

∫
d2ξ e

[
(∇0ϕ)2 − (∇1ϕ)2

]
. (4.2)

At this level, since the action is manifestly local Lorentz invariant, the equation
of motion and the boundary terms for the �eld ϕ can be equivalently computed

59
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from (4.1) or (4.2), to obtain

∂α(
√
−hhαβ∂βϕ) = 0 (4.3)

and

−
∫ +∞

−∞
dτ
[
(
√
−hh1β∂βϕ)δϕ

]σ=π

σ=0
= 0 , (4.4)

where δϕ(τ = ±∞, σ) = 0 ∀σ (see (1.6) and (1.7)).
In analogy with the previous Chapter, let us de�ne the auxiliary �eld p(τ, σ) =

∇0ϕ, compatible with p ≡ e−1∂L(0)/∂(∇0ϕ), to get the action

S ′ =

∫
d2ξ e

[
p∇0ϕ−

1

2
p2 − 1

2
(∇1ϕ)2

]
. (4.5)

Then we put p(τ, σ) = ∇1ϕ̃ and so the action becomes:

Ŝ [eaα;ϕ, ϕ̃] =

∫
d2ξ e

[
∇0ϕ∇1ϕ̃−

1

2
(∇1ϕ)2 − 1

2
(∇1ϕ̃)

]
(4.6)

=

∫
d2ξ e

[
e α

0 e
β

1 ∇αϕ∇βϕ̃−
1

2
e α

1 e
β

1 (∇αϕ∇βϕ+∇αϕ̃∇βϕ̃)

]
.

As in the �at case, the action (4.6) can be symmetrized by recalling that e e α
0 e

β
1 =

εαβ + e e α
1 e

β
0 (see Appendix B). The result is

Ŝ = Ŝsym +
1

2

∫
d2ξ εαβ∇αϕ∇βϕ̃

= Ŝsym +
1

2

∫
d2ξ εαβ ∂αϕ∂βϕ̃ , (4.7)

being

Ŝsym [e α
a ;ϕ, ϕ̃] =

1

2

∫
d2ξ e

[
∇0ϕ∇1ϕ̃+∇0ϕ̃∇1ϕ− (∇1ϕ)2 − (∇1ϕ̃)2

]
. (4.8)

4.2 Local symmetries of the action Ŝsym

The action Ŝsym exhibits invariance under the following transformations:

• Weyl transformations: they act on the 2-bein as follows

eaα → λ(τ, σ)eaα or δeaα = λ(τ, σ)eaα . (4.9)

These kinds of transformations imply e → λ2e and, consequently, e α
a →

λ−1e α
a . Terms like e e α

a e
β
b , involved in (4.8), are left invariant;
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• bidimensional di�eomorphisms: ξa → ξ′a(ξ). By introducing the notation

J ≡ det
(
∂ξa/∂ξ′b

)
, it happens that d2ξ → d2ξ′ J , e → e′J−1 and ∇a →

∇′a = ∇a. The �elds ϕ and ϕ̃ do not change at all.

As it can be immediately veri�ed, (4.8) is not manifestly invariant under local
Lorentz transformations:

δeaα = ωab(τ, σ)ebα , (4.10)

with ωab = −ωba. In the following, the choice ωab(τ, σ) = α(τ, σ)εab will be made.
As in the previous Chapter, we can write the action Ŝsym in a matricial form,

by introducing the constant matrices C and M and the vector Φ ≡ (ϕ, ϕ̃):

Ŝsym
[
eaα; ΦA

]
=

1

2

∫
d2ξ e

[
∇0ΦTC∇1Φ +∇1ΦTM∇1Φ

]
=

1

2

∫
d2ξ e

[
CAB∇0ΦA∇1ΦB +MAB∇1ΦA∇1ΦB

]
(4.11)

=
1

2

∫
d2ξ e

[
e α

0 e
β

1 CAB + e α
1 e

β
1 MAB

]
∇αΦA∇βΦB .

Weyl invariance of Ŝsym is equivalent to

δŜsym
δeaα

(δeaα)Weyl =
δŜsym
δeaα

[λ(τ, σ)eaα] = λ(τ, σ)
δŜsym
δeaα

eaα = 0 (4.12)

and the variation of the action under local Lorentz transformations has the form

δŜsym
δeaα

(δeaα)Lorentz =
δŜsym
δeaα

[
α(τ, σ)εabe

b
α

]
= α(τ, σ)εab

δŜsym
δeaα

ebα . (4.13)

The last two equations strongly suggest to introduce a tensor so de�ned:

t ba ≡ e−1 δŜsym
δeaα

ebα . (4.14)

In this way, the variations (4.12) and (4.13) are proportional, respectively, to the
trace t ≡ t aa and the ε-trace t̂ ≡ εabt

b
a of the tensor t ba .

The components of the tensor t ba can be easily computed from (4.11) to obtain

t ba =
1

2

{
δ b
a

[
CAB∇0ΦA∇1ΦB +MAB∇1ΦA∇1ΦB

]
− δ b

0 CAB∇aΦ
A∇1ΦB

−δ b
1 CAB∇0ΦA∇aΦ

B − 2δ b
1 MAB∇aΦ

A∇1ΦB
}

(4.15)

leading to

t 0
0 =

1

2
MAB∇1ΦA∇1ΦB (4.16)
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= −1

2

[
(∇1ϕ)2 + (∇1ϕ̃)2

]
t 1
0 =

1

2

[
−CAB∇0ΦA∇0ΦB − 2MAB∇0ΦA∇1ΦB

]
(4.17)

= −∇0ϕ∇0ϕ̃+∇0ϕ∇1ϕ+∇0ϕ̃∇1ϕ̃

t 0
1 = −1

2
CAB∇1ΦA∇1ΦB (4.18)

= −∇1ϕ∇1ϕ̃

t 1
1 = −1

2
MAB∇1ΦA∇1ΦB (4.19)

=
1

2

[
(∇1ϕ)2 + (∇1ϕ̃)2

]
= −t 0

0 .

It is immediate to see that t ≡ t aa = t 0
0 + t 1

1 = 0.

Let us now compute tab = t ca ηcb:

t00 = −t 0
0 (4.20)

t01 = +t 1
0 (4.21)

t10 = −t 0
1 (4.22)

t11 = +t 1
1 . (4.23)

On the equations of motion for the 2-bein, δŜsym/δe
a
α = 0, the components

of t ba are vanishing. This implies also the vanishing of the ε-trace: t̂ ≡ εabt
b
a =

εabtab = t01 − t10 = t 1
0 + t 0

1 = 0. Equivalently, in matricial form,

t̂ = −1

2

[
∇0ΦTC∇0Φ +∇0ΦTM∇1Φ +∇1ΦTM∇0Φ +∇1ΦTC∇1Φ

]
. (4.24)

By adding and subtracting the term (1/2)∇1ΦTMC−1M∇1Φ, the ε-trace t̂ be-
comes

t̂ = −1

2

[
(∇0ΦTC +∇1ΦTM)C−1(C∇0Φ +M∇1Φ)

+∇1ΦT (C −MC−1M)∇1Φ
]

= −1

2
(∇0ΦTC +∇1ΦTM)C−1(C∇0Φ +M∇1Φ) , (4.25)

because C = MC−1M (see Section 3.1.1).

Moreover, because of the form of the matrices C and M , also in the curved
case the action Ŝsym is O(1, 1)-invariant. In particular the duality transformation
Λ = Ω still holds.
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As in the �at case, the action Ŝsym remains unchanged by performing the
shift ΦA → ΦA + fA(τ, σ)⇔ δΦA = fA(τ, σ), with the functions fA satisfying the
conditions ∇1f

A = 0 and fA(τ, σ + π) = fA(τ, σ). In fact,

δŜsym|δΦ=f(τ,σ) =
1

2

∫ +∞

−∞
dτ
[
CAB ∂0f

AΦB
]σ=π

σ=0

=
1

2

∫ +∞

−∞
dτ CAB

[
∂0f
AΦB

]σ=π

σ=0
= 0 . (4.26)

The equations of motion and the boundary terms for the �elds ΦA are the
following:

∂α
[
e e α

1 (CAB∇0ΦB +MAB∇1ΦB)
]

= 0 , (4.27)

−1
2

∫ +∞
−∞ dτ

[
CAB δΦ

A∂0ΦB
]σ=π

σ=0

+
∫ +∞
−∞ dτ

[
e e 1

1 (CAB∇0ΦB +MAB∇1ΦB)δΦA
]σ=π

σ=0
= 0 . (4.28)

The 2-bein has four independent components. In this theory, on-shell (for
the 2-bein itself), there are su�cient invariances to gauge-�x everyone of its
components (Weyl, di�eomoerphisms (2) and Lorentz invariances) and to make
the choice eaα = δaα (�at gauge). Once the 2-bein has been gauge-�xed, we have
the following �reductions�:

Ŝsym
[
eaα; ΦA

]
→ Ŝsym

[
ΦA
]

=
1

2

∫
d2ξ

[
CAB ∂0ΦA∂1ΦB +MAB ∂1ΦA∂1ΦB

]
;

eqs. of motion → ∂1(CAB ∂0ΦB +MAB ∂1ΦB) = 0 ;

boundary terms→

{
−1

2

∫ +∞
−∞ dτ

[
CAB δΦ

A∂0ΦB
]σ=π

σ=0

+
∫ +∞
−∞ dτ

[
(CAB ∂0ΦB +MAB ∂1ΦB)δΦA

]σ=π

σ=0
= 0

;

ε− trace → t̂ = −1

2
(∂0ΦTC + ∂1ΦTM)C−1(C∂0Φ +M∂1Φ) = 0 ;

fA(τ, σ) s.t.

{
∇1f

A = 0
fA(τ, σ + π) = fA(τ, σ)

→
{
∂1f
A = 0⇔ fA = fA(τ)

no correspondent
.

and the totality of the results of the previous Chapter still hold. So the order of
the equations of motion can be reduced and the equations themselves become

CAB ∂0ΦB +MAB ∂1ΦB = 0 . (4.29)

This form of the equations of motion has interesting consequences
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• on the boundary terms, reducing to

−1

2

∫ +∞

−∞
dτ
[
CAB δΦ

A∂0ΦB
]σ=π

σ=0
= 0 ; (4.30)

• on the ε-trace, which automatically vanishes t̂ = 0.

4.3 Change of basis

As in the previous section, it is possible to write the action as a sum of Floreanini-
Jackiw Lagrangians through a change of basis: from the nonchiral one to the
chiral one:

Ŝsym [eaα;ϕ+, ϕ−] =

∫
d2ξ [L+(eaα;∇aϕ+) + L−(eaα;∇aϕ−)] , (4.31)

with

L±(eaα;∇aϕ±) = e

[
±1

2
∇0ϕ±∇1ϕ± −

1

2
(∇1ϕ±)2

]
=

1

2
e
[
±e α

0 e
β

1 − e α
1 e

β
1

]
∂αϕ±∂βϕ± . (4.32)

In the �at gauge the Lagrangians in (4.32) reduce to (3.38).



