Fedele, Renato (2009) Madelung fluid description of generalized derivative NLS equation: special solutions and their stability. [Pubblicazione in rivista scientifica]
Il contenuto (Full text) non è disponibile all'interno di questo archivio.Tipologia del documento: | Pubblicazione in rivista scientifica |
---|---|
Lingua: | English |
Titolo: | Madelung fluid description of generalized derivative NLS equation: special solutions and their stability |
Autori: | Autore Email Fedele, Renato [non definito] |
Autore/i: | A. Visinescu, D. Grecu, R. Fedele, S. De Nicola |
Data: | 2009 |
Numero di pagine: | 9 |
Dipartimento: | Scienze fisiche |
Numero identificativo: | 10.1007/s11232-009-0098-z |
Titolo del periodico: | THEORETICAL AND MATHEMATICAL PHYSICS |
Data: | 2009 |
Volume: | 160 |
Intervallo di pagine: | pp. 1066-1074 |
Numero di pagine: | 9 |
Parole chiave: | nonlinear partial differential equation, generalized nonlinear Schroedinger equation, generalized Korteweg–de Vries equation, Madelung fluid description |
Numero identificativo: | 10.1007/s11232-009-0098-z |
Depositato il: | 21 Ott 2010 06:56 |
Ultima modifica: | 30 Apr 2014 19:43 |
URI: | http://www.fedoa.unina.it/id/eprint/7446 |
Abstract
A correspondence between the families of generalized nonlinear Schr¨odinger (NLS) equations and generalized KdV equations was recently found using a Madelung fluid description. We similarly consider a special derivative NLS equation. We find a number of solitary waves and periodic solutions (expressed in terms of elliptic Jacobi functions) for a motion with a stationary profile current velocity. We study the stability of a bright solitary wave (ground state) by conjecturing that the Vakhitov–Kolokolov criterion is applicable.
Downloads
Downloads per month over past year
Actions (login required)
![]() |
Modifica documento |