Di Somma, Vittorio (2019) Monte Carlo methods for barrier options. [Tesi di dottorato]
|
Text
di_somma_vittorio_32.pdf Download (750kB) | Preview |
Item Type: | Tesi di dottorato | ||||||||
---|---|---|---|---|---|---|---|---|---|
Lingua: | English | ||||||||
Title: | Monte Carlo methods for barrier options. | ||||||||
Creators: |
|
||||||||
Date: | 11 December 2019 | ||||||||
Number of Pages: | 72 | ||||||||
Institution: | Università degli Studi di Napoli Federico II | ||||||||
Department: | Scienze Economiche e Statistiche | ||||||||
Dottorato: | Economia | ||||||||
Ciclo di dottorato: | 32 | ||||||||
Coordinatore del Corso di dottorato: |
|
||||||||
Tutor: |
|
||||||||
Date: | 11 December 2019 | ||||||||
Number of Pages: | 72 | ||||||||
Uncontrolled Keywords: | Barrier options; Monte Carlo methods; Bayesian statistics | ||||||||
Settori scientifico-disciplinari del MIUR: | Area 13 - Scienze economiche e statistiche > SECS-S/01 - Statistica Area 13 - Scienze economiche e statistiche > SECS-S/06 - Metodi matematici dell'economia e delle scienze attuariali e finanziarie |
||||||||
Date Deposited: | 14 Jan 2020 16:40 | ||||||||
Last Modified: | 17 Nov 2021 12:04 | ||||||||
URI: | http://www.fedoa.unina.it/id/eprint/12982 |
Abstract
This thesis focuses the attention on a very common class of Monte Carlo methods to price a barrier option, named standard Monte Carlo methods, and on their issues: the bias and the high variance. In order to overcome these issues, in this thesis we describe a particular class of statistical procedures, named Bayesian Monte Carlo methods. The thesis is divided into two parts: in the first part we present the main Bayesian Monte Carlo methods under the Black-Scholes model, in the second part we generalize these schemes under the assumption of stochastic volatility. As supported by numerical experiments, a Bayesian Sequential Monte Carlo estimator is unbiased and has a lower variance than a standard Monte Carlo one.
Downloads
Downloads per month over past year
Actions (login required)
![]() |
View Item |