Catelli, Rosario (2021) Safeguarding Privacy Through Deep Learning Techniques. [Tesi di dottorato]

[thumbnail of catelli_rosario_33.pdf]
Anteprima
Testo
catelli_rosario_33.pdf

Download (1MB) | Anteprima
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: Safeguarding Privacy Through Deep Learning Techniques
Autori:
Autore
Email
Catelli, Rosario
rosario.catelli@unina.it
Data: 13 Aprile 2021
Numero di pagine: 125
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Ingegneria Elettrica e delle Tecnologie dell'Informazione
Dottorato: Information technology and electrical engineering
Ciclo di dottorato: 33
Coordinatore del Corso di dottorato:
nome
email
Riccio, Daniele
daniele.riccio@unina.it
Tutor:
nome
email
Casola, Valentina
[non definito]
Esposito, Massimo
[non definito]
Data: 13 Aprile 2021
Numero di pagine: 125
Parole chiave: privacy, deep learning, clinical de-identification
Settori scientifico-disciplinari del MIUR: Area 09 - Ingegneria industriale e dell'informazione > ING-INF/05 - Sistemi di elaborazione delle informazioni
Informazioni aggiuntive: Google Scholar Profile for updated contact email: https://scholar.google.it/citations?user=Ge-RyG4AAAAJ&hl=it&oi=ao - OrcID Profile: https://orcid.org/0000-0001-5598-6477
Depositato il: 10 Mag 2021 23:23
Ultima modifica: 07 Giu 2023 10:34
URI: http://www.fedoa.unina.it/id/eprint/13880

Abstract

Over the last few years, there has been a growing need to meet minimum security and privacy requirements. Both public and private companies have had to comply with increasingly stringent standards, such as the ISO 27000 family of standards, or the various laws governing the management of personal data. The huge amount of data to be managed has required a huge effort from the employees who, in the absence of automatic techniques, have had to work tirelessly to achieve the certification objectives. Unfortunately, due to the delicate information contained in the documentation relating to these problems, it is difficult if not impossible to obtain material for research and study purposes on which to experiment new ideas and techniques aimed at automating processes, perhaps exploiting what is in ferment in the scientific community and linked to the fields of ontologies and artificial intelligence for data management. In order to bypass this problem, it was decided to examine data related to the medical world, which, especially for important reasons related to the health of individuals, have gradually become more and more freely accessible over time, without affecting the generality of the proposed methods, which can be reapplied to the most diverse fields in which there is a need to manage privacy-sensitive information.

Downloads

Downloads per month over past year

Actions (login required)

Modifica documento Modifica documento