Indexing Techniques for Image and Video Databases: an approach based on Animate Vision Paradigm

Moscato, Vincenzo (2006) Indexing Techniques for Image and Video Databases: an approach based on Animate Vision Paradigm. [Tesi di dottorato] (Inedito)

Full text disponibile come:

[img]PDF - Richiede un editor Pdf del tipo GSview, Xpdf o Adobe Acrobat Reader
3159Kb

Abstract

[ITALIANO]In questo lavoro di tesi vengono presentate e discusse delle innovative tecniche di indicizzazione per database video e di immagini basate sul paradigma della “Animate Vision” (Visione Animata). Da un lato, sarà mostrato come utilizzando, quali algoritmi di analisi di una data immagine, alcuni meccanismi di visione biologica, come i movimenti saccadici e le fissazioni dell'occhio umano, sia possibile ottenere un query processing in database di immagini più efficace ed efficiente. In particolare, verranno discussi, la metodologia grazie alla quale risulta possibile generare due sequenze di fissazioni, a partire rispettivamente, da un'immagine di query I_q ed una di test I_t del data set, e, come confrontare tali sequenze al fine di determinare una possibile misura della similarità (consistenza) tra le due immagini. Contemporaneamente, verrà discusso come tale approccio unito a tecniche classiche di clustering possa essere usato per scoprire le associazioni semantiche nascoste tra immagini, in termini di categorie, che, di contro, permettono un'automatica pre-classificazione (indicizzazione) delle immagini e possono essere usate per guidare e migliorare il processo di query. Saranno presentati, infine, dei risultati preliminari e l'approccio proposto sarà confrontato con le più recenti tecniche per il recupero di immagini descritte in letteratura. Dall'altro lato, sarà mostrato come utilizzando la precedente rappresentazione “foveata” di un'immagine, risulti possibile partizionare un video in shot. Più precisamente, il metodo per il rilevamento dei cambiamenti di shot si baserà sulla computazione, in ogni istante di tempo, della misura di consistenza tra le sequenze di fissazioni generate da un osservatore ideale che guarda il video. Lo schema proposto permette l'individuazione, attraverso l'utilizzo di un'unica tecnica anziché di più metodi dedicati, sia delle transizioni brusche sia di quelle graduali. Vengono infine mostrati i risultati ottenuti su varie tipologie di video e, come questi, validano l'approccio proposto. / [INGLESE]In this dissertation some novel indexing techniques for video and image database based on “Animate Vision” Paradigm are presented and discussed. From one hand, it will be shown how, by embedding within image inspection algorithms active mechanisms of biological vision such as saccadic eye movements and fixations, a more effective query processing in image database can be achieved. In particular, it will be discussed the way to generate two fixation sequences from a query image I_q and a test image I_t of the data set, respectively, and how to compare the two sequences in order to compute a possible similarity (consistency) measure between the two images. Meanwhile, it will be shown how the approach can be used with classical clustering techniques to discover and represent the hidden semantic associations among images, in terms of categories, which, in turn, allow an automatic pre-classification (indexing), and can be used to drive and improve the query processing. Eventually, preliminary results will be presented and the proposed approach compared with the most recent techniques for image retrieval described in the literature. From the other one, it will be discussed how by taking advantage of such foveated representation of an image, it is possible to partitioning of a video into shots. More precisely, the shot-change detection method will be based on the computation, at each time instant, of the consistency measure of the fixation sequences generated by an ideal observer looking at the video. The proposed scheme aims at detecting both abrupt and gradual transitions between shots using a single technique, rather than a set of dedicated methods. Results on videos of various content types are reported and validate the proposed approach.

Tipologia di documento:Tesi di dottorato
Parole chiave:Multimedia Database, Indexing, Animate Vision
Settori scientifico-disciplinari MIUR:Area 09 Ingegneria industriale e dell'informazione > ING-INF/05 SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI
Coordinatori della Scuola di dottorato:
Coordinatore del Corso di dottoratoe-mail (se nota)
Cordella, Luigi
Tutor della Scuola di dottorato:
Tutor del Corso di dottoratoe-mail (se nota)
Chianese, Angelo
Stato del full text:Accessibile
Data:2006
Numero di pagine:160
Istituzione:Università degli Studi di Napoli Federico II
Dipartimento o Struttura:Informatica e Sistemistica
Tipo di tesi:Dottorato
Stato dell'Eprint:Inedito
Denominazione del dottorato:Ingegneria Informatica ed Automatica
Ciclo di dottorato:XVIII
Numero di sistema:605
Depositato il:30 Luglio 2008
Ultima modifica:04 Febbraio 2009 09:38

Solo per gli Amministratori dell'archivio: edita il record