Rusciano, Francesco (2023) Fickian non-Gaussian diffusion in glass-forming liquids. [Tesi di dottorato]
Anteprima |
Testo
Rusciano_Francesco_35.pdf Download (8MB) | Anteprima |
Tipologia del documento: | Tesi di dottorato |
---|---|
Lingua: | English |
Titolo: | Fickian non-Gaussian diffusion in glass-forming liquids |
Autori: | Autore Email Rusciano, Francesco francesco.rusciano@unina.it |
Data: | 10 Marzo 2023 |
Numero di pagine: | 141 |
Istituzione: | Università degli Studi di Napoli Federico II |
Dipartimento: | Ingegneria Chimica, dei Materiali e della Produzione Industriale |
Dottorato: | Ingegneria dei prodotti e dei processi industriali |
Ciclo di dottorato: | 35 |
Coordinatore del Corso di dottorato: | nome email D'Anna, Andrea anddanna@unina.it |
Tutor: | nome email Greco, Francesco [non definito] Pastore, Raffaele [non definito] |
Data: | 10 Marzo 2023 |
Numero di pagine: | 141 |
Parole chiave: | Fickian non-Gaussian diffusion, Brownian non-Gaussian diffusion, supercooled liquids, glass-forming liquids, glass transition, Brownian motion, diffusion |
Settori scientifico-disciplinari del MIUR: | Area 03 - Scienze chimiche > CHIM/02 - Chimica fisica Area 02 - Scienze fisiche > FIS/02 - Fisica teorica, modelli e metodi matematici Area 02 - Scienze fisiche > FIS/03 - Fisica della materia Area 09 - Ingegneria industriale e dell'informazione > ING-IND/06 - Fluidodinamica Area 09 - Ingegneria industriale e dell'informazione > ING-IND/23 - Chimica fisica applicata Area 09 - Ingegneria industriale e dell'informazione > ING-IND/24 - Principi di ingegneria chimica |
Depositato il: | 21 Mar 2023 09:53 |
Ultima modifica: | 10 Apr 2025 12:47 |
URI: | http://www.fedoa.unina.it/id/eprint/15094 |
Abstract
In 2009, ground-breaking experiments on nanometric beads in complex fluids revealed the existence of a novel type of diffusion (that is distinct from both standard and anomalous diffusion), characterized by a linear time-dependent mean square displacement and a non-Gaussian displacement distribution. In the past few years, many other examples of such a “Fickian yet non-Gaussian Diffusion”, (FnGD) have been reported in literature. FnGD is generically associated to some dynamical and/or structural heterogeneity of the environment. This feature motivated us to investigate the possible occurrence of FnGD in glass-forming liquids, the epitome of dynamical heterogeneity, drawing on experiments on hard-sphere colloidal suspensions and simulations of a simple models of molecular liquid [1, 2]. We here demonstrate that FnGD "strengthens" on approaching the glass transition, by identifying distinct timescales for Fickianity, τF, and for restoring of Gaussianity, τG, as well as their associated length-scales, ξF and ξG. We find τG ∝ τFγ, with γ > 1, for all investigated systems. In the deep FnGD regime, particle displacement distributions display exponential tails: we show that the time-dependent decay lengths l(t) at different temperatures all collapse onto a power-law master-curve, l(t)/ξG ∝ (l(t)/ξG)^α with α ≃ 0.33. For the investigated glass-formers, this behaviour is independent from interaction potential and dimensionality [2]. We further discuss the connections of the time- and length-scales characterizing FnGD with structural relaxation and dynamic heterogeneity, through a complementary study of the dynamics in the reciprocal Fourier-space. Finally, we illustrate the connections between FnGD scales and standard timescales usually considered in the late relaxation of glass-forming liquids, showing that these timescales are always related, and for whatever system, by the same power-law relations. Overall, a number of universal scaling laws for very long-time single-particle dynamics (here reported for the first time) seem to emerge close to the glass transition, and characterize the Fickian non-Gaussian regime of glass-forming liquids. In conclusion, this work of thesis is at the crossroads between two major issues in soft matter, namely glass transition and the recently discovered Fickian yet non-Gaussian Diffusion (FnGD), and unveils strong connections between them.
Downloads
Downloads per month over past year
Actions (login required)
![]() |
Modifica documento |