Marino, Angela (2022) Advanced Target Localization Strategies for Multiplatform Radar Systems via Constrained Optimization. [Tesi di dottorato]

[thumbnail of Marino_Angela_35.pdf]
Anteprima
Testo
Marino_Angela_35.pdf

Download (6MB) | Anteprima
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: Advanced Target Localization Strategies for Multiplatform Radar Systems via Constrained Optimization
Autori:
Autore
Email
Marino, Angela
angelamarino7@libero.it
Data: 22 Dicembre 2022
Numero di pagine: 136
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Ingegneria Elettrica e delle Tecnologie dell'Informazione
Dottorato: Information technology and electrical engineering
Ciclo di dottorato: 35
Coordinatore del Corso di dottorato:
nome
email
Russo, Stefano
stefano.russo@unina.it
Tutor:
nome
email
Aubry, Augusto
[non definito]
Data: 22 Dicembre 2022
Numero di pagine: 136
Parole chiave: Multiplatform Radar Network (MPRN), Active Radar, Passive Bistatic Radar (PBR), Bistatic and Monostatic Measurements, Constrained Least Squares Estimation, Non-Convex Optimization.
Settori scientifico-disciplinari del MIUR: Area 09 - Ingegneria industriale e dell'informazione > ING-INF/03 - Telecomunicazioni
Depositato il: 22 Dic 2022 21:53
Ultima modifica: 09 Apr 2025 14:23
URI: http://www.fedoa.unina.it/id/eprint/14630

Abstract

Nowadays, the ability to locate targets is crucial for a huge number of applications which demand an ever increasing accuracy. For this reason, the design of advanced sensing systems has attracted a lot of attention in both academic and industrial contexts. The main aim of this thesis is the development of innovative localization algorithms for some sensing systems of practical relevance. Specifically, three novel techniques have been devised. The first strategy, referred to as Angular and Active Constrained Least Square (AACLS), is an algorithm for 2D Passive Bistatic Radar (PBR) localization via joint exploitation of multiple illuminators of opportunity and measurements gathered by a co-located active radar, thus representing a basic version of a Multiplatform Radar Network (MPRN). This technique exploits angular and range constraints resulting from prior knowledge of the PBR beam extent and uncertainty of active radar data. The second algorithm, denoted as Angular and Range Constrained Estimator (ARCE), is a 3D localization technique for MPRNs, comprising one transmitter and multiple receivers. In particular, ARCE leverages ad-hoc constraints in order to capitalize on the information embedded into the monostatic sensor radiation pattern features. The third technique is obtained combining ARCE and the Sum Product Algorithm (SPA)-based Multitarget Tracking (MTT) technique. Specifically, the latter is enhanced through a bespoke particles generation process exploiting the ARCE position estimate.

Downloads

Downloads per month over past year

Actions (login required)

Modifica documento Modifica documento