Rubano, Andrea, Scotti Di Uccio, Umberto and Marrucci, Lorenzo (2009) Photoluminescence dynamics in strontium titanate. [Pubblicazione in rivista scientifica]

Full text not available from this repository.
Item Type: Pubblicazione in rivista scientifica
Resource language: English
Title: Photoluminescence dynamics in strontium titanate
Creators:
Creators
Email
Rubano, Andrea
UNSPECIFIED
Scotti Di Uccio, Umberto
UNSPECIFIED
Marrucci, Lorenzo
UNSPECIFIED
Autore/i: A. Rubano, F. Ciccullo, D. Paparo, F. Miletto Granozio, U. Scotti di Uccio, L. Marrucci
Date: 2009
Number of Pages: 4
Department: Scienze fisiche
Identification Number: 10.1016/j.jlumin.2009.02.037
Journal or Publication Title: JOURNAL OF LUMINESCENCE
Date: 2009
Volume: 129
Page Range: pp. 1923-1926
Number of Pages: 4
Keywords: Photoluminescence, strontium titanate, electronic relaxation
Identification Number: 10.1016/j.jlumin.2009.02.037
Date Deposited: 21 Oct 2010 06:57
Last Modified: 30 Apr 2014 19:43
URI: http://www.fedoa.unina.it/id/eprint/7587

Collection description

The recombination dynamics of electron-hole pairs of pure and n-doped strontium titanate (STO) bulk samples after an intense UV laser-pulse excitation has been investigated by collecting and analysing the frequency- and time-resolved photoluminescence (PL) signal, as a function of the sample temperature. The observed PL decay is in the nanosecond time-scale and it shows a peculiar mixed kinetics. In particular, two decay channels are clearly singled-out: the faster one has a decay-time that is markedly dependent on the photo-excited carrier density and it is well described as a bimolecular recombination process, while the second slower channel shows an excitation-independent rate and follows an unimolecular law. The PL spectra show a considerable variation with temperature, with a previously unreported, pronounced difference between pure and doped samples emerging at high temperatures. A first discussion of the possible underlying mechanisms is attempted.

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item