Capuano, Francesco (2015) Development of high-fidelity numerical methods for turbulent flows simulation. [Tesi di dottorato]

[img]
Anteprima
Testo
capuano_francesco_27.pdf

Download (1MB) | Anteprima
[error in script] [error in script]
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: Development of high-fidelity numerical methods for turbulent flows simulation
Autori:
AutoreEmail
Capuano, Francescof.capuano@cira.it
Data: 31 Marzo 2015
Numero di pagine: 96
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Ingegneria Industriale
Scuola di dottorato: Ingegneria industriale
Dottorato: Ingegneria aerospaziale, navale e della qualità
Ciclo di dottorato: 27
Coordinatore del Corso di dottorato:
nomeemail
de Luca, Luigideluca@unina.it
Tutor:
nomeemail
de Luca, Luigi[non definito]
Coppola, Gennaro[non definito]
Schettino, Antonio[non definito]
Borrelli, Salvatore[non definito]
Data: 31 Marzo 2015
Numero di pagine: 96
Parole chiave: turbulent flows; large-eddy simulation; direct numerical simulation; energy-preserving schemes; Runge-Kutta methods
Settori scientifico-disciplinari del MIUR: Area 09 - Ingegneria industriale e dell'informazione > ING-IND/06 - Fluidodinamica
Depositato il: 07 Apr 2015 14:17
Ultima modifica: 12 Ott 2015 07:41
URI: http://www.fedoa.unina.it/id/eprint/10447
DOI: 10.6092/UNINA/FEDOA/10447

Abstract

Energy-conserving discretizations are widely regarded as a fundamental requirement for high-fidelity simulations of turbulent flows. A well-known approach to obtain semi-discrete conservation of energy in the inviscid limit is to employ the skew-symmetric splitting of the non-linear term. However, this approach has the drawback of being roughly twice as expensive as the computation of the divergence or advective forms alone. A novel time-advancement strategy that retains the conservation properties of skew-symmetric-based schemes at a reduced computational cost has been developed. This method is based on properly constructed Runge-Kutta schemes in which a different form (advective or divergence) for the convective term is adopted at each stage. A general theoretical framework has been developed to derive new schemes with prescribed accuracy on both solution and energy conservation. The technique has been first developed and fine-tuned on the Burgers' equation, and then applied to the incompressible Navier-Stokes equations. Simulations of homogeneous isotropic turbulence performed at the Center for Turbulence Research (CTR) in Stanford have demonstrated that the novel procedure provides the same robustness of the skew-symmetric form while halving the computational cost for the non-linear term.

Actions (login required)

Modifica documento Modifica documento