Santagata, Tommaso (2020) Modellimg and experimental charaterization of unsaturated flow in absorbent and swelling porous media. [Tesi di dottorato]

[img]
Anteprima
Testo
Santagata_Tommaso_32.pdf

Download (3MB) | Anteprima
[error in script] [error in script]
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: Modellimg and experimental charaterization of unsaturated flow in absorbent and swelling porous media
Autori:
AutoreEmail
Santagata, Tommasotommaso.santagata@gmail.com
Data: 2020
Numero di pagine: 96
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Ingegneria Chimica, dei Materiali e della Produzione Industriale
Dottorato: Ingegneria dei prodotti e dei processi industriali
Ciclo di dottorato: 32
Coordinatore del Corso di dottorato:
nomeemail
Mensitieri, Giuseppemensitie@unina.it
Tutor:
nomeemail
Salatino, Piero[non definito]
Solimene, Roberto[non definito]
Aprea, Gilberto[non definito]
Data: 2020
Numero di pagine: 96
Parole chiave: Swelling porous media; super absorbent polymer; absorbent hygiene products
Settori scientifico-disciplinari del MIUR: Area 09 - Ingegneria industriale e dell'informazione > ING-IND/25 - Impianti chimici
Depositato il: 22 Mar 2020 23:01
Ultima modifica: 04 Apr 2022 10:00
URI: http://www.fedoa.unina.it/id/eprint/13024

Abstract

The present study aims at characterizing relevant morphological and hydraulic properties of absorbent hygiene products (AHP), consisting of storage layers made of cellulose fluff fibres and super absorbent polymer (SAP) particles, with different SAP/fluff ratio (SFR). The dependencies of these properties (e.g. porosity and hydraulic conductivity) on the absorption extent of the SAP particles has to be clearly acknowledged, in order to properly model with continuous assumptions this particular porous system. A comprehensive tailored experimental protocol is presented for the characterization of properties and constitutive parameters relevant to AHP performance. The results have been directed to set the closure equations and constitutive parameters of multiphase flow models in which the porous media is treated as a continuum. Computational fluid dynamics simulations were used to test the obtained closure equations. The performances of the composite materials have been characterized in terms of absorption time and absorbed fluid spatial distribution upon iterated imbibition/drainage cycles. A multi-scale approach was implemented using a model based on a discrete element method (DEM). Virtual experiments in DEM simulation were carried out and compared to the lab measurements.

Downloads

Downloads per month over past year

Actions (login required)

Modifica documento Modifica documento