ROMANO, ANGELA (2021) Estimation/updating of origin-destination flows: recent trends and opportunities from trajectory data. [Tesi di dottorato]

[thumbnail of ROMANO_ANGELA_33.pdf]
Anteprima
Testo
ROMANO_ANGELA_33.pdf

Download (11MB) | Anteprima
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: Estimation/updating of origin-destination flows: recent trends and opportunities from trajectory data
Autori:
Autore
Email
ROMANO, ANGELA
angela.romano2@unina.it
Data: 14 Luglio 2021
Numero di pagine: 191
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Ingegneria Civile, Edile e Ambientale
Dottorato: Ingegneria dei sistemi civili
Ciclo di dottorato: 33
Coordinatore del Corso di dottorato:
nome
email
PAPOLA, ANDREA
papola@unina.it
Tutor:
nome
email
MARZANO, VITTORIO
[non definito]
VITI, FRANCESCO
[non definito]
Data: 14 Luglio 2021
Numero di pagine: 191
Parole chiave: trajectory data, travel demand estimation, synthetic experiments, trajectory data analysis, sensing technologies, vehicle tracking, o-d flows estimation
Settori scientifico-disciplinari del MIUR: Area 08 - Ingegneria civile e Architettura > ICAR/05 - Trasporti
Depositato il: 19 Lug 2021 20:18
Ultima modifica: 07 Giu 2023 11:04
URI: http://www.fedoa.unina.it/id/eprint/13624

Abstract

Understanding the spatial and temporal dynamics of mobility demand is essential for many applications over the entire transport domain, from planning and policy assessment to operation, control, and management. Typically, mobility demand is represented by origin-destination (o-d) flows, each representing the number of trips from one traffic zone to another, for a certain trip purpose and mode of transport, in a given time interval (Cascetta, 2009, Ortuzar and Willumsen, 2011). O-d flows have been generally unobservable for decades, thus the problem of o-d matrix estimation is still one of the most challenging in transportation studies. In recent times, unprecedented tracing and tracking capabilities have become available. The pervasive penetration of sensing devices (smartphones, black boxes, smart cards, ...) adopting a variety of tracing technologies/methods (GPS, Bluetooth, ...) could make in many cases o-d flows now observable. The increasing availability of trajectory data sources has provided new opportunities to enhance observability of human mobility and travel patterns between origins and destinations, recently explored by researchers and practitioners, bringing innovation and new research directions on origin-destination (o-d) matrix estimation. The purpose of this thesis is to develop a deep understanding of the opportunities and the limitations of trajectory data to assess its potential for ameliorating the o-d flows estimation/updating problem and for conducting o-d related analysis. The proposed work involves both real trajectory data analysis and laboratory experiments based on synthetic data to investigate the implications of the trajectory data sample distinctive features (e.g. sample representativeness and bias) on demand flows accuracy. Final considerations and results might provide useful guidelines for researchers and practitioners dealing with various types of trajectory data sample and conducting o-d related applications.

Downloads

Downloads per month over past year

Actions (login required)

Modifica documento Modifica documento