Chapter 5

Double string theory actions

In this Chapter a manifestly T-duality invariant formulation of closed bosonic
string theory will be �nally faced. What we showed in Chapters 3 and 4 will
be the starting point to construct the generalized sigma-model action depending
on a doubled set of variables: the string coordinates along the compacti�ed di-
mensions and their T-duals. In the Tseytlin's noncovariant formulation, the role
of the local Lorentz invariance, recovered on-shell, is crucial in order to derive
the symmetry group O(n, n;Z). After choosing a suitable basis provided by the
left and right coordinates, the Dirac's quantization procedure is performed since
this model contains primary second class constraints, being described by a sum
of Floreanini-Jackiw Lagrangians. The chiral coordinates (and, consequently, the
original ones) behave like noncommuting variables. In the Hull's covariant formu-
lation, instead, the generalized sigma-model action already involving a doubled
number of coordinates is analyzed together with a `self-duality' constraint halv-
ing the degrees of freedom. The two formulations are equivalent as it can be
demonstrated.

5.1 Tseytlin's noncovariant formulation

Let us start from the following generalized sigma-model action functional

S
[
eaα;χi

]
=
T

2

∫
d2ξ e Cabij (χ)∇aχ

i∇bχ
j , (5.1)

where the χi's are bidimensional scalar �elds and components of anN -dimensional
vector in the target space (N still undetermined at this level). The usual formula-
tion of string theory is recovered once one interpretes χi as the string coordinates
and takes for Cabij the form Cabij = −(ηabGij− εabBij) (see eq. (2.88) and Appendix
B).

The action (5.1) explicitly reads

S =
T

2

∫
d2ξ e

[
C00
ij ∇0χ

i∇0χ
j + C01

ij ∇0χ
i∇1χ

j + C10
ij ∇1χ

i∇0χ
j + C11

ij ∇1χ
i∇1χ

j
]

65
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=
T

2

∫
d2ξ e

[
C00
ij ∇0χ

i∇0χ
j + (C01

ij + C10
ji )∇0χ

i∇1χ
j + C11

ij ∇1χ
i∇1χ

j
]

=
T

2

∫
d2ξ e

[
C00
ij ∇0χ

i∇0χ
j + Cij∇0χ

i∇1χ
j + C11

ij ∇1χ
i∇1χ

j
]
, (5.2)

where we have de�ned

Cij(χ) ≡ C01
ij (χ) + C10

ji (χ) .

Moreover, the matrices C00 and C11 can be chosen symmetric.
The action S can be always written in a `�rst order form' (no quadratic term

in time derivatives) such as

S =
T

2

∫
d2ξ e

[
Cij∇0χ

i∇1χ
j +Mij∇1χ

i∇1χ
j
]
. (5.3)

Let us examine the two following possibilities:

1) C00
ij = 0 ∀ i, j, implies that the action (5.2) reduces to (5.3) by de�ning

Mij ≡ C11
ij . The matrix Cij can be separated into its symmetric and antisymmet-

ric parts: Cij = C(ij)+C[ij] ≡ Cij+Hij, where Cij = (1/2)[(C01
ij +C10

ji )+(C01
ji +C10

ij )]
and Hij = (1/2)[(C01

ij + C10
ji )− (C01

ji + C10
ij )];

2) C00
ij 6= 0 (and these matrices are taken invertible). We can introduce a set

of new variables: pi ≡ C00
ij ∇0χ

j, implying ∇0χ
i = (C00)ijpj. So the action (5.2)

gets modi�ed into

S ′ =
T

2

∫
d2ξ e

[
2∇0χ

ipi − (C00)ijpipj + Cij∇0χ
i∇1χ

j + C11
ij ∇1χ

i∇1χ
j
]
.

If we introduce a set of new �elds (the Ψ's), by imposing pi = ∇1Ψi, the action
becomes

Ŝ =
T

2

∫
d2ξ e

[
2∇0χ

i∇1Ψi − (C00)ij∇1Ψi∇1Ψj

+Cij∇0χ
i∇1χ

j + C11
ij ∇1χ

i∇1χ
j
]

=
T

2

∫
d2ξ e

[
CIJ (χ)∇0X I∇1X J +MIJ (χ)∇1X I∇1X J

]
,

where X ≡ (χ,Ψ) is a 2N vector and CIJ and MIJ are 2N square matrices. In
particular

CIJ =

(
Cij 2δ j

i

0 0

)
CIJ can be separated into its symmetric and antisymmetric parts:

CIJ = C(IJ ) + C[IJ ] ≡ CIJ +HIJ ,
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where

C(IJ ) =

(
C(ij) 2δ j

i

0 0

)
and C[IJ ] =

(
C[ij] 0

0 0

)
,

and

MIJ =

(
C11
ij 0
0 −(C00)ij

)
.

We obtain the action (5.3) by rede�ning 2N → N ′, I,J , . . . → i, j, . . . ,
X → χ, CIJ → Cij and MIJ →Mij.

In the following, we will choose the matrices C and M to be constant.

5.2 Local symmetries of the action

As we just noticed, we can assume as our starting point the action:

S =
T

2

∫
d2ξ e

[
Cij∇0χ

i∇1χ
j +Mij∇1χ

i∇1χ
j
]

(5.4)

=
T

2

∫
d2ξ e

[
Cij∇0χ

i∇1χ
j +Hij∇0χ

i∇1χ
j +Mij∇1χ

i∇1χ
j
]

=
T

2

∫
d2ξ e

[
Cij∇0χ

i∇1χ
j +

1

2
εabHij∇aχ

i∇bχ
j +Mij∇1χ

i∇1χ
j

]
.

This action has the same structure as the one analyzed in the previous Chapter
for the scalar �eld on the curved background (see (4.11)). So almost all the
considerations done will hold with minimal changes.

The action (5.4) is invariant under the already mentioned local transforma-
tions (Weyl transformations and bidimensional di�eomorphisms), while it is not
manifestly invariant under local Lorentz transformations. As in the previous
Chapter, we are led to introduce the tensor t ba , which has a slightly modi�ed
de�nition:

t ba ≡
1

T
e−1 δS

δeaα
ebα . (5.5)

The structure of the tensor t ba can be computed from the action (5.4):

t ba =
1

2

{
δ b
a

[
Cij∇0χ

i∇1χ
j +Mij∇1χ

i∇1χ
j
]
− δ b

0 Cij∇aχ
i∇1χ

j

−δ b
1 Cij∇0χ

i∇aχ
j − 2δ b

1 Mij∇aχ
i∇1χ

j
}
. (5.6)

It is now easy to read the components of t ba :

t 0
0 =

1

2
Mij∇1χ

i∇1χ
j (5.7)

t 1
0 = −1

2
Cij∇0χ

i∇0χ
j −Mij∇0χ

i∇1χ
j
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= −1

2
Cij∇0χ

i∇0χ
j −Mij∇0χ

i∇1χ
j (5.8)

t 0
1 = −1

2
Cij∇1χ

i∇1χ
j

= −1

2
Cij∇1χ

i∇1χ
j (5.9)

t 1
1 = −1

2
Mij∇1χ

i∇1χ
j = −t 0

0 . (5.10)

In these components the antisymmetric part of Cij has disappeared.
The completely covariant components of t ba are:

t00 = −t 0
0 (5.11)

t01 = +t 1
0 (5.12)

t10 = −t 0
1 (5.13)

t11 = +t 1
1 . (5.14)

Let us now write the ε-trace of the tensor t ba :

t̂ = −1

2

[
(∇0χ

TC +∇1χ
TM)C−1(C∇0χ+M∇1χ)

+∇1χ
T (C −MC−1M)∇1χ

]
. (5.15)

In the following, we will neglect the term (1/2)εabHij∇aχ
i∇bχ

j, which is the
only one manifestly Lorentz invariant. So the action simpli�es in

S
[
eaα;χi

]
=
T

2

∫
d2ξ e

[
Cij∇0χ

i∇1χ
j +Mij∇1χ

i∇1χ
j
]
. (5.16)

On the equations of motion for the 2-bein, the ε-trace vanishes and there are
su�cient invariances to �x the �at gauge. After this choice, the equations of
motion for the �elds χi, once reduced to the �rst order, are

Cij∂0χ
j +Mij∂1χ

j = 0 . (5.17)

In this way, the vanishing of t̂ on the equations of motion for χi

2 t̂ = −(∂0χ
TC + ∂1χ

TM)C−1(C∂0χ+M∂1χ)− ∂1χ
T (C −MC−1M)∂1χ

= −∂1χ
T (C −MC−1M)∂1χ = 0

imposes a condition on the matrices C and M

C −MC−1M = 0 . (5.18)
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Let us observe that the equations of motion (5.17) and the �Lorentz� constraint
(5.18) can be combined to obtain{

C∂0χ+M∂1χ = 0
C −MC−1M = 0

⇒
{
C∂0χ+M∂1χ = 0
M∂0χ+ C∂1χ = 0

⇔ C∂aχ− εabM∂bχ = 0 ,

(5.19)
a sort of �covariantized� constraint. Its role will be important in the covariant
formulation by Hull illustrated at the end of this Chapter.

Suitably rotating and rescaling χ (and keeping the name χ for the rotated
and rescaled �elds), the matrix C can be put into the form

C = diag(+1, . . . ,+1︸ ︷︷ ︸
p times

,−1, . . . ,−1︸ ︷︷ ︸
q times

) , p+ q = N . (5.20)

The world-sheet quantum Lorentz anomaly (as it is shown in [21, 22]) is absent
only if C has zero signature, i.e. p = q ≡ n, which implies N = 2n. In this way

C =

(
1n 0
0 −1n

)
(5.21)

and C = MC−1M becomes one of the two possible de�nitions of the O(n, n)-
matrices. In other words, the compact target space of the action (5.16) can
be considered as the doubled torus T 2n by adding periodicity conditions for
the components of χi. In order to restore notations, at this point, we rede�ne
i, j, . . .→ A,B, . . . .

5.3 A �rst change of basis

If we choose for χA the form χA ≡ (χI+, χ
I
−), we can introduce the new variables

ΦA ≡ (Y I , ỸI) through {
Y I = 1√

2
(χI+ + χI−)

ỸI = 1√
2
δIJ(χJ+ − χJ−)

, (5.22)

implying

Φ = Zχ with Z =
1√
2

(
1n 1n
1n −1n

)
. (5.23)

The transformed of C is

C ′ = (Z−1)TCZ−1 =

(
0 1n
1n 0

)
= Ω = ΩT = Ω−1 . (5.24)

The Lorentz constraint C = MC−1M becomes

Ω = M ′ΩM ′ , (5.25)
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a quadratic matricial equation for M ′, determining it up to a sign. (Let us recall
the M ′ is a symmetric matrix.)

