Rongo, Luca
(2013)
Ziegler-Natta Catalysts: Mechanistic Study via High Throughput Screening Methodologies.
[Tesi di dottorato]
Item Type: |
Tesi di dottorato
|
Lingua: |
English |
Title: |
Ziegler-Natta Catalysts: Mechanistic Study via High Throughput Screening Methodologies |
Creators: |
Creators | Email |
---|
Rongo, Luca | rongo_luca@inwind.it |
|
Date: |
29 March 2013 |
Number of Pages: |
132 |
Institution: |
Università degli Studi di Napoli Federico II |
Department: |
Scienze Chimiche |
Scuola di dottorato: |
Scienze chimiche |
Dottorato: |
Scienze chimiche |
Ciclo di dottorato: |
25 |
Coordinatore del Corso di dottorato: |
nome | email |
---|
Previtera, Lucio | previter@unina.it |
|
Tutor: |
nome | email |
---|
Busico, Vincenzo | busico@unina.it |
|
Date: |
29 March 2013 |
Number of Pages: |
132 |
Uncontrolled Keywords: |
Ziegler-Natta; High Throughput; QSAR |
Settori scientifico-disciplinari del MIUR: |
Area 03 - Scienze chimiche > CHIM/03 - Chimica generale e inorganica |
Aree tematiche (7° programma Quadro): |
NANOSCIENZE, NANOTECNOLOGIE, MATERIALE E PRODUZIONE > Integrazione di tecnologie per applicazioni industriali |
[error in script]
[error in script]
Date Deposited: |
05 Apr 2013 06:11 |
Last Modified: |
18 Apr 2016 01:00 |
URI: |
http://www.fedoa.unina.it/id/eprint/9239 |

Abstract
Heterogenous High-Yield Ziegler-Natta catalysts (HY-ZNCs) are the most widely used systems for the industrial production of isotactic polypropylene (iPP) based materials, including the homopolymer, ‘random’ copolymers, and reactor blends of homopolymer and ethylene/propylene ‘rubber’ (‘impact’ PP). They consist of a support (MgCl2), a transition metal precursor (e.g. TiCl4), an activator (e.g. an Al-trialkyl), and one or more electron donor modifiers (e.g. an ester, ether, alkoxysilane). Despite 40 years of intensive research (60, if one includes first-generation TiCl3-based catalysts), the complexity of these formulations, in which subtle changes in composition, preparation and/or application protocols often result into dramatic effects in performance, prevented a rational design, and thus far the industrial progress was dominated by empiricism.
In this thesis we carried out an intensive High Throughput Experimentation (HTE) study of HY-ZNCs, with the general aim to improve the understanding and control of active site structure and behavior. In particular, two state-of-the-art HTE platforms (namely, a Freeslate Extended Core Module and a Freeslate PPR48 setup), both integrally contained in a glove-box environment and integrated with advanced analytical techniques (such as NMR with high-temperature cryoprobe, ICP-OES, Rapid GPC, etc), were used to thoroughly investigate representative catalyst systems.
A careful analysis of the adsorption/desorption processes that occur on the catalytic surfaces under conditions representative of industrial use, the correlation of said phenomena with the polymerization behaviors, and a suitable integration of the experiments with state-of-the-art periodic DFT-D modeling, led us to formulate, if not yet a working white-box model of these systems, convincing and reasonably well-defined hypotheses on the structure of the active species, and their non-bonded interactions with various adsorbates, including organic electron donors, Al-alkyls, and –possibly– reaction products thereof.
On the other hand, the wide and robust experimental HTE database was employed in parallel to successfully implement a Quantitative Structure/Activity Relationship (QSAR) model of HY-ZNC surface modification by means of alkoxysilane electron donors, featuring predictive ability for the first time ever. Although admittedly of black-box character and limited to one of the several industrial catalyst platforms, based on a MgCl2/TiCl4/diisobutyl-ortho-phthalate precatalyst, this result represents the first case of computer-oriented HY-ZNC surface fine-tuning, and opens the door to the fast identification of novel and useful catalysts and polymers.
Downloads per month over past year
Actions (login required)
 |
View Item |