Capuano, Francesco (2015) Development of high-fidelity numerical methods for turbulent flows simulation. [Tesi di dottorato]
Anteprima |
Testo
capuano_francesco_27.pdf Download (1MB) | Anteprima |
Tipologia del documento: | Tesi di dottorato |
---|---|
Lingua: | English |
Titolo: | Development of high-fidelity numerical methods for turbulent flows simulation |
Autori: | Autore Email Capuano, Francesco f.capuano@cira.it |
Data: | 31 Marzo 2015 |
Numero di pagine: | 96 |
Istituzione: | Università degli Studi di Napoli Federico II |
Dipartimento: | Ingegneria Industriale |
Scuola di dottorato: | Ingegneria industriale |
Dottorato: | Ingegneria aerospaziale, navale e della qualità |
Ciclo di dottorato: | 27 |
Coordinatore del Corso di dottorato: | nome email de Luca, Luigi deluca@unina.it |
Tutor: | nome email de Luca, Luigi [non definito] Coppola, Gennaro [non definito] Schettino, Antonio [non definito] Borrelli, Salvatore [non definito] |
Data: | 31 Marzo 2015 |
Numero di pagine: | 96 |
Parole chiave: | turbulent flows; large-eddy simulation; direct numerical simulation; energy-preserving schemes; Runge-Kutta methods |
Settori scientifico-disciplinari del MIUR: | Area 09 - Ingegneria industriale e dell'informazione > ING-IND/06 - Fluidodinamica |
Depositato il: | 07 Apr 2015 14:17 |
Ultima modifica: | 12 Ott 2015 07:41 |
URI: | http://www.fedoa.unina.it/id/eprint/10447 |
DOI: | 10.6092/UNINA/FEDOA/10447 |
Abstract
Energy-conserving discretizations are widely regarded as a fundamental requirement for high-fidelity simulations of turbulent flows. A well-known approach to obtain semi-discrete conservation of energy in the inviscid limit is to employ the skew-symmetric splitting of the non-linear term. However, this approach has the drawback of being roughly twice as expensive as the computation of the divergence or advective forms alone. A novel time-advancement strategy that retains the conservation properties of skew-symmetric-based schemes at a reduced computational cost has been developed. This method is based on properly constructed Runge-Kutta schemes in which a different form (advective or divergence) for the convective term is adopted at each stage. A general theoretical framework has been developed to derive new schemes with prescribed accuracy on both solution and energy conservation. The technique has been first developed and fine-tuned on the Burgers' equation, and then applied to the incompressible Navier-Stokes equations. Simulations of homogeneous isotropic turbulence performed at the Center for Turbulence Research (CTR) in Stanford have demonstrated that the novel procedure provides the same robustness of the skew-symmetric form while halving the computational cost for the non-linear term.
Downloads
Downloads per month over past year
Actions (login required)
![]() |
Modifica documento |