Guerriero, Ludovica (2023) "Colorectal 100" Application of Artificial Intelligence and Computer Vision in Laparosocpic Colorectal Surgery. [Tesi di dottorato]

[thumbnail of guerriero_ludovica_35.pdf]
Anteprima
Testo
guerriero_ludovica_35.pdf

Download (1MB) | Anteprima
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: "Colorectal 100" Application of Artificial Intelligence and Computer Vision in Laparosocpic Colorectal Surgery
Autori:
Autore
Email
Guerriero, Ludovica
ludovica.guerriero@unina.it
Data: 11 Dicembre 2023
Numero di pagine: 30
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Sanità Pubblica
Dottorato: Sanità pubblica e medicina preventiva
Ciclo di dottorato: 35
Coordinatore del Corso di dottorato:
nome
email
Triassi, Maria
maria.triassi@unina.it
Tutor:
nome
email
Corcione, Francesco
[non definito]
Data: 11 Dicembre 2023
Numero di pagine: 30
Parole chiave: Artificial intelligence, computer vision, colorectal surgery
Settori scientifico-disciplinari del MIUR: Area 06 - Scienze mediche > MED/18 - Chirurgia generale
Depositato il: 19 Dic 2023 09:28
Ultima modifica: 09 Apr 2025 13:25
URI: http://www.fedoa.unina.it/id/eprint/14990

Abstract

When performing an operation, surgeons need to communicate with a team of collaborators, interpret multiple signals coming from screens and other devices, project surgical principles into the present case, anticipate consequences of decisions and act in a timely manner. The combination of all these complex events results in good quality surgery. In this thesis we analyze the application of computer vision computational tools for phase and step prediction in laparoscopic colorectal surgery, envisioning this input as a very valuable support for the surgeon’s decision making process during the operation. We discuss the vision of data-driven solutions in the surgical field of colorectal surgery and prospect a future scenario in which advanced analytics are used to promote safety in the operating room, resulting in improved surgical care for patients.

Downloads

Downloads per month over past year

Actions (login required)

Modifica documento Modifica documento