Sessa, Salvatore
(2008)
Application of the Tail-Equivalent Linearization Method for Stochastic Dynamic Analysis with Asymmetric Hysteresis.
[Tesi di dottorato]
(Unpublished)
![[img]](http://www.fedoa.unina.it/style/images/fileicons/application_pdf.png) |
PDF
Sessa_Salvatore.pdf
Visibile a [TBR] Repository staff only
Download (1MB)
|
Item Type: |
Tesi di dottorato
|
Lingua: |
English |
Title: |
Application of the Tail-Equivalent Linearization Method for Stochastic Dynamic Analysis with Asymmetric Hysteresis |
Creators: |
Creators | Email |
---|
Sessa, Salvatore | sal.sessa@gmail.com |
|
Date: |
30 November 2008 |
Number of Pages: |
178 |
Institution: |
Università degli Studi di Napoli Federico II |
Department: |
Ingegneria dei materiali e della produzione |
Dottorato: |
Ingegneria dei materiali e delle strutture |
Ciclo di dottorato: |
21 |
Coordinatore del Corso di dottorato: |
nome | email |
---|
Acierno, Domenico | UNSPECIFIED |
|
Coordinatore del Corso di dottorato (extra): |
nome | email |
---|
Prota, Andrea | UNSPECIFIED |
|
Tutor: |
nome | email |
---|
Rosati, Luciano | rosati@unina.it |
|
Date: |
30 November 2008 |
Number of Pages: |
178 |
Uncontrolled Keywords: |
Nonlinear Random Vibrations Analysis |
Settori scientifico-disciplinari del MIUR: |
Area 08 - Ingegneria civile e Architettura > ICAR/09 - Tecnica delle costruzioni Area 08 - Ingegneria civile e Architettura > ICAR/08 - Scienza delle costruzioni |
[error in script]
[error in script]
Date Deposited: |
13 Nov 2009 14:07 |
Last Modified: |
09 Dec 2014 10:09 |
URI: |
http://www.fedoa.unina.it/id/eprint/3329 |

Abstract
The tail-equivalent linearization method (TELM) is used to investigate the stationary response of a system having a highly asymmetric hysteretic behavior and subjected to a discretized white-noise excitation. The equivalent linear system is defined by equating its tail probability with the first-order approximation of the tail probability of the nonlinear response. The equivalent linear system is determined in a non-parametric form in terms of its impulse response function, which depends on the response threshold of interest. The method is able to capture the non-Gaussian and asymmetric distribution of both the point-in-time response and the extreme response over a time interval (the first-passage probability) for large thresholds (small exceedance probabilities), which are of interest in reliability analysis.
Actions (login required)
 |
View Item |