Apicella, Andrea (2018) Improving classification models with context knowledge and variable activation functions. [Tesi di dottorato]

[img]
Preview
Text
apicella_andrea_31.pdf

Download (1MB) | Preview
[error in script] [error in script]
Item Type: Tesi di dottorato
Resource language: English
Title: Improving classification models with context knowledge and variable activation functions
Creators:
CreatorsEmail
Apicella, Andreaand.api.univ@gmail.com
Date: 10 December 2018
Number of Pages: 112
Institution: Università degli Studi di Napoli Federico II
Department: Matematica e Applicazioni "Renato Caccioppoli"
Dottorato: Scienze matematiche e informatiche
Ciclo di dottorato: 31
Coordinatore del Corso di dottorato:
nomeemail
De Giovanni, Francescofrancesco.degiovanni2@unina.it
Tutor:
nomeemail
Festa, PaolaUNSPECIFIED
Isgrò, FrancescoUNSPECIFIED
Date: 10 December 2018
Number of Pages: 112
Keywords: machine learning, neural networks, activation functions, ontologies
Settori scientifico-disciplinari del MIUR: Area 01 - Scienze matematiche e informatiche > INF/01 - Informatica
Area 01 - Scienze matematiche e informatiche > MAT/09 - Ricerca operativa
Date Deposited: 19 Dec 2018 09:17
Last Modified: 23 Jun 2020 09:46
URI: http://www.fedoa.unina.it/id/eprint/12667

Collection description

This work proposes two methods to boost the performances of a given classifier: the first one, which works on a Neural Network classifier, is a new type of trainable activation function, that is a function which is adjusted during the learning phase, allowing the network to exploit the data better respect to use a classic activation function with fixed-shape; the second one provides two frameworks to use an external knowledge base to improve the classification results.

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item