On some regularity results of Jacobian determinants and applications

Radice, Teresa (2006) On some regularity results of Jacobian determinants and applications. [Tesi di dottorato] (Inedito)

Full text disponibile come:

[img]PDF - Richiede un editor Pdf del tipo GSview, Xpdf o Adobe Acrobat Reader
592Kb

Abstract

The starting point in the theory of the regularity of the Jacobian is the celebrated result due to S. Müller [M] that for an orientation preserving mapping f ε W1,n loc (Ω, Rn), J belongs to the Zygmund space L log L(K) for any compact K C Ω. The improved integrability property of the Jacobian could be observed in Orlicz-Sobolev spaces near W-1,n loc (Ω, Rn)(see [IS], [BFS], [MO], [GIOV], [GIM])). As suggested in [BFS] it is interesting to study the regularity of the Jacobian when Df belongs to Lorentz spaces. It appears that to get positive results one cannot rely only on these spaces but it is forced to encode the theory in the Lorentz-Zygmund spaces. It is also possible to extend this study to the couple (B,E), B : Ω → Rn, E → Rn, of vector fields on Ω, such that divB = 0 and curl E = 0, having the scalar product ‹ B,E › nonnegative. In this case we obtain results of higher integrability for the scalar product ‹ B,E ›. R. Coifman, P.L. Lions, Y. Meyer and S. Semmes in a famous paper "Compensated compactness and Hardy spaces" studied the regularity of the mappings with Jacobian of arbitrary sign and as a consequence of couple (B,E), belonging to Lebesgue spaces, where divB = 0 and curl E = 0 whose scalar product is of arbitrary sign. Following this idea, we study analogous regularity properties of couple in the framework of Lorentz spaces. The last chapter is devoted to study nondivergence elliptic equations, applying the results found previously. We develop a theory for elliptic equations with bounded coecients having sufficiently small BMO-norm and we find a higher integrability of the solution. More delicate is the case of unbounded coecients, our main result is a L2 log L estimate for |V2u|.

Tipologia di documento:Tesi di dottorato
Parole chiave:Jacobian determinants, Hardy spaces, Elliptic equations
Settori scientifico-disciplinari MIUR:Area 01 Scienze matematiche e informatiche > MAT/05 ANALISI MATEMATICA
Coordinatori della Scuola di dottorato:
Coordinatore del Corso di dottoratoe-mail (se nota)
Ricciardi, Luigi Maria
Tutor della Scuola di dottorato:
Tutor del Corso di dottoratoe-mail (se nota)
Moscariello, Gioconda
Stato del full text:Accessibile
Data:2006
Numero di pagine:103
Istituzione:Università degli Studi di Napoli Federico II
Dipartimento o Struttura:Matematica e Applicazioni
Tipo di tesi:Dottorato
Stato dell'Eprint:Inedito
Denominazione del dottorato:Scienze Computazionali e Informatiche
Ciclo di dottorato:XVIII
Numero di sistema:1083
Depositato il:31 Luglio 2008
Ultima modifica:04 Febbraio 2009 09:41

Solo per gli Amministratori dell'archivio: edita il record