Di Liberto, Francesco (2002) Complexity in the stepwise ideal gas Carnot cycle. [Pubblicazione in rivista scientifica]
|
PDF
CARNOT-1.pdf Download (22kB) | Preview |
Item Type: | Pubblicazione in rivista scientifica | ||||
---|---|---|---|---|---|
Title: | Complexity in the stepwise ideal gas Carnot cycle | ||||
Creators: |
|
||||
Date: | 1 November 2002 | ||||
Date type: | Publication | ||||
Identification Number: | PII: S 0378-4371 (02)1156-1 | ||||
Original publication URL: | http://scienceserver.cilea.it/cgi-bin/sciserv.pl?c... | ||||
Journal or Publication Title: | Physica A | ||||
Date: | 1 November 2002 | ||||
ISSN: | 0378-4371 | ||||
Volume: | 314 | ||||
Number: | 1-4 | ||||
Page Range: | pp. 331-344 | ||||
Keywords: | Complexity, Carnot, Thermodynamic cycle | ||||
References: | [1]-Leff, H.S., "Thermal efficiency at maximum work output: new results for hold heat engines" Amer. J. Phys. 1987 pp. 602 [2]-Landsberg, P.T.; Leff, H.S., "Thermodynamic cycles with nearly universal maximum-work efficiencies" J. Phys. A: Math. Gen. 1989 pp. 4019 [3]-Angulo-Brown, F., "An ecological optimization criterion for finite-time heat engines" J. Appl. Phys. 1991 pp. 7465 [4]-Yan, Z.; Chen, L., "The fundamental optimal relation and the bounds of power output efficiency for an irreversible Carnot engine" J. Phys. A: Math. Gen. 1995 pp. 6167 [5]-Bejan, A., "Entropy generation minimization: the new thermodynamics of finite size devices and finite-time processes" J. Appl. Phys. 1996 pp. 1191 [6]-Chen, L.G.; Wu, C.; Sun, F.R., "Finite time thermodynamics or entropy generation minimization of energy systems" J. Non-Equilibrium Thermodyn. 1999 pp. 327 [7]-Tsirlin, A.M.; Kazakov, V., "Maximal work problem in finite-time thermodynamics" Phys. Rev. E 2000 pp. 307 [8]-Allahverdyan, E.; Nieuwenhuizen, T.M., "Optimizing the classical heat engine" Phys. Rev. Lett. 2000 pp. 232 [9]-M. Santillan, G. Moya, Angulo-Brown, Local stability analysis of an endoreversible CAN engine working in a maximum-power-like regime, J. Phys. D 34 (2001) 2068. [10]-Saygin, H.; Sisman, A., "Quantum degeneracy effect on the work output from a Stirling cycle" J. Appl. Phys. 2001 pp. 3086 [11]-R. Chabay, B. Sherwood, Matter & Interactions, Vol. I, Wiley, 2002, pp. 414–430 (Chapter 12). [12]-S. Leff, Harvey, "Heat engine and the performance of the external work" Amer. J. Phys. 1978 pp. 218 [13]-J. Nolan, Michael, "Thermodynamic cycles—one more time" Phys. Teach. 1995 pp. 573 [14]-R.S. Berry, Andresen,; Nitzan, A.; Salamon,P., "Thermodynamics in finite time. I. The step-Carnot cycle" Phys. Rev. A 1977 pp. 2086 [15]-F. di Liberto, Work performed by a Classical-“Reversible”-Carnot cycle: raising's distribution for the small “driving weights”, http://babbage.sissa.it/abs/physics/0006073. [16]-di Liberto Classical-reversible-Carnot cycle: a path to recognize the work performed by the ideal gas, in: R. Pints, S. Suriqach (Eds.), Proceedings of the International Conference, “Physics Teacher Education Beyond 2000. Selected Contributions”, Elsevier, Paris, 2001. [17]-Cugliandolo, L.F.; Kurchan, J.; Peliti, L., Phys. Rev. E 1997 pp. 3898 | ||||
Identification Number: | PII: S 0378-4371 (02)1156-1 | ||||
Settori scientifico-disciplinari del MIUR: | Area 02 - Scienze fisiche > FIS/02 - Fisica teorica, modelli e metodi matematici Area 02 - Scienze fisiche > FIS/08 - Didattica e storia della fisica Area 01 - Scienze matematiche e informatiche > MAT/06 - Probabilità e statistica matematica |
||||
Additional information: | http://scienceserver.cilea.it/cgi-bin/sciserv.pl?collection=journals&journal=03784371&issue=v314i1-4&article=331_citsigcc&form=fulltext | ||||
Date Deposited: | 17 Nov 2005 | ||||
Last Modified: | 30 Apr 2014 19:22 | ||||
URI: | http://www.fedoa.unina.it/id/eprint/186 |
Collection description
A stepwise Carnot cycle is performed by means of N small weights (here called dw's), which are first added and then removed from the piston of the vessel containing the gas. The size of the dw's affects the entropy production. The work performed by the gas can be found as increase of the potential energy of the dw's. We identify each single dw and thus evaluate its raising, i.e., its increase in potential energy. In such a way we find how the energy output of the cycle is distributed among the dw's. The distribution depends on the removing process we choose. Since these processes are N!, there are N! distributions of the raisings of the dw's; it is therefore worthwhile to investigate how to find ni= n(ei) the number of the dw's whose energy increase is ei.
Downloads
Downloads per month over past year
Actions (login required)
View Item |