Marrazzo, Vincenzo Romano (2021) Arrayed Waveguide Grating-Based Interrogation System for Safety Applications and High-Speed Measurements. [Tesi di dottorato]
Anteprima |
Testo
Marrazzo_VincenzoRomano_33.pdf Download (7MB) | Anteprima |
Tipologia del documento: | Tesi di dottorato |
---|---|
Lingua: | English |
Titolo: | Arrayed Waveguide Grating-Based Interrogation System for Safety Applications and High-Speed Measurements |
Autori: | Autore Email Marrazzo, Vincenzo Romano vincenzoromano.marrazzo@unina.it |
Data: | 12 Aprile 2021 |
Numero di pagine: | 148 |
Istituzione: | Università degli Studi di Napoli Federico II |
Dipartimento: | Ingegneria Elettrica e delle Tecnologie dell'Informazione |
Dottorato: | Biologia applicata |
Ciclo di dottorato: | 33 |
Coordinatore del Corso di dottorato: | nome email Riccio, Daniele daniele.riccio@unina.it |
Tutor: | nome email Breglio, Giovanni [non definito] |
Data: | 12 Aprile 2021 |
Numero di pagine: | 148 |
Parole chiave: | Fiber Bragg Grating; Arrayed Waveguide Grating, Interrogation System; Optoelectronic System; High-Speed Measurement; Fiber Optic Sensor; Safety Monitoring System |
Settori scientifico-disciplinari del MIUR: | Area 09 - Ingegneria industriale e dell'informazione > ING-INF/01 - Elettronica |
Depositato il: | 10 Mag 2021 23:26 |
Ultima modifica: | 07 Giu 2023 10:34 |
URI: | http://www.fedoa.unina.it/id/eprint/13890 |
Abstract
This thesis is focused on the design of two interrogation systems for Fiber Bragg Grating (FBG) sensors based on the Wavelength Domain Multiplexing (WDM) by means of the Arrayed Waveguide Grating (AWG) device. The FBG sensors have been employed in a large number of environments thanks to their intrinsic characteristics. To design a measurement system based on the Fiber Optic Sensor (FOS) technology, it is mandatory to make use of an optoelectronic system with the aim to "read" the wavelength shifting performed by the sensors. This latter is named interrogation system and, actually, sets a limit on the employability of the FBG sensors, due to its cost, design complexity and low reliability in some contests. For this reasons, the researchers are constantly looking on new technologies for the design of innovative interrogation systems. The AWG device seems to provide characteristics which cannot be reached with other devices and, due to its passivity, gives the possibility to increase the system speed to let the FBG sensors to be employed also for the detection of high-speed phenomena. Furthermore, thanks to the robustness and reliability of AWG device, is possible to turn an interrogation system into a full analog monitoring system employable in a safety scenario, such as industrial processes or other kind of environments, in which digital processing does not ensure enough reliability.
Downloads
Downloads per month over past year
Actions (login required)
![]() |
Modifica documento |