Rubano, Andrea and Scotti Di Uccio, Umberto and Marrucci, Lorenzo (2009) Blue luminescence of SrTiO3 under intense optical excitation. [Pubblicazione in rivista scientifica]

Il contenuto (Full text) non è disponibile all'interno di questo archivio. [error in script] [error in script]
Tipologia del documento: Pubblicazione in rivista scientifica
Lingua: English
Titolo: Blue luminescence of SrTiO3 under intense optical excitation
Rubano, Andrea[non definito]
Scotti Di Uccio, Umberto[non definito]
Marrucci, Lorenzo[non definito]
Autore/i: A. Rubano, D. Paparo, F. Miletto Granozio, U. Scotti di Uccio, L. Marrucci
Data: 2009
Numero di pagine: 11
Dipartimento: Scienze fisiche
Numero identificativo: 10.1063/1.3256140
Titolo del periodico: JOURNAL OF APPLIED PHYSICS
Data: 2009
Volume: 106
Intervallo di pagine: 103515-1-103515-11
Numero di pagine: 11
Parole chiave: blue luminescence, time-resolved spectroscopy, electronic relaxations, perovksite oxides, crystal defects, oxygen vacancies
Numero identificativo: 10.1063/1.3256140
Depositato il: 21 Ott 2010 06:57
Ultima modifica: 30 Apr 2014 19:43


The blue-green photoluminescence emitted by pure and electron-doped strontium titanate under intense pulsed near-ultraviolet excitation is studied experimentally as a function of excitation intensity and temperature. Both emission spectra and time-resolved decays of the emission are measured and analyzed in the framework of simple phenomenological models. We find an interesting blue-to-green transition occurring for increasing temperatures in pure samples, which is absent in doped materials. The luminescence yield and decay rate measured as a function of temperature can be modeled well as standard activated behaviors. The leading electron-hole recombination process taking place in the initial decay is established to be second order, or bimolecular, in contrast to recent reports favoring a third-order interpretation as an Auger process. The temporal decay of the luminescence can be described well by a model based on two interacting populations of excitations, respectively identified with interacting defect-trapped possibly forming excitons and mobile charges. Finally, from the measured doping and sample dependence of the luminescence yield, we conclude that the radiative centers responsible for the luminescence are probably intrinsic structural defects other than bulk oxygen vacancies.

Actions (login required)

Modifica documento Modifica documento