The 2n× 2n matrix M ′
AB can be determined in terms of two n× n matrices:

one symmetric, which will be called GIJ in analogy with the torus metric, and one
antisymmetric, which will be denoted by BIJ in analogy with the Kalb-Ramond
background �eld. The proof is very simple. By suppressing indices, M ′ can be
written using square blocks as

M ′ = ±
(

a b
bT c

)
, (5.26)

where the n×n matrices a, b and c have the following properties: a = aT , c = cT .
The Lorentz constraint in the nonchiral basis (5.25) gives the four conditions (of
which only three are independent, being the third one the transposition of the
second one)

a bT + b a = 0
a c+ b b = 1n
bT bT + c a = 1n
bT c+ c b = 0

. (5.27)

All the previous equalities are satis�ed by putting a = G − BG−1B, c = G−1

(both symmetric) and b = BG−1. In this way

M ′ = ±
(
G−BG−1B BG−1

−G−1B G−1

)
. (5.28)

We choose the minus sign in eq. (5.28) to recover the results of the scalar �eld
developed in Chapter 3.

Finally, in the �at gauge, the action

S =
T

2

∫
d2ξ

[
C ′AB ∂0ΦA∂1ΦB +M ′

AB ∂1ΦA∂1ΦB
]

=
T

2

∫
d2ξ

[
∂0Y

I∂1ỸI + ∂0ỸI∂1Y
I − (G−BG−1B)IJ∂1Y

I∂1Y
J

−(BG−1) J
I ∂1Y

I∂1ỸJ + (G−1B)IJ∂1ỸI∂1Y
J −GIJ∂1ỸI∂1ỸJ

]
exhibits the manifestly T-duality invariance. In fact, this action is O(n, n)-
invariant. In particular, by performing a transformation of the �elds and the
couplings through the inversion matrix Λ = Ω, we get (see section 2.5)

Φ′ =

(
Ỹ
Y

)
and

M ′ = M−1 = −
(

G−1 −G−1B
BG−1 G−BG−1B

)
= −

(
G̃− B̃G̃−1B̃ B̃G̃−1

−G̃−1B̃ G̃−1

)
.
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The equations of motion for the �elds Y I and ỸI are:

C ′AB ∂0ΦB +M ′
AB ∂1ΦB = 0 ⇒

⇒
{
∂0Y = −G−1B ∂1Y +G−1 ∂1Ỹ

∂0Ỹ = (G−BG−1B) ∂1Y +BG−1 ∂1Ỹ
. (5.29)

The above system can be arranged by suitably combining the equations in the
following form: {

∂0Ỹ = G∂1Y +B ∂0Y

∂1Ỹ = G∂0Y +B ∂1Y
(5.30)

resembling the scalar duality condition (3.23). As in that model, eq. (5.30) can
be summarized into

∂aỸ = −εabG∂bY +B ∂aY . (5.31)

Eq. (5.31) is a generalization of the duality condition (3.23) in the presence of
two constant background �elds: a generic metric G and a Kalb-Ramond �eld B.
It can be seen as an extension of the standard duality condition due to a magnetic
�eld.

Let us observe that, in constrast with the scalar case, the equation of motion
for a dual �eld ỸI induced by eq. (5.31) is

∂a∂aỸI = −εabGIJ ∂
a∂bY J +BIJ ∂

a∂aY
J = BIJ ∂

a∂aY
J , (5.32)

showing that ỸI does not automatically satisfy a wave equation, but, instead,
this is true if and only if all the Y J , with J 6= I, do.

5.4 On the role of chiral coordinates

We can simultaneously block-diagonalize the matrices C ′ and M ′ through the
matrix T , so de�ned:

T ≡ 1√
2

(
G−1ET G−1

G−1E −G−1

)
, (5.33)

where E ≡ G+B.
The transformed matrices are

C ′′ = (T −1)TC ′T −1 =

(
G 0
0 −G

)
(5.34)

and

M ′′ = (T −1)TM ′T −1 = −
(
G 0
0 G

)
. (5.35)
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At the same time, a new pair of coordinates remains de�ned: Y ≡ (YL, YR)
satisfying

Y = T Φ ⇔

{
YL = 1√

2
G−1(ETY + Ỹ )

YR = 1√
2
G−1(EY − Ỹ )

, (5.36)

or, equivalently,

Φ = T −1Y ⇔

{
Y = 1√

2
(YL + YR)

Ỹ = 1√
2
(EYL − ETYR)

. (5.37)

The transformed equations of motion are C ′′∂0Y +M ′′∂1Y = 0, which explic-
itly read {

G∂0YL = G∂1YL
G∂0YR = −G∂1YR

⇔
{
YL = YL(τ + σ)
YR = YR(τ − σ)

, (5.38)

showing that, on-shell, YL,R are functions of σ± = τ ± σ (chiral functions).

In the new chiral basis, the Lagrangian density is the sum of Floreanini-Jackiw
Lagrangians

L =
T

2

(
C ′′AB ∂0YA∂1YB +M ′′

AB ∂1YA∂1YB
)

= L+(∂aYL) + L−(∂aYR) , (5.39)

where

L+(∂aYL) =
T

2
GIJ∂0Y

I
L∂1Y

J
L −

T

2
GIJ∂1Y

I
L∂1Y

J
L (5.40)

L−(∂aYR) = −T
2
GIJ∂0Y

I
R∂1Y

J
R −

T

2
GIJ∂1Y

I
R∂1Y

J
R . (5.41)

The conjugate momenta are the following ones:

PL,I ≡
∂L+

∂(∂0Y I
L )

=
T

2
GIJ∂1Y

J
L (5.42)

PR,I ≡
∂L−

∂(∂0Y I
R)

= −T
2
GIJ∂1Y

J
R (5.43)

and de�ne primary second class constraints

ΨL,I = PL,I −
T

2
GIJ∂1Y

J
L ≈ 0 (5.44)

ΨR,I = PR,I +
T

2
GIJ∂1Y

J
R ≈ 0 . (5.45)
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The other constraints to be implemented are the ones connected with the
world-sheet energy-momentum tensor, which we recall:

t00 = −1

2
M ′
AB ∂1YA∂1YB = t11

t01 = −1

2
C ′AB ∂0YA∂0YB −M ′

AB ∂0YA∂1YB

t10 =
1

2
C ′AB ∂1YA∂1YB .

It is convenient to write them in the light-cone basis:

t++ =
1

4
(t00 + t01 + t10 + t11) =

1

2
t00 +

1

4
(t01 + t01) (5.46)

t+− =
1

4
(t00 − t01 + t10 − t11) = −1

4
(t01 − t10)

= −1

4
εabtab (5.47)

t−+ =
1

4
(t00 + t01 − t10 − t11) =

1

4
(t01 − t10) = −t+− (5.48)

t−− =
1

4
(t00 − t01 − t10 + t11) =

1

2
t00 −

1

4
(t01 + t10) . (5.49)

The above components, written in terms of YL and YR, read

t++ =
1

2
∂+Y

T
L G∂+YL − ∂+Y

T
L G∂−YL +

1

2
∂+Y

T
R G∂+YR

=
1

2
GIJ(∂+Y

I
L∂+Y

J
L − 2∂+Y

I
L∂−Y

J
L + ∂+Y

I
R∂+Y

J
R ) (5.50)

t+− =
1

2
(∂−Y

T
L G∂−YL − ∂+Y

T
R G∂+YR)

=
1

2
GIJ(∂−Y

I
L∂−Y

J
L − ∂+Y

I
R∂−Y

J
R ) (5.51)

t−− =
1

2
∂−Y

T
L G∂−YL +

1

2
∂−Y

T
R G∂−YR − ∂+Y

T
R G∂−YR

=
1

2
GIJ(∂−Y

I
L∂−Y

J
L + ∂−Y

I
R∂−Y

J
R − 2∂+Y

I
R∂−Y

J
R ) . (5.52)

On-shell, their expressions are

t++ =
1

2
∂+Y

T
L G∂+YL
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=
1

2
GIJ∂+Y

I
L∂+Y

J
L

=
1

2
(∂+YL)2 (5.53)

t+− = −t−+ = 0 (5.54)

t−− =
1

2
∂−Y

T
R G∂−YR

=
1

2
GIJ∂−Y

I
R∂−Y

J
R

=
1

2
(∂−YR)2 . (5.55)

It is worth noticing the strict analogy with eqs. (1.22 - 1.23). This is not sur-
prising since in theories with a full manifest local Lorentz invariance, the energy-
momentum tensors computed by using the metric (and projected on the local
tangent space) and the one obtained by using the 2-bein are the same, as the
following calculations show (see Appendix B):

t ba =
1

T
e−1 δS

δeaα
ebα

=
1

T

1√
−h

δS

δhβγ
δhβγ

δeaα
ebα

=
1

T

1√
−h

δS

δhβγ
ηcd

δ(e β
c e

γ
d )

δeaα
ebα

= −1

2
Tβγ η

cd

(
δe β
c

δeaα
e γ
d + e β

c

δe γ
d

δeaα

)
ebα

= −1

2
Tβγ η

cd
[
(−e β

a e
α
c )e γ

d + e β
c (−e γ

a e
α
d )
]
ebα

=
1

2
Tβγ η

cd
[
δ b
c e

β
a e

γ
d + δ b

d e
β
c e

γ
a

]
= Tβγ η

bce β
a e

γ
c

and

tab = t ca ηcb

= Tβγ η
cd e β

a e
γ
d ηcb

= Tβγ δ
d
b e

β
a e

γ
d

= Tβγ e
β
a e

γ
b

= Tab .

In order to quantize the Lagrangians in (5.40), and applying the procedure
described in Appendix E, we have to compute a series of Poisson brackets and to
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analyze the behaviour of the constraints. Let us start from the following Poisson
brackets:

{Y I
L (τ, σ), Y J

L (τ, σ′)}PB = 0 (5.56)

{PL,I(τ, σ),PL,J(τ, σ′)}PB = 0 (5.57)

{Y I
L (τ, σ),PL,J(τ, σ′)}PB = δIJδ(σ − σ′) (5.58)

{Y I
R(τ, σ), Y J

R (τ, σ′)}PB = 0 (5.59)

{PR,I(τ, σ),PR,J(τ, σ′)}PB = 0 (5.60)

{Y I
R(τ, σ),PR,J(τ, σ′)}PB = δIJδ(σ − σ′). (5.61)

Moreover, in order to construct Dirac brackets, it is fundamental to �nd

{ΨL,I(τ, σ),ΨL,J(τ, σ′)}PB = −TGIJδ
′(σ − σ′)

{ΨR,I(τ, σ),ΨR,J(τ, σ′)}PB = TGIJδ
′(σ − σ′)

leading to

[{ΨL,I(τ, σ),ΨL,J(τ, σ′)}PB]−1 = − 1

T
GIJε(σ − σ′)

[{ΨR,J(τ, σ),ΨR,J(τ, σ′)}PB]−1 =
1

T
GIJε(σ − σ′).

