Gharahighahi, Masoud (2022) Classifying Entanglement by Algebraic Geometry. [Tesi di dottorato]
Anteprima |
Testo
Gharahighahi_Masoud_35.pdf Download (4MB) | Anteprima |
Tipologia del documento: | Tesi di dottorato |
---|---|
Lingua: | English |
Titolo: | Classifying Entanglement by Algebraic Geometry |
Autori: | Autore Email Gharahighahi, Masoud masoud.gharahi@gmail.com |
Data: | 1 Novembre 2022 |
Numero di pagine: | 157 |
Istituzione: | Università degli Studi di Napoli Federico II |
Dipartimento: | Fisica |
Dottorato: | Quantum Technologies (Tecnologie Quantistiche) |
Ciclo di dottorato: | 35 |
Coordinatore del Corso di dottorato: | nome email Tafuri, Francesco francesco.tafuri@unina.it |
Tutor: | nome email Mancini, Stefano [non definito] |
Data: | 1 Novembre 2022 |
Numero di pagine: | 157 |
Parole chiave: | Entanglement - Classification - Algebraic Geometry - Secant variety - l multilinear rank - tensor rank - border rank |
Settori scientifico-disciplinari del MIUR: | Area 02 - Scienze fisiche > FIS/02 - Fisica teorica, modelli e metodi matematici |
Depositato il: | 13 Gen 2023 19:08 |
Ultima modifica: | 09 Apr 2025 13:33 |
URI: | http://www.fedoa.unina.it/id/eprint/14716 |
Abstract
Quantum Entanglement is one of the key manifestations of quantum mechanics that separate the quantum realm from the classical one. Characterization of entanglement as a physical resource for quantum technology became of uppermost importance. While the entanglement of bipartite systems is already well understood, the ultimate goal to cope with the properties of entanglement of multipartite systems is still far from being realized. This dissertation covers characterization of multipartite entanglement using algebraic-geometric tools. Firstly, we establish an algorithm to classify multipartite entanglement by k-secant varieties of the Segre variety and `-multilinear ranks that are invariant under Stochastic Local Operations with Classical Communication (SLOCC). We present a fine-structure classification of multiqubit and tripartite entanglement based on this algorithm. Another fundamental problem in quantum information theory is entanglement transformation that is quite challenging regarding to multipartite systems. It is captivating that the proposed entanglement classification by algebraic geometry can be considered as a reference to study SLOCC and asymptotic SLOCC interconversions among different resources based on tensor rank and border rank, respectively. In this regard, we also introduce a new class of tensors that we call persistent tensors and construct a lower bound for their tensor rank. We further cover SLOCC convertibility of multipartite systems considering several families of persistent tensors.
Downloads
Downloads per month over past year
Actions (login required)
![]() |
Modifica documento |