Gargiulo, Francesco (2017) A Semantic Index for Linked Open Data and Big Data Applications. [Tesi di dottorato]
| Anteprima | Testo Tesi Gargiulo ver 2.3.pdf Download (782kB) | Anteprima | 
| Tipologia del documento: | Tesi di dottorato | 
|---|---|
| Lingua: | English | 
| Titolo: | A Semantic Index for Linked Open Data and Big Data Applications | 
| Autori: | Autore Email Gargiulo, Francesco f.gargiulo@cira.it | 
| Data: | 10 Aprile 2017 | 
| Numero di pagine: | 106 | 
| Istituzione: | Università degli Studi di Napoli Federico II | 
| Dipartimento: | Ingegneria Elettrica e delle Tecnologie dell'Informazione | 
| Dottorato: | Ingegneria informatica ed automatica | 
| Ciclo di dottorato: | 28 | 
| Coordinatore del Corso di dottorato: | nome email Garofalo, Francesco francesco.garofalo@unina.it | 
| Tutor: | nome email Picariello, Antonio [non definito] Moscato, Vincenzo [non definito] | 
| Data: | 10 Aprile 2017 | 
| Numero di pagine: | 106 | 
| Parole chiave: | Large databases, distributed index, multiple queries, k-nearest neighbor query algorithm, semantic query | 
| Settori scientifico-disciplinari del MIUR: | Area 09 - Ingegneria industriale e dell'informazione > ING-INF/05 - Sistemi di elaborazione delle informazioni | 
| Depositato il: | 09 Giu 2017 08:07 | 
| Ultima modifica: | 14 Mar 2018 13:35 | 
| URI: | http://www.fedoa.unina.it/id/eprint/11524 | 
| DOI: | 10.6093/UNINA/FEDOA/11524 | 
Abstract
This work proposes a new approach to index multidimensional data based on kd-trees and proposes also a novel approach to query processing. The indexing data structure is distributed across a network of "peers", where each one hosts a part of the tree and uses message passing for communication among nodes. The advantages of this kind of approach are mainly two: it is possible to i) handle a larger number of nodes and points than a single peer based architecture and ii) to run in an efficient way the elaboration of multiple queries. In particular, we propose a novel version of the k-nearest neighbor algorithm that is able to start a query in a randomly chosen peer. Furthrmore, it returns the results without traverse the peer containing the root. Preliminary experiments demonstrated that on average in about 65% of cases a query starting in a random node, does not involve the peer containing the root of the tree. Also, on average in about 98% of cases, it returns the results without involving the root peer. This work also proposes an approach to cope with textual data and provides a way to perform semantic query over the text.
Downloads
Downloads per month over past year
Actions (login required)
|  | Modifica documento | 
 
                  
             