The Poisson brackets involving any two of the light-cone components of the
energy-momentum tensor are vanishing. The non-vanishing ones are:

{ΨL,I(τ, σ), t++(τ, σ′)}PB =
1

2
GIJ δ

′(σ − σ′) [2∂′+Y
J
L (τ, σ′)− ∂′−Y J

L (τ, σ′)]

{ΨL,I(τ, σ), t+−(τ, σ′)}PB = −1

2
GIJ δ

′(σ − σ′) ∂′−Y J
L (τ, σ′)

{ΨL,I(τ, σ), t−−(τ, σ′)}PB = −1

2
GIJ δ

′(σ − σ′) ∂′−Y J
L (τ, σ′)

{ΨR,I(τ, σ), t++(τ, σ′)}PB =
1

2
GIJ δ

′(σ − σ′) ∂′+Y J
R (τ, σ′)

{ΨR,I(τ, σ), t+−(τ, σ′)}PB = −1

2
GIJ δ

′(σ − σ′) ∂′+Y J
R (τ, σ′)

{ΨR,I(τ, σ), t−−(τ, σ′)}PB = −1

2
GIJ δ

′(σ − σ′) [2∂′−Y
J
R (τ, σ′)− ∂′+Y J

R (τ, σ′)] .

The constraint algebra closes on-shell.
At this point, we can write down the Dirac brackets between the chiral coor-

dinates and their conjugate momenta:

{Y I
L (τ, σ), Y J

L (τ, σ′)}DB = − 1

T
GIJε(σ − σ′) (5.62)

{PL,I(τ, σ),PL,J(τ, σ′)}DB =
T

4
GIJδ

′(σ − σ′) (5.63)
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{Y I
L (τ, σ),PL,J(τ, σ′)}DB =

1

2
δIJδ(σ − σ′) (5.64)

{Y I
R(τ, σ), Y J

R (τ, σ′)}DB =
1

T
GIJε(σ − σ′) (5.65)

{PR,I(τ, σ),PR,J(τ, σ′)}DB = −T
4
GIJδ

′(σ − σ′) (5.66)

{Y I
R(τ, σ),PR,J(τ, σ′)}DB =

1

2
δIJδ(σ − σ′) . (5.67)

For computing the Dirac brackets of the `original' variables Y I and ỸI , let us
recall eq. (5.37):

{Y I(τ, σ), Y J(τ, σ′)}DB = 0 (5.68)

{ỸI(τ, σ), ỸJ(τ, σ′)}DB = 0 (5.69)

{Y I(τ, σ), ỸJ(τ, σ′)}DB = − 1

T
δIJε(σ − σ′). (5.70)

Eqs. (5.62), (5.65) and (5.70) show that the manifestly T-duality invariant
formulation of closed string theory gives the same results of the standard formu-
lation (see eqs. (2.110), (2.111), (2.113) and (1.2)).

In analogy with the one computed in Chapter 3, the Hamiltonian density is

H =
T

2
GAB ∂1ΦA∂1ΦB

=
T

2

[
(G−BG−1B)IJ∂1Y

I∂1Y
J + (BG−1) J

I ∂1Y
I∂1ỸJ

−(G−1B)IJ∂1ỸI∂1Y
J +GIJ∂1ỸI∂1ỸJ

]
,

while, in the chiral basis, it reads

H = −T
2
M ′′
AB ∂1YA∂1YB

=
T

2

(
∂+Y

T
L G∂+YL − 2∂+Y

T
L G∂−YL + ∂+Y

T
R G∂+YR

∂−Y
T
L G∂−YL − 2∂+Y

T
R G∂−YR + ∂−Y

T
R G∂−YR

)
.

On-shell, it reduces to

H =
T

2

(
∂+Y

T
L G∂+YL + ∂−Y

T
R G∂−YR

)
. (5.71)

We recognize this Hamiltonian density to be the same as the standard one H =
(1/2)(Ẋ2 + X ′2) evaluated on the solutions of the equations of motion X =
(1/
√

2)(XL +XR).
In conclusion, let us examine the explicit form of the equations of motion

relative to the �elds Y I , ỸI , Y
I
L and Y I

R . In order to �nd the expansions for the
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solutions, we have to recall that the torus structure imposes quasi-periodicity
boundary conditions to be satis�ed:

Y I(τ, σ + π) = Y I(τ, σ) + 2π
√
α′W I (5.72)

ỸI(τ, σ + π) = ỸI(τ, σ) + 2π
√
α′KI (5.73)

Y I
L (τ, σ + π) = Y I

L (τ, σ) + 2π
√
α′α̃I0 (5.74)

Y I
R(τ, σ + π) = Y I

R(τ, σ)− 2π
√
α′αI0 , (5.75)

where the quantities named W I , KI , α̃
I
0 and αI0 (in analogy with the usual for-

mulation of string theory) are generic constants.
Let us start with the �chiral� �elds Y I

L,R. On shell, as we saw, they are
respectively functions of σ+ and σ−. The quasi-periodicity conditions become

Y I
L (σ+ + π) = Y I

L (σ+) + 2π
√
α′α̃I0 (5.76)

Y I
R(σ− − π) = Y I

R(σ−)− 2π
√
α′αI0 . (5.77)

The most general expansions for chiral �elds satisfying boundary conditions such
as the ones in eq. (5.76 - 5.77) are:

Y I
L (σ+) = yIL + 2

√
α′α̃I0σ

+ + i
√
α′
∑
n6=0

1

n
α̃Ine

−2inσ+

(5.78)

Y I
R(σ−) = yIR + 2

√
α′αI0σ

− + i
√
α′
∑
n6=0

1

n
αIne

−2inσ−
. (5.79)

Even if they are of the same form as the ones encountered in Chapter 1, the sets
of Fourier coe�cients α̃In, α

I
n, with n ∈ Z, are, in principle, completely di�erent

from those which appeared there. We can anyway de�ne pIL ≡ (1/
√
α)α̃I0 and

pIR ≡ (1/
√
α)αI0. The structure of the transformations (5.37) and the quasi-

periodicity conditions (5.72 - 5.73) uniquely establish the expansions for Y I and
ỸI :

Y I(τ, σ) = yI + 2
√
α′(GIJKJ −GIKBKJW

J)τ + 2
√
α′W Iσ

+i

√
α′

2

∑
n6=0

e−2inτ

n
[α̃Ine

−2inσ + αIne
+2inσ] (5.80)

ỸI(τ, σ) = ỹI + 2
√
α′[(G−BG−1B)IJW

J +BIKG
KJKJ ]τ + 2

√
α′KIσ

+i

√
α′

2

∑
n6=0

e−2inτ

n
[EIJ α̃

J
ne
−2inσ − ET

IJα
J
ne

+2inσ] , (5.81)

where

yI ≡ 1√
2

(yIL + yIR) and ỹI ≡
1√
2

(EIJ y
J
L − ET

IJy
J
R) .
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The vanishing of the energy-momentum tensor, on-shell, translates into the
vanishing of the Fourier coe�cients of the expansions:

t++ =
1

2
∂+Y

T
L G∂+YL = 4α′

∑
m∈Z

L̃me
−2imσ+

= 0

t−− =
1

2
∂−Y

T
R G∂−YR = 4α′

∑
m∈Z

Lme
−2imσ−

= 0 .

The coe�cients are given by the following integrals:

L̃m =
T

4

∫ π

0

dσe+2imσt++ =
1

2

∑
n∈Z

α̃Tm−nGα̃n =
1

2

∑
n∈Z

α̃m−n · α̃n = 0 (5.82)

Lm =
T

4

∫ π

0

dσe−2imσt−− =
1

2

∑
n∈Z

αTm−nGαn =
1

2

∑
n∈Z

αm−n · αn = 0 , (5.83)

which have the same form as the usual Virasoro generators (see eqs. (1.42 - 1.43))
by using the matrix GIJ to construct the scalar product. In particular, form = 0,
we have

L̃0 =
1

2

∑
n∈Z

α̃T−nGα̃n =
1

2

∑
n∈Z

α̃−n · α̃n = 0 (5.84)

L0 =
1

2

∑
n∈Z

αT−nGαn =
1

2

∑
n∈Z

α−n · αn = 0 . (5.85)

The Hamiltonian is obtained by integrating over σ the hamiltonian density once
one has substituted the expressions for the light-cone derivatives of the chiral
�elds:

H =

∫ π

0

dσH =
∑
n∈Z

(α̃−n · α̃n + α−n · αn) . (5.86)

By comparing the Virasoro generators L̃0 and L0 with (5.86), we get again H =
2(L̃0 +L0). The quantities here computed, in the quantum version of the theory,
are subjected to the normal-ordering ambiguities.

The conjugate momentum densities (5.42 - 5.43) are:

PL,I = TGIJ

{
√
α′α̃J0 +

√
α′
∑
n6=0

α̃Jne
−2in(τ+σ)

}

= TGIJ

{
√
α′
∑
n∈Z

α̃Jne
−2in(τ+σ)

}
(5.87)

PR,I = TGIJ

{
√
α′αJ0 +

√
α′
∑
n6=0

αJne
−2in(τ−σ)

}

= TGIJ

{
√
α′
∑
n∈Z

αJne
−2in(τ−σ)

}
. (5.88)
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The insertion of the expansions for the �elds Y I
L and PL,I , for example, in the

eqs. (5.62 - 5.64) leads to the following Dirac brackets:

{yIL, pL,J}DB = δIJ
{yIL, α̃Jn}DB = 0 , n 6= 0

{α̃Im, α̃Jn}DB = −im δm+n,0G
IJ ∀m,n

and similarly for the right sector:

{yIR, pR,J}DB = δIJ
{yIR, αJn}DB = 0 , n 6= 0

{αIm, αJn}DB = −im δm+n,0G
IJ ∀m,n .

The relations between the oscillators are the same as the usual formulation of
string theory.

The results obtained so far are a clear indication that the noncovariant duoble
string formulation is an extension of the usual formulation.

