Gharahighahi, Masoud (2022) Classifying Entanglement by Algebraic Geometry. [Tesi di dottorato]

[thumbnail of Gharahighahi_Masoud_35.pdf]
Anteprima
Testo
Gharahighahi_Masoud_35.pdf

Download (4MB) | Anteprima
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: Classifying Entanglement by Algebraic Geometry
Autori:
Autore
Email
Gharahighahi, Masoud
masoud.gharahi@gmail.com
Data: 1 Novembre 2022
Numero di pagine: 157
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Fisica
Dottorato: Quantum Technologies (Tecnologie Quantistiche)
Ciclo di dottorato: 35
Coordinatore del Corso di dottorato:
nome
email
Tafuri, Francesco
francesco.tafuri@unina.it
Tutor:
nome
email
Mancini, Stefano
[non definito]
Data: 1 Novembre 2022
Numero di pagine: 157
Parole chiave: Entanglement - Classification - Algebraic Geometry - Secant variety - l multilinear rank - tensor rank - border rank
Settori scientifico-disciplinari del MIUR: Area 02 - Scienze fisiche > FIS/02 - Fisica teorica, modelli e metodi matematici
Depositato il: 13 Gen 2023 19:08
Ultima modifica: 09 Apr 2025 13:33
URI: http://www.fedoa.unina.it/id/eprint/14716

Abstract

Quantum Entanglement is one of the key manifestations of quantum mechanics that separate the quantum realm from the classical one. Characterization of entanglement as a physical resource for quantum technology became of uppermost importance. While the entanglement of bipartite systems is already well understood, the ultimate goal to cope with the properties of entanglement of multipartite systems is still far from being realized. This dissertation covers characterization of multipartite entanglement using algebraic-geometric tools. Firstly, we establish an algorithm to classify multipartite entanglement by k-secant varieties of the Segre variety and `-multilinear ranks that are invariant under Stochastic Local Operations with Classical Communication (SLOCC). We present a fine-structure classification of multiqubit and tripartite entanglement based on this algorithm. Another fundamental problem in quantum information theory is entanglement transformation that is quite challenging regarding to multipartite systems. It is captivating that the proposed entanglement classification by algebraic geometry can be considered as a reference to study SLOCC and asymptotic SLOCC interconversions among different resources based on tensor rank and border rank, respectively. In this regard, we also introduce a new class of tensors that we call persistent tensors and construct a lower bound for their tensor rank. We further cover SLOCC convertibility of multipartite systems considering several families of persistent tensors.

Downloads

Downloads per month over past year

Actions (login required)

Modifica documento Modifica documento