Apicella, Andrea (2018) Improving classification models with context knowledge and variable activation functions. [Tesi di dottorato]
Anteprima |
Testo
apicella_andrea_31.pdf Download (1MB) | Anteprima |
| Tipologia del documento: | Tesi di dottorato |
|---|---|
| Lingua: | English |
| Titolo: | Improving classification models with context knowledge and variable activation functions |
| Autori: | Autore Email Apicella, Andrea and.api.univ@gmail.com |
| Data: | 10 Dicembre 2018 |
| Numero di pagine: | 112 |
| Istituzione: | Università degli Studi di Napoli Federico II |
| Dipartimento: | Matematica e Applicazioni "Renato Caccioppoli" |
| Dottorato: | Scienze matematiche e informatiche |
| Ciclo di dottorato: | 31 |
| Coordinatore del Corso di dottorato: | nome email De Giovanni, Francesco francesco.degiovanni2@unina.it |
| Tutor: | nome email Festa, Paola [non definito] Isgrò, Francesco [non definito] |
| Data: | 10 Dicembre 2018 |
| Numero di pagine: | 112 |
| Parole chiave: | machine learning, neural networks, activation functions, ontologies |
| Settori scientifico-disciplinari del MIUR: | Area 01 - Scienze matematiche e informatiche > INF/01 - Informatica Area 01 - Scienze matematiche e informatiche > MAT/09 - Ricerca operativa |
| Depositato il: | 19 Dic 2018 09:17 |
| Ultima modifica: | 23 Giu 2020 09:46 |
| URI: | http://www.fedoa.unina.it/id/eprint/12667 |
Abstract
This work proposes two methods to boost the performances of a given classifier: the first one, which works on a Neural Network classifier, is a new type of trainable activation function, that is a function which is adjusted during the learning phase, allowing the network to exploit the data better respect to use a classic activation function with fixed-shape; the second one provides two frameworks to use an external knowledge base to improve the classification results.
Downloads
Downloads per month over past year
Actions (login required)
![]() |
Modifica documento |