5.5 Hull's covariant formulation

In this section, we examine the covariant duality symmetric formulation of string
theory proposed by Hull. Let us start from the sigma-model action

S
[
hαβ; ΦA

]
= −T

4

∫
d2ξ
√
−hhαβGAB ∂αΦA∂βΦB , (5.89)

describing the compact part of the target space. We will adopt the same no-
tations as introduced in the previous sections of this Chapter. So the vector
ΦA is 2n-dimensional (A = 1, . . . , 2n). Its components can be split into two
n-dimensioanl groups: ΦA ≡ (Y I , ỸI) (I = 1, . . . , n). The action (5.89) has an
explicit GL(2n,R) invariance, besides the local ones connected with the structure
of the action itself.

Let us recall the de�nition of the matrix GAB:

G =

(
G−BG−1B BG−1

−G−1B G−1

)
, (5.90)

together with its relation with the symmetric matrix MAB de�ned in Chapter
5: GAB = −MAB. In order to keep only the physical degrees of freedom, it is
necessary to halve them through an appropriate constraint. It turns out that the
right constraint to implement is

CAB ∂aΦ
B + εab GAB ∂bΦB = 0 (C = Ω) ,
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exactly reproducing the covariantized constraint (5.19) originating from the re-
quirement of on-shell local Lorentz invariance in the noncovariant formulation.

It can be shown that the action (5.89), suitably combined with the covari-
antized constraint just quoted, is completely equivalent to the noncovariant action
by Tseytlin as it can be more easily demonstrated in the chiral basis [23, 24, 25].

In analogy with the completely covariant energy-momentum tensor de�ned in
Chapter 1, we can introduce

Tαβ ≡ −
2

T

1√
−h

δS

δhαβ
, (5.91)

leading to

2Tαβ = ∂αΦTG∂βΦ− 1

2
hαβh

γδ∂γΦ
TG∂δΦ . (5.92)

Since the action (5.89) exhibits all the invariances of the sigma-model actions
already studied (reparametrizations and Weyl invariances), the conformal gauge
hαβ = ηab can be chosen.

In this way the action and the energy-momentum tensor become

S
[
hαβ; ΦA

]
→ S

[
ΦA
]

= −T
4

∫
d2ξ ηab GAB ∂aΦA∂bΦB

=
T

4

∫
d2ξ GAB

(
∂0ΦA∂0ΦB − ∂1ΦA∂1ΦB

)
(5.93)

2Tαβ → 2Tab = ∂aΦ
TG∂bΦ−

1

2
ηab η

cd∂cΦ
TG∂dΦ . (5.94)

The equation of motion for the �eld ΦA coming from the action written in
the conformal guage is the wave equation ∂a∂

aΦA = 0, while the boundary term
is

−T
2

∫ +∞

−∞
dτ
[
GAB δΦA∂1ΦB

]σ=π

σ=0
, (5.95)

where we used the fact that δΦA(τ = ±∞, σ) = 0 ∀σ.
In order to ensure the boundary term to vanish, we choose quasi-periodicity

boundary conditions for the coordinates:

ΦA(τ, σ + π) = ΦA(τ, σ) .

The conjugate momentum PA is

PA =
T

2
GAB ∂0ΦB .

It permits to write the Hamiltonian density

H = PA∂0ΦA − L =
T

4
GAB(∂0ΦA∂0ΦB + ∂1ΦA∂1ΦB) . (5.96)
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In what follows, the theory will be analyzed in the chiral basis: YA = (Y I
L , Y

I
R),

where Y I
L and Y I

R are generic functions of τ and σ. The transformation matrix is
the one in eq. (5.33). The O(n, n) metric and the generalized metric transform
as follows:

C =

(
0 1n
1n 0

)
→ C ′ =

(
G 0
0 −G

)
,

G =

(
G−BG−1B BG−1

−G−1B G−1

)
→ G ′ =

(
G 0
0 G

)
.

The action takes the form

S
[
YA
]

=
T

4

∫
d2ξ G ′AB

[
∂0YA∂0YB − ∂1YA∂1YB

]
. (5.97)

In this frame, any dependence on the Kalb-Ramond �eld has disappeared. It is
worth noticing that the covariantized constraint, in the chiral basis, becomes a
�self/antiself-duality� constraint for YL and YR:

C ′AB ∂aYB + εab G ′AB ∂bYB = 0 ⇔
{
GIJ∂0Y

J
L = GIJ∂1Y

J
L

GIJ∂0Y
J
R = −GIJ∂1Y

J
R

, (5.98)

equivalent to the couple of conditions Y I
L = Y I

L (τ + σ) and Y I
R = Y I

R(τ − σ). In
this model, due to the presence of the constraint put by hand, the left and right
coordinates are chiral functions also o�-shell.

The conjugate momentum with respect to YA is

PchiralA =
T

2
G ′AB ∂0YB , (5.99)

and it is equivalent to

PL,I =
T

2
GIJ∂0Y

J
L and PR,I =

T

2
GIJ∂0Y

J
R . (5.100)

It is crucial to observe that, through the covariantized constaint, the left and
right conjugate momenta can be written as

PL,I =
T

2
GIJ∂1Y

J
L and PR,I = −T

2
GIJ∂1Y

J
R , (5.101)

exactly reproducing those found in eqs. (5.42 - 5.43).
Moreover, by multiplying eq. (5.98) by the constant T/2, and de�ning

ΨL,I ≡
T

2
GIJ∂0Y

J
L −

T

2
GIJ∂1Y

J
L = PL,I −

T

2
GIJ∂1Y

J
L = 0 (5.102)

ΨR,I ≡
T

2
GIJ∂0Y

J
R +

T

2
GIJ∂1Y

J
R = PR,I +

T

2
GIJ∂1Y

J
R = 0 , (5.103)
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one recognizes the primary second class constaints of Tseytlin's formulation. The
other constraints of the theory are the ones given by the light-cone components
of the energy-momentum tensor written in the chiral basis:

2Tab = ∂aYTG ′∂bY −
1

2
ηab η

cd∂cYTG ′∂dY , (5.104)

implying

T++ =
1

2
GIJ∂+Y

I
L∂+Y

J
L (5.105)

T−− =
1

2
GIJ∂−Y

I
R∂−Y

J
R . (5.106)

The set of constraints ΨL,I ,ΨR,I , T++ and T−− is the same as the one of the
noncovariant formulation. They satisfy the same algebra. This correspondence
guarantees that the quantization of the theory performed through the Dirac pro-
cedure exactly reproduces the Dirac brackets already computed at the end of the
previous Chapter.



Appendix A

Notation and useful relations

A.1 Indices notations

In this thesis we used both small and capital latin or greek indices, in agreement
with the following scheme:

a, b, . . . = 0, 1 �at world-sheet indices;
α, β, . . . = 0, 1 curved world-sheet indices;
µ, ν, . . . = 0, 1, . . . , d− 1 noncompact target space indices;
I, J, . . . = 1, . . . , n compact target space indices;
A,B, . . . = 1, . . . , 2n doubled compact target space indices.

A.2 Useful relations

The Heaviside θ-function is de�ned as follows

θ(x) ≡
{

1, x ≥ 0
0, x < 0

. (A.1)

It has an integral expression, too:

θ(x) =

∫ x

−∞
dt δ(t) , (A.2)

implying
d

dx
θ(x) = δ(x) . (A.3)

Let us now introduce the ε-function, so de�ned

ε(x) ≡ 1

2
[θ(x)− θ(−x)] , (A.4)
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which, due to (A.1), leads to

ε(x) =
1

2

[{
1, x ≥ 0
0, x < 0

−
{

0, x ≥ 0
1, x < 0

]
=

{
1/2, x ≥ 0
−1/2, x < 0

.

Equations (A.3 - A.4) permit to verify that

d

dx
ε(x) =

1

2
[δ(x) + δ(−x)] = δ(x) , (A.5)

being the Dirac δ-function symmetric.
Let us now show that

δ′(x) ≡ d

dx
δ(x) = [ε(x)]−1 (A.6)

in the sense of the following integral identity∫
dy δ′(x− y) ε(y − z) = δ(x− z) . (A.7)

The proof is very simple:∫
dy δ′(x− y) ε(y − z) =

∫
dy ∂xδ(x− y) ε(y − z)

= −
∫
dy ∂yδ(x− y) ε(y − z)

= −
∫
dy ∂y [δ(x− y) ε(y − z)] +

∫
dy δ(x− y) ∂yε(y − z)

= − [δ(x− y) ε(y − z)]+∞−∞ +

∫
dy δ(x− y) δ(y − z)

= δ(x− z) .

Let us recall the Fourier expansion of the Dirac δ-function

δ(x) =
1

π

∑
n∈Z

e2inx , (A.8)

which is very useful in the derivation of the Poisson brackets of the string coor-
dinates.

A way for obtaining a fundamental relation widely used in this thesis to
compute both the Poisson and the Dirac brackets, is to write down the integral
expression of the ε-function, and to use the Fourier expansion of δ(x). So we get

ε(x) =
1

2

∫ x

−x
dt δ(t) =

2x

2π
− i

2π

∑
n 6=0

1

n
e2inx . (A.9)

In a similar fashion, we can write

δ′(x) =
2i

π

∑
n6=0

n e2inx . (A.10)



Appendix B

On the 2-bein

In a bidimensional space, let us introduce the coordinates (x0, x1) and the follow-
ing objects:

• the minkowskian metric

ηab = diag(−1,+1) ⇒ η ≡ det(ηab) = −1 ; (B.1)

• a world-sheet metric
gαβ = gαβ(x0, x1) , (B.2)

the determinant of which is g ≡ det(gαβ) = g00 g11 − g01 g10 ;

• a 2-bein
eaα = eaα(x0, x1) . (B.3)

Its components can be arranged in a 2× 2 matrix

(eaα) =

(
ea= 0
α= 0 ea= 0

α= 1

ea= 1
α= 0 ea= 1

α= 1

)
. (B.4)

The determinant e of the matrix (B.4) is easily computed in

e ≡ det(eaα) = (ea= 0
α= 0)(ea= 1

α= 1)− (ea= 0
α= 1)(ea= 1

α= 0) > 0 . (B.5)

(At this level the inequality in (B.5) is a choice.)

