Di Liberto, Francesco (2002) Complexity in the stepwise ideal gas Carnot cycle. [Pubblicazione in rivista scientifica]

PDF
CARNOT1.pdf Download (22kB)  Preview 
Item Type:  Pubblicazione in rivista scientifica  

Title:  Complexity in the stepwise ideal gas Carnot cycle  
Creators: 


Date:  1 November 2002  
Date Type:  Publication  
Identification Number:  PII: S 03784371 (02)11561  
Official URL:  http://scienceserver.cilea.it/cgibin/sciserv.pl?c...  
Journal or Publication Title:  Physica A  
Date:  1 November 2002  
ISSN:  03784371  
Volume:  314  
Number:  14  
Page Range:  pp. 331344  
Uncontrolled Keywords:  Complexity, Carnot, Thermodynamic cycle  
References:  [1]Leff, H.S., "Thermal efficiency at maximum work output: new results for hold heat engines" Amer. J. Phys. 1987 pp. 602 [2]Landsberg, P.T.; Leff, H.S., "Thermodynamic cycles with nearly universal maximumwork efficiencies" J. Phys. A: Math. Gen. 1989 pp. 4019 [3]AnguloBrown, F., "An ecological optimization criterion for finitetime heat engines" J. Appl. Phys. 1991 pp. 7465 [4]Yan, Z.; Chen, L., "The fundamental optimal relation and the bounds of power output efficiency for an irreversible Carnot engine" J. Phys. A: Math. Gen. 1995 pp. 6167 [5]Bejan, A., "Entropy generation minimization: the new thermodynamics of finite size devices and finitetime processes" J. Appl. Phys. 1996 pp. 1191 [6]Chen, L.G.; Wu, C.; Sun, F.R., "Finite time thermodynamics or entropy generation minimization of energy systems" J. NonEquilibrium Thermodyn. 1999 pp. 327 [7]Tsirlin, A.M.; Kazakov, V., "Maximal work problem in finitetime thermodynamics" Phys. Rev. E 2000 pp. 307 [8]Allahverdyan, E.; Nieuwenhuizen, T.M., "Optimizing the classical heat engine" Phys. Rev. Lett. 2000 pp. 232 [9]M. Santillan, G. Moya, AnguloBrown, Local stability analysis of an endoreversible CAN engine working in a maximumpowerlike regime, J. Phys. D 34 (2001) 2068. [10]Saygin, H.; Sisman, A., "Quantum degeneracy effect on the work output from a Stirling cycle" J. Appl. Phys. 2001 pp. 3086 [11]R. Chabay, B. Sherwood, Matter & Interactions, Vol. I, Wiley, 2002, pp. 414–430 (Chapter 12). [12]S. Leff, Harvey, "Heat engine and the performance of the external work" Amer. J. Phys. 1978 pp. 218 [13]J. Nolan, Michael, "Thermodynamic cycles—one more time" Phys. Teach. 1995 pp. 573 [14]R.S. Berry, Andresen,; Nitzan, A.; Salamon,P., "Thermodynamics in finite time. I. The stepCarnot cycle" Phys. Rev. A 1977 pp. 2086 [15]F. di Liberto, Work performed by a Classical“Reversible”Carnot cycle: raising's distribution for the small “driving weights”, http://babbage.sissa.it/abs/physics/0006073. [16]di Liberto ClassicalreversibleCarnot cycle: a path to recognize the work performed by the ideal gas, in: R. Pints, S. Suriqach (Eds.), Proceedings of the International Conference, “Physics Teacher Education Beyond 2000. Selected Contributions”, Elsevier, Paris, 2001. [17]Cugliandolo, L.F.; Kurchan, J.; Peliti, L., Phys. Rev. E 1997 pp. 3898  
Identification Number:  PII: S 03784371 (02)11561  
MIUR S.S.D.:  Area 02  Scienze fisiche > FIS/02  Fisica teorica, modelli e metodi matematici Area 02  Scienze fisiche > FIS/08  Didattica e storia della fisica Area 01  Scienze matematiche e informatiche > MAT/06  Probabilità e statistica matematica 

Additional Information:  http://scienceserver.cilea.it/cgibin/sciserv.pl?collection=journals&journal=03784371&issue=v314i14&article=331_citsigcc&form=fulltext  
Date Deposited:  17 Nov 2005  
Last Modified:  30 Apr 2014 19:22  
URI:  http://www.fedoa.unina.it/id/eprint/186 
Abstract
A stepwise Carnot cycle is performed by means of N small weights (here called dw's), which are first added and then removed from the piston of the vessel containing the gas. The size of the dw's affects the entropy production. The work performed by the gas can be found as increase of the potential energy of the dw's. We identify each single dw and thus evaluate its raising, i.e., its increase in potential energy. In such a way we find how the energy output of the cycle is distributed among the dw's. The distribution depends on the removing process we choose. Since these processes are N!, there are N! distributions of the raisings of the dw's; it is therefore worthwhile to investigate how to find ni= n(ei) the number of the dw's whose energy increase is ei.
Actions (login required)
View Item 