Cirillo, Valentina (2013) Design of bicomponent electrospun conduits for peripheral nerve regeneration. [Tesi di dottorato]

[img]
Preview
Text
Cirillo_Valentina_25.pdf

Download (6MB) | Preview
[error in script] [error in script]
Item Type: Tesi di dottorato
Lingua: English
Title: Design of bicomponent electrospun conduits for peripheral nerve regeneration
Creators:
CreatorsEmail
Cirillo, Valentinavalentina.cirillo@unina.it
Date: 2 April 2013
Number of Pages: 115
Institution: Università degli Studi di Napoli Federico II
Department: Ingegneria Chimica, dei Materiali e della Produzione Industriale
Scuola di dottorato: Ingegneria industriale
Dottorato: Ingegneria dei materiali e delle strutture
Ciclo di dottorato: 25
Coordinatore del Corso di dottorato:
nomeemail
Mensitieri, Giuseppemensitie@unina.it
Tutor:
nomeemail
Guarino, Vincenzovguarino@unina.it
Ambrosio, Luigiambrosio@unina.it
Date: 2 April 2013
Number of Pages: 115
Uncontrolled Keywords: Electrospinning,engineered conduits, peripheral nerve regeneration
Settori scientifico-disciplinari del MIUR: Area 09 - Ingegneria industriale e dell'informazione > ING-IND/22 - Scienza e tecnologia dei materiali
Aree tematiche (7° programma Quadro): NANOSCIENZE, NANOTECNOLOGIE, MATERIALE E PRODUZIONE > Materiali
Date Deposited: 08 Apr 2013 09:57
Last Modified: 22 Apr 2016 01:00
URI: http://www.fedoa.unina.it/id/eprint/9358

Abstract

This thesis deals with the potential of the electrospinning process to create substrates composed of synthetic and natural polymers for use as alternative scaffolds for peripheral nerve regeneration. In the first part, it has been estimated the influence of solvent permittivity, polymer/solvent thermodynamic affinity and other technological parameters (i.e., concentration, flow rate) on the morphology and on the physical properties of poly(ε-caprolactone) (PCL) electrospun fibers in order to address cell response for nerve tissue engineering applications. Secondly, it has been evaluated the effect of gelatin protein integration into PCL fibers on morphology and physico-chemical properties to identify the contribution of biochemical cues and scaffolds topography on cells (hMSC and PC-12) response. Lastly, PCL and PCL/Gelatin electrospun conduits have been designed and optimized for in vivo implant in rat sciatic nerve model, in order to test them as artificial graft for peripheral nerve regeneration. Our experimental data showed that the PCL conduits gave good performance in resisting collapse and stretch forces in vivo, thus inducing a better recovery in comparison with PCL/Gelatin conduits. Despite the submicrometric size scale of fibers promotes a better in vitro response with primary cells, PCL/Gelatin electrospun scaffolds are less capable of sustaining nerve regeneration in vivo, due to lacks in mechanical response of the device.

Actions (login required)

View Item View Item