Bovenzi, Giampaolo (2022) A hierarchical learning framework for network traffic analysis: design, implementation, and use cases. [Tesi di dottorato]

[thumbnail of bovenzi_giampaolo_34.pdf]
Anteprima
Testo
bovenzi_giampaolo_34.pdf

Download (5MB) | Anteprima
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: A hierarchical learning framework for network traffic analysis: design, implementation, and use cases.
Autori:
Autore
Email
Bovenzi, Giampaolo
giampaolo.bovenzi@unina.it
Data: 14 Marzo 2022
Numero di pagine: 154
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Ingegneria Elettrica e delle Tecnologie dell'Informazione
Dottorato: Information technology and electrical engineering
Ciclo di dottorato: 34
Coordinatore del Corso di dottorato:
nome
email
Riccio, Daniele
daniele.riccio@unina.it
Tutor:
nome
email
Pescapè, Antonio
[non definito]
Data: 14 Marzo 2022
Numero di pagine: 154
Parole chiave: network traffic analysis; traffic classification; intrusion detection; hierarchical learning; deep learning; machine learning
Settori scientifico-disciplinari del MIUR: Area 09 - Ingegneria industriale e dell'informazione > ING-INF/05 - Sistemi di elaborazione delle informazioni
Depositato il: 22 Mag 2022 21:35
Ultima modifica: 28 Feb 2024 11:00
URI: http://www.fedoa.unina.it/id/eprint/14406

Abstract

Network traffic analysis covers the entire set of operations and techniques used to gain knowledge about the status of a network, in order to manage and administer it properly. Therefore, traffic analysis solutions resort to modeling techniques applied to the network traffic with the aim of aiding network operators and internet service providers to achieve a clear snapshot of what is traversing their network. The main challenges we identified in the nowadays Internet traffic are strictly related to the (i) the huge number of Internet enabled devices which generates heterogeneous network traffic; and (ii) the increasing of the generated traffic in terms of traffic volume. Accordingly, the main objective of this doctoral thesis is proposing a Hierarchical Learning Framework for Network Traffic Analysis, in order to enhance the fine-grained network knowledge and the scalability of traffic analysis solutions. This framework enhances traffic analysis exploiting hierarchical dependencies among network traffic classes in order both to improve the fine-grained modeling of network traffic and to enable a modular and scalable learning process, enabling fast retraining. To this extent, the proposal takes advantage of state-of-the-art machine and deep learning solutions, thus fostering designed hierarchical learning approaches and it is evaluated on different types of Internet traffic (viz. three scenarios), such as the traffic generated by privacy-preserving solutions (e.g., VPNs, Anonymity Tools), network attacks or malware (e.g., Scans, Denial of Services, Botnets), mobile applications (e.g., Games, Social Networks, Video on Demand).

Downloads

Downloads per month over past year

Actions (login required)

Modifica documento Modifica documento