Di Somma, Vittorio (2019) Monte Carlo methods for barrier options. [Tesi di dottorato]
Preview |
Text
di_somma_vittorio_32.pdf Download (750kB) | Preview |
Item Type: | Tesi di dottorato |
---|---|
Resource language: | English |
Title: | Monte Carlo methods for barrier options. |
Creators: | Creators Email Di Somma, Vittorio vittorio.disomma@unina.it |
Date: | 11 December 2019 |
Number of Pages: | 72 |
Institution: | Università degli Studi di Napoli Federico II |
Department: | Scienze Economiche e Statistiche |
Dottorato: | Economia |
Ciclo di dottorato: | 32 |
Coordinatore del Corso di dottorato: | nome email Pagano, Marco marco.pagano@unina.it |
Tutor: | nome email Di Lorenzo, Emilia UNSPECIFIED Toraldo, Gerardo UNSPECIFIED Cuomo, Salvatore UNSPECIFIED |
Date: | 11 December 2019 |
Number of Pages: | 72 |
Keywords: | Barrier options; Monte Carlo methods; Bayesian statistics |
Settori scientifico-disciplinari del MIUR: | Area 13 - Scienze economiche e statistiche > SECS-S/01 - Statistica Area 13 - Scienze economiche e statistiche > SECS-S/06 - Metodi matematici dell'economia e delle scienze attuariali e finanziarie |
Date Deposited: | 14 Jan 2020 16:40 |
Last Modified: | 17 Nov 2021 12:04 |
URI: | http://www.fedoa.unina.it/id/eprint/12982 |
Collection description
This thesis focuses the attention on a very common class of Monte Carlo methods to price a barrier option, named standard Monte Carlo methods, and on their issues: the bias and the high variance. In order to overcome these issues, in this thesis we describe a particular class of statistical procedures, named Bayesian Monte Carlo methods. The thesis is divided into two parts: in the first part we present the main Bayesian Monte Carlo methods under the Black-Scholes model, in the second part we generalize these schemes under the assumption of stochastic volatility. As supported by numerical experiments, a Bayesian Sequential Monte Carlo estimator is unbiased and has a lower variance than a standard Monte Carlo one.
Downloads
Downloads per month over past year
Actions (login required)
View Item |