De Luca, Anna Valentina (2016) Normality and modularity conditions on subgroups. [Tesi di dottorato]
![]() |
Documento PDF
De_Luca_Anna_Valentina_28.pdf Visibile a [TBR] Amministratori dell'archivio Download (606kB) | Richiedi una copia |
Tipologia del documento: | Tesi di dottorato |
---|---|
Lingua: | English |
Titolo: | Normality and modularity conditions on subgroups. |
Autori: | Autore Email De Luca, Anna Valentina annavalentina.deluca@unina.it |
Data: | 29 Marzo 2016 |
Numero di pagine: | 65 |
Istituzione: | Università degli Studi di Napoli Federico II |
Dipartimento: | Matematica e Applicazioni "Renato Caccioppoli" |
Scuola di dottorato: | Scienze matematiche ed informatiche |
Dottorato: | Scienze matematiche |
Ciclo di dottorato: | 28 |
Coordinatore del Corso di dottorato: | nome email de Giovanni, Francesco degiovan@unina.it |
Tutor: | nome email Musella, Carmela [non definito] |
Data: | 29 Marzo 2016 |
Numero di pagine: | 65 |
Parole chiave: | Infinite rank; locally greded groups; modular subgroups. |
Settori scientifico-disciplinari del MIUR: | Area 01 - Scienze matematiche e informatiche > MAT/02 - Algebra |
Depositato il: | 08 Apr 2016 09:45 |
Ultima modifica: | 02 Nov 2016 13:36 |
URI: | http://www.fedoa.unina.it/id/eprint/10800 |
Abstract
A group G is said to have finite Prüfer rank r if every finitely generated subgroup of G can be generated by at most r elements, and r is the least positive integer with such property; if such an r does not exist, we will say that the group G has infinite rank. (Generalized) soluble groups of infinite rank in which all subgroups of infinite rank are either normal or self-normalizing and groups in which all subgroups of infinite rank are either normal or contranormal have been considered. In both cases it has been proved that subgroups of finite rank have the same property satisfied by subgroups of infinite rank. The lattice-theoretic interpretation of normality is modularity. It has been proved that if G is a finitely generated soluble group such that every infinite set of cyclic subgroups contains two subgroups H and K which are modular in <H,K>, then G is central-by-finite. Finally we can remark that permutability has some generalizations. In particular we say that a subgroup H is nearly permutable if there exists a permutable subgroup K of G containing H such that the index |K:H| is finite. Generalized radical groups of infinite rank in which all subgroups of infinite rank are nearly permutable have been considered. First of all it has been proved that the commutator subgroup G' of G is locally finite and then it has proved, in non-periodic case, that either G is an FC-group or G/T(G) is a torsion-free abelian group with rank 1.
Downloads
Downloads per month over past year
Actions (login required)
![]() |
Modifica documento |