De Lellis, Francesco (2023) Reinforcement Learning for Control. [Tesi di dottorato]
Anteprima |
Testo
De_Lellis_Francesco_35.pdf Download (10MB) | Anteprima |
Tipologia del documento: | Tesi di dottorato |
---|---|
Lingua: | English |
Titolo: | Reinforcement Learning for Control |
Autori: | Autore Email De Lellis, Francesco francesco.delellis.93@gmail.com |
Data: | 9 Marzo 2023 |
Numero di pagine: | 120 |
Istituzione: | Università degli Studi di Napoli Federico II |
Dipartimento: | Ingegneria Elettrica e delle Tecnologie dell'Informazione |
Dottorato: | Information technology and electrical engineering |
Ciclo di dottorato: | 35 |
Coordinatore del Corso di dottorato: | nome email Russo, Stefano stefano.russo@unina.it |
Tutor: | nome email di Bernardo, Mario [non definito] Russo, Giovanni [non definito] |
Data: | 9 Marzo 2023 |
Numero di pagine: | 120 |
Parole chiave: | Reinforcement Learning, Control Theory, Optimization, Deep Learning |
Settori scientifico-disciplinari del MIUR: | Area 09 - Ingegneria industriale e dell'informazione > ING-INF/04 - Automatica |
Depositato il: | 15 Mar 2023 08:59 |
Ultima modifica: | 10 Apr 2025 13:06 |
URI: | http://www.fedoa.unina.it/id/eprint/15131 |
Abstract
In this thesis, we go through the current state of the art reinforcement learning for control applications. We analyze the pros and cons of the methods provided in the literature. Then we establish a common frame�work to describe both reinforcement learning and control problems and we present four benchmark problems to analyze and compare reinforce�ment learning algorithms. Also, we propose a novel solution, the minimal performance Q-learning, capable of searching and guaranteeing a solution that meets a desired level of performance in terms of steady-state error and settling time. Moreover, we also present the control tutored reinforce�ment learning, an architecture where a feedback controller derived from an approximate model of the environment assists the learning process to enhance its data efficiency. We apply this idea to the classical Q-learning, in the form of a deterministic Control-Tutored Q-Learning (CTQL), that defines the reward function so that a Boolean condition can be used to determine when the control tutor policy is adopted. We also introduce a probabilistic CTQL (pCTQL) that is instead based on executing calls to the tutor with a certain probability during learning. Moreover, we also develop a control tutored deep reinforcement learning the CT-DQN. All the strategies proposed in this thesis are thoroughly analyzed and com�pared with the literature via the set of metrics to evaluate learning and control performances. Eventually, we discuss how control techniques can be applied to face the global COVID-19 pandemic.
Downloads
Downloads per month over past year
Actions (login required)
![]() |
Modifica documento |