The 2-bein eaα(x0, x1) is a basis for the vectors belonging to the world-sheet
local tangent space and permits to decompose the metric gαβ as

gαβ = ηab e
a
αe

b
β . (B.6)

From (B.6) we can see that g = −e2 ⇔ e =
√
−g, con�rming our choice on

the sign of e.
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It is possible to introduce the inverse 2-bein in one of the following equivalent
ways:

eaαe
α
b = δab ; e α

a e
b
α = δ b

a (B.7)

or
eaαe

β
a = δ β

α ; e α
a e

a
β = δαβ . (B.8)

In order to �nd the explicit expressions of the e α
a 's in terms of the eaα's, let us

write down explictly the �rst eq. in (B.7):

(ea= 0
α= 0)(e α= 0

b= 0 ) + (ea= 0
α= 1)(e α= 1

b= 0 ) = 1

(ea= 0
α= 0)(e α= 0

b= 1 ) + (ea= 0
α= 1)(e α= 1

b= 1 ) = 0

(ea= 1
α= 0)(e α= 0

b= 0 ) + (ea= 1
α= 1)(e α= 1

b= 0 ) = 0

(ea= 1
α= 0)(e α= 0

b= 1 ) + (ea= 1
α= 1)(e α= 1

b= 1 ) = 1

. (B.9)

The �rst and the third equations in (B.9) contain e α= 0
a= 0 and e α= 1

a= 0 , while the
second and the fourth ones contain e α= 0

a= 1 and e α= 1
a= 1 . So we get the systems

(ea= 0
α= 0)(e α= 0

b= 0 ) + (ea= 0
α= 1)(e α= 1

b= 0 ) = 1

(ea= 1
α= 0)(e α= 0

b= 0 ) + (ea= 1
α= 1)(e α= 1

b= 0 ) = 0

and 
(ea= 0

α= 0)(e α= 0
b= 1 ) + (ea= 0

α= 1)(e α= 1
b= 1 ) = 0

(ea= 1
α= 0)(e α= 0

b= 1 ) + (ea= 1
α= 1)(e α= 1

b= 1 ) = 1
,

respectively solved by 
e α= 0
a= 0 = e−1ea= 1

α= 1

e α= 1
a= 0 = −e−1ea= 1

α= 0

and by 
e α= 0
a= 1 = −e−1ea= 0

α= 1

e α= 1
a= 1 = e−1ea= 0

α= 0

.

The inverse 2-bein can be arranged in a 2× 2 matrix, too:

(e α
a ) =

(
e α= 0
a= 0 e α= 1

a= 0

e α= 0
a= 1 e α= 1

a= 1

)
=

1

e

(
ea= 1
α= 1 −ea= 1

α= 0

−ea= 0
α= 1 ea= 0

α= 0

)
. (B.10)

The determinant of this matrix is

det(e α
a ) = (e α= 0

a= 0 )(e α= 1
a= 1 )− (e α= 1

a= 0 )(e α= 0
a= 1 )

=
1

e2

[
(ea= 1

α= 1)(ea= 0
α= 0)− (−ea= 1

α= 0)(−ea= 0
α= 1)

]
= e−1 , (B.11)
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as it must be.
Let us now study the variation of the determinant of the 2-bein:

δe = δea= 0
α= 0 e

a= 1
α= 1 + ea= 0

α= 0 δe
a= 1
α= 1 − δea= 0

α= 1 e
a= 1
α= 0 − ea= 0

α= 1 δe
a= 1
α= 0

= e (e α= 0
a= 0 δea= 0

α= 0 + e α= 1
a= 1 δea= 1

α= 1 + e α= 1
a= 0 δea= 0

α= 1 + e α= 0
a= 1 δea= 1

α= 0)

= e e α
a δeaα

= δ(e e α
a e

a
α)− δe e α

a e
a
α − e δe α

a e
a
α = −e eaαδe α

a .

So

δe =

{
e e α

a δe
a
α

−e eaαδe α
a

. (B.12)

Let us now examine how to write the variation of the inverse 2-bein e α
a in

terms of the eaα's and viceversa. Our starting point is again the �rst eq. in (B.7).

eaαe
α
b = δab ⇒ δeaα e

α
b + eaαδe

α
b = 0 ⇒

⇒ eaαδe
α
b = −e α

b δe
a
α ⇒ e β

a (eaαδe
α
b ) = e β

a (−e α
b δe

a
α) ⇒

⇒ e β
a e

a
αδe

α
b = −e β

a e
α
b δe

a
α ⇒ δβαδe

α
b = −e β

a e
α
b δe

a
α ⇒

⇒ δe β
b = −e β

a e
α
b δe

a
α ⇔ δe α

a = −e β
a e

α
b δe

b
β .

Summarizing:

δe α
a = −e β

a e
α
b δe

b
β or δeaα = −eaβebαδe

β
b . (B.13)

We choose the Levi-Civita symbol (the pseudo-tensor εab) of the form:

εab =

(
0 +1
−1 0

)
. (B.14)

If we want εab to be such that ε01 = −1, remembering the de�nition of the
determinant of an arbitrary square matrix in D dimensions

gµ1ν1gµ2ν2 . . . gµDνDε
µ1µ2...µD = −g εν1ν2...νD , (B.15)

we have to write

ηac ηbd ε
cd = −η εab = εab ⇒ εab =

(
0 −1

+1 0

)
. (B.16)

A similar construction has to be followed in the curved case. Starting from

εαβ =

(
0 +1
−1 0

)
, (B.17)
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the object εαβ is

εαβ =

(
0 −1

+1 0

)
(B.18)

because of
gαγ gβδ ε

γδ = −g εαβ = e2 εαβ . (B.19)

Two very useful relations connecting the pseudo-tensors εαβ and εab are:

εαβ = e εabe α
a e

β
b and εab = e−1εαβeaαe

b
β , (B.20)

constituting two sorts of decompositions, the �rst of which can be written as

e e α
0 e

β
1 = εαβ + e e α

1 e
β

0 . (B.21)

The analogous of (B.20) involving εαβ and εab are

εαβ = e−1εabe
a
αe

b
β and εab = e εαβe

α
a e

β
b . (B.22)

The last equalities can be derived from eqs. (B.6), (B.16) and (B.19):

gαγ gβδ ε
γδ = e2 εαβ ⇒

⇒
(
ηac e

a
αe

c
γ

) (
ηbd e

b
βe

d
δ

) (
e εmne γ

m e
δ
n

)
= e2 εαβ ⇒

⇒ ηac ηbd e
a
αe

b
βδ

c
m δ

d
n ε

mn = e εαβ ⇒

⇒ ηam ηbn ε
mn eaαe

b
β = e εαβ ⇒

⇒ εαβ = e−1εabe
a
αe

b
β .

Some contractions (�at space or curved space):

εab εab = −2! = −2 ; (B.23)

εab εac = −δbc ; (B.24)

εab εcd = −δa[cδbd] = −
(
δacδ

b
d − δadδbc

)
; (B.25)

εαβ εαβ = −2! = −2 ; (B.26)

εαβ εαγ = −δβγ ; (B.27)

εαβ εγδ = −δα[γδ
β
δ] = −

(
δαγδ

β
δ − δ

α
δδ
β
γ

)
. (B.28)

In Chapters 4 and 5, we also introduced the following derivative

∇a = e α
a ∇α . (B.29)
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The action of such a derivative on a world-sheet scalar f(x0, x1) is:

∇af = e α
a ∇αf = e α

a ∂αf . (B.30)

Let us notice that the nablas commute when applied on a world-sheet scalar as
the following calculations show:

[∇a,∇b]f = ∇a(∇bf)−∇b(∇af)

= e α
a ∇α(e β

b ∇βf)− e α
b ∇α(e β

a ∇βf)

= e α
a e

β
b (∇α(∇βf)−∇β(∇αf))

= e α
a e

β
b [∇α,∇β]f

and

[∇α,∇β]f = ∇α(∇βf)−∇β(∇αf)

= ∇α(∂βf)−∇β(∂αf)

= ∂α∂βf − Γγαβ∂γf − (∂β∂αf − Γγβα∂γf) = 0 .

torsionless (Levi-Civita) connections

In the previous calculation we have also used the condition ∇αe
b
β = 0 ∀α, β, b,

known as the tetrad postulate in D = 4.
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Appendix C

Hodge-duals

In a D-dimensional space, endowed with a metric tensor gαβ, let us de�ne the
Hodge ∗-operator through its action on a particular p-form:

∗(dxµ1 ∧ . . .∧ dxµp) ≡ εµ1···µpµp+1···µD

(D − p)!|g|1/2
gµp+1νp+1 . . . gµDνDdx

νp+1 ∧ . . .∧ dxνD . (C.1)

By reducing to D = 2, there are only two coordinates (x0, x1) and eq. (C.1)
becomes:

∗dxα =
εαβ

|g|1/2
gβγ dx

γ (C.2)

for a generic curved space, or

∗dxa = εab ηbc dx
c (C.3)

for a �at minkowskian space.
Let us now introduce a bidimensional scalar �eld φ = φ(x0, x1). In the �at

minkowskian space the 1-form dφ is:

dφ ≡ ∂aφ dx
a = ∂0φ dx

0 + ∂1φ dx
1 . (C.4)

If the �eld φ depends on the combination x0 + x1 (i.e. φ = φ(x0 + x1)), it
happens that ∂0φ = ∂1φ. The Hodge-dual of the 1-form dφ reads

∗dφ = ∂aφ ∗ dxa

= εab ηbc ∂aφ dx
c

= ε01 η11 ∂0φ dx
1 + ε10 η00 ∂1φ dx

0

= ∂0φ dx
1 + ∂1φ dx

0

= ∂0φ dx
0 + ∂1φ dx

1 = dφ . (C.5)

A �eld such that ∗dφ = dφ is de�ned self-dual.
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If, on the other hand, there exists a bidimensional scalar �eld ψ = ψ(x0, x1)
for which ∂0ψ = −∂1ψ, (i.e. ψ = ψ(x0 − x1)), then

∗dψ = ∂aψ ∗ dxa

= εab ηbc ∂aψ dx
c

= ε01 η11 ∂0ψ dx
1 + ε10 η00 ∂1ψ dx

0

= ∂0ψ dx
1 + ∂1ψ dx

0

= −(∂0ψ dx
0 + ∂1ψ dx

1) = −dψ . (C.6)

The �eld ψ, satisfying ∗dψ = −dψ, is said antiself-dual.

In a 2-dimensional �at minkowskian space, the following statements hold

φ = φ(x0 + x1) ⇔ φ self-dual

ψ = ψ(x0 − x1) ⇔ ψ antiself-dual .

