Sarogni, Patrizia (2017) EGFR activation promotes a hypertrophic phenotype in NAGLU depleted cardiomyoblasts, depicting features of mucopolysaccharidosis IIIB. [Tesi di dottorato]
Preview |
Text
sarogni_patrizia_30.pdf Download (4MB) | Preview |
Item Type: | Tesi di dottorato |
---|---|
Resource language: | English |
Title: | EGFR activation promotes a hypertrophic phenotype in NAGLU depleted cardiomyoblasts, depicting features of mucopolysaccharidosis IIIB |
Creators: | Creators Email Sarogni, Patrizia patrizia.sarogni@unina.it |
Date: | 11 December 2017 |
Number of Pages: | 59 |
Institution: | Università degli Studi di Napoli Federico II |
Department: | dep14 |
Dottorato: | phd054 |
Ciclo di dottorato: | 30 |
Coordinatore del Corso di dottorato: | nome email Avvedimento, Vittorio Enrico avvedim@unina.it |
Tutor: | nome email Pavone, Luigi Michele UNSPECIFIED |
Date: | 11 December 2017 |
Number of Pages: | 59 |
Keywords: | Mucopolysaccharidosis IIIB; NAGLU; Hypertrophy; Lysosomes |
Settori scientifico-disciplinari del MIUR: | Area 05 - Scienze biologiche > BIO/10 - Biochimica |
Date Deposited: | 27 Dec 2017 23:37 |
Last Modified: | 20 Mar 2019 09:51 |
URI: | http://www.fedoa.unina.it/id/eprint/12189 |
Collection description
Mucopolysaccharidosis (MPS) IIIB is a lysosomal storage disease due to the deficiency of the enzyme α-N-acetylglucosaminidase (NAGLU) required for heparan sulfate degradation. Since perturbation of lysosomal homeostasis represents an important cause of cardiomyocyte dysfunction in cardiovascular diseases, we generated a model of the MPS IIIB by silencing NAGLU gene expression in H9C2 rat cardiomyoblasts. NAGLU-depleted H9C2 exhibited accumulation of abnormal lysosomes and a hypertrophic phenotype. Through a phospho-receptor tyrosine kinase array, we found the specific activation of the epidermal growth factor receptor (EGFR) in NAGLU-depleted H9C2 compared to control cells. The pretreatment of NAGLU-depleted H9C2 with the specific EGFR inhibitor AG1478 caused the reduction of both lysosomal aberration and cellular hypertrophy. Similar results were obtained when NAGLU-depleted H9C2 were treated with PD98059, a selective inhibitor of MEK/ERK downstream targets of EGFR. Furthermore, we found increased phosphorylation levels of c-Src in NAGLU-depleted H9C2 where c-Src perturbation affected the hypertrophic response. However, c-Src phosphorylation remained unaffected after treatment of NAGLU-depleted H9C2 clones with AG1478, posing c-Src phosphorylation upstream EGFR activation. Finally, the heparin-binding EGF-like growth factor (HB-EGF) protein resulted to be up-regulated in NAGLU-depleted H9C2, and its silencing caused a reduction of the hypertrophic response. These results demonstrate that both c-Src and HB-EGF may contribute to the hypertrophic phenotype of NAGLU-depleted cardiomyoblasts by activating EGFR signaling, and suggest that the inhibition of EGFR pathway might represent an effective therapeutic strategy for the cure of MPS IIIB cardiac disease.
Downloads
Downloads per month over past year
Actions (login required)
View Item |