Vision based strategies for implementing Sense and Avoid capabilities onboard Unmanned Aerial Systems

Forlenza, Lidia (2011) Vision based strategies for implementing Sense and Avoid capabilities onboard Unmanned Aerial Systems. [Tesi di dottorato] (Inedito)

Full text disponibile come:

[img]PDF - Richiede un editor Pdf del tipo GSview, Xpdf o Adobe Acrobat Reader
5Mb

Abstract

Current research activities are worked out to develop fully autonomous unmanned platform systems, provided with Sense and Avoid technologies in order to achieve the access to the National Airspace System (NAS), flying with manned airplanes. The TECVOl project is set in this framework, aiming at developing an autonomous prototypal Unmanned Aerial Vehicle which performs Detect Sense and Avoid functionalities, by means of an integrated sensors package, composed by a pulsed radar and four electro-optical cameras, two visible and two Infra-Red. This project is carried out by the Italian Aerospace Research Center in collaboration with the Department of Aerospace Engineering of the University of Naples “Federico II”, which has been involved in the developing of the Obstacle Detection and IDentification system. Thus, this thesis concerns the image processing technique customized for the Sense and Avoid applications in the TECVOL project, where the EO system has an auxiliary role to radar, which is the main sensor. In particular, the panchromatic camera performs the aiding function of object detection, in order to increase accuracy and data rate performance of radar system. Therefore, the thesis describes the implemented steps to evaluate the most suitable panchromatic camera image processing technique for our applications, the test strategies adopted to study its performance and the analysis conducted to optimize it in terms of false alarms, missed detections and detection range. Finally, results from the tests will be explained, and they will demonstrate that the Electro-Optical sensor is beneficial to the overall Detect Sense and Avoid system; in fact it is able to improve upon it, in terms of object detection and tracking performance.

Tipologia di documento:Tesi di dottorato
Parole chiave:Unmanned Aerial Systems, Collision Avoidance, Electro-Optical Systems, Image Processing Algorithm, Multisensor Tracking.
Settori scientifico-disciplinari MIUR:Area 09 Ingegneria industriale e dell'informazione > ING-IND/05 IMPIANTI E SISTEMI AEROSPAZIALI
Coordinatori della Scuola di dottorato:
Coordinatore del Corso di dottoratoe-mail (se nota)
Moccia, Antonioantonio.moccia@unina.it
Tutor della Scuola di dottorato:
Tutor del Corso di dottoratoe-mail (se nota)
Moccia, Antonioantonio.moccia@unina.it
Accardo, Domenicodomenico.accardo@unina.it
Stato del full text:Accessibile
Data:29 Novembre 2011
Numero di pagine:124
Istituzione:Università di Napoli Federico II
Dipartimento o Struttura:Ingegneria aerospaziale
Stato dell'Eprint:Inedito
Scuola di dottorato:Ingegneria industriale
Denominazione del dottorato:Ingegneria aerospaziale, navale e della qualità
Ciclo di dottorato:24
Numero di sistema:8722
Depositato il:08 Dicembre 2011 20:29
Ultima modifica:25 Maggio 2012 10:13

Solo per gli Amministratori dell'archivio: edita il record