Let us now introduce two scalar �elds: ϕ = ϕ(x0, x1) and ϕ̃ = ϕ̃(x0, x1).
These �elds are de�ned to be (Hodge-)duals if it happens that

dϕ̃ = ∗dϕ, (C.7)

which explicitly reads:

dϕ̃ = ∂0ϕ̃ dx
0 + ∂1ϕ̃ dx

1 = ∂1ϕdx
0 + ∂0ϕdx

1 = ∗dϕ

and, hence, is equivalent to{
∂0ϕ̃ = ∂1ϕ
∂1ϕ̃ = ∂0ϕ

⇔ ∂aϕ̃ = −εab ∂bϕ. (C.8)

In order to generalize the duality conditions between ϕ and ϕ̃ just found
to a curved space, we have to follow the prescriptions of substituting ordinary
derivatives with covariant ones and of multiplying by

√
−g. In so doing, (C.8)

becomes
∇αϕ̃ = −

√
−g εαβ∇βϕ ⇒ ∂αϕ̃ = −

√
−g εαβ ∂βϕ, (C.9)

because the covariant derivatives act on scalar �elds (∇αφ = ∂αφ). Once a 2-bein
is introduced (see Appendix B), eq. (C.9) is equivalent to the following relations:{

∇0ϕ̃ = ∇1ϕ
∇1ϕ̃ = ∇0ϕ

, (C.10)

as it will be demonstrated in a moment. Recalling eq. (C.2), speci�ed for |g| =
−g, we have

dϕ̃ = ∗dϕ ⇒ ∂αϕ̃ dx
α =

εαβ√
−g

gβγ ∂αϕdx
γ
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⇒ ∂αϕ̃ =
1√
−g

εβγ gγα gβσ ∂
σϕ

⇒ ∂αϕ̃ =
1√
−g

(−g εσα) ∂σϕ

⇒ ∂αϕ̃ =
1√
−g

g εασ ∂
σϕ

⇒ ∂αϕ̃ = −
√
−g εαβ ∂βϕ

⇒ ∂αϕ̃ = −εab eaαebβ ηcde β
c e

γ
d ∂γϕ

⇒ ∂αϕ̃ = −εab ηcd δbc eaαe
γ
d ∂γϕ

⇒ e α
a ∂αϕ̃ = −εab ηbc e β

c ∂βϕ

⇒ ∇aϕ̃ = −εab ηbc∇cϕ

⇒ ∇aϕ̃ = −εab∇bϕ ,

exactly reproducing eq. (C.10).
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Appendix D

Background �elds

In this Appendix we �nd some meaningful relations involving the T-duality-
transformed background �elds G̃ and B̃ in terms of the `original' ones, G and
B.

Let us start from the following de�nitions of the n× n matrices:

E ≡ G+B ; Ẽ ≡ G̃+ B̃ , (D.1)

in which G and G̃ are symmetric while B and B̃ are antisymmetric.
Obviously

ET = GT +BT = G−B

and

ẼT = G̃T + B̃T = G̃− B̃ ,

leading to

G =
1

2

(
E + ET

)
, B =

1

2

(
E − ET

)
;

G̃ =
1

2

(
Ẽ + ẼT

)
, B̃ =

1

2

(
Ẽ − ẼT

)
.

As we stressed in Chapters 2 and 5, a T-duality transformation acts on the
string coordinates and their duals as well as on the background �elds G and B,
accordingly to the following law:

E ↔ Ẽ ≡ E−1 . (D.2)

It implies

G̃ =
1

2

[
(G+B)−1 + (G−B)−1] (D.3)

and

B̃ =
1

2

[
(G+B)−1 − (G−B)−1] . (D.4)
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The last equations can be used to derive more useful expressions for G̃ and
B̃. In fact,

G̃−1 =

{
1

2

[
(G+B)−1 + (G−B)−1]}−1

=

{
1

2
(G+B)−1 [I + (G+B) (G−B)−1]}−1

=

{
1

2
(G+B)−1 [(G−B) + (G+B)] (G−B)−1

}−1

=

{
1

2
(G+B)−1 (2G) (G−B)−1

}−1

= (G−B)G−1 (G+B)

= G+B −B −BG−1B = G−BG−1B

and, �nally,

G̃ =
(
G−BG−1B

)−1
. (D.5)

Analogously,

B̃−1 =

{
1

2

[
(G+B)−1 − (G−B)−1]}−1

=

{
1

2
(G+B)−1 [I − (G+B) (G−B)−1]}−1

=

{
1

2
(G+B)−1 [(G−B)− (G+B)] (G−B)−1

}−1

=

{
1

2
(G+B)−1 (−2B) (G−B)−1

}−1

= − (G−B)B−1 (G+B)

= −GB−1G−G+G+B = B −GB−1G

equivalent to

B̃ =
(
B −GB−1G

)−1
. (D.6)

An equivalent formulation of (D.6) is: B̃ = −G−1BG̃. In fact(
−G−1BG̃

)−1

= −G̃−1B−1G

= −
(
G−BG−1B

)
B−1G

= −GB−1G+B = B̃−1 .

Moreover, the following identity holds B̃G̃−1 = −G−1B together with its trans-
position −G̃−1B̃ = BG−1.



Appendix E

First order Lagrangians

In this Appendix, �rst order Lagrangians are studied.

E.1 Lagrangians with a discrete number

of degrees of freedom

Let us consider the following �rst order Lagrangians:

L±(q, q̇) = ±1

2

∑
i,j

qicij q̇
j − V (q) , i, j = 1, . . . , N . (E.1)

(Hereafter, we will use Einstein's summation convention.)
The constant matrix cij can be always chosen antisymmetric (cij = −cji).

The presence of a symmetric part in cij leads to a total time derivative. In fact, if
cij is decomposed into its symmetric and antisymmetric parts (cij = c(ij) + c[ij]),
we have:

1

2
qic(ij)q̇

j =
1

4
qic(ij)q̇

j +
1

4
qic(ij)q̇

j

=
1

4
qjc(ji)q̇

i +
1

4
qic(ij)q̇

j

=
1

4
q̇ic(ij)q

j +
1

4
qic(ij)q̇

j

=
1

4

d

dt

(
qic(ij)q

j
)
.

The lagrangians in (E.1) are degenerate in the sense that

det

(
∂2L±
∂q̇i∂q̇j

)
= 0

and so they describe constrained systems.
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We want the matrix cij to be invertible. This requirement selects the values
of N . In fact, if N is odd, then det(cij) = 0 independently of the entries cij,
while if N is even, then we must anyway impose the condition det(cij) 6= 0. For
example, for N = 4, it happens that

det


0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

 = (af − be+ cd)2 ,

which can vanish even if no one of the parameters a, b, c, d, e, f is zero.
In order to write down the Euler-Lagrange equations coming from L±, let us

compute some quantities:

∂L±
∂qi

= ±1

2
cij q̇

j − ∂V

∂qi

and
∂L±
∂q̇i

= ±1

2
qjcji = ∓1

2
cijq

j ⇒ d

dt

(
∂L±
∂q̇i

)
= ∓1

2
cij q̇

j .

So, the equations of motion are

d

dt

(
∂L±
∂q̇i

)
− ∂L±

∂qi
= 0 ⇒ ∓1

2
cij q̇

j ∓ 1

2
cij q̇

j +
∂V

∂qi
= 0 ⇒

⇒ ±cij q̇j =
∂V

∂qi
⇒ q̇i = ±cij ∂V

∂qj
, (E.2)

where cij is the element ij of the matrix c−1 (cij ≡ (c−1)ij).

The conjugate momentum to qi is, by de�nition,

p
(±)
i ≡ ∂L±

∂q̇i
= ∓1

2
cijq

j . (E.3)

These conjugate momenta de�ne N primary 2nd class constraints:

φ
(±)
i (q, p(±)) ≡ p

(±)
i ± 1

2
cijq

j ≈ 0 . (E.4)

The Legendre transformation permits to compute the Hamiltonian

H(q, p(±)) ≡

(
N∑
k=1

p
(±)
k q̇k − L±(q, q̇)

)
q̇=u(q,p(±))

= V (q) . (E.5)

Aimed to study the quantization of the observables described by the �rst order
Lagrangians, let us introduce the Poisson brackets. They are de�ned as follows:

{f, g}PB ≡
N∑
k=1

[
∂f

∂qk
∂g

∂pk
− ∂f

∂pk

∂g

∂qk

]
. (E.6)
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They are antisymmetric
{g, f}PB = −{f, g}PB . (E.7)

By de�nition, let us calculate some Poisson brackets:

{qi, qj}PB = 0 ; (E.8)

{p(±)
i , p

(±)
j }PB = 0 ; (E.9)

{qi, p(±)
j }PB = δij . (E.10)

With these brackets we can construct the following ones

{qi, φ(±)
j }PB =

{
qi, p

(±)
j ± 1

2
cjkq

k

}
PB

= {qi, p(±)
j }PB = δij ; (E.11)

{φ(±)
i , qj}PB =

{
p

(±)
i ± 1

2
cikq

k, qj
}
PB

= {p(±)
i , qj}PB = −δ j

i ; (E.12)

{p(±)
i , φ

(±)
j }PB =

{
p

(±)
i , p

(±)
j ± 1

2
cjkq

k

}
PB

= ±1

2
cjk{p(±)

i , qk}PB

= ±1

2
cjk(−δ k

i )

= ∓1

2
cji = ±1

2
cij ; (E.13)

{φ(±)
i , p

(±)
j }PB =

{
p

(±)
i ± 1

2
cikq

k, p
(±)
j

}
PB

= ±1

2
cik{qk, p(±)

j }PB

= ±1

2
cik δ

k
j = ±1

2
cij . (E.14)

And, moreover,

{φ(±)
i , φ

(±)
j }PB =

{
p

(±)
i ± 1

2
cikq

k, φ
(±)
j

}
PB

= {p(±)
i , φ

(±)
j }PB ±

1

2
cik{qk, φ(±)

j }PB

= ±1

2
cij ±

1

2
cik δ

k
j

= ±1

2
cij ±

1

2
cij = ±cij , (E.15)
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leading to [
{φ(±)

i , φ
(±)
j }PB

]−1

= ±cij , (E.16)

which are fundamental to construct Dirac brackets, de�ned as follows:

{f, g}DB ≡ {f, g}PB −
∑
k,l

{f, φk}PB [{φk, φl}PB]−1 {φl, g}PB . (E.17)

The antisymmetry of
[
{φ(±)

i , φ
(±)
j }PB

]−1

is a crucial property. In fact, only in

this case, Dirac brackets are antisymmetric as it can be easily veri�ed by direct
inspection.

Let us now calculate some Dirac brackets by using the de�nition (E.17) and
the results in eqs. (E.8 - E.14) and in (E.16):

{qi, qj}DB = −
∑
k,l

δik
(
±ckl

) (
−δ j

l

)
= ±cij ; (E.18)

{p(±)
i , p

(±)
j }DB = −

∑
k,l

(
±1

2
cik

)(
±ckl

)(
±1

2
clj

)
= ∓1

4

∑
k

cik δ
k
j = ∓1

4
cij ; (E.19)

{qi, p(±)
j }DB = δij −

∑
k,l

δik
(
±ckl

)(
±1

2
clj

)
= δij −

1

2
δij =

1

2
δij . (E.20)

Every Dirac brackets containing a φ
(±)
i vanishes by de�nition:

{qi, φ(±)
j }DB = {p(±)

i , φ
(±)
j }DB = {φ(±)

i , φ
(±)
j }DB = 0 .

