Apicella, Andrea (2018) Improving classification models with context knowledge and variable activation functions. [Tesi di dottorato]
Preview |
Text
apicella_andrea_31.pdf Download (1MB) | Preview |
Item Type: | Tesi di dottorato |
---|---|
Resource language: | English |
Title: | Improving classification models with context knowledge and variable activation functions |
Creators: | Creators Email Apicella, Andrea and.api.univ@gmail.com |
Date: | 10 December 2018 |
Number of Pages: | 112 |
Institution: | Università degli Studi di Napoli Federico II |
Department: | Matematica e Applicazioni "Renato Caccioppoli" |
Dottorato: | Scienze matematiche e informatiche |
Ciclo di dottorato: | 31 |
Coordinatore del Corso di dottorato: | nome email De Giovanni, Francesco francesco.degiovanni2@unina.it |
Tutor: | nome email Festa, Paola UNSPECIFIED Isgrò, Francesco UNSPECIFIED |
Date: | 10 December 2018 |
Number of Pages: | 112 |
Keywords: | machine learning, neural networks, activation functions, ontologies |
Settori scientifico-disciplinari del MIUR: | Area 01 - Scienze matematiche e informatiche > INF/01 - Informatica Area 01 - Scienze matematiche e informatiche > MAT/09 - Ricerca operativa |
Date Deposited: | 19 Dec 2018 09:17 |
Last Modified: | 23 Jun 2020 09:46 |
URI: | http://www.fedoa.unina.it/id/eprint/12667 |
Collection description
This work proposes two methods to boost the performances of a given classifier: the first one, which works on a Neural Network classifier, is a new type of trainable activation function, that is a function which is adjusted during the learning phase, allowing the network to exploit the data better respect to use a classic activation function with fixed-shape; the second one provides two frameworks to use an external knowledge base to improve the classification results.
Downloads
Downloads per month over past year
Actions (login required)
View Item |