Fedele, Renato (2009) Madelung fluid description of generalized derivative NLS equation: special solutions and their stability. [Pubblicazione in rivista scientifica]

Il contenuto (Full text) non è disponibile all'interno di questo archivio.
Tipologia del documento: Pubblicazione in rivista scientifica
Lingua: English
Titolo: Madelung fluid description of generalized derivative NLS equation: special solutions and their stability
Autori:
AutoreEmail
Fedele, Renato[non definito]
Autore/i: A. Visinescu, D. Grecu, R. Fedele, S. De Nicola
Data: 2009
Numero di pagine: 9
Dipartimento: Scienze fisiche
Numero identificativo: 10.1007/s11232-009-0098-z
Titolo del periodico: THEORETICAL AND MATHEMATICAL PHYSICS
Data: 2009
Volume: 160
Intervallo di pagine: pp. 1066-1074
Numero di pagine: 9
Parole chiave: nonlinear partial differential equation, generalized nonlinear Schroedinger equation, generalized Korteweg–de Vries equation, Madelung fluid description
Numero identificativo: 10.1007/s11232-009-0098-z
Depositato il: 21 Ott 2010 06:56
Ultima modifica: 30 Apr 2014 19:43
URI: http://www.fedoa.unina.it/id/eprint/7446

Abstract

A correspondence between the families of generalized nonlinear Schr¨odinger (NLS) equations and generalized KdV equations was recently found using a Madelung fluid description. We similarly consider a special derivative NLS equation. We find a number of solitary waves and periodic solutions (expressed in terms of elliptic Jacobi functions) for a motion with a stationary profile current velocity. We study the stability of a bright solitary wave (ground state) by conjecturing that the Vakhitov–Kolokolov criterion is applicable.

Actions (login required)

Modifica documento Modifica documento