Rusciano, Francesco (2023) Fickian non-Gaussian diffusion in glass-forming liquids. [Tesi di dottorato]

[thumbnail of Rusciano_Francesco_35.pdf]
Anteprima
Testo
Rusciano_Francesco_35.pdf

Download (8MB) | Anteprima
Tipologia del documento: Tesi di dottorato
Lingua: English
Titolo: Fickian non-Gaussian diffusion in glass-forming liquids
Autori:
Autore
Email
Rusciano, Francesco
francesco.rusciano@unina.it
Data: 10 Marzo 2023
Numero di pagine: 141
Istituzione: Università degli Studi di Napoli Federico II
Dipartimento: Ingegneria Chimica, dei Materiali e della Produzione Industriale
Dottorato: Ingegneria dei prodotti e dei processi industriali
Ciclo di dottorato: 35
Coordinatore del Corso di dottorato:
nome
email
D'Anna, Andrea
anddanna@unina.it
Tutor:
nome
email
Greco, Francesco
[non definito]
Pastore, Raffaele
[non definito]
Data: 10 Marzo 2023
Numero di pagine: 141
Parole chiave: Fickian non-Gaussian diffusion, Brownian non-Gaussian diffusion, supercooled liquids, glass-forming liquids, glass transition, Brownian motion, diffusion
Settori scientifico-disciplinari del MIUR: Area 03 - Scienze chimiche > CHIM/02 - Chimica fisica
Area 02 - Scienze fisiche > FIS/02 - Fisica teorica, modelli e metodi matematici
Area 02 - Scienze fisiche > FIS/03 - Fisica della materia
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/06 - Fluidodinamica
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/23 - Chimica fisica applicata
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/24 - Principi di ingegneria chimica
Depositato il: 21 Mar 2023 09:53
Ultima modifica: 10 Apr 2025 12:47
URI: http://www.fedoa.unina.it/id/eprint/15094

Abstract

In 2009, ground-breaking experiments on nanometric beads in complex fluids revealed the existence of a novel type of diffusion (that is distinct from both standard and anomalous diffusion), characterized by a linear time-dependent mean square displacement and a non-Gaussian displacement distribution. In the past few years, many other examples of such a “Fickian yet non-Gaussian Diffusion”, (FnGD) have been reported in literature. FnGD is generically associated to some dynamical and/or structural heterogeneity of the environment. This feature motivated us to investigate the possible occurrence of FnGD in glass-forming liquids, the epitome of dynamical heterogeneity, drawing on experiments on hard-sphere colloidal suspensions and simulations of a simple models of molecular liquid [1, 2]. We here demonstrate that FnGD "strengthens" on approaching the glass transition, by identifying distinct timescales for Fickianity, τF, and for restoring of Gaussianity, τG, as well as their associated length-scales, ξF and ξG. We find τG ∝ τFγ, with γ > 1, for all investigated systems. In the deep FnGD regime, particle displacement distributions display exponential tails: we show that the time-dependent decay lengths l(t) at different temperatures all collapse onto a power-law master-curve, l(t)/ξG ∝ (l(t)/ξG)^α with α ≃ 0.33. For the investigated glass-formers, this behaviour is independent from interaction potential and dimensionality [2]. We further discuss the connections of the time- and length-scales characterizing FnGD with structural relaxation and dynamic heterogeneity, through a complementary study of the dynamics in the reciprocal Fourier-space. Finally, we illustrate the connections between FnGD scales and standard timescales usually considered in the late relaxation of glass-forming liquids, showing that these timescales are always related, and for whatever system, by the same power-law relations. Overall, a number of universal scaling laws for very long-time single-particle dynamics (here reported for the first time) seem to emerge close to the glass transition, and characterize the Fickian non-Gaussian regime of glass-forming liquids. In conclusion, this work of thesis is at the crossroads between two major issues in soft matter, namely glass transition and the recently discovered Fickian yet non-Gaussian Diffusion (FnGD), and unveils strong connections between them.

Downloads

Downloads per month over past year

Actions (login required)

Modifica documento Modifica documento