Alessio, Francesco (2021) Asymptotic symmetries and modular covariance in General Relativity and gauge theories. [Tesi di dottorato]

[thumbnail of Alessio_Francesco_33.pdf]
Anteprima
Testo
Alessio_Francesco_33.pdf

Download (3MB) | Anteprima
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: Asymptotic symmetries and modular covariance in General Relativity and gauge theories
Autori:
Autore
Email
Alessio, Francesco
francesco.alessio@unina.it
Data: 6 Aprile 2021
Numero di pagine: 206
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Fisica
Dottorato: Fisica
Ciclo di dottorato: 33
Coordinatore del Corso di dottorato:
nome
email
Capozziello, Francesco
salvatore.capozziello@unina.it
Tutor:
nome
email
Arzano, Michele
[non definito]
Barnich, Glenn
[non definito]
Data: 6 Aprile 2021
Numero di pagine: 206
Parole chiave: General Relativity-Gauge Theories-Asymptotic Symmetries-Casimir-Temperature dualities in QFT
Settori scientifico-disciplinari del MIUR: Area 02 - Scienze fisiche > FIS/02 - Fisica teorica, modelli e metodi matematici
Depositato il: 16 Apr 2021 05:28
Ultima modifica: 07 Giu 2023 10:33
URI: http://www.fedoa.unina.it/id/eprint/13916

Abstract

The first part of this thesis is devoted to the study of asymptotic symmetries in the theory of general relativity. We investigate properties of the Bondi-Metzner-Sachs (BMS) group in four dimensions, that is the asymptotic symmetry group of a certain class of asymptotically flat spacetimes. Particular emphasis is given on the construction of surface charges associated to BMS symmetries and on their connection with the soft graviton theorems, that are important cornerstones of the recently explored infrared structure of asymptotically flat gravity. Furthermore, in the context of asymptotically locally AdS3 spacetimes, we define conformally flat boundary conditions and, consequently, analyze the corresponding asymptotic symmetry and surface charge algebras. We construct a new sector of Weyl charges and examine the features of the holographic boundary theory. In the second part of this work, we deepen the notion of modular invariance and temperature dualities in quantum field theory. We show that the partition function of certain theories living on partially compactified manifolds exhibits modular covariance, allowing to derive interesting high-/low-temperature dualities. Moreover, we apply these results to the case of electromagnetism and linearized gravity in the Casimir effect setup. Even if the two subjects studied in this thesis are not directly related, they both share and make use of techniques in conformal field theory and strongly rely on the role of boundary conditions in gauge theories.

Downloads

Downloads per month over past year

Actions (login required)

Modifica documento Modifica documento