Bascone, Francesco (2022) Dualities and geometrical aspects of sigma models. [Tesi di dottorato]

[thumbnail of bascone_francesco_34.pdf]
Anteprima
Testo
bascone_francesco_34.pdf

Download (4MB) | Anteprima
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: Dualities and geometrical aspects of sigma models
Autori:
Autore
Email
Bascone, Francesco
graver.fb@gmail.com
Data: 8 Marzo 2022
Numero di pagine: 182
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Fisica
Dottorato: Fisica
Ciclo di dottorato: 34
Coordinatore del Corso di dottorato:
nome
email
Capozziello, Salvatore
capozziello@na.infn.it
Tutor:
nome
email
Vitale, Patrizia
[non definito]
Pezzella, Franco
[non definito]
Data: 8 Marzo 2022
Numero di pagine: 182
Parole chiave: sigma models; string duality; string geometry
Settori scientifico-disciplinari del MIUR: Area 02 - Scienze fisiche > FIS/02 - Fisica teorica, modelli e metodi matematici
Area 01 - Scienze matematiche e informatiche > MAT/07 - Fisica matematica
Depositato il: 16 Mar 2022 15:36
Ultima modifica: 28 Feb 2024 14:05
URI: http://www.fedoa.unina.it/id/eprint/14530

Abstract

The concept of duality is of fundamental importance in theoretical physics, and it refers to the existence of different descriptions of the same physical phenomenon in a different mathematical language. One particularly important application for dualities is string theory, relating string theories defined on different spacetimes. Another fundamental concept is that of sigma model, which is also necessary to describe strings propagating on the spacetime. This thesis is based on the elaboration and application of a novel approach to the so-called Poisson-Lie T-duality. In particular, the approach is based on deforming the underlying current algebra involved in sigma models having Poisson-Lie dual groups as target spaces. This leads to the formulation of new families of dual models, all related by particular T-duality transformations. This approach is expected to give rise to new theories, and it is particularly well suited for formal quantization based on quantum groups. Looking for generalizations of this framework we have defined a sigma model having a Jacobi manifold as target space, and for this reason we called it Jacobi sigma model, as a generalization of the so-called Poisson sigma model. The Poisson sigma model on Lie groups with Poisson structure seems to lead naturally to the concept of Poisson-Lie duality, and one of the goals of the thesis is to include such duality aspects into the newly defined Jacobi sigma model. Other than duality aspects, the Jacobi sigma model can take new string solutions into account (with fluxes in particular), which is not possible to obtain from the Poisson sigma model.

Downloads

Downloads per month over past year

Actions (login required)

Modifica documento Modifica documento