Zampini, Alessandro (2005) Application of the Weyl-Wigner formalism of noncommutative geometry. [Tesi di dottorato] (Inedito)

[img]
Anteprima
PDF
Zampini.pdf

Download (1MB) | Anteprima
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: Application of the Weyl-Wigner formalism of noncommutative geometry
Autori:
AutoreEmail
Zampini, Alessandro[non definito]
Data: 2005
Tipo di data: Pubblicazione
Numero di pagine: 102
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Scienze fisiche
Dottorato: Fisica fondamentale ed applicata
Ciclo di dottorato: 17
Coordinatore del Corso di dottorato:
nomeemail
Tagliacozzo, Arturo[non definito]
Tutor:
nomeemail
Tagliacozzo, Arturo[non definito]
Data: 2005
Numero di pagine: 102
Parole chiave: Noncommutative geometry, Weyl-Wigner formalism, Fuzzy disc
Settori scientifico-disciplinari del MIUR: Area 02 - Scienze fisiche > FIS/07 - Fisica applicata (a beni culturali, ambientali, biologia e medicina)
Depositato il: 01 Ago 2008
Ultima modifica: 30 Apr 2014 19:22
URI: http://www.fedoa.unina.it/id/eprint/145
DOI: 10.6092/UNINA/FEDOA/145

Abstract

In this dissertation the Weyl-Wigner approach is presented as a map between funcions on a real cartesian sympletic vector space and a set of operators on a Hilbert space, to analyse some aspects of the relations between quantum and classical formalism, both as a quantization, and as a classical limit. It is presented an extension of this formalism to the case of a more general classical phase space, namely one whose configuration space is a compact simple Lie group. In the second part, it is used to develop a fuzzy approximation to the algebra of functions on a disc. This is the first example of a fuzzy space originating from a classical space which has a boundary. It is analysed how this approximation copes the presence of ultraviolet divergences even in noninteracting field theories on a disc.

Actions (login required)

Modifica documento Modifica documento