Role of the MLL-AF4 chimeric protein in the molecular pathogenesis of t(4;11) acute lymphoblastic leukemia

Imperato, Maria Rosaria (2012) Role of the MLL-AF4 chimeric protein in the molecular pathogenesis of t(4;11) acute lymphoblastic leukemia. [Tesi di dottorato] (Inedito)

Full text disponibile come:

PDF - Richiede un editor Pdf del tipo GSview, Xpdf o Adobe Acrobat Reader


Chromosomal rearrangements involving the Mixed Lineage Leukemia (MLL) gene are associated with very aggressive forms of acute lymphoblastic leukemia (ALL), often refractory to conventional therapies. In particular, patients carrying the translocation t(4;11)(q21;q23) have the worst prognosis among patients with other MLL-associated malignancies. Although it has been largely shown that the MLL-AF4 fusion protein has the capability to up-regulate genes involved in the self-renewal/differentiation balance of the hematopoietic stem cell, the mechanism induced by this oncoprotein is still poorly understood. Previous functional proteomic studies performed in our group identified the molecular partners of the native AF4 protein, the most common MLL translocation partner in infant ALL, and confirmed that this protein is deeply involved in a complex protein network, important for the regulation of the Pol II-dependent transcription. In this study, we cloned in an eukaryotic expression vector the complete cDNA encoding MLL-AF4 and transiently expressed the recombinant protein in Hek293 cells. In order to understand which molecules take part in the aberrant pathway induced by the MLL-AF4 oncoprotein, we aimed to identify some of its molecular interactors, starting from the proteins that are already known to interact with AF4. We showed that MLL-AF4 binds to CdK9 that by interacting with cyclin T1 forms the positive elongation factor (P-TEFb), which is involved in the activation of the Pol II elongation machinery. We also found that MLL-AF4 interacts with CRSP130 and CRSP33, two members of the so-called “Mediator Complex”, thus suggesting that MLL-AF4 is involved in the regulation of the Pol II-dependent transcription. Interestingly, we found that MLL-AF4 also interacts with the tyrosine-kinase receptor FGFR2, and with a protein belonging to the family of 14-3-3s (the isoform θ), involved in diverse intracellular pathways. Moreover, we observed down-regulation in the expression of HoxA9, one of the MLL target genes, in the cells co-expressing both recombinant MLL-AF4 and 14-3-3 θ, thus suggesting that this interaction could modulate transcriptional processes induced by MLL-AF4. Elucidating the role of fusion protein interactors such as FGFR2 and 14-3-3 θ is very important for identifying new molecular targets for the therapy of the MLL-AF4-dependent B-cell ALL.

Tipologia di documento:Tesi di dottorato
Altre informazioni:Denominazione del Dottorato: Phd in Molecular Medicine - Scuola Europea di Medicina Molecolare sede di Napoli Sede del Dottorato: CEINGE Biotecnologie Avanzate, Napoli
Parole chiave:ALL, MLL-AF4, interactor
Settori scientifico-disciplinari MIUR:Area 05 Scienze biologiche > BIO/11 BIOLOGIA MOLECOLARE
Coordinatori della Scuola di dottorato:
Coordinatore del Corso di dottoratoe-mail (se nota)
Tutor della Scuola di dottorato:
Tutor del Corso di dottoratoe-mail (se nota)
Salvatore, Francesco
Ruoppolo, Margherita
Goodell, Margaret Ann
Stato del full text:Accessibile
Numero di pagine:87
Istituzione:Università di Napoli Federico II
Dipartimento o Struttura:Biochimica e biotecnologie mediche
Stato dell'Eprint:Inedito
Scuola di dottorato:Medicina molecolare
Denominazione del dottorato:Molecular Medicine
Ciclo di dottorato:23
Numero di sistema:9008
Depositato il:15 Febbraio 2012 15:34
Ultima modifica:21 Giugno 2012 12:24

Solo per gli Amministratori dell'archivio: edita il record