Quantization: we use the correspondence

{· , ·}PB → −i[· , ·] ; (E.21)

which leads to
{· , ·}DB → −i[· , ·] . (E.22)

So we get
[q̂i, q̂j] = ±i cij ; (E.23)

[p̂
(±)
i , p̂

(±)
j ] = ∓ i

4
cij ; (E.24)

[q̂i, p̂
(±)
j ] =

i

2
δij . (E.25)
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E.2 Lagrangians with an in�nite number

of degrees of freedom

Let us now examine two kinds of integral Lagrangians:

L± = ±1

2

∫
dx dy χ±(x, t) ε(x− y) χ̇±(y, t)− 1

2

∫
dxχ2

±(x, t)

=

∫
dx

{
±1

2

∫
dy ε(x− y) χ̇±(y, t) · χ±(x, t)− 1

2
χ2
±(x, t)

}
. (E.26)

The conjugate momenta to χ± are

π±(x, t) ≡ δL±
δχ̇±(x, t)

= ±1

2

∫
dy dz χ±(y, t) ε(y − z)

δχ̇±(z, t)

δχ̇±(x, t)

= ±1

2

∫
dy dz χ±(y, t) ε(y − z) δ(z − x)

= ±1

2

∫
dy χ±(y, t) ε(y − x)

= ∓1

2

∫
dy ε(x− y)χ±(y, t) . (E.27)

As in the previous section, the conjugate momenta de�ne primary 2nd class con-
straints. They are

φ±(x, t) ≡ π±(y, t)∓ 1

2

∫
dy χ±(y, t)ε(y − x) ≈ 0 , (E.28)

and satisfy
{φ±(x, t), φ±(y, t)}PB = ±ε(x− y) 6= 0 . (E.29)

We can generalize the results obtained in the previous section in agreement
with the following discrete/continuous correspondences:

qi(t) → χ±(x, t)

p
(±)
i (t) → π±(x, t)∑

i

→
∫
dx

∑
i,j

→
∫
dx dy

δij → δ(x− y)

cij → ε(x− y)

V (q) → 1

2

∫
dxχ2

±(x, t)

φ
(±)
i (t) → φ±(x, t)
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leading to the fundamental Poisson brackets

{qi, qj}PB = 0 → {χ±(x, t), χ±(y, t)}PB = 0 ;

{p(±)
i , p

(±)
j }PB = 0 → {π±(x, t), π±(y, t)}PB = 0 ;

{qi, p(±)
j }PB = δij → {χ±(x, t), π±(y, t)}PB = δ(x− y) .

(E.30)

On the other side, for the Dirac ones and for the commutators, we have

{qi, qj}DB = ±cij → {χ±(x, t), χ±(y, t)}DB = ±δ′(x− y)⇒

⇒ [q̂i, q̂j] = ±i cij → [χ̂±(x, t), χ̂±(y, t)] = ±i δ′(x− y) ;
(E.31)

{p(±)
i , p

(±)
j }DB = ∓1

4
cij → {π±(x, t), π±(y, t)}DB = ∓1

4
ε(x− y)⇒

⇒ [p̂
(±)
i , p̂

(±)
j ] = ∓ i

4
cij → [π̂±(x, t), π̂±(y, t)] = ∓ i

4
ε(x− y) ;

(E.32)

{qi, p(±)
j }DB = 1

2
δij → {χ±(x, t), π±(y, t)}DB = 1

2
δ(x− y)⇒

⇒ [q̂i, p̂
(±)
j ] = i

2
δij → [χ̂±(x, t), π̂±(y, t)] = i

2
δ(x− y) .

(E.33)

Let us recall that δ′(x) ≡ [ε(x)]−1 (see Appendix A).
In order to recover the �rst order Lagrangians so extensively quoted in this

thesis

L+(ϕ̇+, ϕ
′
+) =

1

2
ϕ̇+ϕ

′
+ −

1

2

(
ϕ′+
)2

(E.34)

and

L−(ϕ̇−, ϕ
′
−) = −1

2
ϕ̇−ϕ

′
− −

1

2

(
ϕ′−
)2

(E.35)

(the so-called Floreanini-Jackiw Lagrangians), we have to introduce a new pair
of �elds ϕ± as

ϕ±(x, t) ≡
∫
dy ε(x− y)χ±(y, t) = ∓2π±(x, t) (E.36)

(the last equality derives from eq. (E.27)) and to admit that

L± =

∫
dxL± .

The time and space derivatives of ϕ± are

ϕ̇±(x, t) =

∫
dy ε(x− y) χ̇±(y, t) (E.37)
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and
ϕ′±(x, t) = χ±(x, t) . (E.38)

Let us compute the conjugate momenta with respect to ϕ±:

P± ≡
∂L±
∂ϕ̇±

= ±1

2
ϕ′±. (E.39)

From eq. (E.38) we see that P± = ±(1/2)χ±.
In order to write down the Hamiltonians corresponding to Floreanini-Jackiw

Lagrangians, we can equivalently use the discrete/continuous correspondence on
eq. (E.5) or compute them directly by a Legendre transformation. The result is

H =
1

2

∫
dxχ2

±(x, t) =
1

2

∫
dx [ϕ′±(x, t)]2 . (E.40)

Finally, we can compute the following Dirac brackets:

{ϕ±(x, t), ϕ±(y, t)}DB = {∓2π±(x, t),∓2π±(y, t)}DB
= 4{π±(x, t), π±(y, t)}DB
= ∓ε(x− y) ; (E.41)

{P±(x, t),P±(y, t)}DB = {±1

2
χ±(x, t),±1

2
χ±(y, t)}DB

=
1

4
{χ±(x, t), χ±(y, t)}DB

= ±1

4
δ′(x− y) ; (E.42)

{ϕ±(x, t),P±(y, t)}DB = {∓2π±(x, t),±1

2
χ±(y, t)}DB

= −{π±(x, t), χ±(y, t)}DB

=
1

2
δ(x− y) . (E.43)

Consequently, for the commutators,

[ϕ̂±(x, t), ϕ̂±(y, t)] = ∓ i
2
ε(x− y) ; (E.44)

[P̂±(x, t), P̂±(y, t)] = ± i
4
δ′(x− y) ; (E.45)

[ϕ̂±(x, t), P̂±(y, t)] =
i

2
δ(x− y) . (E.46)



104 APPENDIX E. FIRST ORDER LAGRANGIANS



Bibliography

[1] K. Becker, M. Becker and J. Schwarz, String Theory and M-theory - A mod-
ern introduction, Cambridge University Press (2006);

[2] B. Zwiebach, A First Course in String Theory, Cambridge University Press
(2004).

[3] L. De Angelis, R. Marotta, F. Pezzella and R. Troise, More About Branes
on a General Magnetized Torus, JHEP 1210 (2012) 052, arXiv:1206.3401
[hep-th].

[4] L. De Angelis, R. Marotta, F. Pezzella and R. Troise, Magnetized Branes
and the Six-torus, PoS Corfu2012 (2013) 108, arXiv:1304.0978 [hep-th].

[5] J. Maharana, The Worldsheet Perspective of T-duality Symmetry in string
theory, Int. Journal of Mod. Phys. A 2013, arXiv:1302.1719 [hep-th].

[6] C. Hull and B. Zwiebach, Double Field Theory, JHEP 0909 (2009) 099,
arXiv:0904.4664 [hep-th].

[7] O. Hohm, C. Hull and B. Zwiebach, Background independent action for
double �eld theory, JHEP 1007 (2010) 016, arXiv:1003.5027 [hep-th].

[8] O. Hohm, D. Lüst and B. Zwiebach, The Spacetime of Double Field Theory:
Review, Remarks, and Outlook, arXiv:1309.2977 [hep-th].

[9] D. S. Berman and D. C. Thompson, Duality Symmetric String and M-
Theory, arXiv:1306.2643 [hep-th].

[10] S. G. Nibbelink and P. Patalong, A Lorentz Invariant Doubled Worldsheet
Theory, Phys. Rev. D87 (2013) 041902, arXiv:1207.6110 [hep-th].

[11] D. S. Berman, N. B. Copland and D. C. Thompson, Background Field
Equations for the Duality Symmetric String, Nucl. Phys. B791 (2008) 175,
arXiv:0708.2267 [hep-th].

[12] D. S. Berman and D. C. Thompson, Duality Symmetric Strings, Dilatons
and O(d,d) E�ective Actions, Phys. Lett. B662 (2008) 279, arXiv:0712.1121
[hep-th].

105



106 BIBLIOGRAPHY

[13] G. Aldazabal, D. Marques and C. Nunez, Double Field Theory: A Pedagogi-
cal Review, Class. Quant. Grav. 30 (2013) 163001, arXiv:1305.1907 [hep-th].

[14] M. Green, J. Schwarz and E. Witten, Superstring Theory, Vol. 1, Cambridge
University Press (1987).

[15] W. Siegel, Manifest Lorentz Invariance Sometimes Requires Non-linearity,
Nucl. Phys. B238 (1984) 307.

[16] A. A. Tseytlin, Duality Symmetric Formulation of String World Sheet Dy-
namics, Phys. Lett. B242 (1990) 163.

[17] A. A. Tseytlin, Duality Symmetric Closed String Theory and Interacting
Chiral Scalars, Nucl. Phys. B350 395.

[18] S. D. Avramis, J. P. Derendinger and N. Prezas, Conformal chiral bosons
on twisted doubled tori and non-geometric string vacua, Nucl. Phys. B827
(2010) 281-310, arXiv:0910.0431 [hep-th].

[19] P. A. M. Dirac, Lectures on quantum mechanics, Belfer Graduate School of
Science Monographs Series Number 2, 1964, ISBN 0-486-41713-1.

[20] R. Floreanini and R. Jackiw, Self-Dual Fields as Charge Density Solitons,
Phys. Rev. Lett. 59 (1987) 1873.

[21] L. Alvarez-Gaumé and E. Witten, Gravitational Anomalies, Nucl. Phys.
B234 (1983) 269.

[22] A. H. Chamseddine and J. Fröhlich, Two-dimensional Lorentz-Weyl anomaly
and gravitational Chern-Simons theory, Comm. Math. Phys. vol 147, no. 3
(1992), 549.

[23] P. Pasti, D. Sorokin and M. Tonin, On Lorentz invariant actions for chiral
p-forms, Phys. Rev. D55 (1997) 6292, arXiv:9611100 [hep-th].

[24] P. Pasti, D. Sorokin and M. Tonin, Space-time symmetries in duality sym-
metric models, in Gauge Theories, Applied Supersymmetry, Quantum Grav-
ity, Leuven Notes in Mathematical and Theoretical Physics, vol. 6, 167,
arXiv:9509052 [hep-th].

[25] L. De Angelis, G. Gionti S. J., R. Marotta and F. Pezzella, Comparing Double
String Theory Actions, to be published on JHEP (2014).


