Bianco, Vittorio (2016) Digital Holography Microscopy at Lab-on-a-Chip scale: novel algorithms and recording strategies. [Tesi di dottorato]
Preview |
Text
bianco_vittorio_28.pdf Download (13MB) | Preview |
Item Type: | Tesi di dottorato |
---|---|
Resource language: | English |
Title: | Digital Holography Microscopy at Lab-on-a-Chip scale: novel algorithms and recording strategies |
Creators: | Creators Email Bianco, Vittorio vittorio.bianco@ino.it |
Date: | 24 March 2016 |
Number of Pages: | 232 |
Institution: | Università degli Studi di Napoli Federico II |
Department: | Ingegneria Chimica, dei Materiali e della Produzione Industriale |
Scuola di dottorato: | Ingegneria industriale |
Dottorato: | Ingegneria dei materiali e delle strutture |
Ciclo di dottorato: | 28 |
Coordinatore del Corso di dottorato: | nome email Mensitieri, Giuseppe giuseppe.mensitieri@unina.it |
Tutor: | nome email Netti, Paolo Antonio UNSPECIFIED Paturzo, Melania UNSPECIFIED |
Date: | 24 March 2016 |
Number of Pages: | 232 |
Keywords: | Digital Holography; Imaging; Microscopy; Lab-on-a-Chip; Microfluidics; Turbid media; Scanning microscopy |
Settori scientifico-disciplinari del MIUR: | Area 02 - Scienze fisiche > FIS/07 - Fisica applicata (a beni culturali, ambientali, biologia e medicina) Area 09 - Ingegneria industriale e dell'informazione > ING-IND/22 - Scienza e tecnologia dei materiali |
Date Deposited: | 12 Apr 2016 23:11 |
Last Modified: | 31 Oct 2016 10:58 |
URI: | http://www.fedoa.unina.it/id/eprint/10714 |
Collection description
Il lavoro presentato è mirato allo sviluppo di nuove tecniche di microscopia olografica digitale (Digital Holography Microscopy, DHM), e di opportuni algoritmi numerici per lo studio di biomateriali in ambiente microfluidico. Nello specifico vengono affrontate due problematiche di imaging particolarmente rilevanti nello studio di sistemi Lab-on-a-Chip (LoC). Dapprima è stato studiato il problema della microscopia quantitativa di oggetti biologici osservati attraverso mezzi complessi, come soluzioni torbide e substrati diffondenti, dove la formazione dell’immagine è ostacolata da processi di scattering. Lo studio condotto è stato mirato all’analisi di processi di diffusione da layer statico e da mezzo liquido di tipo colloidale, in regime quasi-statico e dinamico. Sono stati sviluppati a tale scopo dei metodi di registrazione e nuovi algoritmi di ricostruzione dell’immagine olografica (Multi-Look Digital Holography, MLDH) che consentono di fornire un imaging quantitativo dei campioni in esame. Di particolare interesse è il caso di volumi di liquido costituiti da globuli rossi: nel lavoro presentato viene dimostrata la possibilità di studiare, mediante MLDH, processi di adesione cellulare di materiale biologico situato in presenza di flussi di globuli rossi ad alta concentrazione. La possibilità di visualizzare e analizzare quantitativamente materiale biologico all’interno di un capillare o una vena, compensando l’effetto di diffusione del sangue, potrebbe in futuro consentire di studiare la formazione all’interno del vaso di coaguli e placche di colesterolo, sintomatici dell’insorgere di malattie cardiache. La stessa tecnica è in grado di recuperare l’informazione distorta a causa della presenza all’interno del canale di ostacoli statici o quasi-statici (dovuti alla formazione di bio-film o sospensioni batteriche, o causata da processi di fabbricazione del canale microfluidico), aumentando così notevolmente la varietà dei processi biologici analizzabili su piattaforme LoC. Nel lavoro viene anche dimostrato come la presenza di un mezzo torbido possa essere sfruttata vantaggiosamente al fine di migliorare la qualità dell’immagine in sistemi di imaging basati su luce coerente. Parallelamente è stata messa a punto una tecnica interferometrica che, sfruttando il movimento dei campioni nei canali microfluidici, consente di sostituire un sensore convenzionale 2D con un sensore lineare, più compatto e integrabile a bordo del chip, e capace di fornire prestazioni superiori in termini di velocità di acquisizione. Il lavoro presentato descrive il processo di sintesi di un nuovo tipo di ologramma (Space-Time Digital Hologram, STDH), che consente di ottenere un Field-of-View (FoV) illimitato nella direzione del flusso e, quindi, di superare il trade-off esistente tra fattore di ingrandimento e FoV, comune ad ogni tecnica di microscopia convenzionale. Viene inoltre dimostrato che un STDH mantiene le caratteristiche e i vantaggi di un ologramma digitale standard, quali la focalizzazione numerica flessibile, che permette di analizzare contemporaneamente tutti gli oggetti presenti in un volume di liquido, e la possibilità di estrarre la segnatura di fase degli stessi.
Downloads
Downloads per month over past year
Actions (login required)
View Item |