Casaburi, Daniela (2006) Ricostruzione e segmentazione di immagini 3D: dal modello allo sviluppo del software in ambiente di calcolo parallelo. [Tesi di dottorato] (Inedito)

[img]
Anteprima
PDF
Dottorato_Casaburi_Daniela.pdf

Download (3MB) | Anteprima
Tipologia del documento: Tesi di dottorato
Lingua: Italiano
Titolo: Ricostruzione e segmentazione di immagini 3D: dal modello allo sviluppo del software in ambiente di calcolo parallelo
Autori:
AutoreEmail
Casaburi, Daniela[non definito]
Data: 2006
Tipo di data: Pubblicazione
Numero di pagine: 112
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Matematica e applicazioni "Renato Caccioppoli"
Dottorato: Scienze computazionali e informatiche
Ciclo di dottorato: 18
Coordinatore del Corso di dottorato:
nomeemail
Ricciardi, Luigi Maria[non definito]
Tutor:
nomeemail
Murli, Almerico[non definito]
Data: 2006
Numero di pagine: 112
Parole chiave: Ricostruzione, Segmentazione, PDE.
Settori scientifico-disciplinari del MIUR: Area 01 - Scienze matematiche e informatiche > MAT/08 - Analisi numerica
Depositato il: 30 Lug 2008
Ultima modifica: 05 Dic 2014 14:18
URI: http://www.fedoa.unina.it/id/eprint/722
DOI: 10.6092/UNINA/FEDOA/722

Abstract

Nella società moderna le immagini rivestono un ruolo sempre più importante: l'immagine è uno strumento potente e ampiamente usato nella comunicazione ed anche un mezzo semplice, compatto e diffuso per la rappresentazione del mondo fisico. Anche nel mondo scientifico ed in particolare nella CSE (Computational Science and Engineering) l'immagine riveste un ruolo fondamentale essendo alla base della simulazione e visualizzazione di grandi quantità di dati. Appare allora evidente il crescente interesse per le tecniche e i metodi numerici che consentono di rappresentare un'immagine e permettono di migliorarla o estrarne informazioni. Tali tecniche sono alla base dell'Image Processing e dell'Image Analysis. Fino a pochi anni fa le tecniche utilizzate erano basate su metodi euristici ed approcci ``ad hoc''. La svolta significativa nell'Image Processing e Analysis si è avuta con l’introduzione di modelli e metodi matematici. Alla base di tali modelli c’è la classe dei Problemi Inversi, nei quali a partire dalle note caratteristiche (f) dello strumento ottico utilizzato nell'acquisizione (telecamera, macchina ecografica etc.), dal rumore random additivo k e dall'immagine degradata z, con z=f(u)+k, si vuole ricostruire un'approssimazione della soluzione ideale u=f--1 (z-k) in modo tale che , con opportuna. Una caratteristica di tali problemi è la perdita di informazioni significative nel passare dal dato u al risultato z; ad esempio, si passa dalla scena reale u nello spazio 3D all'immagine acquisita z definita nello spazio 2D, con un'evidente perdita di informazioni. Per compensare la perdita di informazioni occorre assegnare informazioni aggiuntive, occorre cioè regolarizzare il problema inverso. A partire dall'idea di Tikhonov nel 1977 sono stati introdotti molti operatori di regolarizzazione con l'intento di fornire modelli matematici sempre più affidabili e aderenti alle caratteristiche effettive di un'immagine. Definito il modello matematico (M(P)) il suo effettivo utilizzo in applicazioni concrete necessita la messa a punto di metodi numerici per la realizzazione del corrispondente problema discreto M_h(P) , di algoritmi e software efficienti che permettano di ottenere la soluzione desiderata in tempo utile. E’ a questo livello che si inserisce il mio lavoro di tesi, nel quale, partendo dall'equazione di diffusione del flusso a curvatura media, assunta come modello matematico del problema di ricostruzione e segmentazione di una immagine, vengono analizzati, discussi e implementati tutti i passi computazionali necessari allo sviluppo dell'elemento di software in un ambiente di calcolo parallelo ad alte prestazioni. Dopo una breve introduzione ai problemi del denoising e della segmentazione d'immagini 3D, nel Capitolo 1 si illustra il legame presente tra le PDE e l'Image Processing ed Analysis, ponendo particolare attenzione ai modelli di diffusione non lineari (Modelli di flusso a curvatura media - Modelli Level Set). Nel Capitolo 2 sono analizzati nel dettaglio il denoising e la segmentazione di immagini 3D: dal modello matematico fino alla loro discretizzazione. Nel Capitolo 3 è descritto il metodo numerico utilizzato per la risoluzione del nucleo computazionale di base: il JFNK (Jacobian-Free Newton-Krylov). Nel Capitolo 4 è introdotto l'ambiente di sviluppo dell'algoritmo: la libreria PETSc ( Portable, Exstensible Toolkit for Scientific Computation). Nel Capitolo 5 vengono descritti i dettagli implementativi del software parallelo e della sua applicazione ad immagini mediche ecografiche. In fine nel Capitolo 6 vengono illustrati alcuni esperimenti.

Actions (login required)

Modifica documento Modifica documento