Scaglione, Marco (2021) Two P-spline applications to portfolio selection problems. [Tesi di dottorato]

[thumbnail of Scaglione_Marco_33.pdf]
Preview
Text
Scaglione_Marco_33.pdf

Download (33MB) | Preview
Item Type: Tesi di dottorato
Resource language: English
Title: Two P-spline applications to portfolio selection problems
Creators:
Creators
Email
Scaglione, Marco
marco.scaglione@unina.it
Date: 19 July 2021
Number of Pages: 177
Institution: Università degli Studi di Napoli Federico II
Department: Scienze Economiche e Statistiche
Dottorato: Economia
Ciclo di dottorato: 33
Coordinatore del Corso di dottorato:
nome
email
Pagano, Marco
marco.pagano@unina.it
Tutor:
nome
email
Aria, Massimo
UNSPECIFIED
Date: 19 July 2021
Number of Pages: 177
Keywords: P-spline; Functional Data Analysis; Portfolio Selection
Settori scientifico-disciplinari del MIUR: Area 13 - Scienze economiche e statistiche > SECS-S/01 - Statistica
Date Deposited: 19 Jul 2021 18:53
Last Modified: 07 Jun 2023 11:16
URI: http://www.fedoa.unina.it/id/eprint/13558

Collection description

In this manuscript I provide two applications of an established smoothing technique, the Penalized Splines smoother, to solve the roughness issue in the econometric analysis of the portfolio selection problem. In the first chapter I face the problem of statistical hedge ratio estimation through quantile regression, here the goal of the P-spline application is to avoid model specification and to smooth the quantile regression objective function. In the second chapter the smoother is applied in a time series filtering framework in order to achieve smoothness in Principal Component Analysis and provide smoother principal component for regression analysis. This allows robust feature selection from principal component loadings in order to perform portfolio selection with index tracking purpose in an high dimensional context.

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item